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Deep reinforcement learning, the fastest growing technique, to solve real-world complex problems by creating 
a simple mathematical framework. It includes an agent, action, environment, and a reward. An agent will in-
teract with the environment, takes an optimal action aiming to maximize the total reward. This paper propos-
es the compelling technique of deep deterministic policy gradient for solving the complex continuous action 
space of 3-wheeled omnidirectional mobile robots. Three-wheeled Omnidirectional mobile robots tracking is 
a difficult task because of the orientation of the wheels which makes it rotate around its own axis rather to 
follow the trajectory. A deep deterministic policy gradient (DDPG) algorithm has been designed to train in en-
vironments with continuous action space to follow the trajectory by training the neural networks defined for 
the policy and value function to maximize the reward function defined for the tracking of the trajectory. DDPG 
agent environment is created in the Reinforcement learning toolbox in MATLAB 2019 while for Actor and crit-
ic network design deep neural network designer is used. Results are shown to illustrate the effectiveness of the 
technique with a convergence of error approximately to zero.
KEYWORDS: 3WD-Omnidirectional mobile robot, Deep Reinforcement Learning (DRL), Deep Deterministic 
Policy Gradient (DDPG), Reinforcement Learning Toolbox (RL toolbox).
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1. Introduction
Wheeled mobile robots have many advantages com-
pared to their legged counterparts such as structural 
simplicity, energy efficiency, high locomotion speed, 
and low cost of manufacturing. One of the types of a 
wheeled mobile robot is holonomic wheeled mobile 
robots which can be designed to move in any direction 
without changing its orientation. These omnidirec-
tional robots are made up of three or more Swedish 
wheels which can move not just forward or backward 
but sideways also A 3-wheel mobile robot is shown in 
Figure 1.

Figure 1 
3WD-Omnidirectional Mobile Robot

The desired capability of an advanced robotic system 
is that of an adaptation of effective behavior while 
interacting with the dynamic environment [19]. The 
control hierarchy of wheeled mobile robots is often 
categorized as high-level and low-level. In high-lev-
el control, one of the three major control paradigms, 

(e.g. hierarchical, reactive and hybrid) are applied to 
undertake a motion task such as path following, point 
to point tracking, trajectory tracking, wall following, 
and obstacle avoidance [14]. The hierarchical control 
architecture requires a complete world model to plan 
an action based on sensor data. Due to its high com-
putational requirements, the hierarchical control 
scheme is, however, slower to respond. The reactive 
control architecture does not have a planning stage. It 
executes an action based on the sensor data and hence 
it is quick in producing a response. The traditional 
method to control the movement of these robots is to 
apply classic controllers like PID using mathemat-
ical modeling of these robots and their inverse kine-
matics. But now reinforcement learning, artificial 
intelligence, and even deep learning are being used 
very commonly instead of the previous methods. As 
the robots experience many uncertainties in the real 
world, the traditional controllers experience difficul-
ties. These uncertainties include fluctuations in the 
environment and goals. Reinforcement learning can 
be combined with deep learning to solve such com-
plex problems with ease. Analogies between tem-
poral difference (TD) reinforcement learning algo-
rithms and dopaminergic neurons of the brain have 
demonstrated by recent studies in cognitive science. 
Despite nature-derived inspiration, many effective 
implementations of reinforcement learning (RL) for 
self-governing drive and movement controlling of 
dynamic robotic systems manipulation have proven 
the real-time application of previously theoretical 
concepts for the control of physical systems [3, 6-7]. 
Many of these methods use specific policy structures 
to represent policies to put a limitation on the number 
of iterations which is necessary for optimizing the re-
sults. Though efficient, but by adopting this approach 
there is a loss of generalization as it tightens the pol-
icy space to some specific trends [10]. To overcome 
these non-linear function approximators, neural 
networks are used for policy parameterization. This 
eliminates the need for handwritten specific policy 
representation and human supplied demonstrations 
to adjust them. Furthermore, usage of parameters in 
higher numbers also theoretically ensures learning 
of those complex behaviors that would not have been 
conceivable with linear handwritten policies.
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In [4], partial reinforcement learning is used along with 
a neural network-based algorithm for the tracking of 
wheeled mobile robots to overcome the complexity of 
time-varying advance angle. Both actor-critic adaptive 
laws are defined by the gradient descent method and the 
Critic network was defined to maximize the long-term 
reward while actor-network is defined to minimize a 
long-term cost function. In [12], the problem of perfor-
mance analysis of visual servo control of the robot is 
considered with measurements and modeling errors. A 
solution is proposed by coupling Q-learning and SAR-
SA with the neural network. In [15], an actor-critic al-
gorithm for PeopleBot robot is used to find and reach 
the table so it can pick up the things from it by using a 
camera mounted on it. The network is trained from 
random wandering to finding a table. In [23], reinforce-
ment learning is used to learn the walking of an omni-
directional humanoid robot and design a controller for 
high-level push recovery. In [28], a deep reinforcement 
learning algorithm DDPG is implemented in continuous 
action space for a Mobile robot that uses a single net-
work structure to learn all three skills: go to the ball, turn 
and shoot. The main drawback of this technique is that if 
the opponent learns to block the shot, then this will fail.
A reinforcement learning algorithm SARSA and Q 
learning are applied in [1] for robot navigation by dis-
cretizing the continuous state and actions. Discreti-
zation determines the performance of the algorithm 
applied. Q-Values in the algorithm are represented 
in tabular form which requires large memory spaces 
and difficult mathematical calculations. A deep rein-
forcement method is implemented in [8] for collision 
avoidance for an indoor service robot. The control-
ler is parameterized using the neural network while 
DDPG is used to train the agent. It is proved in [9] 
that the decentralized planning outperforms its cen-
tralized counterpart in-terms of computational as-
sets. The technique is confirmed on two problems: a 
lengthy version of the 3-dimensional mount car, and 
a ball-pushing act performed with a differential-drive 
robot, which is also verified on a physical setup.
In the last few years or so, deep learning made a great 
impact maybe this is due to the improvement in the 
computer technologies which are used to train these 
deep neural networks. For extracting useful informa-
tion from visual data object detection and object clas-
sification techniques are used these techniques are 
convolutional neural networks (CNN) based. CNN is 

a subclass of deep learning, in which meaningful data 
is used to train models to learn patterns and make 
decisions. CNN based models are better able to de-
tect and extract information from images, but there 
is a limitation of data and greater computation cost 
is required. In CNN some models are pre-trained and 
need to be trained, in pre-trained models the model 
is already trained on specific data. Small models that 
are pre-trained yield better results but in cases where 
models are huge a lot of computation is not focused 
on the original task, extra parameters are involved. 
To reduce the computation cost pruning parameter 
is proposed by Zheng et al.  [25], the pruning method 
in CNN, reduces model parameters, accelerating its 
computation. Paper proposed a PAC-Bayesian frame-
work that is based on drop-path, it works by identify-
ing the important paths in the CNN model, it can work 
on multi-layer and multi-branch models resulting in 
improved performance and speed of the network.
CNN requires a large amount of data to learn features 
and due to the non-availability of large data techniques 
like data augmentation are used. Data augmentation is 
a process that increases the diversity of data without 
increasing the size of data using techniques like trans-
formation, overfitting, underfitting and it helps to min-
imize overfitting problems in CNN. Data augmentation 
on joint training and testing stages can help in optimiz-
ing network performance. In CNN overfitting problems 
exists, to solve this Zheng et al.  [26] proposed a full 
stage data augmentation framework, which can reduce 
model training cost, the framework has been tested on 
CIFAR-10 and CIFAR-100 and gives improved general-
ization. [27] introduced a novel approach of a two-stage 
method for the training of deep convolution neural 
networks to improve the generalized ability of CNN by 
ensuring robustness to the selection of hyperparameter 
and optimizing feature boundary while initialization 
hardly affecting the ability of classification of the con-
vergent network model. Further Zheng et al. [24] intro-
duced a technique called layer-wise learning-based sto-
chastic gradient descent method for the gradient-based 
optimization of the objective function which is a com-
putationally effective and simple technique. The prac-
tical performance of the learned model is improved and 
the training process accelerates. The Generalness and 
robustness of these methods make it insensitive to hy-
perparameters which makes this technique more vastly 
applicable to other datasets and architecture networks. 
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In recent times most astonishing achievement in the 
field of DRL is the designing of the algorithm which can 
learn to play 2600 Atari games at the superhuman level 
directly from pixels of images [13].
In the case of three-wheeled Omnidirectional mobile 
robots tracking is a difficult task because of the orien-
tation of the wheels which makes it rotate around its 
axis rather than follow the trajectory. Motivation to use 
the DRL algorithm is that in traditional reinforcement 
learning algorithm bellman equation is used which it-
self mathematically complex to solve and find the op-
timal solution on a particular state and action. But in 
DRL this equation is replaced by a neural network that 
can iterate and describes the best result according to 
the action and state. We use a neural network to define 
an actor and critic network to maximize the long-term 
reward while DDPG is used to train the agent using 
the reward function which is developed based on the 
difference between the actual and desired value of the 
output. DDPG is used because we are considering con-
tinuous observation and continuous actions. 
The rest of the paper is organized in the following way, 
in Section 2 introduction to reinforcement learning, 
deep reinforcement learning and deep deterministic 
policy gradient are discussed then in Section 3 Dy-
namic Modeling of the 3WD-Omnidirectional Mo-
bile Robot is derived, in Section 4 DDPG algorithm 
is described with reward function, environment, and 
actor-critic networks. Section 5 and 6 describe the re-
sults/simulation and conclusion respectively.

2. Background
Reinforcement learning is a recent and much power-
ful approach that can be used for wheeled mobile ro-
bots, as it enables us to find an optimal solution to a 

problem with the help of a trial-and-error approach. 
This technique is based on a neuropsychological cog-
nitive science perspective [2]. Inspired by the behav-
ior of animals where animals, learn to do some spe-
cific task to get a reward or to avoid punishment, this 
technique has the ability to solve many recent com-
plex problems with ease [20]. It is becoming famous 
among the control enthusiastic because of its model 
less approach, also known as a black-box approach 
in which Reinforcement learning can find an opti-
mal solution to a problem for the systems with very 
complex or high dimensional systems those systems 
whose modeling itself consider a problem in control 
system field. A generalized scheme for reinforcement 
learning and feedback control system is shown in Fig-
ures 2-3, respectively.

Figure 2 
Reinforcement learning Scheme

Figure 3 
Feedback Control Scheme
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The mapping of reinforcement learning terms for the 
control system is given below.
Policy – Policy in a control system is a controller
Environment – Everything in a control system ex-
cluding controller is the environment. It shows in 
Figure 3, that the environment contains the plant, 
the desired reference, and the error. In general, the 
environment contains everything elements like dis-
turbance, analog-digital, digital-analog converters, 
filters, measurement noise, etc.
Observation – Any value that can be measure and 
visible to an agent. In Figures 2-3, the controller can 
see the error signal from the environment. We can 
also develop an agent that can observe outputs, refer-
ence signal measurement signals, and rate of change 
of these signals.
Actions – Actions that can be taken by an actuator in 
a control system to control a plant.
Reward – Reward is a function of signals which can 
evaluate the performance of the system according 
to the requirements. It can include sensors output, 
error, or some performance metric. For example; we 
can implement a reward function to minimize the 
control effort while minimizing the error of a control 
system.
Learning Algorithm – Learning algorithm is an ad-
aptation mechanism of adaptive control of a system.

2.1. Deep Reinforcement Learning
In this paper, Deep Deterministic Policy Gradi-
ent (DDPG) as proposed in [11], is used. In DDPG 
as a baseline of deep reinforcement learning, the 
actor-critic network is used. Deep reinforcement 
learning is a blend of deep learning and reinforce-
ment learning. It makes an agent capable of learning 
to behave in an environment based on feedback re-
wards or cost function. The main attribute of deep 
reinforcement learning is that deep neural networks 
can autonomously explore compact low-dimensional 
representations (features) of high-dimensional in-
puts (e.g., text, observations, images, and audio). This 
field of research has had the option to tackle a wide 
scope of complex decision-making errands that were 
already distant for a machine. Along these lines, DRL 
opens up numerous new applications in spaces, for 
example, social insurance, mechanical autonomy, Ro-
botics, savvy lattices, and some more.

2.2. Deep Deterministic Policy Gradient 
(DDPG)

For the problems of high dimensionality, complex 
task, and the environment with continuous action 
space, only DDPG is used. The deterministic poli-
cy gradient algorithm which simultaneously learns 
Q-Value (max. reward) and a policy. For finding the 
max. Q-function, the Bellman equation is used. For 
solving the Bellman equation, there are two methods 
i.e. Value-based (deterministic policy)
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action belongs to A, P = probability, R(s) = 
reward at s state and γ = discount factor. In 
Value-based, the output is an action while in 
Policy-based actions are vague. There is always 
a probability of every possible action. When the 
action space is confined Q-function is computed 
using value iteration. In a continuous action 
space, we cannot evaluate reward every step, 
quite a time consuming and exhausting. The Q 
function becomes differentiable concerning the 
action for every continuous action space. So 
instead of using the Value iteration, Policy 
evaluation is used. A deep deterministic policy 
gradient used the Actor critic algorithm which 
is in between the Value-based and policy-based 
shown in Figure 4. 
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The actor uses the policy-based approach in which it 
learns how to act by directly evaluating the optimal 
policy. Gradient ascent is used to maximizing the re-
ward. While Critic used the value-based approach. It 
directly maps the action i.e., the different states.

3. Dynamic Modeling of the  
3WD-Omnidirectional Mobile Robot
This section describes a dynamic model of three-
wheeled omnidirectional robot. This robot has three 
Swedish wheel assemblies. The mathematical model-
ing of the robot is central to controller design.

Figure 5 
Model of 3WD-Omnidirectional Mobile Robot 
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where Iv is robot's moment of inertia, MI is the mo-
ment around the center of gravity of the robot, and fx, 
fy, MI are following:
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the driving force of robot wheel; r is the radius of each 
wheel of robot; c is the viscid resistance factor of the 
wheel; ωi is the rate of change of angle of the robot; IR 
is the moment of inertia of the wheel of robot around 
the driving shaft; and ui is driving input torque. The 
geometrical relationships between variables φ., xr

. , yr
.       

and ωi i.e., the inverse kinematics can be written as:
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Model parameter used for the simulation are given 
in Table 1. 

 

Table 1 

Model Parameters of 3WD-Omnidirectionl Mobile 
Robot 

Parameters Description Value 

vI  Robot Moment of 
Inertia 

11.25 2kgm   

M Robot Mass 9.4 kg 

L Distance Between 0.178 m 

k Driving Gain 
Factor 0.448 

c Viscous Friction 
Factor 

0.1889
2 1kgm s−   

wI  Moment of Inertia 
of Wheel  

0.02108
2kgm   

r Radius of Wheel 0.0245 m 

 
 

4. Deep Deterministic Policy 
Gradient (DDPG) 
The DDPG algorithm is an off-policy, online, model-
free reinforcement learning method. A DDPG agent 
is based on an actor-critic reinforcement learning 
agent that maximizes the long-term reward by 
computing an optimal policy. The main difference 
between the actor-critic approach and DDPG is that 

the action space of DDPG is a continuous while 
for actor-critic approach have discrete action 
space. DDPG agents can be trained in 
environments with continuous or discrete 
observations and continuous action spaces. In 
[11], the working and algorithm of DDPG used 
in this paper. While training, a DDPG agent do 
the following things:  

1) Agent updates critic and actor properties at 
every time step during training. 

2) Using a circular experience buffer, it stores 
past experiences. The agent updates the critic 
and actor using a mini-batch of experiences 
randomly sampled from the buffer. 

3) Use noise models to perturbs the action 
chosen by the policy at every training step. 

The following four functions are maintained by 
a DDPG agent to estimate a value and policy 
function. 

approximators: 

• Actor ( )Sµ : The actor takes observation S and 
outputs the corresponding action that 
maximizes the long-term reward. 

• Target actor ( )Sµ′ : To improve the stability of 
the optimization, the agent periodically 
updates the target actor based on the latest actor 
parameter values. 

• Critic ( , )Q S A : It takes inputs as action A  and 
observations S  and provides the output of 
corresponding expectation of long-term 
rewards 

• Target critic ( , )Q S A′ : To increase the stability 
of optimization the agent updates the target 
critic periodically based on the newest critic 
parameter values. 

( , )Q S A  and ( , )Q S A′  both have the similar 
parameterization and structure, and both ( )Sµ  
and ( )Sµ′  have the similar parameterization 
and structure. When training is complete, the 
trained optimal policy is stored in actor ( )Sµ .  

 

4.1. DDPG Algorithm 
DDPG agents use the following training 
algorithm, in which they update their actor and 
critic models at each time step. 

• Randomly Initialize the critic ( , )Q S A  with 
some parameter values Qθ , and initialize the 
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a DDPG agent to estimate a value and policy 
function. 
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• Actor ( )Sµ : The actor takes observation S and 
outputs the corresponding action that 
maximizes the long-term reward. 

• Target actor ( )Sµ′ : To improve the stability of 
the optimization, the agent periodically 
updates the target actor based on the latest actor 
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• Critic ( , )Q S A : It takes inputs as action A  and 
observations S  and provides the output of 
corresponding expectation of long-term 
rewards 

• Target critic ( , )Q S A′ : To increase the stability 
of optimization the agent updates the target 
critic periodically based on the newest critic 
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( , )Q S A  and ( , )Q S A′  both have the similar 
parameterization and structure, and both ( )Sµ  
and ( )Sµ′  have the similar parameterization 
and structure. When training is complete, the 
trained optimal policy is stored in actor ( )Sµ .  

 

4.1. DDPG Algorithm 
DDPG agents use the following training 
algorithm, in which they update their actor and 
critic models at each time step. 

• Randomly Initialize the critic ( , )Q S A  with 
some parameter values Qθ , and initialize the 

Model parameter used for the simulation are given in 
Table 1.

Table 1
Model Parameters of 3WD-Omnidirectionl Mobile Robot

Parameters Description Value

Iv Robot Moment of Inertia 11.25 kgm2 

M Robot Mass 9.4 kg

L Distance Between 0.178 m

k Driving Gain Factor 0.448

c Viscous Friction Factor 0.1889 kgm2s–1 

Iw Moment of Inertia of Wheel 0.02108 kgm2 

r Radius of Wheel 0.0245 m

4. Deep Deterministic Policy 
Gradient (DDPG)
The DDPG algorithm is an off-policy, online, mod-
el-free reinforcement learning method. A DDPG 
agent is based on an actor-critic reinforcement learn-
ing agent that maximizes the long-term reward by 
computing an optimal policy. The main difference 
between the actor-critic approach and DDPG is that 
the action space of DDPG is a continuous while for ac-
tor-critic approach have discrete action space. DDPG 
agents can be trained in environments with contin-
uous or discrete observations and continuous action 
spaces. In [11], the working and algorithm of DDPG 
used in this paper. While training, a DDPG agent do 
the following things: 
1 Agent updates critic and actor properties at every 

time step during training.
2 Using a circular experience buffer, it stores past 

experiences. The agent updates the critic and actor 
using a mini-batch of experiences randomly sam-
pled from the buffer.

3 Use noise models to perturbs the action chosen by 
the policy at every training step.

The following four functions are maintained by a 
DDPG agent to estimate a value and policy function.
approximators:
 _ Actor μ(S): The actor takes observation S and 

outputs the corresponding action that maximizes 
the long-term reward.
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 _ Target actor μ' (S): To improve the stability of the 
optimization, the agent periodically updates the 
target actor based on the latest actor parameter 
values.

 _ Critic Q(S, A): It takes inputs as action A  and 
observations S and provides the output of 
corresponding expectation of long-term rewards

 _ Target critic Q'(S, A): To increase the stability of 
optimization the agent updates the target critic 
periodically based on the newest critic parameter 
values.

Q(S, A) and Q'(S, A) both have the similar parameter-
ization and structure, and both μ(S) and μ' (S) have the 
similar parameterization and structure. When train-
ing is complete, the trained optimal policy is stored in 
actor μ(S). 

4.1. DDPG Algorithm
DDPG agents use the following training algorithm, 
in which they update their actor and critic models at 
each time step.
 _ Randomly Initialize the critic Q(S, A) with some 

parameter values θQ, and initialize the target critic 
with the same random parameter values: θQ = θQ'.

 _ Randomly Initialize the actor μ(S) with some 
parameter values θμ, and initialize the target actor 
with the same parameter values: θμ = θμ'.

 _ For each training time step:

1 Select action A = μ(S) + N for the current observa-
tion S, where N is noise belongs to a noise model.

2 Execute action A. See the reward R and the next ob-
servation is S'.

3 Store the experience (S, A, R, S') in the experience 
buffer.

4 Sample a random mini-batch of M experiences (Si, 
Ai, Ri, Si')  from the experience buffer.

5 If Si' is a terminal state, set the value function tar-
get yi  to Ri . Otherwise, set it to

  

target critic with the same random parameter values: 
Q Qθ θ′ = . 

• Randomly Initialize the actor ( )Sµ  with some 
parameter values µθ  , and initialize the target actor 
with the same parameter values: µ µθ = θ′ . 

• For each training time step: 

1) Select action ( )A S Nµ= +  for the current 
observation S, where N is noise belongs to a noise 
model. 

2)   Execute action A . See the reward R  and the next 
observation is S ′ . 

3)  Store the experience ( , , , )S A R S ′  in the experience 
buffer. 

4)    Sample a random mini-batch of M experiences 
( , , , )i i i iS A R S ′  from the experience buffer. 

5)     If iS ′  is a terminal state, set the value function 
target iy  to iR . Otherwise, set it to 

 ( , ( | ) | )i i i i Qy R Q S S µγ µ θ θ′ ′ ′ ′= + . 

The value function target is the sum of the experience 
reward iR  and the discounted future reward. 

To compute the cumulative reward, the agent first 
calculates the successor action bypassing the 
successor observation iS ′  from the sampled 
experience to the target actor. The agent finds the 
cumulative reward bypassing the successor action to 
the target critic. 

6) Update the critic parameters by minimizing the 
loss function ( )f Loss  across all sampled experiences. 

 
1

1( ) ( ( , | ))
M

i i i Q
i

f Loss y Q S A
M

θ
=

= −∑ . 

7) Update the actor parameters using the following 
sampled policy gradient to maximize the expected 
discounted reward. 

 
1

1 M

ai i
i

J G G
Mµθ µ

=

∇ ≈ ∑  

 ( , | )ai A i QG Q S A θ= ∇ , 

where 

 ( | )iA S µµ θ=  

 ( | )i iG S
µµ θ µµ θ= ∇ . 

Here, aiG  is the gradient of the critic output with 
respect to the action computed by the actor-network, 

and iGµ  is the gradient of the actor output with 
respect to the actor parameters. Both gradients 
are evaluated for observation iS . 

8) Update the target actor and critic depending 
on the target update method 

(Smoothing or periodic). 

For smoothing:   

 (1 )Q Q Qθ τθ τ θ′ = + −  

 (1 )µ µ µθ τθ τ θ′ ′= + − . 

For Periodic: 

 Q Qθ θ′ =  

 µ µθ θ′ = . 

The reinforcement learning toolbox of 
MATLAB 19 is used to create a DDPG agent and 
the parameters used for the creation of the 
DDPG agent are as follows. 

Discount Factor = 0.99, Mini batch size = 128, 
Experience buffer length = 61 10× , Target 
smooth factor = 31 10−× , Noise mean attraction 
constant = 1, Noise variance = 0.1. 

Parameters used for the training of DDPG 
agents are sampling time = 1, Discount Factor = 
0.99, Mini Batch size = 128, Experience buffer 
length = 61 10× , Target smooth factor = 31 10−× . 

 

4.2. Actor and Critic Network 
The actor and critic network are defined by the 
help of deep neural network toolbox and design 
to create actor-network which intakes 
observation and outputs action which in case of 
a 3WD-Omnidirectional mobile robot is the 
motor speed of three Swedish wheels. 
Observations that are used for this system are 

, , , , , , , , ,e e e ex y x y x y x yθ θ      and motor speeds from 
previous agent. The steps are as follows to 
create a good actor and critic network. 

1) Start with the smallest possible network and 
a high learning rate (0.01). Train this initial 
network to see if the agent converges quickly to 
a poor policy or acts randomly. If either of these 
issues occurs, rescale the network by adding 
more layers or more outputs on each layer. The 
goal is to find a network structure that is just big 
enough, does not learn too fast, and shows signs 
of learning (an improving trajectory of the 

The value function target is the sum of the experience 
reward Ri and the discounted future reward.
To compute the cumulative reward, the agent first 
calculates the successor action bypassing the succes-

sor observation Si' from the sampled experience to the 
target actor. The agent finds the cumulative reward 
bypassing the successor action to the target critic.

6 Update the critic parameters by minimizing the loss 
function f(Loss) across all sampled experiences.
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5)     If iS ′  is a terminal state, set the value function 
target iy  to iR . Otherwise, set it to 

 ( , ( | ) | )i i i i Qy R Q S S µγ µ θ θ′ ′ ′ ′= + . 

The value function target is the sum of the experience 
reward iR  and the discounted future reward. 

To compute the cumulative reward, the agent first 
calculates the successor action bypassing the 
successor observation iS ′  from the sampled 
experience to the target actor. The agent finds the 
cumulative reward bypassing the successor action to 
the target critic. 

6) Update the critic parameters by minimizing the 
loss function ( )f Loss  across all sampled experiences. 
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7) Update the actor parameters using the following 
sampled policy gradient to maximize the expected 
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Here, aiG  is the gradient of the critic output with 
respect to the action computed by the actor-network, 

and iGµ  is the gradient of the actor output with 
respect to the actor parameters. Both gradients 
are evaluated for observation iS . 

8) Update the target actor and critic depending 
on the target update method 

(Smoothing or periodic). 

For smoothing:   

 (1 )Q Q Qθ τθ τ θ′ = + −  

 (1 )µ µ µθ τθ τ θ′ ′= + − . 

For Periodic: 

 Q Qθ θ′ =  

 µ µθ θ′ = . 

The reinforcement learning toolbox of 
MATLAB 19 is used to create a DDPG agent and 
the parameters used for the creation of the 
DDPG agent are as follows. 

Discount Factor = 0.99, Mini batch size = 128, 
Experience buffer length = 61 10× , Target 
smooth factor = 31 10−× , Noise mean attraction 
constant = 1, Noise variance = 0.1. 

Parameters used for the training of DDPG 
agents are sampling time = 1, Discount Factor = 
0.99, Mini Batch size = 128, Experience buffer 
length = 61 10× , Target smooth factor = 31 10−× . 
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issues occurs, rescale the network by adding 
more layers or more outputs on each layer. The 
goal is to find a network structure that is just big 
enough, does not learn too fast, and shows signs 
of learning (an improving trajectory of the 
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agents are sampling time = 1, Discount Factor = 
0.99, Mini Batch size = 128, Experience buffer 
length = 61 10× , Target smooth factor = 31 10−× . 

 

4.2. Actor and Critic Network 
The actor and critic network are defined by the 
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motor speed of three Swedish wheels. 
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network to see if the agent converges quickly to 
a poor policy or acts randomly. If either of these 
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more layers or more outputs on each layer. The 
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The reinforcement learning toolbox of MATLAB 19 is 
used to create a DDPG agent and the parameters used 
for the creation of the DDPG agent are as follows.
Discount Factor = 0.99, Mini batch size = 128, Expe-
rience buffer length = 1×106, Target smooth factor  = 
1×10–3, Noise mean attraction constant = 1, Noise 
variance = 0.1.
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Parameters used for the training of DDPG agents are 
sampling time = 1, Discount Factor = 0.99, Mini Batch 
size = 128, Experience buffer length = 1×106, Target 
smooth factor = 1×10–3 .

4.2. Actor and Critic Network
The actor and critic network are defined by the help of 
deep neural network toolbox and design to create ac-
tor-network which intakes observation and outputs 
action which in case of a 3WD-Omnidirectional mo-
bile robot is the motor speed of three Swedish wheels. 
Observations that are used for this system are x, y, 
θ, x., y., θ

.
, xe, ye, x.e, y.

e and motor speeds from previous 
agent. The steps are as follows to create a good actor 
and critic network.
1 Start with the smallest possible network and a 

high learning rate (0.01). Train this initial net-
work to see if the agent converges quickly to a 
poor policy or acts randomly. If either of these is-
sues occurs, rescale the network by adding more 
layers or more outputs on each layer. The goal is 
to find a network structure that is just big enough, 
does not learn too fast, and shows signs of learn-
ing (an improving trajectory of the reward graph) 
after an initial training period.

2 Initially configure the agent to learn slowly by set-
ting a low learning rate. By learning slowly, it can 
be checked to see if the agent is on the right track, 
which can help verify whether the network archi-
tecture is satisfactory for the problem. For difficult 
problems, tuning parameters is much easier once 

Figure 6 
Critic Neural Network

we settle on good network architecture. Figure 6, 
shows the graphical representation of the critic 
neural network.

Setting for NN actor-critic networks are optimizer = 
adam, learn rate= 1×10–3, Gradient threshold = 1, Reg-
ularization factor = 1×10–5. 

4.3. Reward Function
The main purpose of the paper is to track a reference 
trajectory, where the main task is to minimize the 
error function so one can design a reward function 
based on an error signal. The error signal used for the 
simulations is as follows. Simulink representation of 
total reward function R1  is shown in Figure 7.

Figure 7 
Reward Function Simulink Representation
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Figure 8 
Environment for DDPG Agent

Figure 9 
Integrated Environment with DDPG Agent
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be checked to see if the agent is on the right track, 
which can help verify whether the network 
architecture is satisfactory for the problem. For 
difficult problems, tuning parameters is much easier 
once we settle on good network architecture. Figure 
6, shows the graphical representation of the critic 
neural network. 
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4.4. Environment 
In terms of reinforcement, the learning 
environment is everything except the agent.  
The environment includes the plant, the desired 
reference, and the error. In general, the 
environment also contains some other elements 
like disturbance, analog-digital, digital-analog 
converters, filters, measurement noise, etc. 
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In the case of 3 wheeled omnidirectional mobile 
robot environment block is created in Simulink 
which includes reward function, exceed bound 
limits, observations. Figure 8, shows the 
dynamic model of the system Environment 
created for this paper then this block is 
integrated with the RL agent which learns the 
policy and implemented it on the dynamic 
model of the system Figure 9. 
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6, shows the graphical representation of the critic 
neural network. 
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In terms of reinforcement, the learning environment 
is everything except the agent.  The environment in-
cludes the plant, the desired reference, and the error. 
In general, the environment also contains some other 
elements like disturbance, analog-digital, digital-ana-
log converters, filters, measurement noise, etc.
In the case of 3 wheeled omnidirectional mobile ro-
bot environment block is created in Simulink which 
includes reward function, exceed bound limits, ob-
servations. Figure 8, shows the dynamic model of the 
system Environment created for this paper then this 
block is integrated with the RL agent which learns the 
policy and implemented it on the dynamic model of 
the system Figure 9.



517Information Technology and Control 2021/3/50

RL agent takes an observation, reward function, and 
flag function which shows if the simulation is done 
or not as an input and outputs the motor speeds of 
3-wheeled omnidirectional mobile robots.

5. Results and Simulations
Simulation for the validation of the results has 
been done in MATLAB 19 and the Reinforcement 
learning toolbox is used for environment creation, 
actor-critic networks, agent, and training of that 
agent. To reduce complexity, the simulation range 
of the motor’s inputs is selected [0 –∞] where two 
motors M1 and M2 are set as positive while third 
M3 is set to move opposite to the first two motors. 
This is done to limit the rotation of the 3WD-Om-
nidirectional mobile robot along its axis. Two dif-
ferent scenarios for the trajectories are used to 
validate the results first scenario is to track a point 
to point with a straight line this is the simplest sce-
nario because as the robot advance forwards its an-
gle φ remain constant.  While in the second scenario 

Figure 10 
Control Inputs

tracking of circular trajectory is used because it is 
a complex trajectory for the 3WD omnidirectional 
robot because φ changes at each point of the circle.

5.1. Scenario 1

For initial training reference is given as a point-to-
point tracking, Simulation results are given in Fig-
ure 10, shows the control inputs to the motors (M1, 
M2, M3). Figure 11, Shows the no of iteration and 
different rewards on each iteration which includes 
episode reward, average reward, and expected re-
ward while Figure 12, shows the results of point-to-
point tracking of the 3-wheel omnidirectional mo-
bile robot. 
The simulation stops when the average reward reach-
es to 1000. Iteration’s graph shows that for about 100 
iterations there is nothing special happen then sud-
denly Neural networks of actor and critics start to 
predict the inputs where reward function maximizes. 
Stopping criteria are selected by monitoring the aver-
age reward. It is because each episode reward is very 
random and can go to the maximum value and mini-
mum value at any time.
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Figure 11 
Point Tracking Iterations 

Figure 12 
Point to Point Tracking 

5.2. Scenario 2
In this scenario, a sine wave is applied as a reference 
of the x-axis while the cosine wave is applied as a 
reference of the y-axis. Which combines to make a 
circle to the trajectory for reference. Simulation re-
sults are given in Figure 13, shows the iteration for 
the tracking of circular trajectory simulations stops 
when the average reward approaches 1900. 
Figure 14, shows the error signal of the x-y axis for 
the tracking of circular trajectory error starts at 
maximum because robot initial position is at the ori-
gin then it starts follows the circle and error become 
zero. 
Figure 15, shows the result for circular trajectory 
tracking of 3 wheels omnidirectional mobile robots. 
While the reset function is set to come to the origin 
when every iteration ended.
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Figure 13 
Circle Tracking Iterations 

Figure 14 
X-Y Error 
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Figure 15 
Circle Tracking 6. Conclusion

To achieve tracking of 3 wheels omnidirectional mobile 
robot (deep reinforcement learning) DRL algorithm 
(deep deterministic policy gradient) DDPG is used 
which allows us to achieve our goal by taking continu-
ous actions and states. To attain a control objective, less 
calculation is needed compare to the full optimal control 
algorithm, and we always got more accuracy, compared 
to a typical control method. MATLAB R2019a is used for 
the simulation and the reinforcement learning toolbox 
makes the whole work very easy. The best part of this 
technique is that we can achieve a goal with no or very 
less knowledge of the dynamic model and it will work on 
that too. This research is very useful where a robot has 
to do a task repeatedly millions of times like automatic 
mobile assembly, automatic sorting a book in the library, 
robots working in congested areas, planetary explora-
tion, etc. Further research can be carried out by attach-
ing a traditional feedback controller with reinforcement 
learning to achieve more fast and better results.
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