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Deep Neural Networks (DNNs) have proven to be especially successful in the area of Natural Language Pro-
cessing (NLP) and Part-Of-Speech (POS) tagging—which is the process of mapping words to their correspond-
ing POS labels depending on the context. Despite recent development of language technologies, low-resourced 
languages (such as an East African Tigrinya language), have received too little attention. We investigate the ef-
fectiveness of Deep Learning (DL) solutions for the low-resourced Tigrinya language of the Northern-Ethiopic 
branch. We have selected Tigrinya as the testbed example and have tested state-of-the-art DL approaches seek-
ing to build the most accurate POS tagger. We have evaluated DNN classifiers (Feed Forward Neural Network – 
FFNN, Long Short-Term Memory method – LSTM, Bidirectional LSTM, and Convolutional Neural Network – 
CNN) on a top of neural word2vec word embeddings with a small training corpus known as Nagaoka Tigrinya 
Corpus [19]. To determine the best DNN classifier type, its architecture and hyper-parameter set both manual 
and automatic hyper-parameter tuning has been performed. BiLSTM method was proved to be the most suit-
able for our solving task: it achieved the highest accuracy equal to ~92% that is ~65% above the random baseline. 
KEYWORDS: Deep Learning; word2vec embeddings; part-of-speech tagging; natural language processing; 
computational linguistics; Tigrinya language. 
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1. Introduction
POS tagging (also called grammatical tagging) is an 
important application of NLP and a core concept that 
many higher-level language technologies depend on. 
NLP applications as machine translation, speech rec-
ognition, dependency parsing and many more depend 
on POS tagging to be more accurate. 
POS tagging is a mapping process of words from a 
sentence to their corresponding parts-of-speech, 
based on their context and the meaning. Despite 
from a human point-of-view the manual POS tag-
ging looks a rather easy task, it is a challenging AI 
problem to solve, mainly due to words disambigu-
ation. Languages are different by their nature and 
morphological complexity, therefore there is no 
single smart solution that could solve all POS tag-
ging problems for all languages of the world. Fortu-
nately, there are solutions that work for groups of 
languages (e.g., morphologically complex languages, 
agglutinative languages, etc.). The major POS tag-
ging problems usually arises due to the ambiguities 
in each language and different POS tagging annota-
tion schemes, when even trained human annotators 
sometimes cannot agree on the words’ POS label 
[24]. The different annotation schema issue is not 
easily tackled, whereas disambiguation issues can 
be resolved by training Machine Learning (ML) 
methods with the enough manually POS tagged cor-
pora (so-called gold-standard corpora). 
In the recent years many traditional ML approaches 
are replaced with the DL and it is cross-cutting phe-
nomenon. DL is used for various tasks as parameter 
prediction in the Internet-of-Things devices [30]; 
for skin marks analysis to detect melanoma [31]; for 
robot vision [6] and many more. The DL also has cov-
ered all areas of NLP, including POS tagging. Start-
ing from 1994 [33] (with the seed work on the POS 
tagging with the neural networks), this problem is 
still relevant today [8] and can be solved with the 
high-accuracy DNN approaches. However, the high-
er the accuracy is expected, the more resources are 
required. 
Unlike the rich-resource languages like English, most 
of the low-resourced Ethiopic languages do not have 
enough corpora that are needed for this task. Open re-
source corpus (such as a Crubadan Corpus Building for 

Minority Languages1) doesn’t contain the morpholog-
ical labels crucial for the POS tagging task. The only 
publicly available corpus for Tigrinya POS tagging is 
the Nagaoka corpus  [19], which is a rather small re-
course (especially compared to what is available for 
English or Chinese languages).  Besides, the North-
ern-Ethiopic languages have more complex morphol-
ogy, therefore require more resources compared to 
English or Chinese to cover different inflection forms. 
The previous research using the Nagaoka corpus is per-
formed with the traditional supervised ML approaches 
(i.e., traditional feature types with traditional classifi-
ers as Conditional Random Fields – CRFs and Support 
Vector Machines – SVMs. Although authors managed 
to get a sufficient accuracy with the traditional ap-
proaches, they have not explored state-of-the-art deep 
learning techniques, which are likely to improve the 
accuracy even more. Hence, in this research we focus 
on the DNN types, that could be the most promising 
for our solving task: FFNN, LSTM, BiLSTM and CNN. 
The highest possible POS tagging accuracy is our main 
goal and to achieve this we need the whole package (the 
correct DNN type + it’s architecture + hyper-parame-
ters) to perform in the best possible way. Due to it, we 
have tested different architectures and hyper-parame-
ter values by tuning them manually and automatically. 
DNN methods have to be applied on the vectorized 
text. Since Tigrinya language do not have pre-trained 
word embeddings that could be publicly available, we 
have trained them and describe this process in Sec-
tion 4. Section 5 describes the DNN classifiers; Sec-
tion 6 presents the technicality of the experiments 
and their results. Finally, we conclude with nominat-
ing the best approach for the Tigrinya POS tagging. 
The main novelty and contribution of this work cov-
ers the comparative state-of-the-art DNN research 
(including architecture and hyper-parameter tun-
ing) on the POS tagging task for the Tigrinya lan-
guage sharing similar characteristics to other North-
ern-Ethiopic languages that could strongly benefit 
from this research.

1 Available at http://crubadan.org/languages/ti and 
word list compiled by Biniam Gebremichael’s web crawler, 
available at http://www.cs.ru.nl/˜biniam/geez/crawl.php 
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2. Related Works 
The Ethiopic languages (Tigre, Ge’ez, Amharic, Ti-
grinya) are spoken by around 30 million people. Some 
Ethiopic languages as opposite to other Semitic lan-
guages (such as Arabic, Hebrew and Amharic) get 
rather little attention in the area of NLP research. 
This is mainly due: 1) to the absence of linguistical 
resources; 2) proprietary resources; 3) resources not 
in the electronic format. The most researched Ethio-
pic language is Amharic [1,2,9,11,13,23], which is also 
supported by Google. For the other languages as, e.g., 
Tigrinya, the research on different NLP topics are in 
their early stages (e.g., statistical machine translation 
from English to Tigrinya [3]).
If focusing on the POS tagging task, the pioneering 
POS tagging research on the Amharic language was 
done in 2001 [23]: the author applied stochastic Hid-
den Markov approach. In [13] authors use the Brill, 
and TnT of python Implementation in NLTK. Their 
most accurate POS tagger was based on CRF and 
achieved 90.95% of the accuracy. The paper describes 
how the usage of partially cleaned corpus, selection 
of most informative features (based on the linguistic 
information as vowel pattern, radicals, punctuation, 
alphanumeric and suffixes), and applications of pa-
rameter tuning and tagging algorithms help to boost 
the accuracy. Their experiments were carried on the 
corpus of 210,000 tokens with 31 tag labels (11 basic). 
The most innovative work for Amharic POS tagging 
is presented in [2]. The author trained the POS tagger 
with neural word embeddings as the feature type and 
DNN methods as classifiers. The tested LSTM, FFNN 
and BiLSTM approaches achieved the accuracy equal 
to 92.8%, 88.88% and 93.7%, respectively. 
Another POS tagging work for Amharic compared one 
traditional ML approach (in particular, CRF) with 
one neural-based approach (BiLSTM) and achieved 
90% and 91%, respectively [5]. Such a high accuracy is 
achieved on the task which is less complicated to our 
solving task: the authors use 11 POS labels (whereas 
in our experiments we have 20). 
However, both research works (i.e., [2] and [5]) pro-
vide too abstract conclusions lacking the important 
details about the DNN architectures and hyper-pa-
rameters. Different combinations of architectures 
and hyper-parameters can impact the accuracy in the 
broad range. We cannot repeat the previous exper-

iments, but at least we can benefit from the insights 
proving DNN superiority over the traditional ML ap-
proaches.  
However, POS taggers for Amharic already exist and 
it opens the opportunity to continue the research on 
the other topics that cannot be initiated without POS 
tagging as e.g., dependency parsing [35], enhance-
ment of MT and information retrieval tasks [10]. 
HornMorpho [11] is a system for morphological pro-
cessing of three Ethiopic languages (i.e., Amharic, 
Oromo and Tigrinya). The morphological analyzer 
segments words into morphemes and has to assign 
grammatical labels to them. However, for Tigrinya it 
assigns only verbs. Hence, the application options of 
such analyzer are very limited.
POS tagging for the Tigrinya language is studied in 
[12]. The author used 26,000 words labelled with 
36 POS labels and experimented with the probabi-
listic Hidden-Markov Model (HMM) method com-
bined with the rule-based tagger (Viterbi algorithm 
and Brill) [12]. The HMM and rule-based approach 
achieved the accuracy of 89.13% and 91.8%, respec-
tively, when applied separately. A hybrid HMM + 
rule-based approach boosted the accuracy to 95.88%. 
This research is important; despite done with the 
traditional ML method combined with the inflexible 
rule-based approach making it hardly transferable to 
the new domains, language styles (fiction, legal texts, 
etic) and types (spoken language, non-normative, 
etc.). Another research for Tigrinya POS tagging was 
also done on the small-sized gold standard Nagaoka 
Tigrinya Corpus (NTC.1.0) [19], which is currently 
the only publicly available POS tagged corpus for the 
Tigrinya language. Using NTC 1.0 the authors test-
ed traditional ML methods, i.e., CRF and SVM. The 
original corpus contains 76 different tag labels (some 
of them are weakly covered) that were reduced to 20 
labels for the better distribution. For POS tagging of 
the target words the authors extracted contextual 
features covering two succeeding and two preceding 
words. In addition, lexical features were extracted 
from the focus word: affixes, comprising prefixes from 
one up to six characters length, consonant-vowel 
patterns (infixes), and suffixes from one to five char-
acters length [20]. The best accuracy=89.92% and 
90.89% was achieved with SVM and CRF, respec-
tively. Another interesting approach on the Tigrinya 
POS tagging [36] use the traditional ML approaches 
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(presented in [20]), but explores different types of 
neural word embeddings to improve the POS tagging 
of the unrecognized words. However, this research is 
not focused on the improvement of the POS tagger: 
it presents extrinsic evaluation of the word embed-
dings and the POS tagging task is selected as a good 
example. When experimenting with the DNN classi-
fiers, the neural word embeddings are recommended. 
Unfortunately, neural word embeddings (trained and 
presented in [36]) are not publicly available online, 
therefore for our POS tagging research we will need 
to train them ourselves. 
To conclude, despite some Northern-Ethiopic lan-
guages (as Amharic) are more researched, different 
research works cover different: 1) languages, 2) data-
sets, 3)  annotation schemas (resulting in various 
numbers of tag labels), 4)  applied methods (tradi-
tional ML or DL-based). Due to different experimen-
tal conditions the results are hardly comparable and 
even interpretable. Moreover, the previous research 
works do not provide important recommendations 
on the different DNN classifiers, architectures, hy-
per-parameters that we could rely before starting 
our experiments. Northern-Ethiopic languages also 
lack of publicly available resources. All it makes our 
research on the Tigrinya POS tagging even more im-
portant; especially assuming that the other similar 
Northern-Ethiopic languages (sharing similar char-
acteristics to Tigrinya) could benefit from it. 

3. Ethiopic Languages Characteristics
Northern-Ethiopic languages are from the Afro-asiat-
ic family and belongs to the South Semitic languages 
along with Amharic, Maltese, Tigre and Arabic. The 
Ge’ez script is adapted to write other Semitic languag-
es. Mainly Amharic, Tigrinya, Ge’ez and Tigre languag-
es are characterized with the rich derivational and 
influential morphology which results in the numerous 
variations of word forms. The root-template morpho-
logical pattern that is usually the distinguishing feature 
of Semitic languages is composed of trilateral roots. 
For example, ሃገራት (hagerat) – countries, ተማሃራይ 
(temaharay) – male student, ተማሃሪት (temaharit) – 
female student is based on the same noun, inflected 
for gender (examples in Tigrinya). Adjectives are in-
flected for gender and number: ጸሊም (Xelim), ጸለምቲ 

(Xelemti) – black (in masculine), blacks respective-
ly [20]. Similarly, verbs (most the Ge’ez script using 
languages) have rich morphological structures. Dif-
ferent structures of the basic verb form are made in 
the arrangement of consonants and vowel patters, 
e.g., the root sbr – to break of pattern (CCC) has forms 
such as sebere (CVCVCV) in the active form, te-sebere 
(te-CVCCV) in passive form [20]. Table 1 shows the 
most informative patterns according to the distribu-
tion of the gerundive verb (V_GER).
As it can be seen from the previous examples, the 
morphology for the Northern-Ethiopic languages 

Table 1
Some patterns of the gerundive verb (V_GER) [20]

V_GER pattern V_GER % Examples

CeCiCu 31.1 feliTu (he knew)

CeCeCiCu 17.8 tefeliTu (it was known)

CeCiCICu 15.9 tefaliTu (to know each other)

CeCiCICa 14.6 feliTIka (you knew)

aCICiCu 11.8 afIliTu (made something known)

CeCiCoCI 11.3 feliTomI (they knew)

CeCiCa 10.5 feliTa (she knew)

is very specific and must be indirectly incorporated 
(it is usually done via word vectorization, described 
in Sub-Section 4.2) into the DNN approaches when 
seeking for the most accurate solutions. 

4. Dataset Preparation

4.1. The Corpus
As we already mentioned before, the main problem 
for the Northern-Ethiopic languages are the lack 
of resources. However, in this research we are us-
ing the publicly available Nagaoka Tigrinya Corpus 
(NTC  1.0) [19], created specifically for the POS tag-
ging task. This corpus contains gold POS labels that 
makes this corpus suitable for the supervised POS 
tagging tasks.  The POS tagger can be trained in the 
supervised manner and afterwards be used to POS 
label of the new sentences. The trained model of the 
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POS tagger typically depends on: 1) the diversity and 
completeness of the annotated corpus; 2) on the used 
tag labels (coarse-grained as noun, verb, etc. or fine-
grained containing more detailed morphological in-
formation as gender, number, tense, etc. that is much 
more difficult to predict). 
The dataset used in our research consists of 72,080 
tokens of 4,656 sentences gathered from the news-
paper articles. The corpus is set up in Ge’ez and En-
glish alphabets, but for the simplify reasons only the 
English alphabet is used. Words in the corpus are 
tagged with 20 different types of POS labels (the sta-
tistics about the distribution of labels can be found in 
Figure 1). The solving POS tagging task is indeed the 
multi-class supervised classification problem [22,34] 
and the most promising classifiers for our task are 
represented in Section 5. 

Figure 1
A distribution of POS labels in the Nagaoka corpus [20]

Table 2
Training, testing and validation splits of the NTC 1.0 
corpus used in our experiments

Sets Percentage Number of 
tokens

Number of 
sentences

Training 60% 43,248 2,792

Testing 20% 14,416 931

Validation 20% 14,416 933

 
 

 

 

 

 

 

 

 

Figure 1 

A distribution of POS labels in the Nagaoka 
corpus [20] 

 
 

For our experiments the NTC 1.0 corpus was split 
into training, validation and testing sets. The 
distribution is presented in Table 2. 
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Validation 20% 14,416 933 

 

Before the POS tagging, the following pre-
processing steps were necessary: 

1. Tokenization. The tokenization task for 
languages like English is straightforward; 
however, it requires a special adjustment to 
some other languages, including Northern-
Ethiopic. For instance, Amharic, Tigre, Tigrinya 
words are usually spoken to as connection of 
morphemes each having its own POS tag (e.g., 
nouns attached with a preposition has separate 
label, namely NP). 

2. Feature Extraction. POS tags also depend on 

positions of words in a sentence. Due to 
this reason it is important to consider the 
following features: if a word is the first or 
last in a sentence; take 1-2 POS tags before 
and after the target word. 

 

 

4.2. Vectorization  
In the previous Sub-Section 4.1 we came up with 
the conclusion that supervised ML methods are 
the most suitable for our solving task. However, 
these methods cannot be applied directly on the 
textual data. The word vectorization is 
implemented to bridge the gap between texts 
and the mathematical operations of the 
supervised ML methods. Textual elements 
(usually words) are represented by vectors that 
are derived from textual input data and reflect 
contextual and linguistic properties [14].  

There are two main directions to represent 
words (and texts) as vectors: by using discrete 
or distribution vectorization. The most famous 
example of the discrete vectorization is one-hot 
encoding. The length of the one-hot word vectors 
is equal to the size of the vocabulary, all values 
are zeros except for one set to 1. It is very fast 
and simple approach to vectorize texts and due 
to it one-hot encoding is often selected as the 
baseline approach.  On the other hand, one-hot 
encoding does not incorporate contextual 
information between words. As the opposite to 
it, distributional word embeddings (as 
word2vec, gloVe, BERT, etc.) are trained with the 
DNNs and encode similarities between words. 
Distributional word embeddings are typically 
used as the input for the DNN classifiers. 

In this paper, we are testing both one-hot 
encoding and word2vec vectorization (for more 
details see [26-28]) methods as representatives 
of discrete and distributional vectorization 
types, respectively.  

Unfortunately, there are no pre-trained word 
embeddings for the Tigrinya language what 
would be publicly available and we could use 
them as the input for our neural classifiers. To 
overcome this problem, word2vec method with 
dimensions = 100 and window size = 3 (with 
other default parameter values) was used to 
train Tigrinya neural word embeddings. As the 
training corpus we have used 4,656 sentences 
from NTC 1.0 corpus. The training was 
performed with the Python programming 
language and the open-source library 
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For our experiments the NTC 1.0 corpus was split into 
training, validation and testing sets. The distribution 
is presented in Table 2.

Before the POS tagging, the following pre-processing 
steps were necessary:
1 Tokenization. The tokenization task for languag-

es like English is straightforward; however, it re-
quires a special adjustment to some other languag-
es, including Northern-Ethiopic. For instance, 
Amharic, Tigre, Tigrinya words are usually spoken 
to as connection of morphemes each having its 
own POS tag (e.g., nouns attached with a preposi-
tion has separate label, namely NP).

2 Feature Extraction. POS tags also depend on posi-
tions of words in a sentence. Due to this reason it 
is important to consider the following features: if a 
word is the first or last in a sentence; take 1-2 POS 
tags before and after the target word.

4.2. Vectorization 

In the previous Sub-Section 4.1 we came up with the 
conclusion that supervised ML methods are the most 
suitable for our solving task. However, these methods 
cannot be applied directly on the textual data. The 
word vectorization is implemented to bridge the gap 
between texts and the mathematical operations of the 
supervised ML methods. Textual elements (usually 
words) are represented by vectors that are derived 
from textual input data and reflect contextual and lin-
guistic properties [14]. 
There are two main directions to represent words 
(and texts) as vectors: by using discrete or distribu-
tion vectorization. The most famous example of the 
discrete vectorization is one-hot encoding. The length 
of the one-hot word vectors is equal to the size of the 
vocabulary, all values are zeros except for one set to 1. 
It is very fast and simple approach to vectorize texts 
and due to it one-hot encoding is often selected as the 
baseline approach.  On the other hand, one-hot en-
coding does not incorporate contextual information 
between words. As the opposite to it, distributional 
word embeddings (as word2vec, gloVe, BERT, etc.) 
are trained with the DNNs and encode similarities 
between words. Distributional word embeddings are 
typically used as the input for the DNN classifiers.
In this paper, we are testing both one-hot encoding 
and word2vec vectorization (for more details see [26-
28]) methods as representatives of discrete and dis-
tributional vectorization types, respectively. 
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Unfortunately, there are no pre-trained word em-
beddings for the Tigrinya language what would be 
publicly available and we could use them as the input 
for our neural classifiers. To overcome this problem, 
word2vec method with dimensions = 100 and window 
size  =  3 (with other default parameter values) was 
used to train Tigrinya neural word embeddings. As the 
training corpus we have used 4,656 sentences from 
NTC 1.0 corpus. The training was performed with the 
Python programming language and the open-source 
library Gensim  [32]. The pre-trained embeddings 
were saved and used afterwards in our experiments.

5. Deep Learning Classifiers

5.1. Feed Forward Neural Network
The Feed Forward Neural Network (FFNN) is the 
simplest DNN type of all existing.  FFNNs have nu-
merous applications where nonlinear mapping is 
done between inputs and outputs to predict future 
state. However, it cannot be used if the outputs depen-
dent on the previous state of inputs. According to this 
definition, FFNN should not the best option for the 
POS tagging task in which the order of words should 
play a key role.  
On the other hand, the sequential information can 
be entered directly to the FFNN in the form of X 
succeeding and Y preceding words (X=2 and Y=2 in 
all our experiments). Although this FFNN method 
is selected as a baseline approach to see how far the 
accuracy can increase with naïve solutions, we have 
doubted this method could surpass other types of 
classifiers (e.g., LSTM or BiLSTM) adjusted to learn 
from the sequential data.
The results of FFNN are presented in Sub-Section 
6.1. 

5.2. Recurrent Neural Networks
In the Northern-Ethiopic languages the word order in 
a sentence is important (it can even change the mean-
ing of a sentence), therefore cannot be disregarded. 
Thus, Recurrent Neural Networks (RNNs) ought to 
be a decent choice for our POS tagging task. These 
types of networks have memory cells and inputs from 
the previous states, therefore are adjusted to process 

sequential data. RNN has two inputs at each time 
step, where the initial one is the real input (i.e., in-
coming word from the sentence) and the subsequent 
one is the output of the previous step. Despite of the 
fact that RNNs have a memory, they suffer from the 
vanishing gradient problem and only latest inputs are 
remembered and considered. In the Northern-Ethio-
pic languages (as well as in the Tigrinya language) this 
could have negative effect on learning and prediction 
of the POS tags that are influenced by words more dis-
tant from the target word.
To overcome the short memory problem of RNNs 
Long Short-Term Memory (LSTM) network [17] or 
Bidirectional LSTM (BiLSTM) [15] are used instead. 
LSTM has 3 weighted gates adjusted during training. 
The input, forget and output gates are used to decide 
what information to input, forget and output, respec-
tively. While LSTM allows the data stream just one 
way (from the past to the future), BiLSTM takes both 
directions bearing data streams from the past to the 
future and from the future to the past. In the POS tag-
ging tasks, some succeeding words can provide im-
portant information about the POS tags of the previ-
ous words. E.g., in the Tigrinya language verbs convey 
a lot of information about nouns and pronouns, but 
they mostly appear last, i.e., at the end of the sentence. 
Theoretically, by considering the language specif-
ics and the nature of these RNN approaches, LSTM 
should be a good choice for our POS tagging task, but 
BiLSTM should be the best. However, to determine 
the best classifier type is not enough, it is necessary 
to choose its architecture and a right set of hyper-pa-
rameter values.

5.3. Convolutional Neural Network 

The Convolutional Neural Network (CNN) [21] com-
prises of two sections: feature extraction (the input, 
convolution and activation) and classification (max 
pooling, fully-connected layer and the output). 
The upper layers of CNN are inputs of word embed-
ding values from the input sequence. These values 
are connected to the 1D convolutional layer in which 
the neurons of their local regions are attached to their 
weights (called filters or kernels). During initializa-
tion weights are randomly generated. Output of a neu-
ron is a dot product between the filters (weights) and 
local region of the input. Through the activation func-
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tion applied to every neuron in the network, down 
sampling along the width (length of the word vector) 
and height (length of the input text sequence) dimen-
sions is performed in the max pooling stage that is 
where the classification task begins. Then, it is con-
nected to a fully-connected layer using values from 
the max pooling layer (as extracted features) for this 
input. For adjusting the weights, the backpropagation 
learning algorithm is applied. Instead of working with 
the sequential data, the CNN is adjusted to search for 
the important patterns (usually n-grams/sequences 
of words) that impacts the target POS tag the most. 
Despite our credit goes to LSTM and BiLSTM meth-
ods as the most adjusted to process sequential data; 
CNN sometimes outperforms those networks and 
it is mostly because the recurrent methods feed the 
whole context (also unrelated) into the network, but 
CNN performs the careful search over the related 
word n-grams instead. 
CNNs could be a good option for our solving POS tag-
ging problem, in light of the fact that there are cases 
in Northern-Ethiopic languages (including Tigrinya) 
where not all the information in the sentences are rel-
evant, but only a small subset typically 3-grams close 
to the target word can impact its POS tag.

6. Experiments and Results

6.1. Evaluation Metrics
In this research we have experimented with the NTC 
1.0 corpus (described in Sub-Section 4.1), using the 
vectorization (described in Sub-Section 4.2) and the 
DNN classifiers (presented in Section 5). Python pro-
gramming language with the TensorFlow engine [37] 
and Keras library [7] was used for these methods’ im-
plementation. 
In this paper we have adopted the following formulas 
to measure the accuracy (Equation (1)) and the loss 
(Equation (2)).

Accuracy =
  

tp tn
tp tn fn fp

+
+ + +

, (1)

where: tp (true positives); fn (false negatives); fp 
(false positives); tn (true negatives). 

loss = , log log( , )
1

M

o c Po c
c

y
=

−∑ , (2)

where: M is a number of classes ( POS tags); Y is a bi-
nary indicator (0 or 1) if a class label c is the correct 
classification for observation o; P is a predicted prob-
ability of observation o in class c. 
For any classification task it is necessary to have base-
line values. The determined accuracy must surpass 
baselines for the method to be considered reasonable 
and suitable for the solving classification task. Only 
then the POS tagging result will be considered rea-
sonable and appropriate if the calculated accuracy is 
above random (Equation (3)) and majority (Equation 
(4)) baselines.

Random baseline = 2( )iP C∑  (3)

Majority baseline = max ( )iP C , (4)

where: ci  is a probability of a class (where classes rep-
resent POS tags).
The calculated baselines are presented in Table 3. 
It shows that the calculated accuracy of reasonable 
method must be above 0.27 and, of course, our goal is 
going far beyond this boundary. To evaluate if differ-
ences between the accuracies are statistically signifi-
cant, we have used the McNemar test with one degree 
of freedom and the significance level equal to 95% 
[25]. The differences were considered statistically 
significant if the calculated p value exceeded 0.05. 
The most suitable classifier can poorly perform if it’s 
architecture and a set of hyper-parameter values are 
not properly selected. It doesn’t matter if those pa-
rameters are set manually or automatically, the most 
important is that they would be set in the way allow-
ing to achieve the highest possible POS tagging accu-
racy. 
The parameter optimization was performed on the 
training dataset and validated on the validation data-
set. The most accurate model (achieving the highest 
accuracy on the validation dataset) was evaluated 
with the training dataset (the detailed information 
on the splits of training, validation and testing is pre-
sented in Table 2).
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6.2. Manual Hyper-Parameter Tuning 
The selection of the DNN architecture and hyper-pa-
rameter values based purely on the expert knowledge 
is not always the right decision. For this reason, we 
have investigated several DNN architectures (deeper 
and shallower) together with different hyper-param-
eter values (in particular, activation functions). 

Table 3
Calculation of random and majority baselines

POS tags Number of Instances P(C) 

V_PRF 1,437 0.020

UNC 113 0.079

V_AUX 3,409 0.047

V_IMP 316 0.004

N 19,495 0.270

PUN 7,960 0.110

V_REL 3,787 0.053

ADV 2,415 0.034

INT 145 0.002

N_V 2,104 0.292

ADJ 8,210 0.114

NUM 1,235 0.017

N_PRP 2,220 0.031

FW 176 0.002

V 357 0.005

V_GER 2,734 0.038

CON 4,933 0.068

V_IMF 4,501 0.062

PRE 4,424 0.061

PRO 2,106 0.029

Random Baseline 0.128

Majority Baseline 0.270

Activation functions are one of the most import DNN 
hyper-parameters. They determine if the output of 
DNNs has to be activated or not, based on each neu-
rons’ input and relevancy in prediction. In this paper 
we have explored 3 types of activation functions [29]: 
relu, softmax, and tanh. To determine the best one, we 
considered their speed and convergence. Each activa-
tion function has its own advantages: with relu a net-
work converges very quickly, softmax effectively han-
dles multiple classes, tanh is suitable to model inputs 
that have strong values. 

Experiments with FFNN: 
Vectorization: one-hot encoding 
Hidden layers: 1, 2 and 3  
Neurons: 256, 512 and 1024  
Epochs: 100
Batch size: 256 (a number of training instances pro-
cessed before a model is updated)

The experimental investigation proved the softmax 
activation function to be the most accurate. The mod-
el with the activation softmax achieved the highest 
accuracy equal to 28%  (see Table  4) and it is above 
random and majority baselines. The best manually 
tuned FFNN architecture is presented in Figure 2 
(this and the following architectures were plotted 
with the plot_model function in Keras). By the way, 
different numbers of neurons and hidden layers didn’t 
show any significant impact on the accuracy.

Experiments with LSTM:
Vectorization: word2vec encoding (Section 4.2)
Architectures with simple and stacked LSTM 
(1 ≥ LSTM)
Neurons: 64, 128, 256, 512 neurons in the hidden 
Epochs: 100
Batch size: 32 
Activation function: tanh, softmax, relu 
Other parameters were set to their default values. 

The experimental investigation revealed that sim-
ple LSTM (1 = LSTM) with 64 neurons outperforms 
deeper architectures. The best accuracy is achieved 
using the softmax activation function (See Table 4) 
and the architecture presented in Figure  3. As pre-
sented in Table 4, softmax and relu activation func-
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tions are both suitable (the difference between these 
results are not statistically significant). However, 
softmax still slightly outperformed relu. 

Figure 2
Schematic representation of the best determined FFNN 
architecture
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Experiments with BiLSTM:  

Vectorization: word2vec encoding   

Architectures with simple and stacked BiLSTM (1 ≥ 
BiLSTM) 

Neurons: 64, 128, 256, 512 neurons in the hidden 

layers 

Epochs: 100 

Batch size: 32 

Activation functions: tanh, softmax, relu  

Other parameters were set to their default 
values. 

The highest accuracy using BiLSTM model was 
achieved using the softmax activation function 
(See Table 4) and the architecture presented in 
Figure 4. The picture is very similar to LSTM: 
softmax and relu compete for the winner, 
however, softmax is slightly, but insignificantly 
better than relu.  
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Experiments with CNN:  

Vectorization: word2vec encoding  
Experiments with CNN: 
Vectorization: word2vec encoding 
Dimension: 1D dimension
Filters: 100  
Kernel size: 3
Output layers: 2 
Neurons: 64 and 1
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Activation functions: tanh, softmax, relu
Other parameters were set to their default values

The best determined CNN architecture is in Figure 
5. Relu activation function gives the best and signifi -
cantly better accuracy compared to other activation 
functions (See Table 4). The result is not suitable, be-
cause it is under random and majority baselines. 

Figure 5
Schematic representation of the best CNN architecture

Dimension: 1D dimension

Filters: 100  

Kernel size: 3

Output layers: 2 

Neurons: 64 and 1

Activation functions: tanh, softmax, relu

Other parameters were set to their default values

The best determined CNN architecture is in Figure 5. 
Relu activation function gives the best and 
significantly better accuracy compared to other 
activation functions (See Table 4). The result is not 
suitable, because it is under random and majority 
baselines. 

Figure 5

Schematic representation of the best CNN architecture

The best obtained accuracies of tuned architectures 
for different classifiers and activation functions are 
summarized in Table 4.

Table 4

Manually tuned hyper-parameter optimization 
results (in accuracies)

DNN Tanh Softmax Relu

FFNN 0.00029 0.279 0.120

LSTM 0.004 0.896 0.891

BiLSTM 0.016 0.918 0.911

CNN 0.119 0.112 0.159

6.2 Automatic Hyper-Parameter 
Tuning

Manual optimization of hyper-parameters in 
DNN models is a tedious work. Besides, the 
expert knowledge may sometimes mislead, 
especially when unconventional solutions are 
needed. Due to this reason we have performed 
automatic hyper-parameter optimization. It was 
implemented with Python's library Hyperas [16]. 
It allows to tune discrete (by selecting from the 
list of determined values) and real (by selecting 
from the interval) hyper-parameter values 
when seeking for the highest accuracy on the 
validation dataset. The following options of 
hyper-parameter values were tested in our 
experiments:

Activation function: sigmoid, softmax, tanh, relu, 
swish, selu activation functions 

Optimizers: adam, sdg, rmsprop

Batch sizes: 16, 32, 64, 128 

Hidden layers: 1, 2 and 3 

In this research, the hyper-parameter tuning 
was performed for LSTM, BiLSTM and CNN 
classifiers with the pre-trained word2vect 
embeddings for vectorization. The optimization 
was restricted to 20 iterations. The tuning of
hyper-parameters was done in the directed 
manner using tpe.suggest strategy. Tpe stands for 

Table 4
Manually tuned hyper-parameter optimization results (in 
accuracies)

DNN Tanh Softmax Relu

FFNN 0.00029 0.279 0.120

LSTM 0.004 0.896 0.891

BiLSTM 0.016 0.918 0.911

CNN 0.119 0.112 0.159

The best obtained accuracies of tuned architectures 
for diff erent classifi ers and activation functions are 
summarized in Table 4.

6.3. Automatic Hyper-Parameter Tuning
Manual optimization of hyper-parameters in DNN 
models is a tedious work. Besides, the expert knowl-
edge may sometimes mislead, especially when un-
conventional solutions are needed. Due to this reason 
we have performed automatic hyper-parameter opti-
mization. It was implemented with Python’s library 
Hyperas [16]. It allows to tune discrete (by selecting 
from the list of determined values) and real (by se-
lecting from the interval) hyper-parameter values 
when seeking for the highest accuracy on the valida-
tion dataset. The following options of hyper-parame-
ter values were tested in our experiments:
Activation function: sigmoid, softmax, tanh, relu, 
swish, selu activation functions 
Optimizers: adam, sdg, rmsprop
Batch sizes: 16, 32, 64, 128 
Hidden layers: 1, 2 and 3 
In this research, the hyper-parameter tuning was per-
formed for LSTM, BiLSTM and CNN classifi ers with 
the pre-trained word2vect embeddings for vectoriza-
tion. The optimization was restricted to 20 iterations. 
The tuning of hyper-parameters was done in the di-
rected manner using tpe.suggest strategy. Tpe stands 
for Tree-structured Parzen Estimator [4], which or-
ganizes hyper-parameters into a tree-like space. This 
Bayesian modelling approach decides which set of 
hyper-parameters to try in the next iteration based on 
the distribution of previous results.
The best determined hyper-parameter values and 
the best accuracies for diff erent DNN classifi ers with 
word2vec embeddings are presented in Table 5. 

Table 5
Hyper-parameter optimization results

LSTM BiLSTM CNN CNN 

Activation Sigmoid Sigmoid Softmax Sigmoid 

Hidden layers 1 1 1 1

Neurons 32 64 32 32

Batch_size 32 32 32 32

Optimizer rmsprop rmsprop rmsprop rmsprop

Accuracy 0.890 0.918 0.610 0.610
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7. Discussion 
Our results allow us to make the following statements. 
The accuracy (particularly the best achieved) is much 
above random and majority baselines, therefore 
methods are considered appropriate and reasonable. 
After testing different DNN classifiers (FFNN, LSTM 
BiLSTM and CNN) with a small amount of data, the 
manual tuning of hyper-parameters and different 
DNNs revealed that BiLSTM is the best option for 
our solving task. This RNN approach is adjusted to 
process the sequential data and able to consider the 
context (words before and after) when predicting the 
POS tag of the target word. 
The best results with CNN were achieved when tun-
ing hyper-parameter automatically and reached the 
accuracy of 61%. As we expected, CNN is not the 
worst option, thus it is not the most suitable choice for 
the sequential data: CNN could not beat the BiLSTM 
models (tuned manually and automatically) of which 
the accuracy is ~91.8%. Accuracies of FFNN and CNN 
are not satisfactory (often even below random and 
majority baselines). Besides, e.g., FFNN needs spe-
cific adjustments by feeding it with the context in an 
unnatural way: i.e., feature extraction and definitely 
more context needed is needed to compete with the 
other approaches.  
The overall best accuracy of 91.8% was achieved with 
the BiLSTM method, which considers sequences of 
words in both direction (from the past to the future 
and from the future to the past). It seems that the se-
quential nature of the data for the POS tagging of the 
Northern-Ethiopic languages (and the Tigrinya lan-
guage as the representative example of this group) 
is much more important than we expected at the 
beginning. Neither the particular keywords, nor the 
n-grams of words, but the sequential nature of the text 
(i.e., the order of words in sentences) is important for 
the Tigrinya POS tagging. 
As the McNemar test proved, the difference between 
the closest achieved result (with BiLSTM + relu acti-
vation function in Table 4) from the best determined 
(BiLSTM + softmax in Table 4 or BiLSTM in Table 5) 
and equal to 91.8% is statically significant, because the 
calculated p = 0.04, which means p < 0.05. The p values 
for the 4 closest results to the best one achieved are 
summarized in Table 6 (here we demonstrate how 

much differences are statistically significant between 
the best result and the closest results achieved by oth-
er approaches). 

Table 6
Calculated p values to measure if differences to the best 
achieved accuracy = 91.8% are statistically significant 

In comparison with: Accuracy p value

BiLSTM + relu (Table 4) 0.911 0.04

LSTM + softmax (Table 4) 0.896 1.04E-09

LSTM relu (Table 4) 0.891 1.42E-13

LSTM (Table 5) 0.890 1.86E-14

In the previous work done on the same dataset (pre-
sented in [20]) with the traditional ML methods of 
CRFs and SVMs the achieved accuracy was lower and 
equal to 90.89%. Our improvement on this traditional 
approach is statistically significant (with the calcu-
lated p = 0.009  < 0.05. Moreover, the traditional ap-
proaches have already reached their limits (in terms 
of discrete vectorization, parameters and sizes of the 
datasets); whereas the accuracy of DNNs is very sen-
sitive to the sizes and variety of the training data. The 
accuracy of DNNs methods can be increased with 
more classification data (labeled with the POS tags) 
and more texts (for training word embeddings). This 
is the direction to go in the future.
The comparative experiments with the different DNN 
approaches are the significant achievement for the 
Tigrinya language, as well for the whole group of the 
Northern-Ethiopic languages sharing similar charac-
teristics. The work is also influential from the practi-
cal perspective as well: the accurate POS tagger can 
boost the continues research in the other NLP tasks, 
especially for the resource-scarce Tigrinya. 

8. Conclusion and Future Work 
In this paper we are tackling the POS tagging problem 
for the Tigrinya language and achieve the best accu-
racy of ~92%. The best accuracy was achieved with 
the BiLSTM classifier applied on neural word embed-
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dings, carefully selected DNN architecture and opti-
mized hyper-parameter values. This achieved result 
is much better than random and majority baselines.
The paper also presents the comparative POS tagging 
experiments with various DNN classifiers (specifical-
ly, FFNN, LSTM, BiLSTM and CNN). To our knowl-
edge comparative analysis of several DNN classifiers 
has never been performed before on any of the North-
ern-Ethiopic languages for the POS tagging task. 
For various DNNs we have investigated their differ-
ent architectures and sets of hyper-parameter values 
by tuning those parameters manually (via expert in-
sights) and automatically (with automatic parameter 
optimization methods). Such comprehensive search 
(seeking for the best POS tagger solution manually 

and automatically) has never been performed before 
for any of the North-Ethiopic languages. 
The achieved results and especially recommenda-
tions on classifiers, their architectures and hyper-pa-
rameter values are important not only for the Tigrinya 
language, but for the whole group of Northern-Ethio-
pic languages sharing similar characteristics. 
In the future we are planning to continue our research 
for the Tigrinya language in the other areas of NLP by 
solving tasks which could not even be initiated be-
fore (without the accurate POS tagger). It would be 
also interesting to perform experiments for the other 
Northern-Ethiopic languages (e.g., Tigre, Saho, Ge’ez) 
to see how much they can benefit from the recom-
mendations in this research.
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