
Information Technology and Control 2020/4/49482

Part-of-Speech Tagging via
Deep Neural Networks for
Northern-Ethiopic Languages

ITC 4/49
Information Technology
and Control
Vol. 49 / No. 4 / 2020
pp. 482-494
DOI 10.5755/j01.itc.49.4.26808

Part-of-Speech Tagging via Deep Neural Networks for
Northern-Ethiopic Languages

Received 2020/06/18 Accepted after revision 2020/06/22

 http://dx.doi.org/10.5755/j01.itc.49.4.26808

HOW TO CITE: Tesfagergish, S. G., Kapočiūtė-Dzikienė, J. (2020). Part-of-Speech Tagging via Deep Neural Networks for Northern-
Ethiopic Languages. Information Technology and Control, 49(4), 482-494. https://doi.org/10.5755/j01.itc.49.4.26808

Corresponding author: senait.gebremichael@ktu.edu

Senait Gebremichael Tesfagergish
Department of Software Engineering, Kaunas University of Technology; Studentų str. 50, 51368 Kaunas, Lithuania;
e-mail: senait.gebremichael@ktu.edu

Jurgita Kapočiūtė-Dzikienė
Faculty of Informatics, Vytautas Magnus University; Vileikos str. 8, 44404 Kaunas, Lithuania;
e-mail: jurgita.kapociute-dzikiene@vdu.lt

Deep Neural Networks (DNNs) have proven to be especially successful in the area of Natural Language Pro-
cessing (NLP) and Part-Of-Speech (POS) tagging—which is the process of mapping words to their correspond-
ing POS labels depending on the context. Despite recent development of language technologies, low-resourced
languages (such as an East African Tigrinya language), have received too little attention. We investigate the ef-
fectiveness of Deep Learning (DL) solutions for the low-resourced Tigrinya language of the Northern-Ethiopic
branch. We have selected Tigrinya as the testbed example and have tested state-of-the-art DL approaches seek-
ing to build the most accurate POS tagger. We have evaluated DNN classifiers (Feed Forward Neural Network –
FFNN, Long Short-Term Memory method – LSTM, Bidirectional LSTM, and Convolutional Neural Network –
CNN) on a top of neural word2vec word embeddings with a small training corpus known as Nagaoka Tigrinya
Corpus [19]. To determine the best DNN classifier type, its architecture and hyper-parameter set both manual
and automatic hyper-parameter tuning has been performed. BiLSTM method was proved to be the most suit-
able for our solving task: it achieved the highest accuracy equal to ~92% that is ~65% above the random baseline.
KEYWORDS: Deep Learning; word2vec embeddings; part-of-speech tagging; natural language processing;
computational linguistics; Tigrinya language.

483Information Technology and Control 2020/4/49

1. Introduction
POS tagging (also called grammatical tagging) is an
important application of NLP and a core concept that
many higher-level language technologies depend on.
NLP applications as machine translation, speech rec-
ognition, dependency parsing and many more depend
on POS tagging to be more accurate.
POS tagging is a mapping process of words from a
sentence to their corresponding parts-of-speech,
based on their context and the meaning. Despite
from a human point-of-view the manual POS tag-
ging looks a rather easy task, it is a challenging AI
problem to solve, mainly due to words disambigu-
ation. Languages are different by their nature and
morphological complexity, therefore there is no
single smart solution that could solve all POS tag-
ging problems for all languages of the world. Fortu-
nately, there are solutions that work for groups of
languages (e.g., morphologically complex languages,
agglutinative languages, etc.). The major POS tag-
ging problems usually arises due to the ambiguities
in each language and different POS tagging annota-
tion schemes, when even trained human annotators
sometimes cannot agree on the words’ POS label
[24]. The different annotation schema issue is not
easily tackled, whereas disambiguation issues can
be resolved by training Machine Learning (ML)
methods with the enough manually POS tagged cor-
pora (so-called gold-standard corpora).
In the recent years many traditional ML approaches
are replaced with the DL and it is cross-cutting phe-
nomenon. DL is used for various tasks as parameter
prediction in the Internet-of-Things devices [30];
for skin marks analysis to detect melanoma [31]; for
robot vision [6] and many more. The DL also has cov-
ered all areas of NLP, including POS tagging. Start-
ing from 1994 [33] (with the seed work on the POS
tagging with the neural networks), this problem is
still relevant today [8] and can be solved with the
high-accuracy DNN approaches. However, the high-
er the accuracy is expected, the more resources are
required.
Unlike the rich-resource languages like English, most
of the low-resourced Ethiopic languages do not have
enough corpora that are needed for this task. Open re-
source corpus (such as a Crubadan Corpus Building for

Minority Languages1) doesn’t contain the morpholog-
ical labels crucial for the POS tagging task. The only
publicly available corpus for Tigrinya POS tagging is
the Nagaoka corpus [19], which is a rather small re-
course (especially compared to what is available for
English or Chinese languages). Besides, the North-
ern-Ethiopic languages have more complex morphol-
ogy, therefore require more resources compared to
English or Chinese to cover different inflection forms.
The previous research using the Nagaoka corpus is per-
formed with the traditional supervised ML approaches
(i.e., traditional feature types with traditional classifi-
ers as Conditional Random Fields – CRFs and Support
Vector Machines – SVMs. Although authors managed
to get a sufficient accuracy with the traditional ap-
proaches, they have not explored state-of-the-art deep
learning techniques, which are likely to improve the
accuracy even more. Hence, in this research we focus
on the DNN types, that could be the most promising
for our solving task: FFNN, LSTM, BiLSTM and CNN.
The highest possible POS tagging accuracy is our main
goal and to achieve this we need the whole package (the
correct DNN type + it’s architecture + hyper-parame-
ters) to perform in the best possible way. Due to it, we
have tested different architectures and hyper-parame-
ter values by tuning them manually and automatically.
DNN methods have to be applied on the vectorized
text. Since Tigrinya language do not have pre-trained
word embeddings that could be publicly available, we
have trained them and describe this process in Sec-
tion 4. Section 5 describes the DNN classifiers; Sec-
tion 6 presents the technicality of the experiments
and their results. Finally, we conclude with nominat-
ing the best approach for the Tigrinya POS tagging.
The main novelty and contribution of this work cov-
ers the comparative state-of-the-art DNN research
(including architecture and hyper-parameter tun-
ing) on the POS tagging task for the Tigrinya lan-
guage sharing similar characteristics to other North-
ern-Ethiopic languages that could strongly benefit
from this research.

1 Available at http://crubadan.org/languages/ti and
word list compiled by Biniam Gebremichael’s web crawler,
available at http://www.cs.ru.nl/˜biniam/geez/crawl.php

Information Technology and Control 2020/4/49484

2. Related Works
The Ethiopic languages (Tigre, Ge’ez, Amharic, Ti-
grinya) are spoken by around 30 million people. Some
Ethiopic languages as opposite to other Semitic lan-
guages (such as Arabic, Hebrew and Amharic) get
rather little attention in the area of NLP research.
This is mainly due: 1) to the absence of linguistical
resources; 2) proprietary resources; 3) resources not
in the electronic format. The most researched Ethio-
pic language is Amharic [1,2,9,11,13,23], which is also
supported by Google. For the other languages as, e.g.,
Tigrinya, the research on different NLP topics are in
their early stages (e.g., statistical machine translation
from English to Tigrinya [3]).
If focusing on the POS tagging task, the pioneering
POS tagging research on the Amharic language was
done in 2001 [23]: the author applied stochastic Hid-
den Markov approach. In [13] authors use the Brill,
and TnT of python Implementation in NLTK. Their
most accurate POS tagger was based on CRF and
achieved 90.95% of the accuracy. The paper describes
how the usage of partially cleaned corpus, selection
of most informative features (based on the linguistic
information as vowel pattern, radicals, punctuation,
alphanumeric and suffixes), and applications of pa-
rameter tuning and tagging algorithms help to boost
the accuracy. Their experiments were carried on the
corpus of 210,000 tokens with 31 tag labels (11 basic).
The most innovative work for Amharic POS tagging
is presented in [2]. The author trained the POS tagger
with neural word embeddings as the feature type and
DNN methods as classifiers. The tested LSTM, FFNN
and BiLSTM approaches achieved the accuracy equal
to 92.8%, 88.88% and 93.7%, respectively.
Another POS tagging work for Amharic compared one
traditional ML approach (in particular, CRF) with
one neural-based approach (BiLSTM) and achieved
90% and 91%, respectively [5]. Such a high accuracy is
achieved on the task which is less complicated to our
solving task: the authors use 11 POS labels (whereas
in our experiments we have 20).
However, both research works (i.e., [2] and [5]) pro-
vide too abstract conclusions lacking the important
details about the DNN architectures and hyper-pa-
rameters. Different combinations of architectures
and hyper-parameters can impact the accuracy in the
broad range. We cannot repeat the previous exper-

iments, but at least we can benefit from the insights
proving DNN superiority over the traditional ML ap-
proaches.
However, POS taggers for Amharic already exist and
it opens the opportunity to continue the research on
the other topics that cannot be initiated without POS
tagging as e.g., dependency parsing [35], enhance-
ment of MT and information retrieval tasks [10].
HornMorpho [11] is a system for morphological pro-
cessing of three Ethiopic languages (i.e., Amharic,
Oromo and Tigrinya). The morphological analyzer
segments words into morphemes and has to assign
grammatical labels to them. However, for Tigrinya it
assigns only verbs. Hence, the application options of
such analyzer are very limited.
POS tagging for the Tigrinya language is studied in
[12]. The author used 26,000 words labelled with
36 POS labels and experimented with the probabi-
listic Hidden-Markov Model (HMM) method com-
bined with the rule-based tagger (Viterbi algorithm
and Brill) [12]. The HMM and rule-based approach
achieved the accuracy of 89.13% and 91.8%, respec-
tively, when applied separately. A hybrid HMM +
rule-based approach boosted the accuracy to 95.88%.
This research is important; despite done with the
traditional ML method combined with the inflexible
rule-based approach making it hardly transferable to
the new domains, language styles (fiction, legal texts,
etic) and types (spoken language, non-normative,
etc.). Another research for Tigrinya POS tagging was
also done on the small-sized gold standard Nagaoka
Tigrinya Corpus (NTC.1.0) [19], which is currently
the only publicly available POS tagged corpus for the
Tigrinya language. Using NTC 1.0 the authors test-
ed traditional ML methods, i.e., CRF and SVM. The
original corpus contains 76 different tag labels (some
of them are weakly covered) that were reduced to 20
labels for the better distribution. For POS tagging of
the target words the authors extracted contextual
features covering two succeeding and two preceding
words. In addition, lexical features were extracted
from the focus word: affixes, comprising prefixes from
one up to six characters length, consonant-vowel
patterns (infixes), and suffixes from one to five char-
acters length [20]. The best accuracy=89.92% and
90.89% was achieved with SVM and CRF, respec-
tively. Another interesting approach on the Tigrinya
POS tagging [36] use the traditional ML approaches

485Information Technology and Control 2020/4/49

(presented in [20]), but explores different types of
neural word embeddings to improve the POS tagging
of the unrecognized words. However, this research is
not focused on the improvement of the POS tagger:
it presents extrinsic evaluation of the word embed-
dings and the POS tagging task is selected as a good
example. When experimenting with the DNN classi-
fiers, the neural word embeddings are recommended.
Unfortunately, neural word embeddings (trained and
presented in [36]) are not publicly available online,
therefore for our POS tagging research we will need
to train them ourselves.
To conclude, despite some Northern-Ethiopic lan-
guages (as Amharic) are more researched, different
research works cover different: 1) languages, 2) data-
sets, 3) annotation schemas (resulting in various
numbers of tag labels), 4) applied methods (tradi-
tional ML or DL-based). Due to different experimen-
tal conditions the results are hardly comparable and
even interpretable. Moreover, the previous research
works do not provide important recommendations
on the different DNN classifiers, architectures, hy-
per-parameters that we could rely before starting
our experiments. Northern-Ethiopic languages also
lack of publicly available resources. All it makes our
research on the Tigrinya POS tagging even more im-
portant; especially assuming that the other similar
Northern-Ethiopic languages (sharing similar char-
acteristics to Tigrinya) could benefit from it.

3. Ethiopic Languages Characteristics
Northern-Ethiopic languages are from the Afro-asiat-
ic family and belongs to the South Semitic languages
along with Amharic, Maltese, Tigre and Arabic. The
Ge’ez script is adapted to write other Semitic languag-
es. Mainly Amharic, Tigrinya, Ge’ez and Tigre languag-
es are characterized with the rich derivational and
influential morphology which results in the numerous
variations of word forms. The root-template morpho-
logical pattern that is usually the distinguishing feature
of Semitic languages is composed of trilateral roots.
For example, ሃገራት (hagerat) – countries, ተማሃራይ
(temaharay) – male student, ተማሃሪት (temaharit) –
female student is based on the same noun, inflected
for gender (examples in Tigrinya). Adjectives are in-
flected for gender and number: ጸሊም (Xelim), ጸለምቲ

(Xelemti) – black (in masculine), blacks respective-
ly [20]. Similarly, verbs (most the Ge’ez script using
languages) have rich morphological structures. Dif-
ferent structures of the basic verb form are made in
the arrangement of consonants and vowel patters,
e.g., the root sbr – to break of pattern (CCC) has forms
such as sebere (CVCVCV) in the active form, te-sebere
(te-CVCCV) in passive form [20]. Table 1 shows the
most informative patterns according to the distribu-
tion of the gerundive verb (V_GER).
As it can be seen from the previous examples, the
morphology for the Northern-Ethiopic languages

Table 1
Some patterns of the gerundive verb (V_GER) [20]

V_GER pattern V_GER % Examples

CeCiCu 31.1 feliTu (he knew)

CeCeCiCu 17.8 tefeliTu (it was known)

CeCiCICu 15.9 tefaliTu (to know each other)

CeCiCICa 14.6 feliTIka (you knew)

aCICiCu 11.8 afIliTu (made something known)

CeCiCoCI 11.3 feliTomI (they knew)

CeCiCa 10.5 feliTa (she knew)

is very specific and must be indirectly incorporated
(it is usually done via word vectorization, described
in Sub-Section 4.2) into the DNN approaches when
seeking for the most accurate solutions.

4. Dataset Preparation

4.1. The Corpus
As we already mentioned before, the main problem
for the Northern-Ethiopic languages are the lack
of resources. However, in this research we are us-
ing the publicly available Nagaoka Tigrinya Corpus
(NTC 1.0) [19], created specifically for the POS tag-
ging task. This corpus contains gold POS labels that
makes this corpus suitable for the supervised POS
tagging tasks. The POS tagger can be trained in the
supervised manner and afterwards be used to POS
label of the new sentences. The trained model of the

Information Technology and Control 2020/4/49486

POS tagger typically depends on: 1) the diversity and
completeness of the annotated corpus; 2) on the used
tag labels (coarse-grained as noun, verb, etc. or fine-
grained containing more detailed morphological in-
formation as gender, number, tense, etc. that is much
more difficult to predict).
The dataset used in our research consists of 72,080
tokens of 4,656 sentences gathered from the news-
paper articles. The corpus is set up in Ge’ez and En-
glish alphabets, but for the simplify reasons only the
English alphabet is used. Words in the corpus are
tagged with 20 different types of POS labels (the sta-
tistics about the distribution of labels can be found in
Figure 1). The solving POS tagging task is indeed the
multi-class supervised classification problem [22,34]
and the most promising classifiers for our task are
represented in Section 5.

Figure 1
A distribution of POS labels in the Nagaoka corpus [20]

Table 2
Training, testing and validation splits of the NTC 1.0
corpus used in our experiments

Sets Percentage Number of
tokens

Number of
sentences

Training 60% 43,248 2,792

Testing 20% 14,416 931

Validation 20% 14,416 933

Figure 1

A distribution of POS labels in the Nagaoka
corpus [20]

For our experiments the NTC 1.0 corpus was split
into training, validation and testing sets. The
distribution is presented in Table 2.

Table 2

Training, testing and validation splits of the NTC 1.0
corpus used in our experiments

Sets Percentage Number
of tokens

Number of
sentences

Training 60% 43,248 2,792

Testing 20% 14,416 931

Validation 20% 14,416 933

Before the POS tagging, the following pre-
processing steps were necessary:

1. Tokenization. The tokenization task for
languages like English is straightforward;
however, it requires a special adjustment to
some other languages, including Northern-
Ethiopic. For instance, Amharic, Tigre, Tigrinya
words are usually spoken to as connection of
morphemes each having its own POS tag (e.g.,
nouns attached with a preposition has separate
label, namely NP).

2. Feature Extraction. POS tags also depend on

positions of words in a sentence. Due to
this reason it is important to consider the
following features: if a word is the first or
last in a sentence; take 1-2 POS tags before
and after the target word.

4.2. Vectorization
In the previous Sub-Section 4.1 we came up with
the conclusion that supervised ML methods are
the most suitable for our solving task. However,
these methods cannot be applied directly on the
textual data. The word vectorization is
implemented to bridge the gap between texts
and the mathematical operations of the
supervised ML methods. Textual elements
(usually words) are represented by vectors that
are derived from textual input data and reflect
contextual and linguistic properties [14].

There are two main directions to represent
words (and texts) as vectors: by using discrete
or distribution vectorization. The most famous
example of the discrete vectorization is one-hot
encoding. The length of the one-hot word vectors
is equal to the size of the vocabulary, all values
are zeros except for one set to 1. It is very fast
and simple approach to vectorize texts and due
to it one-hot encoding is often selected as the
baseline approach. On the other hand, one-hot
encoding does not incorporate contextual
information between words. As the opposite to
it, distributional word embeddings (as
word2vec, gloVe, BERT, etc.) are trained with the
DNNs and encode similarities between words.
Distributional word embeddings are typically
used as the input for the DNN classifiers.

In this paper, we are testing both one-hot
encoding and word2vec vectorization (for more
details see [26-28]) methods as representatives
of discrete and distributional vectorization
types, respectively.

Unfortunately, there are no pre-trained word
embeddings for the Tigrinya language what
would be publicly available and we could use
them as the input for our neural classifiers. To
overcome this problem, word2vec method with
dimensions = 100 and window size = 3 (with
other default parameter values) was used to
train Tigrinya neural word embeddings. As the
training corpus we have used 4,656 sentences
from NTC 1.0 corpus. The training was
performed with the Python programming
language and the open-source library

0
5

10
15
20
25
30
35

N V
A

D
J

PU
N

C
O

N
PR

E
A

D
V

PR
O

N
U

M FW IN
T

U
N

C

For our experiments the NTC 1.0 corpus was split into
training, validation and testing sets. The distribution
is presented in Table 2.

Before the POS tagging, the following pre-processing
steps were necessary:
1 Tokenization. The tokenization task for languag-

es like English is straightforward; however, it re-
quires a special adjustment to some other languag-
es, including Northern-Ethiopic. For instance,
Amharic, Tigre, Tigrinya words are usually spoken
to as connection of morphemes each having its
own POS tag (e.g., nouns attached with a preposi-
tion has separate label, namely NP).

2 Feature Extraction. POS tags also depend on posi-
tions of words in a sentence. Due to this reason it
is important to consider the following features: if a
word is the first or last in a sentence; take 1-2 POS
tags before and after the target word.

4.2. Vectorization

In the previous Sub-Section 4.1 we came up with the
conclusion that supervised ML methods are the most
suitable for our solving task. However, these methods
cannot be applied directly on the textual data. The
word vectorization is implemented to bridge the gap
between texts and the mathematical operations of the
supervised ML methods. Textual elements (usually
words) are represented by vectors that are derived
from textual input data and reflect contextual and lin-
guistic properties [14].
There are two main directions to represent words
(and texts) as vectors: by using discrete or distribu-
tion vectorization. The most famous example of the
discrete vectorization is one-hot encoding. The length
of the one-hot word vectors is equal to the size of the
vocabulary, all values are zeros except for one set to 1.
It is very fast and simple approach to vectorize texts
and due to it one-hot encoding is often selected as the
baseline approach. On the other hand, one-hot en-
coding does not incorporate contextual information
between words. As the opposite to it, distributional
word embeddings (as word2vec, gloVe, BERT, etc.)
are trained with the DNNs and encode similarities
between words. Distributional word embeddings are
typically used as the input for the DNN classifiers.
In this paper, we are testing both one-hot encoding
and word2vec vectorization (for more details see [26-
28]) methods as representatives of discrete and dis-
tributional vectorization types, respectively.

487Information Technology and Control 2020/4/49

Unfortunately, there are no pre-trained word em-
beddings for the Tigrinya language what would be
publicly available and we could use them as the input
for our neural classifiers. To overcome this problem,
word2vec method with dimensions = 100 and window
size = 3 (with other default parameter values) was
used to train Tigrinya neural word embeddings. As the
training corpus we have used 4,656 sentences from
NTC 1.0 corpus. The training was performed with the
Python programming language and the open-source
library Gensim [32]. The pre-trained embeddings
were saved and used afterwards in our experiments.

5. Deep Learning Classifiers

5.1. Feed Forward Neural Network
The Feed Forward Neural Network (FFNN) is the
simplest DNN type of all existing. FFNNs have nu-
merous applications where nonlinear mapping is
done between inputs and outputs to predict future
state. However, it cannot be used if the outputs depen-
dent on the previous state of inputs. According to this
definition, FFNN should not the best option for the
POS tagging task in which the order of words should
play a key role.
On the other hand, the sequential information can
be entered directly to the FFNN in the form of X
succeeding and Y preceding words (X=2 and Y=2 in
all our experiments). Although this FFNN method
is selected as a baseline approach to see how far the
accuracy can increase with naïve solutions, we have
doubted this method could surpass other types of
classifiers (e.g., LSTM or BiLSTM) adjusted to learn
from the sequential data.
The results of FFNN are presented in Sub-Section
6.1.

5.2. Recurrent Neural Networks
In the Northern-Ethiopic languages the word order in
a sentence is important (it can even change the mean-
ing of a sentence), therefore cannot be disregarded.
Thus, Recurrent Neural Networks (RNNs) ought to
be a decent choice for our POS tagging task. These
types of networks have memory cells and inputs from
the previous states, therefore are adjusted to process

sequential data. RNN has two inputs at each time
step, where the initial one is the real input (i.e., in-
coming word from the sentence) and the subsequent
one is the output of the previous step. Despite of the
fact that RNNs have a memory, they suffer from the
vanishing gradient problem and only latest inputs are
remembered and considered. In the Northern-Ethio-
pic languages (as well as in the Tigrinya language) this
could have negative effect on learning and prediction
of the POS tags that are influenced by words more dis-
tant from the target word.
To overcome the short memory problem of RNNs
Long Short-Term Memory (LSTM) network [17] or
Bidirectional LSTM (BiLSTM) [15] are used instead.
LSTM has 3 weighted gates adjusted during training.
The input, forget and output gates are used to decide
what information to input, forget and output, respec-
tively. While LSTM allows the data stream just one
way (from the past to the future), BiLSTM takes both
directions bearing data streams from the past to the
future and from the future to the past. In the POS tag-
ging tasks, some succeeding words can provide im-
portant information about the POS tags of the previ-
ous words. E.g., in the Tigrinya language verbs convey
a lot of information about nouns and pronouns, but
they mostly appear last, i.e., at the end of the sentence.
Theoretically, by considering the language specif-
ics and the nature of these RNN approaches, LSTM
should be a good choice for our POS tagging task, but
BiLSTM should be the best. However, to determine
the best classifier type is not enough, it is necessary
to choose its architecture and a right set of hyper-pa-
rameter values.

5.3. Convolutional Neural Network

The Convolutional Neural Network (CNN) [21] com-
prises of two sections: feature extraction (the input,
convolution and activation) and classification (max
pooling, fully-connected layer and the output).
The upper layers of CNN are inputs of word embed-
ding values from the input sequence. These values
are connected to the 1D convolutional layer in which
the neurons of their local regions are attached to their
weights (called filters or kernels). During initializa-
tion weights are randomly generated. Output of a neu-
ron is a dot product between the filters (weights) and
local region of the input. Through the activation func-

Information Technology and Control 2020/4/49488

tion applied to every neuron in the network, down
sampling along the width (length of the word vector)
and height (length of the input text sequence) dimen-
sions is performed in the max pooling stage that is
where the classification task begins. Then, it is con-
nected to a fully-connected layer using values from
the max pooling layer (as extracted features) for this
input. For adjusting the weights, the backpropagation
learning algorithm is applied. Instead of working with
the sequential data, the CNN is adjusted to search for
the important patterns (usually n-grams/sequences
of words) that impacts the target POS tag the most.
Despite our credit goes to LSTM and BiLSTM meth-
ods as the most adjusted to process sequential data;
CNN sometimes outperforms those networks and
it is mostly because the recurrent methods feed the
whole context (also unrelated) into the network, but
CNN performs the careful search over the related
word n-grams instead.
CNNs could be a good option for our solving POS tag-
ging problem, in light of the fact that there are cases
in Northern-Ethiopic languages (including Tigrinya)
where not all the information in the sentences are rel-
evant, but only a small subset typically 3-grams close
to the target word can impact its POS tag.

6. Experiments and Results

6.1. Evaluation Metrics
In this research we have experimented with the NTC
1.0 corpus (described in Sub-Section 4.1), using the
vectorization (described in Sub-Section 4.2) and the
DNN classifiers (presented in Section 5). Python pro-
gramming language with the TensorFlow engine [37]
and Keras library [7] was used for these methods’ im-
plementation.
In this paper we have adopted the following formulas
to measure the accuracy (Equation (1)) and the loss
(Equation (2)).

Accuracy =

tp tn
tp tn fn fp

+
+ + +

, (1)

where: tp (true positives); fn (false negatives); fp
(false positives); tn (true negatives).

loss = , log log(,)
1

M

o c Po c
c

y
=

−∑ , (2)

where: M is a number of classes (POS tags); Y is a bi-
nary indicator (0 or 1) if a class label c is the correct
classification for observation o; P is a predicted prob-
ability of observation o in class c.
For any classification task it is necessary to have base-
line values. The determined accuracy must surpass
baselines for the method to be considered reasonable
and suitable for the solving classification task. Only
then the POS tagging result will be considered rea-
sonable and appropriate if the calculated accuracy is
above random (Equation (3)) and majority (Equation
(4)) baselines.

Random baseline = 2()iP C∑ (3)

Majority baseline = max ()iP C , (4)

where: ci is a probability of a class (where classes rep-
resent POS tags).
The calculated baselines are presented in Table 3.
It shows that the calculated accuracy of reasonable
method must be above 0.27 and, of course, our goal is
going far beyond this boundary. To evaluate if differ-
ences between the accuracies are statistically signifi-
cant, we have used the McNemar test with one degree
of freedom and the significance level equal to 95%
[25]. The differences were considered statistically
significant if the calculated p value exceeded 0.05.
The most suitable classifier can poorly perform if it’s
architecture and a set of hyper-parameter values are
not properly selected. It doesn’t matter if those pa-
rameters are set manually or automatically, the most
important is that they would be set in the way allow-
ing to achieve the highest possible POS tagging accu-
racy.
The parameter optimization was performed on the
training dataset and validated on the validation data-
set. The most accurate model (achieving the highest
accuracy on the validation dataset) was evaluated
with the training dataset (the detailed information
on the splits of training, validation and testing is pre-
sented in Table 2).

489Information Technology and Control 2020/4/49

6.2. Manual Hyper-Parameter Tuning
The selection of the DNN architecture and hyper-pa-
rameter values based purely on the expert knowledge
is not always the right decision. For this reason, we
have investigated several DNN architectures (deeper
and shallower) together with different hyper-param-
eter values (in particular, activation functions).

Table 3
Calculation of random and majority baselines

POS tags Number of Instances P(C)

V_PRF 1,437 0.020

UNC 113 0.079

V_AUX 3,409 0.047

V_IMP 316 0.004

N 19,495 0.270

PUN 7,960 0.110

V_REL 3,787 0.053

ADV 2,415 0.034

INT 145 0.002

N_V 2,104 0.292

ADJ 8,210 0.114

NUM 1,235 0.017

N_PRP 2,220 0.031

FW 176 0.002

V 357 0.005

V_GER 2,734 0.038

CON 4,933 0.068

V_IMF 4,501 0.062

PRE 4,424 0.061

PRO 2,106 0.029

Random Baseline 0.128

Majority Baseline 0.270

Activation functions are one of the most import DNN
hyper-parameters. They determine if the output of
DNNs has to be activated or not, based on each neu-
rons’ input and relevancy in prediction. In this paper
we have explored 3 types of activation functions [29]:
relu, softmax, and tanh. To determine the best one, we
considered their speed and convergence. Each activa-
tion function has its own advantages: with relu a net-
work converges very quickly, softmax effectively han-
dles multiple classes, tanh is suitable to model inputs
that have strong values.

Experiments with FFNN:
Vectorization: one-hot encoding
Hidden layers: 1, 2 and 3
Neurons: 256, 512 and 1024
Epochs: 100
Batch size: 256 (a number of training instances pro-
cessed before a model is updated)

The experimental investigation proved the softmax
activation function to be the most accurate. The mod-
el with the activation softmax achieved the highest
accuracy equal to 28% (see Table 4) and it is above
random and majority baselines. The best manually
tuned FFNN architecture is presented in Figure 2
(this and the following architectures were plotted
with the plot_model function in Keras). By the way,
different numbers of neurons and hidden layers didn’t
show any significant impact on the accuracy.

Experiments with LSTM:
Vectorization: word2vec encoding (Section 4.2)
Architectures with simple and stacked LSTM
(1 ≥ LSTM)
Neurons: 64, 128, 256, 512 neurons in the hidden
Epochs: 100
Batch size: 32
Activation function: tanh, softmax, relu
Other parameters were set to their default values.

The experimental investigation revealed that sim-
ple LSTM (1 = LSTM) with 64 neurons outperforms
deeper architectures. The best accuracy is achieved
using the softmax activation function (See Table 4)
and the architecture presented in Figure 3. As pre-
sented in Table 4, softmax and relu activation func-

Information Technology and Control 2020/4/49490

tions are both suitable (the difference between these
results are not statistically significant). However,
softmax still slightly outperformed relu.

Figure 2
Schematic representation of the best determined FFNN
architecture

Figure 2

Schematic representation of the best determined FFNN
architecture

Experiments with BiLSTM:

Vectorization: word2vec encoding

Architectures with simple and stacked BiLSTM (1 ≥
BiLSTM)

Neurons: 64, 128, 256, 512 neurons in the hidden

layers

Epochs: 100

Batch size: 32

Activation functions: tanh, softmax, relu

Other parameters were set to their default
values.

The highest accuracy using BiLSTM model was
achieved using the softmax activation function
(See Table 4) and the architecture presented in
Figure 4. The picture is very similar to LSTM:
softmax and relu compete for the winner,
however, softmax is slightly, but insignificantly
better than relu.

Figure 3.

Schematic representation of the best determined
LSTM architecture

Figure 4

Schematic representation of the best determined
BiLSTM architecture

Experiments with CNN:

Vectorization: word2vec encoding

Experiments with BiLSTM:
Vectorization: word2vec encoding
Architectures with simple and stacked BiLSTM (1 ≥
BiLSTM)
Neurons: 64, 128, 256, 512 neurons in the hidden layers
Epochs: 100
Batch size: 32
Activation functions: tanh, softmax, relu
Other parameters were set to their default values.

The highest accuracy using BiLSTM model was
achieved using the softmax activation function (See
Table 4) and the architecture presented in Figure 4.
The picture is very similar to LSTM: softmax and relu
compete for the winner, however, softmax is slightly,
but insignificantly better than relu.

Figure 3
Schematic representation of the best determined LSTM
architecture

Figure 4
Schematic representation of the best determined BiLSTM
architecture

Figure 2

Schematic representation of the best determined FFNN
architecture

Experiments with BiLSTM:

Vectorization: word2vec encoding

Architectures with simple and stacked BiLSTM (1 ≥
BiLSTM)

Neurons: 64, 128, 256, 512 neurons in the hidden

layers

Epochs: 100

Batch size: 32

Activation functions: tanh, softmax, relu

Other parameters were set to their default
values.

The highest accuracy using BiLSTM model was
achieved using the softmax activation function
(See Table 4) and the architecture presented in
Figure 4. The picture is very similar to LSTM:
softmax and relu compete for the winner,
however, softmax is slightly, but insignificantly
better than relu.

Figure 3.

Schematic representation of the best determined
LSTM architecture

Figure 4

Schematic representation of the best determined
BiLSTM architecture

Experiments with CNN:

Vectorization: word2vec encoding

Figure 2

Schematic representation of the best determined FFNN
architecture

Experiments with BiLSTM:

Vectorization: word2vec encoding

Architectures with simple and stacked BiLSTM (1 ≥
BiLSTM)

Neurons: 64, 128, 256, 512 neurons in the hidden

layers

Epochs: 100

Batch size: 32

Activation functions: tanh, softmax, relu

Other parameters were set to their default
values.

The highest accuracy using BiLSTM model was
achieved using the softmax activation function
(See Table 4) and the architecture presented in
Figure 4. The picture is very similar to LSTM:
softmax and relu compete for the winner,
however, softmax is slightly, but insignificantly
better than relu.

Figure 3.

Schematic representation of the best determined
LSTM architecture

Figure 4

Schematic representation of the best determined
BiLSTM architecture

Experiments with CNN:

Vectorization: word2vec encoding
Experiments with CNN:
Vectorization: word2vec encoding
Dimension: 1D dimension
Filters: 100
Kernel size: 3
Output layers: 2
Neurons: 64 and 1

491Information Technology and Control 2020/4/49

Activation functions: tanh, softmax, relu
Other parameters were set to their default values

The best determined CNN architecture is in Figure
5. Relu activation function gives the best and signifi -
cantly better accuracy compared to other activation
functions (See Table 4). The result is not suitable, be-
cause it is under random and majority baselines.

Figure 5
Schematic representation of the best CNN architecture

Dimension: 1D dimension

Filters: 100

Kernel size: 3

Output layers: 2

Neurons: 64 and 1

Activation functions: tanh, softmax, relu

Other parameters were set to their default values

The best determined CNN architecture is in Figure 5.
Relu activation function gives the best and
significantly better accuracy compared to other
activation functions (See Table 4). The result is not
suitable, because it is under random and majority
baselines.

Figure 5

Schematic representation of the best CNN architecture

The best obtained accuracies of tuned architectures
for different classifiers and activation functions are
summarized in Table 4.

Table 4

Manually tuned hyper-parameter optimization
results (in accuracies)

DNN Tanh Softmax Relu

FFNN 0.00029 0.279 0.120

LSTM 0.004 0.896 0.891

BiLSTM 0.016 0.918 0.911

CNN 0.119 0.112 0.159

6.2 Automatic Hyper-Parameter
Tuning

Manual optimization of hyper-parameters in
DNN models is a tedious work. Besides, the
expert knowledge may sometimes mislead,
especially when unconventional solutions are
needed. Due to this reason we have performed
automatic hyper-parameter optimization. It was
implemented with Python's library Hyperas [16].
It allows to tune discrete (by selecting from the
list of determined values) and real (by selecting
from the interval) hyper-parameter values
when seeking for the highest accuracy on the
validation dataset. The following options of
hyper-parameter values were tested in our
experiments:

Activation function: sigmoid, softmax, tanh, relu,
swish, selu activation functions

Optimizers: adam, sdg, rmsprop

Batch sizes: 16, 32, 64, 128

Hidden layers: 1, 2 and 3

In this research, the hyper-parameter tuning
was performed for LSTM, BiLSTM and CNN
classifiers with the pre-trained word2vect
embeddings for vectorization. The optimization
was restricted to 20 iterations. The tuning of
hyper-parameters was done in the directed
manner using tpe.suggest strategy. Tpe stands for

Table 4
Manually tuned hyper-parameter optimization results (in
accuracies)

DNN Tanh Softmax Relu

FFNN 0.00029 0.279 0.120

LSTM 0.004 0.896 0.891

BiLSTM 0.016 0.918 0.911

CNN 0.119 0.112 0.159

The best obtained accuracies of tuned architectures
for diff erent classifi ers and activation functions are
summarized in Table 4.

6.3. Automatic Hyper-Parameter Tuning
Manual optimization of hyper-parameters in DNN
models is a tedious work. Besides, the expert knowl-
edge may sometimes mislead, especially when un-
conventional solutions are needed. Due to this reason
we have performed automatic hyper-parameter opti-
mization. It was implemented with Python’s library
Hyperas [16]. It allows to tune discrete (by selecting
from the list of determined values) and real (by se-
lecting from the interval) hyper-parameter values
when seeking for the highest accuracy on the valida-
tion dataset. The following options of hyper-parame-
ter values were tested in our experiments:
Activation function: sigmoid, softmax, tanh, relu,
swish, selu activation functions
Optimizers: adam, sdg, rmsprop
Batch sizes: 16, 32, 64, 128
Hidden layers: 1, 2 and 3
In this research, the hyper-parameter tuning was per-
formed for LSTM, BiLSTM and CNN classifi ers with
the pre-trained word2vect embeddings for vectoriza-
tion. The optimization was restricted to 20 iterations.
The tuning of hyper-parameters was done in the di-
rected manner using tpe.suggest strategy. Tpe stands
for Tree-structured Parzen Estimator [4], which or-
ganizes hyper-parameters into a tree-like space. This
Bayesian modelling approach decides which set of
hyper-parameters to try in the next iteration based on
the distribution of previous results.
The best determined hyper-parameter values and
the best accuracies for diff erent DNN classifi ers with
word2vec embeddings are presented in Table 5.

Table 5
Hyper-parameter optimization results

LSTM BiLSTM CNN CNN

Activation Sigmoid Sigmoid Softmax Sigmoid

Hidden layers 1 1 1 1

Neurons 32 64 32 32

Batch_size 32 32 32 32

Optimizer rmsprop rmsprop rmsprop rmsprop

Accuracy 0.890 0.918 0.610 0.610

Information Technology and Control 2020/4/49492

7. Discussion
Our results allow us to make the following statements.
The accuracy (particularly the best achieved) is much
above random and majority baselines, therefore
methods are considered appropriate and reasonable.
After testing different DNN classifiers (FFNN, LSTM
BiLSTM and CNN) with a small amount of data, the
manual tuning of hyper-parameters and different
DNNs revealed that BiLSTM is the best option for
our solving task. This RNN approach is adjusted to
process the sequential data and able to consider the
context (words before and after) when predicting the
POS tag of the target word.
The best results with CNN were achieved when tun-
ing hyper-parameter automatically and reached the
accuracy of 61%. As we expected, CNN is not the
worst option, thus it is not the most suitable choice for
the sequential data: CNN could not beat the BiLSTM
models (tuned manually and automatically) of which
the accuracy is ~91.8%. Accuracies of FFNN and CNN
are not satisfactory (often even below random and
majority baselines). Besides, e.g., FFNN needs spe-
cific adjustments by feeding it with the context in an
unnatural way: i.e., feature extraction and definitely
more context needed is needed to compete with the
other approaches.
The overall best accuracy of 91.8% was achieved with
the BiLSTM method, which considers sequences of
words in both direction (from the past to the future
and from the future to the past). It seems that the se-
quential nature of the data for the POS tagging of the
Northern-Ethiopic languages (and the Tigrinya lan-
guage as the representative example of this group)
is much more important than we expected at the
beginning. Neither the particular keywords, nor the
n-grams of words, but the sequential nature of the text
(i.e., the order of words in sentences) is important for
the Tigrinya POS tagging.
As the McNemar test proved, the difference between
the closest achieved result (with BiLSTM + relu acti-
vation function in Table 4) from the best determined
(BiLSTM + softmax in Table 4 or BiLSTM in Table 5)
and equal to 91.8% is statically significant, because the
calculated p = 0.04, which means p < 0.05. The p values
for the 4 closest results to the best one achieved are
summarized in Table 6 (here we demonstrate how

much differences are statistically significant between
the best result and the closest results achieved by oth-
er approaches).

Table 6
Calculated p values to measure if differences to the best
achieved accuracy = 91.8% are statistically significant

In comparison with: Accuracy p value

BiLSTM + relu (Table 4) 0.911 0.04

LSTM + softmax (Table 4) 0.896 1.04E-09

LSTM relu (Table 4) 0.891 1.42E-13

LSTM (Table 5) 0.890 1.86E-14

In the previous work done on the same dataset (pre-
sented in [20]) with the traditional ML methods of
CRFs and SVMs the achieved accuracy was lower and
equal to 90.89%. Our improvement on this traditional
approach is statistically significant (with the calcu-
lated p = 0.009 < 0.05. Moreover, the traditional ap-
proaches have already reached their limits (in terms
of discrete vectorization, parameters and sizes of the
datasets); whereas the accuracy of DNNs is very sen-
sitive to the sizes and variety of the training data. The
accuracy of DNNs methods can be increased with
more classification data (labeled with the POS tags)
and more texts (for training word embeddings). This
is the direction to go in the future.
The comparative experiments with the different DNN
approaches are the significant achievement for the
Tigrinya language, as well for the whole group of the
Northern-Ethiopic languages sharing similar charac-
teristics. The work is also influential from the practi-
cal perspective as well: the accurate POS tagger can
boost the continues research in the other NLP tasks,
especially for the resource-scarce Tigrinya.

8. Conclusion and Future Work
In this paper we are tackling the POS tagging problem
for the Tigrinya language and achieve the best accu-
racy of ~92%. The best accuracy was achieved with
the BiLSTM classifier applied on neural word embed-

493Information Technology and Control 2020/4/49

dings, carefully selected DNN architecture and opti-
mized hyper-parameter values. This achieved result
is much better than random and majority baselines.
The paper also presents the comparative POS tagging
experiments with various DNN classifiers (specifical-
ly, FFNN, LSTM, BiLSTM and CNN). To our knowl-
edge comparative analysis of several DNN classifiers
has never been performed before on any of the North-
ern-Ethiopic languages for the POS tagging task.
For various DNNs we have investigated their differ-
ent architectures and sets of hyper-parameter values
by tuning those parameters manually (via expert in-
sights) and automatically (with automatic parameter
optimization methods). Such comprehensive search
(seeking for the best POS tagger solution manually

and automatically) has never been performed before
for any of the North-Ethiopic languages.
The achieved results and especially recommenda-
tions on classifiers, their architectures and hyper-pa-
rameter values are important not only for the Tigrinya
language, but for the whole group of Northern-Ethio-
pic languages sharing similar characteristics.
In the future we are planning to continue our research
for the Tigrinya language in the other areas of NLP by
solving tasks which could not even be initiated be-
fore (without the accurate POS tagger). It would be
also interesting to perform experiments for the other
Northern-Ethiopic languages (e.g., Tigre, Saho, Ge’ez)
to see how much they can benefit from the recom-
mendations in this research.

References
1. Amsalu, S., Gibbon, D. Finite State Morphology of Am-

haric. International Conference on Recent Advances in
Natural Language Processing, 2005, 47-51.

2. Argaw, M. Amharic Part-of-Speech Tagger using Neu-
ral Word Embeddings as Features, Addis Ababa Uni-
versity, Addis Ababa Institute of Technology, Master
Thesis, 2019.

3. Azath, M., Kiros, T. Statistical Machine Translator for
English to Tigrigna Translation. International Jour-
nal of Scientific and Technology Research, 2020, 9(1),
2095-2099.

4. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B. Algorithms
for Hyper-Parameter Optimization. NIPS, 2011.

5. Birhanie, W. K., Butt, M. Automatic Amharic Part of
Speech Tagging (AAPOST): A Comparative Approach
using Bidirectional LSTM and Conditional Random
Fields (CRF) Methods. Advances of Science and Tech-
nology. 7th EAI International Conference, Bahir Dar,
Ethiopia, 2020, 512-521. https://doi.org/10.1007/978-
3-030-43690-2_37

6. Browne M., Ghidary S. S. Convolutional Neural Networks
for Image Processing: An Application in Robot Vision. In:
Gedeon T..D., Fung L.C.C. (eds) AI 2003: Advances in Ar-
tificial Intelligence. AI 2003. Lecture Notes in Comput-
er Science, 2003, vol 2903. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-24581-0_55

7. Chollet, F. Keras: Deep Learning Library for Theano
and Tensorflow, 2015. Accessed on: March, 2020. Avail-
able: https://keras.io/.

8. Dhumal Deshmukh, R., Kiwelekar, A. Deep Learn-
ing Techniques for Part of Speech Tagging by Natural
Language Processing. 2nd International Conference
on Innovative Mechanisms for Industry Applications
(ICIMIA), IEEE Access, 2020, 76-81. https://doi.
org/10.1109/ICIMIA48430.2020.9074941

9. Gambäck, B., Olsson, F., Argaw, A., Asker, L. Methods
for Amharic Part-of-Speech Tagging. AfLaT ‘09: Pro-
ceedings of the First Workshop on Language Technol-
ogies for African Languages, 2009, 104-111. https://doi.
org/10.3115/1564508.1564527

10. Gashaw, I., Shashirekha, H. L. Enhanced Amharic-Ar-
abic Cross-Language Information Retrieval System
Using Part of Speech Tagging. 6th IEEE International
Conference on Advances in Computing, Communica-
tion and Control, ICAC3, Mumbai, India, 2019. https://
doi.org/10.1109/ICAC347590.2019.9036807

11. Gasser, M. HornMorpho: A System for Morphological
Processing of Amharic, Oromo and Tigrinya. Confer-
ence on Human Language Technology for Develop-
ment, Alexandria, Egypt, 2011.

12. Gebregzabiher, T. Part of Speech Tagger for Tigrigna
Language. Department of Computer Science, Addis
Ababa University, Master Thesis, 2010.

13. Gebrekidan, B. Part of Speech Tagging for Amharic.
Centre Tesnière. Université de Franche-Comté, France.
Research Institute in Information and Language Pro-
cessing, Master Thesis, 2010.

14. Golderberg, Y. Neural Network Methods for Natural
Language Processing. Synthesis Lectures on Human

Information Technology and Control 2020/4/49494

Language Technologies, 2017. https://doi.org/10.2200/
S00762ED1V01Y201703HLT037

15. Graves, A., Schmidhuber, J. Framewise Phoneme Clas-
sification with Bidirectional LSTM and Other Neural
Network Architectures. Neural Networks, 2005, 18(5-6),
602-610. https://doi.org/10.1016/j.neunet.2005.06.042

16. Hyperas: Keras + Hyperopt: A Very Simple Wrapper for
Convenient Hyperparameter Optimization. Available:
https://github.com/maxpumperla/hyperas. Accessed
on: March, 2020.

17. Hochreiter, S., Schmidhuber, J. Long Short-Term Mem-
ory. Neural Computing, 1997, 9(8), 1735-1780. https://
doi.org/10.1162/neco.1997.9.8.1735

18. Jurafsky, D., Martin, J. Speech and Language Process-
ing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition.
2008.

19. Keleta, Y., Yamamoto, K., Marasinghe, A. Nagaoka Ti-
grinya Corpus: Design and Development of Part-of-
speech Tagged Corpus. The Association for Natural
Language Processing, 2016, 413-416.

20. Keleta, Y., Yamamoto, K., Marasinghe, A. Tigrinya
Part-of-Speech Tagging with Morphological Patterns
and the New Nagaoka Tigrinya Corpus. International
Journal of Computer Applications, 2016, 146(14) 33-41.
https://doi.org/10.5120/ijca2016910943

21. Kim, Y. Convolutional Neural Networks for Sentence
Classification. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), 2014, 1746-1751. https://doi.org/10.3115/v1/
D14-1181

22. Kotsiantis, S. B. Supervised Machine Learning: A Re-
view of Classification Techniques. Informatica 2007,
31, 249-268.

23. Mamo, G. Automatic Part of Speech Tagging for Am-
haric: An Experiment Using Stochastic Hidden Markov
(HMM) Approach. Master’s thesis, Addis Ababa Uni-
versity, 2001.

24. Marcus, M. P., Santorini, B., Marcinkiewicz, M. A. Build-
ing a Large Annotated Corpus of English: The Penn
Treebank. Computational Linguistics, 1993, 19(2), 313-
330. https://doi.org/10.21236/ADA273556

25. McNemar, Q. Note on the Sampling Error of the Differ-
ence Between Correlated Proportions or Percentages.
Psychometrika, 12(2), 153-157. https://doi.org/10.1007/
BF02295996

26. Mikolov, T., Chen, K., Corrado, G., Dean, J. Efficient
Estimation of Word Representations in Vector Space.
arXiv preprint arXiv:1301.3781, 2013.

27. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin,
A. Advances in Pre-Training Distributed Word Represen-
tations. Proceedings of the International Conference on
Language Resources and Evaluation (LREC 2018), 2018.

28. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean,
J. Distributed Representations of Words and Phrases
and their Compositionality. Advances in Neural Infor-
mation Processing Systems, 2013, 26, 3111-3119.

29. Nwankpa, Ch., Ijomah, W., Gachagan, A. Marshall, S. Acti-
vation Functions: Comparison of Trends in Practice and
Research for Deep Learning. 2018, arXiv:1811.03378v1.

30. Plonis, D., Katkevičius, A., Gurskas, A., Urbanavičius, V.,
Maskeliūnas, R., Damaševičius, R. Prediction of Meander
Delay System Parameters for Internet-of-Things Devic-
es Using Pareto-Optimal Artificial Neural Network and
Multiple Linear Regression. IEEE Access, 2020, 8, 39525-
39535. https://doi.org/10.1109/ACCESS.2020.2974184

31. Połap, D. Analysis of Skin Marks Through the Use of In-
telligent Things. IEEE Access, 2019, 7, 149355-149363.
https://doi.org/10.1109/ACCESS.2019.2947354

32. Řehůřek R., Sojka, P. Software Framework for Top-
ic Modelling with Large Corpora. Proceedings of the
LREC 2010 Workshop on New Challenges for NLP
Frameworks, 2010, 45-50. doi: 10.13140/2.1.2393.1847.

33. Schmid, H. Part-of-Speech Tagging with Neural Net-
works, COLING’94: Proceedings of the 15th Confer-
ence on Computational Linguistics, 1994, 1, 172-176.
https://doi.org/10.3115/991886.991915

34. Sebastiani, F. Machine Learning in Automated Text
Categorization. ACM Computing Surveys 2002, 34,
1-47. https://doi.org/10.1145/505282.505283

35. Seyoum, B. E., Miyao, Y., Mekonnen, B. Y. Universal De-
pendencies for Amharic. Proceedings of the Eleventh
International Conference on Language Resources and
Evaluation, LREC, European Language Resources As-
sociation (ELRA), 2019, 2216-2222.

36. Tedla, Y., Yamamoto, K. Analyzing Word Embeddings
and Improving POS Tagger of Tigrinya. Proceedings
of the 2017 International Conference on Asian Lan-
guage Processing, IALP 2017, 2018, 115-118. https://doi.
org/10.1109/IALP.2017.8300559

37. Tensorflow. Available: https://www.tensorflow.org/ Ac-
cessed on: March, 2020.

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

