
507Information Technology and Control 2021/3/50

Application of Deep Reinforcement
Learning Tracking Control of 3WD
Omnidirectional Mobile Robot

ITC 3/50
Information Technology
and Control
Vol. 50 / No. 3 / 2021
pp. 507-521
DOI 10.5755/j01.itc.50.3.25979

Application of Deep Reinforcement Learning Tracking
Control of 3WD Omnidirectional Mobile Robot

Received 2020/05/02 Accepted after revision 2021/05/20

 http://dx.doi.org/10.5755/j01.itc.50.3.25979

HOW TO CITE: Mehmood, A., Shaikh, I. U. H., Ali, A. (2021). Application of Deep Reinforcement Learning for Tracking Control of 3WD
Omnidirectional Mobile Robot. Information Technology and Control, 50(3), 507-521. https://doi.org/10.5755/j01.itc.50.3.25979

Corresponding author: atif.mehmood@students.uettaxila.edu.pk

Atif Mehmood
Department of Electrical Engineering; University of Engineering and Technology Taxila; Student, UET Taxila,
Rawalpindi, Pakistan; e-mail: atif.mehmood@students.uettaxila.edu.pk

Inam ul Hasan Shaikh, Ahsan Ali
Faculty of Electrical Engineering; University of Engineering and Technology Taxila; Faculty: UET Taxila,
Rawalpindi, Pakistan; e-mails: inam.hassan@uettaxila.edu.pk, ahsan.ali@uettaxila.edu.pk

Deep reinforcement learning, the fastest growing technique, to solve real-world complex problems by creating
a simple mathematical framework. It includes an agent, action, environment, and a reward. An agent will in-
teract with the environment, takes an optimal action aiming to maximize the total reward. This paper propos-
es the compelling technique of deep deterministic policy gradient for solving the complex continuous action
space of 3-wheeled omnidirectional mobile robots. Three-wheeled Omnidirectional mobile robots tracking is
a difficult task because of the orientation of the wheels which makes it rotate around its own axis rather to
follow the trajectory. A deep deterministic policy gradient (DDPG) algorithm has been designed to train in en-
vironments with continuous action space to follow the trajectory by training the neural networks defined for
the policy and value function to maximize the reward function defined for the tracking of the trajectory. DDPG
agent environment is created in the Reinforcement learning toolbox in MATLAB 2019 while for Actor and crit-
ic network design deep neural network designer is used. Results are shown to illustrate the effectiveness of the
technique with a convergence of error approximately to zero.
KEYWORDS: 3WD-Omnidirectional mobile robot, Deep Reinforcement Learning (DRL), Deep Deterministic
Policy Gradient (DDPG), Reinforcement Learning Toolbox (RL toolbox).

mailto:obodovskiy58@gmail.com

Information Technology and Control 2021/3/50508

1. Introduction
Wheeled mobile robots have many advantages com-
pared to their legged counterparts such as structural
simplicity, energy efficiency, high locomotion speed,
and low cost of manufacturing. One of the types of a
wheeled mobile robot is holonomic wheeled mobile
robots which can be designed to move in any direction
without changing its orientation. These omnidirec-
tional robots are made up of three or more Swedish
wheels which can move not just forward or backward
but sideways also A 3-wheel mobile robot is shown in
Figure 1.

Figure 1
3WD-Omnidirectional Mobile Robot

The desired capability of an advanced robotic system
is that of an adaptation of effective behavior while
interacting with the dynamic environment [19]. The
control hierarchy of wheeled mobile robots is often
categorized as high-level and low-level. In high-lev-
el control, one of the three major control paradigms,

(e.g. hierarchical, reactive and hybrid) are applied to
undertake a motion task such as path following, point
to point tracking, trajectory tracking, wall following,
and obstacle avoidance [14]. The hierarchical control
architecture requires a complete world model to plan
an action based on sensor data. Due to its high com-
putational requirements, the hierarchical control
scheme is, however, slower to respond. The reactive
control architecture does not have a planning stage. It
executes an action based on the sensor data and hence
it is quick in producing a response. The traditional
method to control the movement of these robots is to
apply classic controllers like PID using mathemat-
ical modeling of these robots and their inverse kine-
matics. But now reinforcement learning, artificial
intelligence, and even deep learning are being used
very commonly instead of the previous methods. As
the robots experience many uncertainties in the real
world, the traditional controllers experience difficul-
ties. These uncertainties include fluctuations in the
environment and goals. Reinforcement learning can
be combined with deep learning to solve such com-
plex problems with ease. Analogies between tem-
poral difference (TD) reinforcement learning algo-
rithms and dopaminergic neurons of the brain have
demonstrated by recent studies in cognitive science.
Despite nature-derived inspiration, many effective
implementations of reinforcement learning (RL) for
self-governing drive and movement controlling of
dynamic robotic systems manipulation have proven
the real-time application of previously theoretical
concepts for the control of physical systems [3, 6-7].
Many of these methods use specific policy structures
to represent policies to put a limitation on the number
of iterations which is necessary for optimizing the re-
sults. Though efficient, but by adopting this approach
there is a loss of generalization as it tightens the pol-
icy space to some specific trends [10]. To overcome
these non-linear function approximators, neural
networks are used for policy parameterization. This
eliminates the need for handwritten specific policy
representation and human supplied demonstrations
to adjust them. Furthermore, usage of parameters in
higher numbers also theoretically ensures learning
of those complex behaviors that would not have been
conceivable with linear handwritten policies.

509Information Technology and Control 2021/3/50

In [4], partial reinforcement learning is used along with
a neural network-based algorithm for the tracking of
wheeled mobile robots to overcome the complexity of
time-varying advance angle. Both actor-critic adaptive
laws are defined by the gradient descent method and the
Critic network was defined to maximize the long-term
reward while actor-network is defined to minimize a
long-term cost function. In [12], the problem of perfor-
mance analysis of visual servo control of the robot is
considered with measurements and modeling errors. A
solution is proposed by coupling Q-learning and SAR-
SA with the neural network. In [15], an actor-critic al-
gorithm for PeopleBot robot is used to find and reach
the table so it can pick up the things from it by using a
camera mounted on it. The network is trained from
random wandering to finding a table. In [23], reinforce-
ment learning is used to learn the walking of an omni-
directional humanoid robot and design a controller for
high-level push recovery. In [28], a deep reinforcement
learning algorithm DDPG is implemented in continuous
action space for a Mobile robot that uses a single net-
work structure to learn all three skills: go to the ball, turn
and shoot. The main drawback of this technique is that if
the opponent learns to block the shot, then this will fail.
A reinforcement learning algorithm SARSA and Q
learning are applied in [1] for robot navigation by dis-
cretizing the continuous state and actions. Discreti-
zation determines the performance of the algorithm
applied. Q-Values in the algorithm are represented
in tabular form which requires large memory spaces
and difficult mathematical calculations. A deep rein-
forcement method is implemented in [8] for collision
avoidance for an indoor service robot. The control-
ler is parameterized using the neural network while
DDPG is used to train the agent. It is proved in [9]
that the decentralized planning outperforms its cen-
tralized counterpart in-terms of computational as-
sets. The technique is confirmed on two problems: a
lengthy version of the 3-dimensional mount car, and
a ball-pushing act performed with a differential-drive
robot, which is also verified on a physical setup.
In the last few years or so, deep learning made a great
impact maybe this is due to the improvement in the
computer technologies which are used to train these
deep neural networks. For extracting useful informa-
tion from visual data object detection and object clas-
sification techniques are used these techniques are
convolutional neural networks (CNN) based. CNN is

a subclass of deep learning, in which meaningful data
is used to train models to learn patterns and make
decisions. CNN based models are better able to de-
tect and extract information from images, but there
is a limitation of data and greater computation cost
is required. In CNN some models are pre-trained and
need to be trained, in pre-trained models the model
is already trained on specific data. Small models that
are pre-trained yield better results but in cases where
models are huge a lot of computation is not focused
on the original task, extra parameters are involved.
To reduce the computation cost pruning parameter
is proposed by Zheng et al. [25], the pruning method
in CNN, reduces model parameters, accelerating its
computation. Paper proposed a PAC-Bayesian frame-
work that is based on drop-path, it works by identify-
ing the important paths in the CNN model, it can work
on multi-layer and multi-branch models resulting in
improved performance and speed of the network.
CNN requires a large amount of data to learn features
and due to the non-availability of large data techniques
like data augmentation are used. Data augmentation is
a process that increases the diversity of data without
increasing the size of data using techniques like trans-
formation, overfitting, underfitting and it helps to min-
imize overfitting problems in CNN. Data augmentation
on joint training and testing stages can help in optimiz-
ing network performance. In CNN overfitting problems
exists, to solve this Zheng et al. [26] proposed a full
stage data augmentation framework, which can reduce
model training cost, the framework has been tested on
CIFAR-10 and CIFAR-100 and gives improved general-
ization. [27] introduced a novel approach of a two-stage
method for the training of deep convolution neural
networks to improve the generalized ability of CNN by
ensuring robustness to the selection of hyperparameter
and optimizing feature boundary while initialization
hardly affecting the ability of classification of the con-
vergent network model. Further Zheng et al. [24] intro-
duced a technique called layer-wise learning-based sto-
chastic gradient descent method for the gradient-based
optimization of the objective function which is a com-
putationally effective and simple technique. The prac-
tical performance of the learned model is improved and
the training process accelerates. The Generalness and
robustness of these methods make it insensitive to hy-
perparameters which makes this technique more vastly
applicable to other datasets and architecture networks.

Information Technology and Control 2021/3/50510

In recent times most astonishing achievement in the
field of DRL is the designing of the algorithm which can
learn to play 2600 Atari games at the superhuman level
directly from pixels of images [13].
In the case of three-wheeled Omnidirectional mobile
robots tracking is a difficult task because of the orien-
tation of the wheels which makes it rotate around its
axis rather than follow the trajectory. Motivation to use
the DRL algorithm is that in traditional reinforcement
learning algorithm bellman equation is used which it-
self mathematically complex to solve and find the op-
timal solution on a particular state and action. But in
DRL this equation is replaced by a neural network that
can iterate and describes the best result according to
the action and state. We use a neural network to define
an actor and critic network to maximize the long-term
reward while DDPG is used to train the agent using
the reward function which is developed based on the
difference between the actual and desired value of the
output. DDPG is used because we are considering con-
tinuous observation and continuous actions.
The rest of the paper is organized in the following way,
in Section 2 introduction to reinforcement learning,
deep reinforcement learning and deep deterministic
policy gradient are discussed then in Section 3 Dy-
namic Modeling of the 3WD-Omnidirectional Mo-
bile Robot is derived, in Section 4 DDPG algorithm
is described with reward function, environment, and
actor-critic networks. Section 5 and 6 describe the re-
sults/simulation and conclusion respectively.

2. Background
Reinforcement learning is a recent and much power-
ful approach that can be used for wheeled mobile ro-
bots, as it enables us to find an optimal solution to a

problem with the help of a trial-and-error approach.
This technique is based on a neuropsychological cog-
nitive science perspective [2]. Inspired by the behav-
ior of animals where animals, learn to do some spe-
cific task to get a reward or to avoid punishment, this
technique has the ability to solve many recent com-
plex problems with ease [20]. It is becoming famous
among the control enthusiastic because of its model
less approach, also known as a black-box approach
in which Reinforcement learning can find an opti-
mal solution to a problem for the systems with very
complex or high dimensional systems those systems
whose modeling itself consider a problem in control
system field. A generalized scheme for reinforcement
learning and feedback control system is shown in Fig-
ures 2-3, respectively.

Figure 2
Reinforcement learning Scheme

Figure 3
Feedback Control Scheme

511Information Technology and Control 2021/3/50

The mapping of reinforcement learning terms for the
control system is given below.
Policy – Policy in a control system is a controller
Environment – Everything in a control system ex-
cluding controller is the environment. It shows in
Figure 3, that the environment contains the plant,
the desired reference, and the error. In general, the
environment contains everything elements like dis-
turbance, analog-digital, digital-analog converters,
filters, measurement noise, etc.
Observation – Any value that can be measure and
visible to an agent. In Figures 2-3, the controller can
see the error signal from the environment. We can
also develop an agent that can observe outputs, refer-
ence signal measurement signals, and rate of change
of these signals.
Actions – Actions that can be taken by an actuator in
a control system to control a plant.
Reward – Reward is a function of signals which can
evaluate the performance of the system according
to the requirements. It can include sensors output,
error, or some performance metric. For example; we
can implement a reward function to minimize the
control effort while minimizing the error of a control
system.
Learning Algorithm – Learning algorithm is an ad-
aptation mechanism of adaptive control of a system.

2.1. Deep Reinforcement Learning
In this paper, Deep Deterministic Policy Gradi-
ent (DDPG) as proposed in [11], is used. In DDPG
as a baseline of deep reinforcement learning, the
actor-critic network is used. Deep reinforcement
learning is a blend of deep learning and reinforce-
ment learning. It makes an agent capable of learning
to behave in an environment based on feedback re-
wards or cost function. The main attribute of deep
reinforcement learning is that deep neural networks
can autonomously explore compact low-dimensional
representations (features) of high-dimensional in-
puts (e.g., text, observations, images, and audio). This
field of research has had the option to tackle a wide
scope of complex decision-making errands that were
already distant for a machine. Along these lines, DRL
opens up numerous new applications in spaces, for
example, social insurance, mechanical autonomy, Ro-
botics, savvy lattices, and some more.

2.2. Deep Deterministic Policy Gradient
(DDPG)

For the problems of high dimensionality, complex
task, and the environment with continuous action
space, only DDPG is used. The deterministic poli-
cy gradient algorithm which simultaneously learns
Q-Value (max. reward) and a policy. For finding the
max. Q-function, the Bellman equation is used. For
solving the Bellman equation, there are two methods
i.e. Value-based (deterministic policy)

Reward – Reward is a function of signals which can
evaluate the performance of the system according to
the requirements. It can include sensors output,
error, or some performance metric. For example; we
can implement a reward function to minimize the
control effort while minimizing the error of a control
system.

Learning Algorithm – Learning algorithm is an
adaptation mechanism of adaptive control of a
system.

2.1. Deep Reinforcement Learning
In this paper, Deep Deterministic Policy Gradient
(DDPG) as proposed in [11], is used. In DDPG as a
baseline of deep reinforcement learning, the actor-
critic network is used. Deep reinforcement learning
is a blend of deep learning and reinforcement
learning. It makes an agent capable of learning to
behave in an environment based on feedback
rewards or cost function. The main attribute of deep
reinforcement learning is that deep neural networks
can autonomously explore compact low-dimensional
representations (features) of high-dimensional
inputs (e.g., text, observations, images, and audio).
This field of research has had the option to tackle a
wide scope of complex decision-making errands that
were already distant for a machine. Along these
lines, DRL opens up numerous new applications in
spaces, for example, social insurance, mechanical
autonomy, Robotics, savvy lattices, and some more.

2.2. Deep Deterministic Policy Gradient
(DDPG)
For the problems of high dimensionality, complex
task, and the environment with continuous action
space, only DDPG is used. The deterministic policy
gradient algorithm which simultaneously learns Q-
Value (max. reward) and a policy. For finding the
max. Q-function, the Bellman equation is used. For
solving the Bellman equation, there are two methods
i.e. Value-based (deterministic policy)

ˆ ˆ: () : () (| , ()) ()

s S
s S V s R s P s s s V sπ πγ π

∈

′ ′∀ ∈ = + ∑

and Policy-based (stochastic policy) [17]

 ˆ ˆ: () : () max (| ,) ()
a A s S

s S V s R s P s s a V sγ∗ ∗

∈ ∈

′ ′∀ ∈ = + ∑ ,

where S = set of states, A=set of actions, a= particular

action belongs to A, P = probability, R(s) =
reward at s state and γ = discount factor. In
Value-based, the output is an action while in
Policy-based actions are vague. There is always
a probability of every possible action. When the
action space is confined Q-function is computed
using value iteration. In a continuous action
space, we cannot evaluate reward every step,
quite a time consuming and exhausting. The Q
function becomes differentiable concerning the
action for every continuous action space. So
instead of using the Value iteration, Policy
evaluation is used. A deep deterministic policy
gradient used the Actor critic algorithm which
is in between the Value-based and policy-based
shown in Figure 4.

Figure 4

Actor-Critic Approach

The actor uses the policy-based approach in
which it learns how to act by directly evaluating
the optimal policy. Gradient ascent is used to
maximizing the reward. While Critic used the
value-based approach. It directly maps the
action i.e., the different states.

3. Dynamic Modeling of the
3WD-Omnidirectional Mobile
Robot
This section describes a dynamic model of
three-wheeled omnidirectional robot. This
robot has three Swedish wheel assemblies. The
mathematical modeling of the robot is central to
controller design.

and Policy-based (stochastic policy) [17]

Reward – Reward is a function of signals which can
evaluate the performance of the system according to
the requirements. It can include sensors output,
error, or some performance metric. For example; we
can implement a reward function to minimize the
control effort while minimizing the error of a control
system.

Learning Algorithm – Learning algorithm is an
adaptation mechanism of adaptive control of a
system.

2.1. Deep Reinforcement Learning
In this paper, Deep Deterministic Policy Gradient
(DDPG) as proposed in [11], is used. In DDPG as a
baseline of deep reinforcement learning, the actor-
critic network is used. Deep reinforcement learning
is a blend of deep learning and reinforcement
learning. It makes an agent capable of learning to
behave in an environment based on feedback
rewards or cost function. The main attribute of deep
reinforcement learning is that deep neural networks
can autonomously explore compact low-dimensional
representations (features) of high-dimensional
inputs (e.g., text, observations, images, and audio).
This field of research has had the option to tackle a
wide scope of complex decision-making errands that
were already distant for a machine. Along these
lines, DRL opens up numerous new applications in
spaces, for example, social insurance, mechanical
autonomy, Robotics, savvy lattices, and some more.

2.2. Deep Deterministic Policy Gradient
(DDPG)
For the problems of high dimensionality, complex
task, and the environment with continuous action
space, only DDPG is used. The deterministic policy
gradient algorithm which simultaneously learns Q-
Value (max. reward) and a policy. For finding the
max. Q-function, the Bellman equation is used. For
solving the Bellman equation, there are two methods
i.e. Value-based (deterministic policy)

ˆ ˆ: () : () (| , ()) ()

s S
s S V s R s P s s s V sπ πγ π

∈

′ ′∀ ∈ = + ∑

and Policy-based (stochastic policy) [17]

 ˆ ˆ: () : () max (| ,) ()
a A s S

s S V s R s P s s a V sγ∗ ∗

∈ ∈

′ ′∀ ∈ = + ∑ ,

where S = set of states, A=set of actions, a= particular

action belongs to A, P = probability, R(s) =
reward at s state and γ = discount factor. In
Value-based, the output is an action while in
Policy-based actions are vague. There is always
a probability of every possible action. When the
action space is confined Q-function is computed
using value iteration. In a continuous action
space, we cannot evaluate reward every step,
quite a time consuming and exhausting. The Q
function becomes differentiable concerning the
action for every continuous action space. So
instead of using the Value iteration, Policy
evaluation is used. A deep deterministic policy
gradient used the Actor critic algorithm which
is in between the Value-based and policy-based
shown in Figure 4.

Figure 4

Actor-Critic Approach

The actor uses the policy-based approach in
which it learns how to act by directly evaluating
the optimal policy. Gradient ascent is used to
maximizing the reward. While Critic used the
value-based approach. It directly maps the
action i.e., the different states.

3. Dynamic Modeling of the
3WD-Omnidirectional Mobile
Robot
This section describes a dynamic model of
three-wheeled omnidirectional robot. This
robot has three Swedish wheel assemblies. The
mathematical modeling of the robot is central to
controller design.

where S = set of states, A=set of actions, a= particu-
lar action belongs to A, P = probability, R(s) = reward
at s state and γ = discount factor. In Value-based, the
output is an action while in Policy-based actions are
vague. There is always a probability of every possible
action. When the action space is confined Q-function
is computed using value iteration. In a continuous
action space, we cannot evaluate reward every step,
quite a time consuming and exhausting. The Q func-
tion becomes differentiable concerning the action for
every continuous action space. So instead of using
the Value iteration, Policy evaluation is used. A deep
deterministic policy gradient used the Actor critic
algorithm which is in between the Value-based and
policy-based shown in Figure 4.

Figure 4
Actor-Critic Approach

Information Technology and Control 2021/3/50512

The actor uses the policy-based approach in which it
learns how to act by directly evaluating the optimal
policy. Gradient ascent is used to maximizing the re-
ward. While Critic used the value-based approach. It
directly maps the action i.e., the different states.

3. Dynamic Modeling of the
3WD-Omnidirectional Mobile Robot
This section describes a dynamic model of three-
wheeled omnidirectional robot. This robot has three
Swedish wheel assemblies. The mathematical model-
ing of the robot is central to controller design.

Figure 5
Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as OR : XR YR whereas the robot
coordinates system is Or : Xr Yr is static on the center of
gravity(cog) for the mobile robot as in Figure 5. While
describing the position vector of the center of gravi-
ty for a 3-wheel omnidirectional mobile robot-like
SR[xR yR]T, we have

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(1)

where real-world coordinates system FR [Fx Fy]T is the
force vector applied to the center of gravity of the ro-
bot and M is mass matrix.

Let's take the difference of angle between the re-
al-world coordinates XR and moving coordinates Xr
as φ, i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate sys-
tem [21]. The transformation matrix to convert robot
coordinates to real-world coordinates system is

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(2)

it follows that

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(3)

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(4)

where the position vector and force vector of center of
gravity are sr[xr yr]T and fr[fx fy] in the robot coordinate
system. Therefore, the following equation is obtained
after solving Eq (1) for the robot coordinates system
provides

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(5)

Then, the three-wheeled omnidirectional mobile ro-
bot dynamic properties can be described as [5,18].

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(6)

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(7)

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(8)

where Iv is robot's moment of inertia, MI is the mo-
ment around the center of gravity of the robot, and fx,
fy, MI are following:

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(9)

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(10)

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(11)

513Information Technology and Control 2021/3/50

In addition, the property of driving system [22], [16]
for each assembly is taken as

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(12)

where L is the distance from any wheel and the center
of gravity of the robot; k is the driving gain factor; Di is
the driving force of robot wheel; r is the radius of each
wheel of robot; c is the viscid resistance factor of the
wheel; ωi is the rate of change of angle of the robot; IR
is the moment of inertia of the wheel of robot around
the driving shaft; and ui is driving input torque. The
geometrical relationships between variables φ., xr

. , yr
.

and ωi i.e., the inverse kinematics can be written as:

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(13)

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(14)

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(15)

Using Equations (6) to (15) gives:

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17) (16)

Figure 5

Model of 3WD-Omnidirectional Mobile Robot

Consider a 3-wheel omnidirectional mobile robot
moving on a solid surface. Real-world coordinates
system can be assumed as :R R RO X Y whereas the
robot coordinates system is :r r rO X Y is static on the
center of gravity(cog) for the mobile robot as in
Figure 5. While describing the position vector of the
center of gravity for a 3-wheel omnidirectional
mobile robot-like []T

R R RS x y= , we have

 R RMS F= , (1)

where real-world coordinates system []T
R x yF F F= is

the force vector applied to the center of gravity of the
robot and M is mass matrix.

Let's take the difference of angle between the real-
world coordinates RX and moving coordinates rX
as ϕ , i.e., the rotational angle of the robot coordinate
system with respect to the real-world coordinate
system [21]. The transformation matrix to convert
robot coordinates to real-world coordinates system is

 cos sin
sin cos

w
cR

ϕ ϕ
ϕ ϕ

− 
=  
 

 (2)

it follows that

 R
R r rS R s=  (3)

 R
R r rF R f= , (4)

where the position vector and force vector of center
of gravity are []T

r r rs x y= and []T
r x yf f f= in the

robot coordinate system. Therefore, the
following equation is obtained after solving Eq
(1) for the robot coordinates system provides

 ()R R
r r r rM R R s s+

  . (5)

Then, the three-wheeled omnidirectional
mobile robot dynamic properties can be
described as [5,18].

 ()r r xM x y fϕ− =  (6)

 ()r r yM y x fϕ− =  (7)

 v II Mϕ = , (8)

where vI is robot's moment of inertia, IM is the
moment around the center of gravity of the
robot, and , ,x y If f M are following:

 1 2 3
1 1
2 2xf D D D= − − + (9)

 1 2
3 3

2 2yf D D= − (10)

 1 2 3()IM D D D L= + + . (11)

In addition, the property of driving system [22],
[16] for each assembly is taken as

 , 1, 2,3...R i i i iI c ku rD iω ω+ = − = , (12)

where L is the distance from any wheel and the
center of gravity of the robot; k is the driving
gain factor; iD is the driving force of robot
wheel; r is the radius of each wheel of robot; c is
the viscid resistance factor of the wheel; iω is
the rate of change of angle of the robot; RI is the
moment of inertia of the wheel of robot around
the driving shaft; and iu is driving input torque.
The geometrical relationships between
variables , ,r rx yϕ   and iω i.e., the inverse
kinematics can be written as:

 1
1 3
2 2r rr x y Lω ϕ= − + +   (13)

 2
1 3
2 2r rr x y Lω ϕ= − − +   (14)

 3 rr x Lω ϕ= +  . (15)

Using Equations (6) to (15) gives:

 1 2 1 1 2 3(2)r r rx a x a y b u u uϕ′= + − + −   (16)

 1 2 1 1 23 ()r r ry a y a x b u uϕ′= − + −   (17)

(17)

where

 3 2 1 2 3()a b u u uϕ ϕ= + + +  , (18)

where

 1 2

3
3 2R

ca
I Mr

= −
+

2

2 2

2
3 2R

Mra
I Mr

′ =
+

2

3 2 2

3
3 R v

cLa
I L I r

= −
+

 1 23 2R

krb
I Mr

=
+

 2 2 23 R v

krLb
I L I r

=
+

.

Model parameter used for the simulation are given
in Table 1.

Table 1

Model Parameters of 3WD-Omnidirectionl Mobile
Robot

Parameters Description Value

vI Robot Moment of
Inertia

11.25 2kgm

M Robot Mass 9.4 kg

L Distance Between 0.178 m

k Driving Gain
Factor 0.448

c Viscous Friction
Factor

0.1889
2 1kgm s−

wI Moment of Inertia
of Wheel

0.02108
2kgm

r Radius of Wheel 0.0245 m

4. Deep Deterministic Policy
Gradient (DDPG)
The DDPG algorithm is an off-policy, online, model-
free reinforcement learning method. A DDPG agent
is based on an actor-critic reinforcement learning
agent that maximizes the long-term reward by
computing an optimal policy. The main difference
between the actor-critic approach and DDPG is that

the action space of DDPG is a continuous while
for actor-critic approach have discrete action
space. DDPG agents can be trained in
environments with continuous or discrete
observations and continuous action spaces. In
[11], the working and algorithm of DDPG used
in this paper. While training, a DDPG agent do
the following things:

1) Agent updates critic and actor properties at
every time step during training.

2) Using a circular experience buffer, it stores
past experiences. The agent updates the critic
and actor using a mini-batch of experiences
randomly sampled from the buffer.

3) Use noise models to perturbs the action
chosen by the policy at every training step.

The following four functions are maintained by
a DDPG agent to estimate a value and policy
function.

approximators:

• Actor ()Sµ : The actor takes observation S and
outputs the corresponding action that
maximizes the long-term reward.

• Target actor ()Sµ′ : To improve the stability of
the optimization, the agent periodically
updates the target actor based on the latest actor
parameter values.

• Critic (,)Q S A : It takes inputs as action A and
observations S and provides the output of
corresponding expectation of long-term
rewards

• Target critic (,)Q S A′ : To increase the stability
of optimization the agent updates the target
critic periodically based on the newest critic
parameter values.

(,)Q S A and (,)Q S A′ both have the similar
parameterization and structure, and both ()Sµ
and ()Sµ′ have the similar parameterization
and structure. When training is complete, the
trained optimal policy is stored in actor ()Sµ .

4.1. DDPG Algorithm
DDPG agents use the following training
algorithm, in which they update their actor and
critic models at each time step.

• Randomly Initialize the critic (,)Q S A with
some parameter values Qθ , and initialize the

(18)

 3 2 1 2 3()a b u u uϕ ϕ= + + +  , (18)

where

 1 2

3
3 2R

ca
I Mr

= −
+

2

2 2

2
3 2R

Mra
I Mr

′ =
+

2

3 2 2

3
3 R v

cLa
I L I r

= −
+

1 23 2R

krb
I Mr

=
+

2 2 23 R v

krLb
I L I r

=
+

.

Model parameter used for the simulation are given

in Table 1.

Table 1

Model Parameters of 3WD-Omnidirectionl Mobile
Robot

Parameters Description Value

vI Robot Moment of
Inertia

11.25 2kgm

M Robot Mass 9.4 kg

L Distance Between 0.178 m

k Driving Gain
Factor 0.448

c Viscous Friction
Factor

0.1889
2 1kgm s−

wI Moment of Inertia
of Wheel

0.02108
2kgm

r Radius of Wheel 0.0245 m

4. Deep Deterministic Policy
Gradient (DDPG)
The DDPG algorithm is an off-policy, online, model-
free reinforcement learning method. A DDPG agent
is based on an actor-critic reinforcement learning
agent that maximizes the long-term reward by
computing an optimal policy. The main difference
between the actor-critic approach and DDPG is that

the action space of DDPG is a continuous while
for actor-critic approach have discrete action
space. DDPG agents can be trained in
environments with continuous or discrete
observations and continuous action spaces. In
[11], the working and algorithm of DDPG used
in this paper. While training, a DDPG agent do
the following things:

1) Agent updates critic and actor properties at
every time step during training.

2) Using a circular experience buffer, it stores
past experiences. The agent updates the critic
and actor using a mini-batch of experiences
randomly sampled from the buffer.

3) Use noise models to perturbs the action
chosen by the policy at every training step.

The following four functions are maintained by
a DDPG agent to estimate a value and policy
function.

approximators:

• Actor ()Sµ : The actor takes observation S and
outputs the corresponding action that
maximizes the long-term reward.

• Target actor ()Sµ′ : To improve the stability of
the optimization, the agent periodically
updates the target actor based on the latest actor
parameter values.

• Critic (,)Q S A : It takes inputs as action A and
observations S and provides the output of
corresponding expectation of long-term
rewards

• Target critic (,)Q S A′ : To increase the stability
of optimization the agent updates the target
critic periodically based on the newest critic
parameter values.

(,)Q S A and (,)Q S A′ both have the similar
parameterization and structure, and both ()Sµ
and ()Sµ′ have the similar parameterization
and structure. When training is complete, the
trained optimal policy is stored in actor ()Sµ .

4.1. DDPG Algorithm
DDPG agents use the following training
algorithm, in which they update their actor and
critic models at each time step.

• Randomly Initialize the critic (,)Q S A with
some parameter values Qθ , and initialize the

Model parameter used for the simulation are given in
Table 1.

Table 1
Model Parameters of 3WD-Omnidirectionl Mobile Robot

Parameters Description Value

Iv Robot Moment of Inertia 11.25 kgm2

M Robot Mass 9.4 kg

L Distance Between 0.178 m

k Driving Gain Factor 0.448

c Viscous Friction Factor 0.1889 kgm2s–1

Iw Moment of Inertia of Wheel 0.02108 kgm2

r Radius of Wheel 0.0245 m

4. Deep Deterministic Policy
Gradient (DDPG)
The DDPG algorithm is an off-policy, online, mod-
el-free reinforcement learning method. A DDPG
agent is based on an actor-critic reinforcement learn-
ing agent that maximizes the long-term reward by
computing an optimal policy. The main difference
between the actor-critic approach and DDPG is that
the action space of DDPG is a continuous while for ac-
tor-critic approach have discrete action space. DDPG
agents can be trained in environments with contin-
uous or discrete observations and continuous action
spaces. In [11], the working and algorithm of DDPG
used in this paper. While training, a DDPG agent do
the following things:
1 Agent updates critic and actor properties at every

time step during training.
2 Using a circular experience buffer, it stores past

experiences. The agent updates the critic and actor
using a mini-batch of experiences randomly sam-
pled from the buffer.

3 Use noise models to perturbs the action chosen by
the policy at every training step.

The following four functions are maintained by a
DDPG agent to estimate a value and policy function.
approximators:
 _ Actor μ(S): The actor takes observation S and

outputs the corresponding action that maximizes
the long-term reward.

Information Technology and Control 2021/3/50514

 _ Target actor μ' (S): To improve the stability of the
optimization, the agent periodically updates the
target actor based on the latest actor parameter
values.

 _ Critic Q(S, A): It takes inputs as action A and
observations S and provides the output of
corresponding expectation of long-term rewards

 _ Target critic Q'(S, A): To increase the stability of
optimization the agent updates the target critic
periodically based on the newest critic parameter
values.

Q(S, A) and Q'(S, A) both have the similar parameter-
ization and structure, and both μ(S) and μ' (S) have the
similar parameterization and structure. When train-
ing is complete, the trained optimal policy is stored in
actor μ(S).

4.1. DDPG Algorithm
DDPG agents use the following training algorithm,
in which they update their actor and critic models at
each time step.
 _ Randomly Initialize the critic Q(S, A) with some

parameter values θQ, and initialize the target critic
with the same random parameter values: θQ = θQ'.

 _ Randomly Initialize the actor μ(S) with some
parameter values θμ, and initialize the target actor
with the same parameter values: θμ = θμ'.

 _ For each training time step:

1 Select action A = μ(S) + N for the current observa-
tion S, where N is noise belongs to a noise model.

2 Execute action A. See the reward R and the next ob-
servation is S'.

3 Store the experience (S, A, R, S') in the experience
buffer.

4 Sample a random mini-batch of M experiences (Si,
Ai, Ri, Si') from the experience buffer.

5 If Si' is a terminal state, set the value function tar-
get yi to Ri . Otherwise, set it to

target critic with the same random parameter values:
Q Qθ θ′ = .

• Randomly Initialize the actor ()Sµ with some
parameter values µθ , and initialize the target actor
with the same parameter values: µ µθ = θ′ .

• For each training time step:

1) Select action ()A S Nµ= + for the current
observation S, where N is noise belongs to a noise
model.

2) Execute action A . See the reward R and the next
observation is S ′ .

3) Store the experience (, , ,)S A R S ′ in the experience
buffer.

4) Sample a random mini-batch of M experiences
(, , ,)i i i iS A R S ′ from the experience buffer.

5) If iS ′ is a terminal state, set the value function
target iy to iR . Otherwise, set it to

 (, (|) |)i i i i Qy R Q S S µγ µ θ θ′ ′ ′ ′= + .

The value function target is the sum of the experience
reward iR and the discounted future reward.

To compute the cumulative reward, the agent first
calculates the successor action bypassing the
successor observation iS ′ from the sampled
experience to the target actor. The agent finds the
cumulative reward bypassing the successor action to
the target critic.

6) Update the critic parameters by minimizing the
loss function ()f Loss across all sampled experiences.

1

1() ((, |))
M

i i i Q
i

f Loss y Q S A
M

θ
=

= −∑ .

7) Update the actor parameters using the following
sampled policy gradient to maximize the expected
discounted reward.

1

1 M

ai i
i

J G G
Mµθ µ

=

∇ ≈ ∑

 (, |)ai A i QG Q S A θ= ∇ ,

where

 (|)iA S µµ θ=

 (|)i iG S
µµ θ µµ θ= ∇ .

Here, aiG is the gradient of the critic output with
respect to the action computed by the actor-network,

and iGµ is the gradient of the actor output with
respect to the actor parameters. Both gradients
are evaluated for observation iS .

8) Update the target actor and critic depending
on the target update method

(Smoothing or periodic).

For smoothing:

 (1)Q Q Qθ τθ τ θ′ = + −

 (1)µ µ µθ τθ τ θ′ ′= + − .

For Periodic:

 Q Qθ θ′ =

 µ µθ θ′ = .

The reinforcement learning toolbox of
MATLAB 19 is used to create a DDPG agent and
the parameters used for the creation of the
DDPG agent are as follows.

Discount Factor = 0.99, Mini batch size = 128,
Experience buffer length = 61 10× , Target
smooth factor = 31 10−× , Noise mean attraction
constant = 1, Noise variance = 0.1.

Parameters used for the training of DDPG
agents are sampling time = 1, Discount Factor =
0.99, Mini Batch size = 128, Experience buffer
length = 61 10× , Target smooth factor = 31 10−× .

4.2. Actor and Critic Network
The actor and critic network are defined by the
help of deep neural network toolbox and design
to create actor-network which intakes
observation and outputs action which in case of
a 3WD-Omnidirectional mobile robot is the
motor speed of three Swedish wheels.
Observations that are used for this system are

, , , , , , , , ,e e e ex y x y x y x yθ θ    and motor speeds from
previous agent. The steps are as follows to
create a good actor and critic network.

1) Start with the smallest possible network and
a high learning rate (0.01). Train this initial
network to see if the agent converges quickly to
a poor policy or acts randomly. If either of these
issues occurs, rescale the network by adding
more layers or more outputs on each layer. The
goal is to find a network structure that is just big
enough, does not learn too fast, and shows signs
of learning (an improving trajectory of the

The value function target is the sum of the experience
reward Ri and the discounted future reward.
To compute the cumulative reward, the agent first
calculates the successor action bypassing the succes-

sor observation Si' from the sampled experience to the
target actor. The agent finds the cumulative reward
bypassing the successor action to the target critic.

6 Update the critic parameters by minimizing the loss
function f(Loss) across all sampled experiences.

target critic with the same random parameter values:
Q Qθ θ′ = .

• Randomly Initialize the actor ()Sµ with some
parameter values µθ , and initialize the target actor
with the same parameter values: µ µθ = θ′ .

• For each training time step:

1) Select action ()A S Nµ= + for the current
observation S, where N is noise belongs to a noise
model.

2) Execute action A . See the reward R and the next
observation is S ′ .

3) Store the experience (, , ,)S A R S ′ in the experience
buffer.

4) Sample a random mini-batch of M experiences
(, , ,)i i i iS A R S ′ from the experience buffer.

5) If iS ′ is a terminal state, set the value function
target iy to iR . Otherwise, set it to

 (, (|) |)i i i i Qy R Q S S µγ µ θ θ′ ′ ′ ′= + .

The value function target is the sum of the experience
reward iR and the discounted future reward.

To compute the cumulative reward, the agent first
calculates the successor action bypassing the
successor observation iS ′ from the sampled
experience to the target actor. The agent finds the
cumulative reward bypassing the successor action to
the target critic.

6) Update the critic parameters by minimizing the
loss function ()f Loss across all sampled experiences.

1

1() ((, |))
M

i i i Q
i

f Loss y Q S A
M

θ
=

= −∑ .

7) Update the actor parameters using the following
sampled policy gradient to maximize the expected
discounted reward.

1

1 M

ai i
i

J G G
Mµθ µ

=

∇ ≈ ∑

 (, |)ai A i QG Q S A θ= ∇ ,

where

 (|)iA S µµ θ=

 (|)i iG S
µµ θ µµ θ= ∇ .

Here, aiG is the gradient of the critic output with
respect to the action computed by the actor-network,

and iGµ is the gradient of the actor output with
respect to the actor parameters. Both gradients
are evaluated for observation iS .

8) Update the target actor and critic depending
on the target update method

(Smoothing or periodic).

For smoothing:

 (1)Q Q Qθ τθ τ θ′ = + −

 (1)µ µ µθ τθ τ θ′ ′= + − .

For Periodic:

 Q Qθ θ′ =

 µ µθ θ′ = .

The reinforcement learning toolbox of
MATLAB 19 is used to create a DDPG agent and
the parameters used for the creation of the
DDPG agent are as follows.

Discount Factor = 0.99, Mini batch size = 128,
Experience buffer length = 61 10× , Target
smooth factor = 31 10−× , Noise mean attraction
constant = 1, Noise variance = 0.1.

Parameters used for the training of DDPG
agents are sampling time = 1, Discount Factor =
0.99, Mini Batch size = 128, Experience buffer
length = 61 10× , Target smooth factor = 31 10−× .

4.2. Actor and Critic Network
The actor and critic network are defined by the
help of deep neural network toolbox and design
to create actor-network which intakes
observation and outputs action which in case of
a 3WD-Omnidirectional mobile robot is the
motor speed of three Swedish wheels.
Observations that are used for this system are

, , , , , , , , ,e e e ex y x y x y x yθ θ    and motor speeds from
previous agent. The steps are as follows to
create a good actor and critic network.

1) Start with the smallest possible network and
a high learning rate (0.01). Train this initial
network to see if the agent converges quickly to
a poor policy or acts randomly. If either of these
issues occurs, rescale the network by adding
more layers or more outputs on each layer. The
goal is to find a network structure that is just big
enough, does not learn too fast, and shows signs
of learning (an improving trajectory of the

7 Update the actor parameters using the following
sampled policy gradient to maximize the expected
discounted reward.

target critic with the same random parameter values:
Q Qθ θ′ = .

• Randomly Initialize the actor ()Sµ with some
parameter values µθ , and initialize the target actor
with the same parameter values: µ µθ = θ′ .

• For each training time step:

1) Select action ()A S Nµ= + for the current
observation S, where N is noise belongs to a noise
model.

2) Execute action A . See the reward R and the next
observation is S ′ .

3) Store the experience (, , ,)S A R S ′ in the experience
buffer.

4) Sample a random mini-batch of M experiences
(, , ,)i i i iS A R S ′ from the experience buffer.

5) If iS ′ is a terminal state, set the value function
target iy to iR . Otherwise, set it to

 (, (|) |)i i i i Qy R Q S S µγ µ θ θ′ ′ ′ ′= + .

The value function target is the sum of the experience
reward iR and the discounted future reward.

To compute the cumulative reward, the agent first
calculates the successor action bypassing the
successor observation iS ′ from the sampled
experience to the target actor. The agent finds the
cumulative reward bypassing the successor action to
the target critic.

6) Update the critic parameters by minimizing the
loss function ()f Loss across all sampled experiences.

1

1() ((, |))
M

i i i Q
i

f Loss y Q S A
M

θ
=

= −∑ .

7) Update the actor parameters using the following
sampled policy gradient to maximize the expected
discounted reward.

1

1 M

ai i
i

J G G
Mµθ µ

=

∇ ≈ ∑

 (, |)ai A i QG Q S A θ= ∇ ,

where

 (|)iA S µµ θ=

 (|)i iG S
µµ θ µµ θ= ∇ .

Here, aiG is the gradient of the critic output with
respect to the action computed by the actor-network,

and iGµ is the gradient of the actor output with
respect to the actor parameters. Both gradients
are evaluated for observation iS .

8) Update the target actor and critic depending
on the target update method

(Smoothing or periodic).

For smoothing:

 (1)Q Q Qθ τθ τ θ′ = + −

 (1)µ µ µθ τθ τ θ′ ′= + − .

For Periodic:

 Q Qθ θ′ =

 µ µθ θ′ = .

The reinforcement learning toolbox of
MATLAB 19 is used to create a DDPG agent and
the parameters used for the creation of the
DDPG agent are as follows.

Discount Factor = 0.99, Mini batch size = 128,
Experience buffer length = 61 10× , Target
smooth factor = 31 10−× , Noise mean attraction
constant = 1, Noise variance = 0.1.

Parameters used for the training of DDPG
agents are sampling time = 1, Discount Factor =
0.99, Mini Batch size = 128, Experience buffer
length = 61 10× , Target smooth factor = 31 10−× .

4.2. Actor and Critic Network
The actor and critic network are defined by the
help of deep neural network toolbox and design
to create actor-network which intakes
observation and outputs action which in case of
a 3WD-Omnidirectional mobile robot is the
motor speed of three Swedish wheels.
Observations that are used for this system are

, , , , , , , , ,e e e ex y x y x y x yθ θ    and motor speeds from
previous agent. The steps are as follows to
create a good actor and critic network.

1) Start with the smallest possible network and
a high learning rate (0.01). Train this initial
network to see if the agent converges quickly to
a poor policy or acts randomly. If either of these
issues occurs, rescale the network by adding
more layers or more outputs on each layer. The
goal is to find a network structure that is just big
enough, does not learn too fast, and shows signs
of learning (an improving trajectory of the

where

target critic with the same random parameter values:
Q Qθ θ′ = .

• Randomly Initialize the actor ()Sµ with some
parameter values µθ , and initialize the target actor
with the same parameter values: µ µθ = θ′ .

• For each training time step:

1) Select action ()A S Nµ= + for the current
observation S, where N is noise belongs to a noise
model.

2) Execute action A . See the reward R and the next
observation is S ′ .

3) Store the experience (, , ,)S A R S ′ in the experience
buffer.

4) Sample a random mini-batch of M experiences
(, , ,)i i i iS A R S ′ from the experience buffer.

5) If iS ′ is a terminal state, set the value function
target iy to iR . Otherwise, set it to

 (, (|) |)i i i i Qy R Q S S µγ µ θ θ′ ′ ′ ′= + .

The value function target is the sum of the experience
reward iR and the discounted future reward.

To compute the cumulative reward, the agent first
calculates the successor action bypassing the
successor observation iS ′ from the sampled
experience to the target actor. The agent finds the
cumulative reward bypassing the successor action to
the target critic.

6) Update the critic parameters by minimizing the
loss function ()f Loss across all sampled experiences.

1

1() ((, |))
M

i i i Q
i

f Loss y Q S A
M

θ
=

= −∑ .

7) Update the actor parameters using the following
sampled policy gradient to maximize the expected
discounted reward.

1

1 M

ai i
i

J G G
Mµθ µ

=

∇ ≈ ∑

 (, |)ai A i QG Q S A θ= ∇ ,

where

 (|)iA S µµ θ=

 (|)i iG S
µµ θ µµ θ= ∇ .

Here, aiG is the gradient of the critic output with
respect to the action computed by the actor-network,

and iGµ is the gradient of the actor output with
respect to the actor parameters. Both gradients
are evaluated for observation iS .

8) Update the target actor and critic depending
on the target update method

(Smoothing or periodic).

For smoothing:

 (1)Q Q Qθ τθ τ θ′ = + −

 (1)µ µ µθ τθ τ θ′ ′= + − .

For Periodic:

 Q Qθ θ′ =

 µ µθ θ′ = .

The reinforcement learning toolbox of
MATLAB 19 is used to create a DDPG agent and
the parameters used for the creation of the
DDPG agent are as follows.

Discount Factor = 0.99, Mini batch size = 128,
Experience buffer length = 61 10× , Target
smooth factor = 31 10−× , Noise mean attraction
constant = 1, Noise variance = 0.1.

Parameters used for the training of DDPG
agents are sampling time = 1, Discount Factor =
0.99, Mini Batch size = 128, Experience buffer
length = 61 10× , Target smooth factor = 31 10−× .

4.2. Actor and Critic Network
The actor and critic network are defined by the
help of deep neural network toolbox and design
to create actor-network which intakes
observation and outputs action which in case of
a 3WD-Omnidirectional mobile robot is the
motor speed of three Swedish wheels.
Observations that are used for this system are

, , , , , , , , ,e e e ex y x y x y x yθ θ    and motor speeds from
previous agent. The steps are as follows to
create a good actor and critic network.

1) Start with the smallest possible network and
a high learning rate (0.01). Train this initial
network to see if the agent converges quickly to
a poor policy or acts randomly. If either of these
issues occurs, rescale the network by adding
more layers or more outputs on each layer. The
goal is to find a network structure that is just big
enough, does not learn too fast, and shows signs
of learning (an improving trajectory of the

Here, Gai is the gradient of the critic output with re-
spect to the action computed by the actor-network,
and Gμi is the gradient of the actor output with respect
to the actor parameters. Both gradients are evaluated
for observation Si.
8 Update the target actor and critic depending on the

target update method
(Smoothing or periodic).
For smoothing:

target critic with the same random parameter values:
Q Qθ θ′ = .

• Randomly Initialize the actor ()Sµ with some
parameter values µθ , and initialize the target actor
with the same parameter values: µ µθ = θ′ .

• For each training time step:

1) Select action ()A S Nµ= + for the current
observation S, where N is noise belongs to a noise
model.

2) Execute action A . See the reward R and the next
observation is S ′ .

3) Store the experience (, , ,)S A R S ′ in the experience
buffer.

4) Sample a random mini-batch of M experiences
(, , ,)i i i iS A R S ′ from the experience buffer.

5) If iS ′ is a terminal state, set the value function
target iy to iR . Otherwise, set it to

 (, (|) |)i i i i Qy R Q S S µγ µ θ θ′ ′ ′ ′= + .

The value function target is the sum of the experience
reward iR and the discounted future reward.

To compute the cumulative reward, the agent first
calculates the successor action bypassing the
successor observation iS ′ from the sampled
experience to the target actor. The agent finds the
cumulative reward bypassing the successor action to
the target critic.

6) Update the critic parameters by minimizing the
loss function ()f Loss across all sampled experiences.

1

1() ((, |))
M

i i i Q
i

f Loss y Q S A
M

θ
=

= −∑ .

7) Update the actor parameters using the following
sampled policy gradient to maximize the expected
discounted reward.

1

1 M

ai i
i

J G G
Mµθ µ

=

∇ ≈ ∑

 (, |)ai A i QG Q S A θ= ∇ ,

where

 (|)iA S µµ θ=

 (|)i iG S
µµ θ µµ θ= ∇ .

Here, aiG is the gradient of the critic output with
respect to the action computed by the actor-network,

and iGµ is the gradient of the actor output with
respect to the actor parameters. Both gradients
are evaluated for observation iS .

8) Update the target actor and critic depending
on the target update method

(Smoothing or periodic).

For smoothing:

 (1)Q Q Qθ τθ τ θ′ = + −

 (1)µ µ µθ τθ τ θ′ ′= + − .

For Periodic:

 Q Qθ θ′ =

 µ µθ θ′ = .

The reinforcement learning toolbox of
MATLAB 19 is used to create a DDPG agent and
the parameters used for the creation of the
DDPG agent are as follows.

Discount Factor = 0.99, Mini batch size = 128,
Experience buffer length = 61 10× , Target
smooth factor = 31 10−× , Noise mean attraction
constant = 1, Noise variance = 0.1.

Parameters used for the training of DDPG
agents are sampling time = 1, Discount Factor =
0.99, Mini Batch size = 128, Experience buffer
length = 61 10× , Target smooth factor = 31 10−× .

4.2. Actor and Critic Network
The actor and critic network are defined by the
help of deep neural network toolbox and design
to create actor-network which intakes
observation and outputs action which in case of
a 3WD-Omnidirectional mobile robot is the
motor speed of three Swedish wheels.
Observations that are used for this system are

, , , , , , , , ,e e e ex y x y x y x yθ θ    and motor speeds from
previous agent. The steps are as follows to
create a good actor and critic network.

1) Start with the smallest possible network and
a high learning rate (0.01). Train this initial
network to see if the agent converges quickly to
a poor policy or acts randomly. If either of these
issues occurs, rescale the network by adding
more layers or more outputs on each layer. The
goal is to find a network structure that is just big
enough, does not learn too fast, and shows signs
of learning (an improving trajectory of the

For Periodic:

target critic with the same random parameter values:
Q Qθ θ′ = .

• Randomly Initialize the actor ()Sµ with some
parameter values µθ , and initialize the target actor
with the same parameter values: µ µθ = θ′ .

• For each training time step:

1) Select action ()A S Nµ= + for the current
observation S, where N is noise belongs to a noise
model.

2) Execute action A . See the reward R and the next
observation is S ′ .

3) Store the experience (, , ,)S A R S ′ in the experience
buffer.

4) Sample a random mini-batch of M experiences
(, , ,)i i i iS A R S ′ from the experience buffer.

5) If iS ′ is a terminal state, set the value function
target iy to iR . Otherwise, set it to

 (, (|) |)i i i i Qy R Q S S µγ µ θ θ′ ′ ′ ′= + .

The value function target is the sum of the experience
reward iR and the discounted future reward.

To compute the cumulative reward, the agent first
calculates the successor action bypassing the
successor observation iS ′ from the sampled
experience to the target actor. The agent finds the
cumulative reward bypassing the successor action to
the target critic.

6) Update the critic parameters by minimizing the
loss function ()f Loss across all sampled experiences.

1

1() ((, |))
M

i i i Q
i

f Loss y Q S A
M

θ
=

= −∑ .

7) Update the actor parameters using the following
sampled policy gradient to maximize the expected
discounted reward.

1

1 M

ai i
i

J G G
Mµθ µ

=

∇ ≈ ∑

 (, |)ai A i QG Q S A θ= ∇ ,

where

 (|)iA S µµ θ=

 (|)i iG S
µµ θ µµ θ= ∇ .

Here, aiG is the gradient of the critic output with
respect to the action computed by the actor-network,

and iGµ is the gradient of the actor output with
respect to the actor parameters. Both gradients
are evaluated for observation iS .

8) Update the target actor and critic depending
on the target update method

(Smoothing or periodic).

For smoothing:

 (1)Q Q Qθ τθ τ θ′ = + −

 (1)µ µ µθ τθ τ θ′ ′= + − .

For Periodic:

 Q Qθ θ′ =

 µ µθ θ′ = .

The reinforcement learning toolbox of
MATLAB 19 is used to create a DDPG agent and
the parameters used for the creation of the
DDPG agent are as follows.

Discount Factor = 0.99, Mini batch size = 128,
Experience buffer length = 61 10× , Target
smooth factor = 31 10−× , Noise mean attraction
constant = 1, Noise variance = 0.1.

Parameters used for the training of DDPG
agents are sampling time = 1, Discount Factor =
0.99, Mini Batch size = 128, Experience buffer
length = 61 10× , Target smooth factor = 31 10−× .

4.2. Actor and Critic Network
The actor and critic network are defined by the
help of deep neural network toolbox and design
to create actor-network which intakes
observation and outputs action which in case of
a 3WD-Omnidirectional mobile robot is the
motor speed of three Swedish wheels.
Observations that are used for this system are

, , , , , , , , ,e e e ex y x y x y x yθ θ    and motor speeds from
previous agent. The steps are as follows to
create a good actor and critic network.

1) Start with the smallest possible network and
a high learning rate (0.01). Train this initial
network to see if the agent converges quickly to
a poor policy or acts randomly. If either of these
issues occurs, rescale the network by adding
more layers or more outputs on each layer. The
goal is to find a network structure that is just big
enough, does not learn too fast, and shows signs
of learning (an improving trajectory of the

The reinforcement learning toolbox of MATLAB 19 is
used to create a DDPG agent and the parameters used
for the creation of the DDPG agent are as follows.
Discount Factor = 0.99, Mini batch size = 128, Expe-
rience buffer length = 1×106, Target smooth factor =
1×10–3, Noise mean attraction constant = 1, Noise
variance = 0.1.

515Information Technology and Control 2021/3/50

Parameters used for the training of DDPG agents are
sampling time = 1, Discount Factor = 0.99, Mini Batch
size = 128, Experience buffer length = 1×106, Target
smooth factor = 1×10–3 .

4.2. Actor and Critic Network
The actor and critic network are defined by the help of
deep neural network toolbox and design to create ac-
tor-network which intakes observation and outputs
action which in case of a 3WD-Omnidirectional mo-
bile robot is the motor speed of three Swedish wheels.
Observations that are used for this system are x, y,
θ, x., y., θ

.
, xe, ye, x.e, y.

e and motor speeds from previous
agent. The steps are as follows to create a good actor
and critic network.
1 Start with the smallest possible network and a

high learning rate (0.01). Train this initial net-
work to see if the agent converges quickly to a
poor policy or acts randomly. If either of these is-
sues occurs, rescale the network by adding more
layers or more outputs on each layer. The goal is
to find a network structure that is just big enough,
does not learn too fast, and shows signs of learn-
ing (an improving trajectory of the reward graph)
after an initial training period.

2 Initially configure the agent to learn slowly by set-
ting a low learning rate. By learning slowly, it can
be checked to see if the agent is on the right track,
which can help verify whether the network archi-
tecture is satisfactory for the problem. For difficult
problems, tuning parameters is much easier once

Figure 6
Critic Neural Network

we settle on good network architecture. Figure 6,
shows the graphical representation of the critic
neural network.

Setting for NN actor-critic networks are optimizer =
adam, learn rate= 1×10–3, Gradient threshold = 1, Reg-
ularization factor = 1×10–5.

4.3. Reward Function
The main purpose of the paper is to track a reference
trajectory, where the main task is to minimize the
error function so one can design a reward function
based on an error signal. The error signal used for the
simulations is as follows. Simulink representation of
total reward function R1 is shown in Figure 7.

Figure 7
Reward Function Simulink Representation

Information Technology and Control 2021/3/50516

Figure 8
Environment for DDPG Agent

Figure 9
Integrated Environment with DDPG Agent

reward graph) after an initial training period.

2) Initially configure the agent to learn slowly by
setting a low learning rate. By learning slowly, it can
be checked to see if the agent is on the right track,
which can help verify whether the network
architecture is satisfactory for the problem. For
difficult problems, tuning parameters is much easier
once we settle on good network architecture. Figure
6, shows the graphical representation of the critic
neural network.

Figure 6

Critic Neural Network

Setting for NN actor-critic networks are optimizer =
adam, learn rate= 31 10−× , Gradient threshold = 1,
Regularization factor = 51 10−× .

4.3. Reward Function
The main purpose of the paper is to track a reference
trajectory, where the main task is to minimize the
error function so one can design a reward function
based on an error signal. The error signal used for the
simulations is as follows. Simulink representation of
total reward function 1R is shown in Figure 7.

 2 2
1 2() 2(0.9 1.1) 2(0.9 1.1) 2(2)e er x y x y θ− + + < < + < < + <

 2 (20 , 5)r if x y= − ≥ ±

1 21R r r= + .

Whereas the second reward function 2R is defined
which is simple but reward increases as error
decrease

 2
3

1 1, | | 0.05 , | | 0.05
| | | |1 10
50, 50,

e e
e e

x y
x yr

else else

−

    > >    = × +    
        

 2 (20 , 5)r if x y= − ≥ ±

 3 22R r r= + .

4.4. Environment
In terms of reinforcement, the learning
environment is everything except the agent.
The environment includes the plant, the desired
reference, and the error. In general, the
environment also contains some other elements
like disturbance, analog-digital, digital-analog
converters, filters, measurement noise, etc.

Figure 7

Reward Function Simulink Representation

In the case of 3 wheeled omnidirectional mobile
robot environment block is created in Simulink
which includes reward function, exceed bound
limits, observations. Figure 8, shows the
dynamic model of the system Environment
created for this paper then this block is
integrated with the RL agent which learns the
policy and implemented it on the dynamic
model of the system Figure 9.

Figure 8

Environment for DDPG Agent

Whereas the second reward function R2 is defined
which is simple but reward increases as error de-
crease

reward graph) after an initial training period.

2) Initially configure the agent to learn slowly by
setting a low learning rate. By learning slowly, it can
be checked to see if the agent is on the right track,
which can help verify whether the network
architecture is satisfactory for the problem. For
difficult problems, tuning parameters is much easier
once we settle on good network architecture. Figure
6, shows the graphical representation of the critic
neural network.

Figure 6

Critic Neural Network

Setting for NN actor-critic networks are optimizer =
adam, learn rate= 31 10−× , Gradient threshold = 1,
Regularization factor = 51 10−× .

4.3. Reward Function
The main purpose of the paper is to track a reference
trajectory, where the main task is to minimize the
error function so one can design a reward function
based on an error signal. The error signal used for the
simulations is as follows. Simulink representation of
total reward function 1R is shown in Figure 7.

 2 2
1 2() 2(0.9 1.1) 2(0.9 1.1) 2(2)e er x y x y θ− + + < < + < < + <

 2 (20 , 5)r if x y= − ≥ ±

 1 21R r r= + .

Whereas the second reward function 2R is defined
which is simple but reward increases as error
decrease

 2
3

1 1, | | 0.05 , | | 0.05
| | | |1 10
50, 50,

e e
e e

x y
x yr

else else

−

    > >    = × +    
        

 2 (20 , 5)r if x y= − ≥ ±

3 22R r r= + .

4.4. Environment
In terms of reinforcement, the learning
environment is everything except the agent.
The environment includes the plant, the desired
reference, and the error. In general, the
environment also contains some other elements
like disturbance, analog-digital, digital-analog
converters, filters, measurement noise, etc.

Figure 7

Reward Function Simulink Representation

In the case of 3 wheeled omnidirectional mobile
robot environment block is created in Simulink
which includes reward function, exceed bound
limits, observations. Figure 8, shows the
dynamic model of the system Environment
created for this paper then this block is
integrated with the RL agent which learns the
policy and implemented it on the dynamic
model of the system Figure 9.

Figure 8

Environment for DDPG Agent

4.4. Environment

In terms of reinforcement, the learning environment
is everything except the agent. The environment in-
cludes the plant, the desired reference, and the error.
In general, the environment also contains some other
elements like disturbance, analog-digital, digital-ana-
log converters, filters, measurement noise, etc.
In the case of 3 wheeled omnidirectional mobile ro-
bot environment block is created in Simulink which
includes reward function, exceed bound limits, ob-
servations. Figure 8, shows the dynamic model of the
system Environment created for this paper then this
block is integrated with the RL agent which learns the
policy and implemented it on the dynamic model of
the system Figure 9.

517Information Technology and Control 2021/3/50

RL agent takes an observation, reward function, and
flag function which shows if the simulation is done
or not as an input and outputs the motor speeds of
3-wheeled omnidirectional mobile robots.

5. Results and Simulations
Simulation for the validation of the results has
been done in MATLAB 19 and the Reinforcement
learning toolbox is used for environment creation,
actor-critic networks, agent, and training of that
agent. To reduce complexity, the simulation range
of the motor’s inputs is selected [0 –∞] where two
motors M1 and M2 are set as positive while third
M3 is set to move opposite to the first two motors.
This is done to limit the rotation of the 3WD-Om-
nidirectional mobile robot along its axis. Two dif-
ferent scenarios for the trajectories are used to
validate the results first scenario is to track a point
to point with a straight line this is the simplest sce-
nario because as the robot advance forwards its an-
gle φ remain constant. While in the second scenario

Figure 10
Control Inputs

tracking of circular trajectory is used because it is
a complex trajectory for the 3WD omnidirectional
robot because φ changes at each point of the circle.

5.1. Scenario 1

For initial training reference is given as a point-to-
point tracking, Simulation results are given in Fig-
ure 10, shows the control inputs to the motors (M1,
M2, M3). Figure 11, Shows the no of iteration and
different rewards on each iteration which includes
episode reward, average reward, and expected re-
ward while Figure 12, shows the results of point-to-
point tracking of the 3-wheel omnidirectional mo-
bile robot.
The simulation stops when the average reward reach-
es to 1000. Iteration’s graph shows that for about 100
iterations there is nothing special happen then sud-
denly Neural networks of actor and critics start to
predict the inputs where reward function maximizes.
Stopping criteria are selected by monitoring the aver-
age reward. It is because each episode reward is very
random and can go to the maximum value and mini-
mum value at any time.

Information Technology and Control 2021/3/50518

Figure 11
Point Tracking Iterations

Figure 12
Point to Point Tracking

5.2. Scenario 2
In this scenario, a sine wave is applied as a reference
of the x-axis while the cosine wave is applied as a
reference of the y-axis. Which combines to make a
circle to the trajectory for reference. Simulation re-
sults are given in Figure 13, shows the iteration for
the tracking of circular trajectory simulations stops
when the average reward approaches 1900.
Figure 14, shows the error signal of the x-y axis for
the tracking of circular trajectory error starts at
maximum because robot initial position is at the ori-
gin then it starts follows the circle and error become
zero.
Figure 15, shows the result for circular trajectory
tracking of 3 wheels omnidirectional mobile robots.
While the reset function is set to come to the origin
when every iteration ended.

519Information Technology and Control 2021/3/50

Figure 13
Circle Tracking Iterations

Figure 14
X-Y Error

Information Technology and Control 2021/3/50520

Figure 15
Circle Tracking 6. Conclusion

To achieve tracking of 3 wheels omnidirectional mobile
robot (deep reinforcement learning) DRL algorithm
(deep deterministic policy gradient) DDPG is used
which allows us to achieve our goal by taking continu-
ous actions and states. To attain a control objective, less
calculation is needed compare to the full optimal control
algorithm, and we always got more accuracy, compared
to a typical control method. MATLAB R2019a is used for
the simulation and the reinforcement learning toolbox
makes the whole work very easy. The best part of this
technique is that we can achieve a goal with no or very
less knowledge of the dynamic model and it will work on
that too. This research is very useful where a robot has
to do a task repeatedly millions of times like automatic
mobile assembly, automatic sorting a book in the library,
robots working in congested areas, planetary explora-
tion, etc. Further research can be carried out by attach-
ing a traditional feedback controller with reinforcement
learning to achieve more fast and better results.

References
1. Altuntas, N., Imal, E., Emanet, N., Öztürk, C. N. Rein-

forcement Learning-Based Mobile Robot Navigation.
Turkish Journal of Electrical Engineering & Com-
puter Sciences, 2016, 24(3), 1747-1767.https://doi.
org/10.3906/elk-1311-129

2. Amarjyoti, S. Deep Reinforcement Learning for Robotic
Manipulation-The State of The Art. arXiv Preprint arX-
iv:1701.08878, 2017.

3. Deisenroth, M. P., Neumann, G., Peters, J. A Sur-
vey on Policy Search for Robotics. Foundations and
Trends in Robotics, 2013, 2(1-2), 388-403. https://doi.
org/10.1561/2300000021

4. Ding, L., Li, S., Gao, H., Chen, C., Deng, Z. Adaptive Par-
tial Reinforcement Learning Neural Network-Based
Tracking Control for Wheeled Mobile Robotic Sys-
tems. IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems, 2018, 50(7), 2512-2523. https://doi.
org/10.1109/TSMC.2018.2819191

5. Iwatsuki, M., Nakano, K., Ohuchi, T. Target Point
Tracking Control of Robot Vehicle by Fuzzy Reasoning.
Transactions of the Society of Instrument and Control
Engineers, 1991, 27(1), 70-76. https://doi.org/10.9746/
sicetr1965.27.70

6. Kober, J., Bagnell, J. A., Peters, J. Reinforcement Learn-
ing in Robotics: A Survey. The International Journal of
Robotics Research, 2013, 32(11), 1238-1274. https://doi.
org/10.1177/0278364913495721

7. Kober, J., Peters, J. Policy Search for Motor Primitives in
Robotics. Learning Motor Skills, Springer, Cham, 2014,
83-117. https://doi.org/10.1007/978-3-319-03194-1_4

8. Leiva, F., Lobos-Tsunekawa, K., Ruiz-del-Solar, J. Col-
lision Avoidance for Indoor Service Robots Through
Multimodal Deep Reinforcement Learning. Robot
World Cup, Springer, Cham, 2019, 140-153. https://doi.
org/10.1007/978-3-030-35699-6_11

9. Leottau, D. L., Vatsyayan, A., Ruiz-del-Solar, J., Babuška,
R. Decentralized Reinforcement Learning Applied to
Mobile Robots. Robot World Cup, Springer, Cham, 2016,
368-379. https://doi.org/10.1007/978-3-319-68792-6_31

10. Levine, S., Koltun, V. Guided Policy Search. In Interna-
tional Conference on Machine Learning, 2013, 1-9.

11. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., Wierstra, D. Continuous Control
with Deep Reinforcement Learning. arXiv Preprint
arXiv:1509.02971, 2015.

https://doi.org/10.3906/elk-1311-129
https://doi.org/10.3906/elk-1311-129
https://doi.org/10.1561/2300000021
https://doi.org/10.1561/2300000021
https://doi.org/10.1109/TSMC.2018.2819191
https://doi.org/10.1109/TSMC.2018.2819191
https://doi.org/10.9746/sicetr1965.27.70
https://doi.org/10.9746/sicetr1965.27.70
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1007/978-3-319-03194-1_4
https://doi.org/10.1007/978-3-030-35699-6_11
https://doi.org/10.1007/978-3-030-35699-6_11
https://doi.org/10.1007/978-3-319-68792-6_31

521Information Technology and Control 2021/3/50

12. Miljković, Z., Mitić, M., Lazarević, M., Babić, B. Neural
Network Reinforcement Learning for Visual Control
of Robot Manipulators. Expert Systems with Applica-
tions, 2013, 40(5), 1721-1736. https://doi.org/10.1016/j.
eswa.2012.09.010

13. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fi-
djeland, A. K., Ostrovski, G., Petersen, S. Human-Level
Control Through Deep Reinforcement Learning. Na-
ture, 2015, 518(7540), 529-533. https://doi.org/10.1038/
nature14236

14. Murphy, R. R. Introduction to AI Robotics. MIT Press,
2019. https://doi.org/10.1108/ir.2001.28.3.266.1

15. Muse, D., Weber, C., Wermter, S. Robot Docking Based on
Omnidirectional Vision and Reinforcement Learning.
International Conference on Innovative Techniques
and Applications of Artificial Intelligence, Springer,
London, 2005, 12, 23-36. https://doi.org/10.1007/978-1-
84628-226-3_3

16. Saito, M., Tsumura, T. Collision Avoidance Among
Multiple Mobile Robots. Transactions of the Institute
of Systems, Control and Information Engineers, 1990,
3(8), 252-260. https://doi.org/10.5687/iscie.3.252

17. Sutton, R. S., Barto, A. G. Reinforcement Learning: An
Introduction. MIT Press, 2018.

18. Tang, J., Watanabe, K., Shiraishi, Y. Design and Traveling
Experiment of an Omnidirectional Holonomic Mobile
Robot. Proceedings of IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems IROS'96, 1996,
1, 66-73. https://doi.org/10.1109/IROS.1996.570633

19. Tutsoy, O., Brown, M., Wang, H. Reinforcement Learn-
ing Algorithm Application and Multi-Body System
Design by Using Maplesim and Modelica. The 2012 In-
ternational Conference on Advanced Mechatronic Sys-
tems, 2012, 650-655.

20. Tutsoy, O., Brown, M. Convergence Analysis of Rein-
forcement Learning Approaches to Humanoid Loco-
motion. IET Conference Proceedings, 2010, 1130-1135.
https://doi.org/10.1049/ic.2010.0439

21. Watanabe, K., Shiraishi, Y., Tang, J., Fukuda, T., Tzafes-
tas, S. G. Autonomous Control for an Omnidirectional
Mobile Robot with Feedback Control System. Advanc-
es in Intelligent Autonomous Systems, Springer, Dor-
drecht, 1999, 289-308. https://doi.org/10.1007/978-94-
011-4790-3_13

22. Watanabe, K. Control of an Omnidirectional Mobile
Robot. Second International Conference. Knowl-
edge-Based Intelligent Electronic Systems. Proceed-
ings KES'98 (Cat. No. 98EX111) IEEE, 1998, 1, 51-60.
https://doi.org/10.1109/KES.1998.725827

23. Yi, S. J., Zhang, B. T., Hong, D., Lee, D. D. Online Learn-
ing of a Full Body Push Recovery Controller for Omni-
directional Walking. 11th RAS International Confer-
ence on Humanoid Robots IEEE, 2011, 1-6. https://doi.
org/10.1109/Humanoids.2011.6100896

24. Zheng, Q., Tian, X., Jiang, N., Yang, M. Layer-Wise
Learning Based Stochastic Gradient Descent Method
for the Optimization of Deep Convolutional Neural Net-
work. Journal of Intelligent and Fuzzy Systems, 2019,
37(4), 5641-5654. https://doi.org/10.3233/JIFS-190861

25. Zheng, Q., Tian, X., Yang, M., Wu, Y., Su, H. PAC-Bayes-
ian Framework-Based Drop-Path Method for 2D Dis-
criminative Convolutional Network Pruning. Multidi-
mensional Systems and Signal Processing, 2019, 1-35.
https://doi.org/10.1007/s11045-019-00686-z

26. Zheng, Q., Yang, M., Tian, X., Jiang, N., Wang, D. A Full
Stage Data Augmentation Method in Deep Convolu-
tional Neural Network for Natural Image Classification.
Discrete Dynamics in Nature and Society, 2020. https://
doi.org/10.1155/2020/4706576

27. Zheng, Q., Yang, M., Yang, J., Zhang, Q., Zhang, X. Im-
provement of Generalization Ability of Deep CNN Via
Implicit Regularization in Two-Stage Training Pro-
cess. IEEE Access, 2018, 6, 15844-15869.https://doi.
org/10.1109/ACCESS.2018.2810849

28. Zhu, Y., Schwab, D., Veloso, M. Learning Primitive Skills
for Mobile Robots. International Conference on Ro-
botics and Automation (ICRA) IEEE, 2019, 7597-7603.
https://doi.org/10.1109/ICRA.2019.8793688

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.eswa.2012.09.010
https://doi.org/10.1016/j.eswa.2012.09.010
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1108/ir.2001.28.3.266.1
https://doi.org/10.1007/978-1-84628-226-3_3
https://doi.org/10.1007/978-1-84628-226-3_3
https://doi.org/10.5687/iscie.3.252
https://doi.org/10.1109/IROS.1996.570633
https://doi.org/10.1049/ic.2010.0439
https://doi.org/10.1007/978-94-011-4790-3_13
https://doi.org/10.1007/978-94-011-4790-3_13
https://doi.org/10.1109/KES.1998.725827
https://doi.org/10.1109/Humanoids.2011.6100896
https://doi.org/10.1109/Humanoids.2011.6100896
https://doi.org/10.3233/JIFS-190861
https://doi.org/10.1007/s11045-019-00686-z
https://doi.org/10.1155/2020/4706576
https://doi.org/10.1155/2020/4706576
https://doi.org/10.1109/ACCESS.2018.2810849
https://doi.org/10.1109/ACCESS.2018.2810849
https://doi.org/10.1109/ICRA.2019.8793688

