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This paper examines the performance of the commonly used neural-network-based classifiers for investigating 
such structural noise in metals as grain size estimation. It is extremely difficult to determine the grain size of 
objects only by the internal structure features of the object. When the structured data is obtained, a proposed 
feature extraction method is used to extract the feature of the object. Afterwards, the extracted features are 
used as the inputs for the classifiers. This research study is focused on using basic ultrasonic sensors to obtain 
object’s structural grain size. The performance for the used neural-network-based classifier is evaluated based 
on recognition accuracy for an individual object. Furthermore, traditional neural networks, namely, convolu-
tional and fully connected dense networks are shown as a result of the grain size estimation model. To evaluate 
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the robustness property of neural networks, the original samples data are mixed for three types of grain sizes. 
Experimental results show that combined convolutional and fully connected dense neural networks with clas-
sifiers outperform the other single neural networks with original samples with high signal-to-noise ratio data. 
The dense neural network as itself demonstrated the best robustness property when the object samples did not 
differ from trained datasets.

KEYWORDS: Material classification, Neural networks clusterization, ultrasonic non-destructive testing.

1. Introduction 
Metal aging in most cases leads to changes in the 
structure of the materials such as the appearance of 
microcavities, cracks, which later can lead to the de-
velopment of bigger damages of the structure, and as 
consequence, the materials lead to destruction. To ex-
amine the metals with non-destructive testing meth-
ods, the detection of the changes in noisy material 
internal structure is a very challenging task [2]. Even 
non-destructive assessment of the grain size inside 
the metals in principle is not solved. One of the most 
promising techniques for such a problem is ultrasonic 
measurements. This article presents a technique for 
non-destructive assessment of the grain size in met-
als based on the analysis of ultrasonic signals using 
neural networks (NN). The proposed NN methods are 
designed to learn the features of the object mechani-
cal structure and assess the size of grains in different 
positions of the component under inspection.  
The problem is to estimate grain size from the signal 
measured on a particular material. On the other hand, 
only destructive methods are currently used for grain 
size estimation and there are no non-destructive 
techniques that enable the assessment of the grain 
size inside a metal.
Some methodology for grain size estimation from 
structural noise in metals is called “Data-driven,” and 
it extracts damage-sensitive features concentrating 
only on the unusual areas in sensor data instead of re-
quiring a model of the structure. Some papers in this 
category operate on modern signal processing meth-
ods [1] and process a sudden change in signals caused 
by the presence of damage. In some ways, there is 
the research of [8] analyzing the characteristics of 
response signals under the wavelet transformation, 
and it was demonstrated that the wavelet coefficients 
can clearly show the moment when damage occurs. 
Another methodology in this category is when the 
damage detection task is treated as a pattern recogni-

tion problem based on a time series [15]. For detect-
ing damage by modeling a dynamic signal using the 
autoregressive moving average (ARMA) model and 
observing ongoing changes in the model coefficient, a 
data-driven approach is proposed [3]. By using analy-
sis of the moving base component analysis and robust 
regression analysis that detects damage based on sta-
tistical characteristics from time area data. However, 
the functions used in the above maintained studies 
are more oriented towards the detection of the dam-
age with statistical methods.
The purpose of this research for grain size classifica-
tion is to classify an unknown object into a predefined 
grain group consisting of pre-classified sets of objects 
with similar patterns to an unknown object. For many 
years, it was the artificial NN that was used to detect 
nature patterns [5]. In that manner, the NN is capable 
of detecting patterns with given features.
This is a very important NN research field that has 
a variety of areas such as health diagnostics, human 
resource optimization, language recognition, etc. In 
scientific literature, basic classification methods can 
be met as a logic-based approach. For reconstruction 
of spatial distribution of material properties, the deci-
sion graphs as a decision tree methods are much more 
effective and is known as subset of a logically based 
classification method and it is classified by sorting 
inputs according to characteristic property values. 
This methodology approach has shown better accu-
racy and clarity of the classification in images using 
the convolutional neural network [18]. The accuracy 
of the classification process can be improved by using 
the decision tree classifier.
Connecting multiple NN can further improve the per-
formance of the overall decisions which NN is making. 
Both different processing methods such as convolu-
tional NN and fully connected dense networks can be 
used for sampling the image kernels, ending with the 
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decision [14]. However, if both separate networks of di-
viding the decision make the wrong choice, it becomes 
more inaccurate than using one strong network with 
fine-tuned parameters [16]. For solving this problem 
multi-layered and combined NN are used [4].
One possible way of extracting features is by com-
puting dynamic structural signatures or designing 
their derivative to gain greater sensitivity of damage. 
Damage detection can be done by monitoring ongoing 
changes in these signatures [17]. As a major charac-
teristic, the natural amplitude changes are tested 
for convenience in the measurement. Some indirect 
damage detection studies exploring the detection of 
damage are based on the changes in the frequencies 
of the structure [12].
The article is laid out in three sections followed 
by conclusions. In the first section, the general ap-
proach is briefly described. The second section pres-
ents the model architecture, i.e. the structure of the 
NN. In the last section, the verification of the pro-
posed model based on experimental measurements 
is presented.

2. The General Approach of the 
Method for Grain Size Estimation 
The general approach is based on the application of 
fully connected dense NN. However, such a network 
can be used as a “post” classifier only, not for all the 
data processing [6]. The dense networks consist of 
several processing elements that are highly inter-
connected and transform a set of inputs into a set of 
desired outputs. The result of the transformation is 
determined by the element properties and weights 
associated with the interconnectors. By modifying 
the connections between the nodes, the network can 
adapt to the desired outputs.
A conventional network has an information forward 
structure, where the data flows forward from the net-
work inputs through many hidden units and eventu-
ally to the output blocks. A typical densely connected 
network is shown in Figure 1, where the neurons or 
nodes are arranged in a discrete multilayer topology. 
These units serve to introduce the values of the input 
variables. The hidden and output layer neurons are 
each connected to all units in the previous layer.

A fully connected dense NN with one input lay-
er,  hidden layers, and one output layer is pre-
sented below in Figure 1. The network input with 
data index count as  is represented by set of 
signals measured on the object under investiga-
tion  
and the NN output such as 

, where 
 is the number of input nodes in the input lay-

er and  is the number of output nodes in the 
output layer. The output of the node in the input and 
hidden layers is represented as follows [11]:
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Figure 1 
Fully connected dense NN architecture

Figure 1. Fully connected dense NN architecture 
 

 
Such a neural network cannot be directly applied for the estimation of the grain size at first because the accuracy of 
fully connected NN will be poor and will not be usable for this application [9]. To train this network, big data is 
required with multiple grain sizes labels. To overcome this problem, the novel combined neural network consisting 
of several NN as convolutional and fully connected dense networks was proposed.  The method is based on an 
analysis of ultrasonic structural noise which is assumed to contain information about the size of the grain. The 
performance of the proposed method can be described in the following steps: 

1. The ultrasonic signals are acquired on the object under investigation performing conventional B-scans. The 
time interval of the signals containing structural noise and back wall reflection is recorded and stored. The 
scanning and signals acquisition is performed using several excitation frequencies to cover wide band 
frequency ranges; 

2. The B-scan images acquired at different frequencies are processed and converted into the format that is 
suitable for application input data for NN. In our case, B-scan images were combined into the pseudo or 
virtual RGB format. A more detailed description is presented in the following sections; 

3. At the last step, the network is trained on the samples with known grain size. The result of such processing 
is the average size of the grain in NN input classifier grain size ranges.   

The key task is to develop such neural network architecture which can accept the B-scan signals as input data 
reliably to estimate the size of the grain. 

 

3. Model Architecture and Methodology 
To address structural noise issues, a novel NN architecture is designed. The proposed network can use full A-scan 
signals from three different frequency ultrasonic transducer data points with the length of 2000 elements. The NN 
model was created as shown in Figure 2 that the input layer needs three frequency data vectors as the input layer. 
This process of different frequency sensor data as separate frequency channels is used to learn structural noise 
features, and to achieve direct grain size estimation simultaneously. Moreover, for NN to work it is important to 
prepare the sensors data. The preparation is done by converting the signals to positive values and combining them 
into three channels as one single dataset array. To address NN fast learning, a positive value conversion is required; 
in this way, the binary subtraction manipulation is avoided and the information of signal will not be lost. 
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Such a neural network cannot be directly applied for 
the estimation of the grain size at first because the ac-
curacy of fully connected NN will be poor and will not 
be usable for this application [9]. To train this network, 
big data is required with multiple grain sizes labels. 
To overcome this problem, the novel combined neural 
network consisting of several NN as convolutional and 
fully connected dense networks was proposed.  The 
method is based on an analysis of ultrasonic structural 
noise which is assumed to contain information about 
the size of the grain. The performance of the proposed 
method can be described in the following steps:
1 The ultrasonic signals are acquired on the ob-

ject under investigation performing convention-
al B-scans. The time interval of the signals con-
taining structural noise and back wall reflection 
is recorded and stored. The scanning and signals 
acquisition is performed using several excitation 
frequencies to cover wide band frequency ranges;

2 The B-scan images acquired at different frequen-
cies are processed and converted into the format 
that is suitable for application input data for NN. 

In our case, B-scan images were combined into the 
pseudo or virtual RGB format. A more detailed de-
scription is presented in the following sections;

3 At the last step, the network is trained on the sam-
ples with known grain size. The result of such pro-
cessing is the average size of the grain in NN input 
classifier grain size ranges.  

The key task is to develop such neural network archi-
tecture which can accept the B-scan signals as input 
data reliably to estimate the size of the grain.

3. Model Architecture and 
Methodology
To address structural noise issues, a novel NN archi-
tecture is designed. The proposed network can use 
full A-scan signals from three different frequency 
ultrasonic transducer data points with the length of 
2000 elements. The NN model was created as shown 
in Figure 2 that the input layer needs three frequency 

Figure 2
The main architecture of grain size in metals detection method shape. Using multiple spreaded neural networks - Convolutional 
neural networks and Dens fully connected neural networksFigure 2. The main architecture of grain size in metals detection method shape. Using multiple spreaded neural 

networks - Convolutional neural networks and Dens fully connected neural networks 

 

The simplified flow chart of the proposed method is shown in Figure 3, which is organized as follows: (1-2-3) 
obtaining structural responses data from three different ultrasonic transducers – 2.25Mhz, 5Mhz, and 10Mhz. 
Mainly transducers are chosen to spread across from 2Mhz to 10Mhz frequency ranges. 
The inner block contains data augmentation (Figure 3, block-4), an operation used to facilitate the performance of 
the NN by creating more data. The data are processed by preprocessing procedures which are combined to a single 
vector as shown in Equation 3 as a multi-frequency channel dataset (1-2-3 in Figure 3). This combination represents 
a different transducer and different frequency used to measure the object samples: 

,    (3) 

where idx represents A-scan signal iteration index and as single ultrasound transducer measured A-scan signal.  
The second step is dataset labeling process which is done after three frequencies vector construction. The labeling is 
used to label the data as to direct grain sizes of three types. After dataset creation, the NN training is required.  
Another important part is NN evaluation in the training process visualization of inner network convolutions (Figure 
3, section-8). This block is used for tuning of NN interpretation of how the training is progressed at separate stages 
and to make it easier to calibrate the NN for future optimizations. 
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data vectors as the input layer. This process of different 
frequency sensor data as separate frequency channels 
is used to learn structural noise features, and to achieve 
direct grain size estimation simultaneously. Moreover, 
for NN to work it is important to prepare the sensors 
data. The preparation is done by converting the signals 
to positive values and combining them into three chan-
nels as one single dataset array. To address NN fast 
learning, a positive value conversion is required; in this 
way, the binary subtraction manipulation is avoided 
and the information of signal will not be lost.
The simplified flow chart of the proposed method is 
shown in Figure 3, which is organized as follows: (1-
2-3) obtaining structural responses data from three 
different ultrasonic transducers – 2.25Mhz, 5Mhz, 
and 10Mhz. Mainly transducers are chosen to spread 
across from 2Mhz to 10Mhz frequency ranges.
The inner block contains data augmentation (Figure 
3, block-4), an operation used to facilitate the perfor-
mance of the NN by creating more data. The data are 
processed by preprocessing procedures which are 
combined to a single vector as shown in Equation 3 as 
a multi-frequency channel dataset (1-2-3 in Figure 3). 
This combination represents a different transducer and 
different frequency used to measure the object samples:

, (3)

where idx represents A-scan signal iteration index 
and  as single ultrasound transducer measured 
A-scan signal. 

The second step is dataset labeling process which is 
done after three frequencies vector construction. The 
labeling is used to label the data as to direct grain sizes 
of three types. After dataset creation, the NN training 
is required. 
Another important part is NN evaluation in the train-
ing process visualization of inner network convo-
lutions (Figure 3, section-8). This block is used for 
tuning of NN interpretation of how the training is 
progressed at separate stages and to make it easier to 
calibrate the NN for future optimizations.
In this proposed NN method, the convolution and 
pooling are the most important and unique opera-
tions.  Generally, convolution is an operation on two 
real-valued functions, such as [13]:

. (4)

The  Equation 4  is usually known as the input S and 
the kernel or filter K. Furthermore, the output here is 
referred to as a feature map or single neuron weight 
as the filter parameter. Supposedly that the integer 
domain has defined functions S and K, then the con-
volution can be called Equation 5, where vs and vk are 
maximally fit indexes in the S and K functions, respec-
tively. In this case, it can be assumed that the index 
value is always zero. Convolution is commutative and 
the two representations in Equation 5 are equivalent. 
The first expression  is more suit-
able for implementing a machine learning algorithm. 

Figure 3 
Estimating grain size in materials as separate channel frequencies. Multiple frequency addition to neural network and 
visualization of neural network inner block performance as for human eye interpretation

Figure 3. Estimating grain size in materials as separate channel frequencies. Multiple frequency addition 
to neural network and visualization of neural network inner block performance as for human eye interpretation 

 
 

In this proposed NN method, the convolution and pooling are the most important and unique operations.  Generally, 
convolution is an operation on two real-valued functions, such as [13]: 

.    (4) 
The Equation 4 is usually known as the input S and the kernel or filter K. Furthermore, the output here is referred to 
as a feature map or single neuron weight as the filter parameter. Supposedly that the integer domain has defined 
functions S and K, then the convolution can be called Equation 5, where vs and vk are maximally fit indexes in the S 
and K functions, respectively. In this case, it can be assumed that the index value is always zero. Convolution is 

commutative and the two representations in Equation 5 are equivalent. The first expression  
is more suitable for implementing a machine learning algorithm. This is because kernel K, most often a 
multidimensional array of parameters, is much smaller in the NN context than input S. This yields a much lower 
maximum valid index obtained in the kernel. Moreover, in the latter term of Equation 5 the inputs S are folded 
relative to the kernel K. Assuming that as n increases, the index to kernel increases but the index at input S 
decreases; it brings the property to convolution. 

.    (5) 
As can be seen in Equation 6, most machine learning libraries accept a version of convolution without flipping. 
Even though, in reality it should be called cross-correlation. Nevertheless, in the machine learning field, it is still 
called "convolution". This customization makes sense because the corresponding parameters in the kernel will be 
learned by the learning algorithm and it does not matter whether the input is inverted or not. 

.    (6) 
Downsampling data strategy is the second important operation, since the maximum pooling action is part of a 
typical convolutional layer, as shown in Figure 4. It gives a statistical summary of the output elements that are 
nearby. One type of data pooling as a downsampling operation is the max-pooling. Just like with convolution, but in 
this case, instead of multiplying matrices, step by step it chooses the maximum within its "kernel size”, otherwise 
known as pool length. Moreover, pool stride is the length of gaps between every two neighbors. Typically, it is set to 
the same length as the pool length (the value length of a post pooling process), while in convolution, a similar 
parameter is configured to be one. For example, stating that the output before the maximum pooling layer is a vector 
such as (1, 2, 3, 4) and the pool length and pool step are two, then the pooling exit will be (2). 

Figure 4. Max pooling function with a sliding window (filter size) of 2×2. The simple maximum value is 
taken from each window to the output feature map 
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This is because kernel K, most often a multidimen-
sional array of parameters, is much smaller in the NN 
context than input S. This yields a much lower maxi-
mum valid index obtained in the kernel. Moreover, in 
the latter term of Equation 5 the inputs S are folded 
relative to the kernel K. Assuming that as n increases, 
the index to kernel increases but the index at input S 
decreases; it brings the property to convolution.

. (5)

As can be seen in Equation 6, most machine learn-
ing libraries accept a version of convolution without 
flipping. Even though, in reality it should be called 
cross-correlation. Nevertheless, in the machine 
learning field, it is still called “convolution”. This cus-
tomization makes sense because the corresponding 
parameters in the kernel will be learned by the learn-
ing algorithm and it does not matter whether the in-
put is inverted or not.

. (6)

Downsampling data strategy is the second important 
operation, since the maximum pooling action is part 
of a typical convolutional layer, as shown in Figure 4. 
It gives a statistical summary of the output elements 
that are nearby. One type of data pooling as a downs-
ampling operation is the max-pooling. Just like with 
convolution, but in this case, instead of multiplying 
matrices, step by step it chooses the maximum with-
in its “kernel size”, otherwise known as pool length. 
Moreover, pool stride is the length of gaps between 
every two neighbors. Typically, it is set to the same 

Figure 4 
Max pooling function with a sliding window (filter size) of 
2×2. The simple maximum value is taken from each window 
to the output feature map

length as the pool length (the value length of a post 
pooling process), while in convolution, a similar pa-
rameter is configured to be one. For example, stating 
that the output before the maximum pooling layer is a 
vector such as (1, 2, 3, 4) and the pool length and pool 
step are two, then the pooling exit will be (2).
The pooling operation mainly brings two benefits: 
firstly, it helps to make the data representation more 
invariant to the small variance of the input. On ac-
count of the result of pooling being a statistical sum-
mary, a small variance in input may change its statis-
tic characters slightly. It is a useful property to make 
a NN more robust to detect whether some feature is 
present or not. Secondly, the pooling operation reduc-
es the size of the feature map, which is essential to 
improve the computational efficiency of the network. 
Batch normalization is used and achieved through 
normalization steps. These steps fix the means and 
variances of each layer inputs. A normalization would 
be conducted over the entire data set [10]. In brief, 
the distribution of internal activations will contin-
uously vary with the changes of network weights 
during training, which makes the learning algorithm 
to fit these unstable distributions in every training 
step, leading to a low convergence rate. During NN 
training, batch normalization is used as a batch mean 
Equation 7 and batch variance Equation 8:

, (7)

, (8)

then normalize the layer inputs using the previously 
calculated batch statistics as

,
(9)

where ϵ [1, d] d-dimensional input. The next step is 
scaling and shifting to obtain the output of the layer 
as of 

, (10)

where the parameters and  are subsequently 
learned in the optimization process.
During training, for every batch of data,  D = {x1,..., 
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then normalize the layer inputs using the previously calculated batch statistics as 

,      (9) 

where ϵ [1, d] d-dimensional input. The next step is scaling and shifting to obtain the output of the layer as of  
,     (10) 

where the parameters and  are subsequently learned in the optimization process. 
During training, for every batch of data, D = {x1,..., xm}, the algorithm calculates the mean and variance, then shifts 
and scales the origin data to zero-mean and one variance. Finally, it introduces two learnable parameters, γ, and β, to 
hold the model flexibility. The batch normalization layer keeps its output following a similar distribution. As a 
result, the difficulty of training in the next layer is reduced, giving rise to fast convergence.  
To classify input data, it is necessary to have a layer for predicting classes, which is usually located at the last layer 
of the convolutional NN architecture. The most prominent method to date is using the softmax function given by 
Equation 11 [7], which is expressed as the probabilistic expression for the i-th training example out of n number of 
training examples, the j-th class out of n number of classes, and weights W, where are inputs of the softmax 
layer. The sum of the right-hand side for the i-th input always returns as 1, as the function always normalizes the 
distribution. In other words, Equation 11 returns probabilities of each input classes (for i=1···m) 

 

.  (11) 
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xm}, the algorithm calculates the mean and variance, 
then shifts and scales the origin data to zero-mean 
and one variance. Finally, it introduces two learnable 
parameters, γ, and β, to hold the model flexibility. The 
batch normalization layer keeps its output following a 
similar distribution. As a result, the difficulty of train-
ing in the next layer is reduced, giving rise to fast con-
vergence. 
To classify input data, it is necessary to have a layer 
for predicting classes, which is usually located at the 
last layer of the convolutional NN architecture. The 
most prominent method to date is using the softmax 
function given by Equation 11 [7], which is expressed 
as the probabilistic expression for the i-th training 
example out of n number of training examples, the 
j-th class out of n number of classes, and weights W, 
where are inputs of the softmax layer. The sum 
of the right-hand side for the i-th input always returns 
as 1, as the function always normalizes the distribu-
tion. In other words, Equation 11 returns probabilities 
of each input classes (for i=1···m)

.

(11)

4. Validation of the Proposed Model
For dataset collection, the experimental stand was 
created of three samples in Figure 6. The samples 
were stacked on each other for maximizing sample 
conjunction. In this way, collected signals were linear 
as possible and that helped for further signal manip-
ulation. As shown in Figures 5 and 10, 5 to 2.5  MHz 
immersive ultrasonic transducers with a focus of 
375mm were mounted on the Precision 6-11 axis 
TecScan system scanner. As for the scanning, all the 
measurements are done in the water tank, the ultra-

sonic waves from the transmission/reception (T/R) 
transducer were digitized and stored to a PC for later 
analysis and proposed NN training methods.
All signals are picked in a full signal cycle from materi-
al bottom. To gather more accurate signals, all used sig-
nals were in an averaging mode as 64 counts. For gath-
ering more signals from material samples, there were 
experiments in picking more signals from samples. 
In this way, the scanner ultrasound transducer move-
ment path was dynamically changed not to overlap the 
signals in each other. Experiments showed that for this 
method for finding material grain size it is better to use 
a 1x1mm step. It is used to not overtrain the NN.
All signals use some gain to not overcome an 80% 
signal to window ratio. In that way, the first step is to 
inspect the process of B-scan and fine-tune the am-
plitude.
To maximize data usage for NN to learn, all the ma-
terial samples defect holes are eliminated from the 
dataset.
All the measured samples as of A, B, and C are shown 
in Figure 6. There is a need to mention that sample C 
has unpredicted grain size spread in this sample, and 
it is considered as 400 µm.

Figure 5
Data signals in multiple frequencies (UT-1; UT-2; UT-3) 
gathering method. All three types of material samples (S1-
S2-S3) stacked on each other for gathered data linearity in 
the same conditions

4. Validation of the Proposed Model 
For dataset collection, the experimental stand was created of three samples in Figure 6. The samples were stacked on 
each other for maximizing sample conjunction. In this way, collected signals were linear as possible and that helped 
for further signal manipulation. As shown in Figures 5 and 10, 5 to 2.5 MHz immersive ultrasonic transducers with a 
focus of 375mm were mounted on the Precision 6-11 axis TecScan system scanner. As for the scanning, all the 
measurements are done in the water tank, the ultrasonic waves from the transmission/reception (T/R) transducer 
were digitized and stored to a PC for later analysis and proposed NN training methods. 
All signals are picked in a full signal cycle from material bottom. To gather more accurate signals, all used signals 
were in an averaging mode as 64 counts. For gathering more signals from material samples, there were experiments 
in picking more signals from samples. In this way, the scanner ultrasound transducer movement path was 
dynamically changed not to overlap the signals in each other. Experiments showed that for this method for finding 
material grain size it is better to use a 1x1mm step. It is used to not overtrain the NN. 
All signals use some gain to not overcome an 80% signal to window ratio. In that way, the first step is to inspect the 
process of B-scan and fine-tune the amplitude. 
To maximize data usage for NN to learn, all the material samples defect holes are eliminated from the dataset. 

 
Figure 5. Data signals in multiple frequencies (UT-1; UT-2; UT-3) gathering method. All three types of 

material samples (S1-S2-S3) stacked on each other for gathered data linearity in the same conditions 
 

 
 
All the measured samples as of A, B, and C are shown in Figure 6. There is a need to mention that sample C has 
unpredicted grain size spread in this sample, and it is considered as 400 µm. 

 
Figure 6. Sample A from the left side with a grains average diameter ~80um. Sample B with large grains average 
diameter ~800um. Sample C with intermediate grain size which average diameter is ~400um. The materials mock-

up is based on Ni alloy. 
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Figure 6 
Sample A from the left side with a grains average diameter ~80µm. Sample B with large grains average diameter ~800um. 
Sample C with intermediate grain size which average diameter is ~400µm. The materials mock-up is based on Ni alloy

   
 
The total number of raw data is 302400 different ultrasound signals. More briefly the total count on separate sample 
data is shown in Table 1. For training, the dataset was separated into two sets, one for training the NN – 70% (of all 
the measured A-B-C samples), and for model evaluation – 30%. 

 
Table 1: Dataset preparation in three different frequencies from 2.5 Mhz to 10 Mhz. Used a total of 302400 

ultrasonic signals of two sides. All measures are done in full sample mirror 

Sample Sample 
side 

f=2,5 
Mhz f=5 Mhz f=10 

Mhz 
Total different 
signal count 

A 
Left, 
Right 

12600 12600 12600 37800 
B 12600 12600 12600 37800 
C 25200 25200 25200 75600 

  
All material scanning is stored in B-SCAN data. Later on, all scans are parsed and used as B-SCAN models. From 
Figure 7, it can be seen the extrapolated B-SCAN of material sample A with scanned holes. Moreover, the full 
output diagram is shown with the bottom signal which is in the middle and mirrored signal on the right side. In this 
example, 2.5 Mhz frequency is used. 

The total number of raw data is 302400 different ul-
trasound signals. More briefly the total count on sepa-
rate sample data is shown in Table 1. For training, the 
dataset was separated into two sets, one for training 
the NN – 70% (of all the measured A-B-C samples), 
and for model evaluation – 30%.

Table 1
Dataset preparation in three different frequencies from 
2.5 Mhz to 10 Mhz. Used a total of 302400 ultrasonic signals 
of two sides. All measures are done in full sample mirror

Sa
m

pl
e

Sample 
side

f=2,5 
Mhz

f=5 
Mhz

f=10 
Mhz

Total different 
signal count

A

Left, 
Right

12600 12600 12600 37800

B 12600 12600 12600 37800

C 25200 25200 25200 75600

Figure 7

At the top - initial one layer B-SCAN, 2.5 Mhz. At the bottom - 
trimmed (Red - first sample (A) 2.5 Mhz data spectrum, 
orange - first sample (A) 5 Mhz data spectrum, green - first 
sample (A) 10 Mhz data spectrum), combined with other 
frequencies and restored as RGB image

All material scanning is stored in B-SCAN data. 
Later on, all scans are parsed and used as B-SCAN 
models. From Figure 7, it can be seen the extrapolat-
ed B-SCAN of material sample A with scanned holes. 
Moreover, the full output diagram is shown with the 
bottom signal which is in the middle and mirrored 
signal on the right side. In this example, 2.5 Mhz fre-
quency is used.

Figure 7. At the top - initial one layer B-SCAN, 2.5 Mhz. At the bottom - trimmed (Red - first sample (A) 2.5 Mhz 
data spectrum, orange - first sample (A) 5 Mhz data spectrum, green - first sample (A) 10 Mhz data spectrum), 
combined with other frequencies and restored as RGB image 
 

 

As mentioned above, the model can only accept data of the same form of the input layer. Therefore, data normalization is 
required. However, there is no reason for the data to be compressed to the same size for all data types of different sizes, as 
large samples would lose a large amount of information and no critical indicators are recognized, which form the ability 
of the NN to recognize the grain size of the material. To overcome this problem, data trimming is used, where only 
critical areas for sample identification are selected, as shown in Figure 10. Simplifying the filter with a common cooler is 
shown as follows.  

For the next step, performing a search in all B-SCAN for the coordinates of the material bottom at each scanning point is 
needed. This process is started by moving further through a single-point ultrasound A-SCAN signal and looking for 
points that exceed a certain value. During experiments with data altering it was found that the exact value that best helps 
to find the average pixel index is 102, starting when the length of the sample is ⅓ and ending with ⅚. Once all the points 
are found, the first point is taken over 102 and its coordinate is entered into a two-dimensional array that preserves the 
reflection points of the entire sample. If this value is not found, then a value of 1 is given, indicating that the index was 
not found. 

As shown in Figure 8, this search method is repeated with all 3 types of frequencies (2.5 Mhz, 5 Mhz, 10 Mhz). For 
detection of reflection, it is monitored whether the index values of a particular line in the array of bottom reflection 
indices are equal to -1. If this is the case, then the bottom reflection index is not found and the reflection index is 
searched in the next frequency. This methodology assumes that the material reflection line is found and does not 
deviate as the material is equal. 
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As mentioned above, the model can only accept data 
of the same form of the input layer. Therefore, data 
normalization is required. However, there is no rea-
son for the data to be compressed to the same size for 
all data types of different sizes, as large samples would 
lose a large amount of information and no critical in-
dicators are recognized, which form the ability of the 
NN to recognize the grain size of the material. To 
overcome this problem, data trimming is used, where 
only critical areas for sample identification are select-
ed, as shown in Figure 10. Simplifying the filter with a 
common cooler is shown as follows. 
For the next step, performing a search in all B-SCAN 
for the coordinates of the material bottom at each 
scanning point is needed. This process is started by 
moving further through a single-point ultrasound 
A-SCAN signal and looking for points that exceed a 
certain value. During experiments with data altering 
it was found that the exact value that best helps to 
find the average pixel index is 102, starting when the 
length of the sample is ⅓ and ending with ⅚. Once all 
the points are found, the first point is taken over 102 
and its coordinate is entered into a two-dimensional 
array that preserves the reflection points of the entire 
sample. If this value is not found, then a value of 1 is 
given, indicating that the index was not found.
As shown in Figure 8, this search method is repeat-
ed with all 3 types of frequencies (2.5 Mhz, 5 Mhz, 
10 Mhz). For detection of reflection, it is monitored 
whether the index values of a particular line in the 
array of bottom reflection indices are equal to -1. If 
this is the case, then the bottom reflection index is not 
found and the reflection index is searched in the next 
frequency. This methodology assumes that the mate-
rial reflection line is found and does not deviate as the 
material is equal.

Figure 8
Result of searching material of bottom reflection for precise 
data cutting and preparing for NN input.  Here, dark purple 
color represents where index in single A-SCAN data not 
found and yellow represents where bottom reflection is found

Figure 9 
Result of adding support reflection indexes to form evenly 
distributed reflection dataset

Performing material reflection search without au-
to-reflection (when reflection is not found) is shown 
in Figure 9. Here, the reflections from the bottom of 
the material are not evenly distributed everywhere, so 
the indexes that are not found are filled with support 
indexes from the same set of indexes that are found.

 
Figure 8. Result of searching material of bottom reflection for precise data cutting and preparing for NN 

input.  Here, dark purple color represents where index in single A-SCAN data not found and yellow represents 
 

 

Performing material reflection search without auto-reflection (when reflection is not found) is shown in Figure 9. 
Here, the reflections from the bottom of the material are not evenly distributed everywhere, so the indexes that are 
not found are filled with support indexes from the same set of indexes that are found. 

 
Figure 9. Result of adding support reflection indexes to form evenly distributed reflection dataset 

 
After data trimming is done, both paths as object reflection start and reflection ending mirror data are combined to 
one. For combining the dataset, a python Matplotlib library is used to represent the result as a combined dataset. 
There, each frequency is represented as a separate channel, which allows us to get an understandable color image as 
RGB (red-green-blue) concept. As shown in Figure 7, all B-SCAN signal values are normalized – they are divided 
by 128. 

 

5. Model Training and Calibration 
Conv1D layers were chosen as the basis of network architecture, which, like Conv2D layers (using a vector instead 
of 2D arrays only), automatically learn to identify specific structures. In this particular case, it is one of the essential 
characteristics of the network. This makes it possible to recognize the average size of the granules of the material. 
Three Conv1D layers are used in the last iteration of convolutional NN. The number of layers is chosen because the 
materials we want to classify are quite simple, given that they are rated by the network as 1.5D vectors rather than 
many attributes with 2D images. A higher number of Conv1D layers can provide more accuracy for the grid, but due 
to the good results of this particular model, a precise number of Conv1D layers were chosen. 
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input.  Here, dark purple color represents where index in single A-SCAN data not found and yellow represents 
where bottom reflection is found 

 

Performing material reflection search without auto-reflection (when reflection is not found) is shown in Figure 9. 
Here, the reflections from the bottom of the material are not evenly distributed everywhere, so the indexes that are 
not found are filled with support indexes from the same set of indexes that are found. 

 
Figure 9. Result  

 
After data trimming is done, both paths as object reflection start and reflection ending mirror data are combined to 
one. For combining the dataset, a python Matplotlib library is used to represent the result as a combined dataset. 
There, each frequency is represented as a separate channel, which allows us to get an understandable color image as 
RGB (red-green-blue) concept. As shown in Figure 7, all B-SCAN signal values are normalized – they are divided 
by 128. 

 

5. Model Training and Calibration 
Conv1D layers were chosen as the basis of network architecture, which, like Conv2D layers (using a vector instead 
of 2D arrays only), automatically learn to identify specific structures. In this particular case, it is one of the essential 
characteristics of the network. This makes it possible to recognize the average size of the granules of the material. 
Three Conv1D layers are used in the last iteration of convolutional NN. The number of layers is chosen because the 
materials we want to classify are quite simple, given that they are rated by the network as 1.5D vectors rather than 
many attributes with 2D images. A higher number of Conv1D layers can provide more accuracy for the grid, but due 
to the good results of this particular model, a precise number of Conv1D layers were chosen. 

After data trimming is done, both paths as object re-
flection start and reflection ending mirror data are 
combined to one. For combining the dataset, a py-
thon Matplotlib library is used to represent the result 
as a combined dataset. There, each frequency is rep-
resented as a separate channel, which allows us to get 
an understandable color image as RGB (red-green-
blue) concept. As shown in Figure 7, all B-SCAN sig-
nal values are normalized – they are divided by 128.

5. Model Training and Calibration
Conv1D layers were chosen as the basis of network 
architecture, which, like Conv2D layers (using a vec-
tor instead of 2D arrays only), automatically learn to 
identify specific structures. In this particular case, it 
is one of the essential characteristics of the network. 
This makes it possible to recognize the average size 
of the granules of the material. Three Conv1D layers 
are used in the last iteration of convolutional NN. The 
number of layers is chosen because the materials we 
want to classify are quite simple, given that they are 
rated by the network as 1.5D vectors rather than many 
attributes with 2D images. A higher number of Con-
v1D layers can provide more accuracy for the grid, but 
due to the good results of this particular model, a pre-
cise number of Conv1D layers were chosen.
Training settings are used on GPU (2x Nvidia 2080Ti) 
architecture for larger batch sizes which allows better 
utilization of GPU memory bandwidth and improved 
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Table 2
Proposed NN all inner layers in the segmented layer approach. Starting from the input layer and finalizing with two fully 
connected dense networks for classification of grain size in the numeric dimension

Layer (type) Layer output shape Layer parameters Layer connections

input_1 (InputLayer) (None, 1000, 3) 0 None

dropout_1 (Dropout) (None, 1000, 3) 0 input_1[0][0]

conv1d_1 (Conv1D) (None, 334, 32) 320 dropout_1[0][0]

dropout_2 (Dropout) (None, 334, 32) 0 conv1d_1[0][0]

conv1d_2 (Conv1D) (None, 334, 32) 5152 dropout_2[0][0]

max_pooling1d_1 (MaxPooling1D) (None, 111, 32) 0 conv1d_2[0][0]

dropout_3 (Dropout) (None, 111, 32) 0 max_pooling1d_1[0][0]

conv1d_3 (Conv1D) (None, 23, 32) 10272 dropout_3[0][0]

flatten_2 (Flatten) (None, 3000) 0 dropout_1[0][0]

max_pooling1d_2 (MaxPooling1D) (None, 7, 32) 0 conv1d_3[0][0]

dropout_5 (Dropout) (None, 3000) 0 flatten_2[0][0]

dropout_4 (Dropout) (None, 7, 32) 0 max_pooling1d_2[0][0]

dense_1 (Dense) (None, 40) 120040 dropout_5[0][0]

flatten_1 (Flatten) (None, 224) 0 dropout_4[0][0]

dropout_6 (Dropout) (None, 40) 0 dense_1[0][0]

concatenate_1 (Concatenate) (None, 264) 0 flatten_1[0][0], dropout_6[0][0]

dense_2 (Dense) (None, 120) 31800 concatenate_1[0][0]

dropout_7 (Dropout) (None, 120) 0 dense_2[0][0]

dense_3 (Dense) (None, 80) 9680 dropout_7[0][0]

dropout_8 (Dropout) (None, 80) 0 dense_3[0][0]

dense_4 (Dense) (None, 60) 4860 dropout_8[0][0]

dense_5 (Dense) (None, 20) 1220 dense_4[0][0] 

dense_7 (Dense) (None, 20) 1220 dense_4[0][0] 

dense_6 (Dense) (None, 3) 63 dense_5[0][0]

dense_8 (Dense) (None, 1) 21 dense_7[0][0]

computational throughput. For batch sizes, the fixed 
batch sizes are used as 512 and 4096, and NN maxi-
mum batch size as tested – 400 epochs. We selected 
rate as the learning rate with Adam optimizer, because 

the data set used is considered too small to be used for 
a lower learning rate. As activation layers, the ReLU is 
used for all layers, Softmax – for category extraction 
and linear activation is used for value extraction.
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Figure 10  
Activation of convolutional network layers. At the top are the averages of the random values of 100 signal units, at the bottom 
are the averages of 100 alarm activation values of 3 convolution layers. The picture highlights activation zones specific to a 
specific sample class. Samples: A – 80 μm, B – 400 μm, C – 800 μm

The study was conducted with or without convolution-
al layers which demonstrates that the use of convolu-
tional layers has some drawbacks that prevent a certain 
level of abstraction that simplifies the training of the 
network. It has also been observed that the network is 
less prone to learning when expanding the convolution-
al layers and the high degree of accuracy leads to less 
accuracy in the evaluation of unseen data. For these 
reasons, a higher number of Conv1D layers is useful be-
cause it also allows better classification of unseen data, 
even using a lesser amount of data for network training.
According to Table 2 and Figure 2, in the depicted net-
work architecture, it can be seen how the first convo-
lutional layers identify and reduce the plethora of ex-
cess information for subsequent Dense layers. Due to 
this methodology, the number of network parameters 
is reduced from ~ 800 thousand to ~ 330 thousand pa-
rameters and allows to increase network training and 
material evaluation speed up to 1.4 times compared to 
a network without Conv1D  layers. The data process-
ing process is shown after Conv1d layers in Figure 10, 
where each layer is responsible for detecting specif-
ic properties and transmitting their abstraction to a 
deeper layer. Here, we can see the main activations in 
separate samples.
After the classification, the mean accuracy of the 
signal classification is ~ 93% and is changed as a sig-
nificant difference in accuracy between the differ-
ent classes of samples. After an analysis of different 

categories of single signal identification, sample A 
achieved the highest accuracy with ~ 98% of the accu-
rate estimates, but samples B and C lag behind with 
~ 88% and 92% accuracy, respectively. The phenome-
non was studied in Figure 10, where it can be seen that 
after 3 convolutional layers and samples A and B show 
significant pattern differences compared to C, result-
ing in inaccuracy in the identification of the sample C 
between the categories. The difference between sam-
ples A, B and C is shown in Figure 10.
Even though, the experiments show network was 
with 93.4% grain size estimation probability, it can be 
assumed that excluding cases where the network is 
not convinced would result in even greater accuracy 
with this particular data. Therefore, this would lead 
to greater precision in this case.
Table 3 shows a comparison between the multiple 
models after networks have been trained. Here, AOCB 
is applying only one category sample. In the precision 
analysis of the different networks, the training was car-
ried out by assigning 5000 signals per category of sam-
ples (in the case of AOCB - only one category sample). 
An accuracy of 93.4% was achieved with training vali-
dation data that were separated from the total training 
data with a coefficient of 0.2. Then there was a test with 
other data, assigning a different number of signals per 
assessment. The correct evaluation is successful if the 
vast majority of data signals have been correctly eval-

According to Table 2 and Figure 2, in the depicted network architecture, it can be seen how the first convolutional 
layers identify and reduce the plethora of excess information for subsequent Dense layers. Due to this methodology, 
the number of network parameters is reduced from ~ 800 thousand to ~ 330 thousand parameters and allows to 
increase network training and material evaluation speed up to 1.4 times compared to a network 
without Conv1D layers. The data processing process is shown after Conv1d layers in Figure 10, where each layer is 
responsible for detecting specific properties and transmitting their abstraction to a deeper layer. Here, we can see the 
main activations in separate samples. 

 
Figure 10.  Activation of convolutional network layers. At the top are the averages of the random values of 

100 signal units, at the bottom are the averages of 100 alarm activation values of 3 convolution layers. The picture 
highlights activation zones specific to a specific sample class. Samples: A – 80 μm, B – 400 μm, C – 800 μm 

 
 

After the classification, the mean accuracy of the signal classification is ~ 93% and is changed as a significant 
difference in accuracy between the different classes of samples. After an analysis of different categories of single 
signal identification, sample A achieved the highest accuracy with ~ 98% of the accurate estimates, but samples B 
and C lag behind with ~ 88% and 92% accuracy, respectively. The phenomenon was studied in Figure 10, where it 
can be seen that after 3 convolutional layers and samples A and B show significant pattern differences compared to 
C, resulting in inaccuracy in the identification of the sample C between the categories. The difference between 
samples A, B and C is shown in Figure 10. 
Even though, the experiments show network was with 93.4% grain size estimation probability, it can be assumed 
that excluding cases where the network is not convinced would result in even greater accuracy with this particular 
data. Therefore, this would lead to greater precision in this case. 
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uated. This is done 300 times for each sample and the 
overall percentage of the correctness of the estimates 
is derived. As the accuracy of each category is s > 50%, 
increasing the number of signals increases the overall 
accuracy until it reaches the 100% estimation. Howev-
er, given that the training and testing samples were rel-

Table 3 
Proposed models for different learning epoch iteration with each model accuracy predicting grain size

Model
Accuracy after learning iteration, epoch

1 5 20 50

3 Convolutional and 1 fully connected dense layers + rear 5 fully 
connected dense layers with 184648 parameters

90,5 93,4 88,7 82,4

3 Convolutional and 1 fully connected dense layers + rear 5 fully 
connected dense layers with 184648 parameters, AOCB*

73,5 90,3 81,3 76,6

5 Fully connected dense layers with 261654 parameters 83,2 82,4 88,4 79,1

5 Fully connected dense layers with 261654 parameters, AOCB* 82,3 81,3 86,3 77,9
6 Convolutional and 1 fully connected dense layers + rear 5 fully 
connected dense layers with 332360 parameters 

93,1 92,9 92,8 91,6

6 Convolutional and 1 fully connected dense layers + rear 5 fully 
connected dense layers with 332360 parameters, AOCB*

90,1 90,1 90 89,8

6 Convolutional and 1 fully connected dense layers + rear 2 fully 
connected dense layers with 281240 parameters

90,2 90,8 86,7 85,9

6 Convolutional and 1 fully connected dense layers + rear 2 fully 
connected dense layers with 281240 parameters, AOCB*

84,2 86,4 84,8 84,1

3 Convolutional and 3 fully connected dense layers + rear 5 fully 
connected dense layers with 332360 parameters

89,3 91,4 91,7 91,2

3 Convolutional and 3 fully connected dense layers + rear 5 fully 
connected dense layers with 332360 parameters, AOCB*

69,5 87,9 89 85,5

Figure 11 
Tested models accuracy predicting grain size for different learning epoch iteration with different model structures Figure 11. Tested models accuracy predicting grain size for different learning epoch iteration with 

different model structures  

 

6. Discussion and Conclusion 
Results are obtained with the proposed model shows its 93.4% accuracy, even though the dataset is noisy. The 
proposed fine-tuned model observed in the multiple grain size estimations. Moreover, combined NN requires 
substantially fewer parameters and less computation to achieve state-of-the-art performances. Because we adopted 
structural noise for residual networks in our study, we believe that further gains in the accuracy of the proposed NN 
may be obtained by more detailed tuning of dataset and learning rate schedules. 
Whilst following the NN combination rule, NN naturally integrates the properties of grain size identity mappings, 
deep supervision, and diversified depth from separate convolutions. They allow feature reuse throughout the layers 
and can consequently learn more compact data and, according to our experiments, more accurate models.   
Following that, this NN may be a good feature extractor for various computer vision tasks that need to extract 
features from noisy data. We plan to study such feature transfer with proposed NN in future work. 
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6. Discussion and Conclusion 
Results are obtained with the proposed model shows its 93.4% accuracy, even though the dataset is noisy. The 
proposed fine-tuned model observed in the multiple grain size estimations. Moreover, combined NN requires 
substantially fewer parameters and less computation to achieve state-of-the-art performances. Because we adopted 
structural noise for residual networks in our study, we believe that further gains in the accuracy of the proposed NN 
may be obtained by more detailed tuning of dataset and learning rate schedules. 
Whilst following the NN combination rule, NN naturally integrates the properties of grain size identity mappings, 
deep supervision, and diversified depth from separate convolutions. They allow feature reuse throughout the layers 
and can consequently learn more compact data and, according to our experiments, more accurate models.   
Following that, this NN may be a good feature extractor for various computer vision tasks that need to extract 
features from noisy data. We plan to study such feature transfer with proposed NN in future work. 

atively similar and the number of tests carried out was 
limited, the best model was reported.
As of seen in Figure 11, the standard FCN network 
performance with data preparation is weakest of all 
(combined) tested. This is because the network con-
sists of only dense layers.
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6. Discussion and Conclusion
Results are obtained with the proposed model shows 
its 93.4% accuracy, even though the dataset is noisy. 
The proposed fine-tuned model observed in the mul-
tiple grain size estimations. Moreover, combined NN 
requires substantially fewer parameters and less 
computation to achieve state-of-the-art performanc-
es. Because we adopted structural noise for residual 
networks in our study, we believe that further gains 
in the accuracy of the proposed NN may be obtained 
by more detailed tuning of dataset and learning rate 
schedules.

Whilst following the NN combination rule, NN nat-
urally integrates the properties of grain size identity 
mappings, deep supervision, and diversified depth 
from separate convolutions. They allow feature re-
use throughout the layers and can consequently learn 
more compact data and, according to our experi-
ments, more accurate models.   Following that, this 
NN may be a good feature extractor for various com-
puter vision tasks that need to extract features from 
noisy data. We plan to study such feature transfer 
with proposed NN in future work.
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