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Dimensionality reduction plays an important role in the data processing of machine learning and data mining, 
which makes the processing of high-dimensional data more efficient. Dimensionality reduction can extract the 
low-dimensional feature representation of high-dimensional data, and an effective dimensionality reduction 
method can not only extract most of the useful information of the original data, but also realize the function of 
removing useless noise. In this paper, an unsupervised multilayered variational auto-encoder model is studied 
in the text data, so that the high-dimensional feature to the low-dimensional feature becomes efficient and the 
low-dimensional feature can retain mainly information as much as possible. Low-dimensional feature obtained 
by different dimensionality reduction methods are used to compare with the dimensionality reduction results 
of variational auto-encoder (VAE). Compared with other dimensionality reduction methods, the classification 
accuracy of VAE on different data sets is improved by at least 0.21% and at most 3.7%.
KEYWORDS: Machine learning, dimensionality reduction, text classification, variational auto-encoder, unsu-
pervised feature learning.

1. Introduction
As a feature dimensionality reduction method in 
machine learning and deep learning, unsupervised 
learning aims to extract useful feature information 
from unlabeled data which not only can be directly ap-

plied to the recognition, classification and prediction 
system, but also can provide initial training values 
for supervised learning [4, 23, 46]. Although current-
ly like deep convolutional neural networks (CNNs) 
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such a supervised learning method has achieved good 
results in the application [22], but whether its per-
formance is good or bad depends on the amount of 
marked training sample[15, 19, 24, 27], and collecting 
and marking these data is very difficult [32, 47].
The Internet has many different kinds of large data 
[6], and more than half of the data is text data. There-
fore, an unsupervised feature learning method has a 
decisive influence in information processing [21, 36, 
39]. Taking classification algorithms as an example, 
text data is often semi-structured or unstructured 
[13], then the structured text feature dimension can 
be reach thousands of dimensions, which not only 
leads to high resource consumption in the classifica-
tion algorithms, but also leads to extract inaccurate 
information from the document, resulting in poor 
classification performance [16, 44, 48]. Therefore, the 
most critical element in improving the accuracy and 
efficiency of text classification is dimensionality re-
duction [28, 37, 38, 40].
Dimensionality reduction is specifically used to re-
duce the data dimension from high dimensional m to 
much lower dimensional d than m. Dimensionality 
reduction can not only improve the efficiency of sub-
sequent calculation, remove the irrelevant features 
or noise features, but also enables better interpreta-
tion of data in lower dimensions. In dimensionality 
reduction techniques, linear dimensionality reduc-
tion method and nonlinear dimensionality reduction 
method are two main components. In the linear di-
mensionality reduction, principle component analy-
sis (PCA) [14] and linear discriminant analysis (LDA) 
[20] are two main traditional methods. 
Common nonlinear dimensionality reduction in-
cludes locally linear embedding (LLE) [29], laplacian 
eigenmaps (LE) [1], multidimensional scaling (MDS) 
and isometric feature mapping (Isomap) [7, 34].
The concept of deep learning was proposed in 2006 and 
proves that multi-layer neural networks have better 
feature learning ability than shallow neural networks 
[17]. The hidden layer can be considered as the feature 
extraction layer, and the output of the hidden layer 
can be used as dimensionality reduction. Restricted 
boltzmann machine (RBM) [18, 26] and auto-encod-
er (AE) [2, 30] are the most common neural networks 
models used for dimensionality reduction. In recent 
years, AE has many improved models that increase the 
constraints on hidden layers, making hidden layer ex-

pressions different from input layers [42]. Variational 
auto-encoder (VAE) as an improved model of the AE 
model is proposed in [20]. As a generation model, VAE 
uses a set of data to train the model, and its output is 
data generated by the decoder similar to the input [43].
In this paper, using the unsupervised VAE method, 
the dimensionality of the text data was reduced and 
the dimension vector of the resulting text from the 
hidden layer data was extracted as the low dimen-
sional feature representation. In conclusion, there 
are two novel applications:
1 An unsupervised neural network model is used to 

reduce the dimensionality of high dimensional and 
sparse text vectors.

2 Unsupervised VAE is applied to the dimensionality 
reduction of text vectors.

The dimensionality reduction models are used to 
reduce the dimensionality of the high-dimensional 
features of the public datasets, and the reduced-di-
mensional data is used to train the k-nearest neighbor 
(kNN), support vector machine (SVM) and random 
forest (RF) classifiers. The comparative experiment 
results show the feasibility of VAE in feature dimen-
sionality reduction.
In the following sections, Section 2 reviews some relat-
ed work about text representation algorithm and meth-
od of dimensional reduction. In Section 3, the structure 
and theoretical derivation of VAE and the proposed di-
mensional reduction algorithm using VAE for text data 
are presented. In Section 4, the effectiveness of the 
VAE is verified in text classification experiment. Final-
ly, this paper is concluded in Section 5.

2. Related Work
Unstructured text data is transformed into vectors 
through text representation and then reduced in di-
mension. A text representation algorithm and some 
classical dimensionality reduction methods are in-
troduced in the rest of this section.

2.1. Text Representation
For processing unstructured text data, Term Frequen-
cy-Inverse Document (TF-IDF) is used to convert it 
into institutionalized vectors that can be processed 
subsequently in this paper [8]. TF-IDF consists of TF 
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and IDF. TF is the frequency with which a word ap-
pears in an article from the document.
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where, ,i jTF  represents the frequency of the word i in 
document j, ,i jn  indicates the number of occurrences 
of the word i appears in document j and k,k jnΣ  rep-
resents the number of words contained in document 
j, k is every word in document j. For example, in an 
article with a total of 1,000 words, the word 'feature' 
appears 35 times, so its word frequency is 0.035. 
IDF reflects the frequency of a word appearing in all 
texts. If a word appears in many texts, its IDF value 
should be low which indicates the importance of a 
word in a text. The IDF of a word can be obtained by 
dividing the total number of files by the number of 
files containing the term, and then taking the loga-
rithm of the resulting quotient.
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where, IDFi represents the inverse document fre-
quency of the word i, Doc  represents the total num-
ber of texts in the corpus and Doc  represents the 
total number of texts containing word i in the corpus.
Finally, the TF-IDF of the word i in document j is cal-
culated as the follow formula.

, ,TFIDFi j i j iTF IDF= × . (3)

In this paper, ,i jT  is used to replace ,i jTFIDF .

2.2. Principal Component Analysis
PCA has the properties in terms of maximum sep-
arability which makes the projection of the sample 
points on the hyperplane after dimensionality re-
duction as separate as possible [12]. For a sample 
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where, I is the identity matrix and tr(·) represents the 
trace of the matrix. 

The following formula can be obtained by using the 
Lagrange multiplier method: 

 T
i i iXX w wλ= . (5) 

Therefore, as long as the eigenvalue 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖  of the covari-
ance matrix TXX  is decomposed, the maximum d fea-
tures are the corresponding eigenvectors. 

2.3 Multiple Dimensional Scaling 

MDS guarantees that the distance of all data point pairs 
in low dimensional space is equal to the distance in 
high dimensional space. Suppose that given n instances, 
the distance matrix n nD ×∈  in the original space can 
be calculated in Euclidean Distance formula. The ele-
ment  ijD  of the i-th row and the j-th column represents 
the distance between the i-th instance and the j-th in-
stance. Transform the data into the d-dimensional space 
and get the representation d nZ ×∈  of all sample points 
in d, where T d
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distance of any two instances in the d-dimensional 
space is equal to the distance in the original space [9]. 
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By the eigenvalue decomposition of matrix B, the 
final low-dimensional feature can be obtained. 

2.4 Isometric Mapping 

The basic starting point of Isomap is that it is mis-
leading to calculate the linear distance directly in 
the high-dimensional space after the low-
dimensional manifold is embedded into the high-
dimensional space, because the linear distance in 
the high-dimensional space is unreachable on the 
low-dimensional embedded manifold [34]. 

Isomap is similar to the MDS. For calculating the 
distance matrix D, the distance between the adja-
cent k reachable points of each point ix  is the Eu-
clidean Distance, and the distance between ix  
and other unreachable points is set as infinite. 
There is a connection between the neighboring 
points in the graph, and there is no connection be-
tween the non-neighboring points. Then, the prob-
lem of calculating the distance matrix D is trans-
formed into the shortest path problem between the 
two points on the neighbor graph. The famous 
shortest path problem algorithm is Dijkstra or 
Floyd algorithm. Finally, the desired low-
dimensional features are obtained by inputting the 
distance matrix D into the MDS algorithm. 

2.5 Locally Linear Embedding 

For Isomap, it tries to keep the distance between 
neighboring samples from each other, while LLE 
tries to keep the relationship between the samples 
in the relationship of samples in the neighborhood 
[16]. The goal of LLE is to keep the relationship 
of sample reconstruction in high dimensional 
space in low dimensional space. 
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In addition, for j ix Q∉ , 0ijw = .
Low-dimensional data are obtained by eigenvalue de-
composition of the matrix M:
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2.6. Laplacian Eigenmaps
LE is a local perspective to build relationships be-
tween data. The base idea is that if the two data in-
stances ix  and jx  are very similar, then ix  and jx  
should be as close as possible in the target subspace 
after dimensionality reduction [31]. The purpose 
of neighborhood preserving embedding (NPE) is to 
search for neighborhood construction on stream data 
which is similar to LLE.
LE selects neighborhood for the entire spatial sample 
with two methods which are ϵ-neighborhoods and 
k-nearest-neighbors. LE uses a thermonuclear meth-
od with a kernel width 0t >  [25], W is a similar ma-
trix, and the weights are set as
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2.7. Laplacian Eigenmaps
RBM is a modeling method based on energy function. 
The energy of the joint configuration of visible vari-
able v and hidden variable h is
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2.8. Auto-encoder
As a super-supervised feature learning method 
based on deep learning [41], AE can be regarded as 
a three-layer neural network structure: input layer, 
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hidden layer and output layer, as shown in Figure 1. In 
Figure 1, ix  represents the input node, ˆix  represents 
the output node, "+1" represents the bias item, and 

,W bh  represents the approximate output of the in-
put data after the three-layer network structure. 
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= ∈  are a set of unlabeled input 
data (m represents the data dimension and n repre-
sents the number of data), and the objective func-
tion of AE is as follows to minimize the recon-
struction error [33]. 
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The hidden layer neurons of the AE are much 
smaller than the input layer and the output layer, 
which allows low dimensional features to be ex-
tracted in the hidden layer. 
In summary, the structure of the AE and the di-
mensionality reduction process are shown below. 
The AE has a three-layer neural network structure 
of input layer, hidden layer, and output layer 
which are represented as encoding layer, hidden 
layer and decoding layer, respectively. The neu-
rons of the input layer and the output layer of the 
AE are both set to m and the neurons of the hid-
den layer are set to d ( d m ). Then, encoder 

layer encodes the network input { } 1
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∈ , and 
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the original data to obtain the reconstructed 
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∈ . Finally, the output { } 1

ˆ m m n
i ix ×

=
∈  

is approximated to the input { } 1
ˆ m m n
i ix ×

=
∈  con-

tinuously, so that the low-dimensional features of 
the data can be obtained. 
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2.8 Auto-encoder 

As a super-supervised feature learning method based on 
deep learning [41], AE can be regarded as a three-layer 

neural network structure: input layer, hidden layer 
and output layer, as shown in Figure 1. In Figure 
1, ix  represents the input node, ˆix  represents the 
output node, "+1" represents the bias item, and 

,W bh  represents the approximate output of the in-
put data after the three-layer network structure. 

{ } 1
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=

= ∈  are a set of unlabeled input 
data (m represents the data dimension and n repre-
sents the number of data), and the objective func-
tion of AE is as follows to minimize the recon-
struction error [33]. 
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The hidden layer neurons of the AE are much 
smaller than the input layer and the output layer, 
which allows low dimensional features to be ex-
tracted in the hidden layer. 
In summary, the structure of the AE and the di-
mensionality reduction process are shown below. 
The AE has a three-layer neural network structure 
of input layer, hidden layer, and output layer 
which are represented as encoding layer, hidden 
layer and decoding layer, respectively. The neu-
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AE are both set to m and the neurons of the hid-
den layer are set to d ( d m ). Then, encoder 
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the original data to obtain the reconstructed 
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∈ . Finally, the output { } 1
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=
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is approximated to the input { } 1
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=
∈  con-

tinuously, so that the low-dimensional features of 
the data can be obtained. 
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2.9. Conclusion
In unsupervised feature dimension reduction meth-
ods, the methods can be divided into linear and non-
linear methods. Among them, PCA described in this 
section is the linear method.
Nonlinear dimensionality reduction can divided into 
two types of dimensionality reduction which are pre-
serving local features and preserving global features. 
Preserving local features methods in dimensionality 
reduction involves reconstruction weight and using 
the collar graph. LLE abandons the global optimal 
dimensionality reduction of all samples, but guaran-
tees local optimum. LLE is a dimensionality reduc-
tion method based on reconstructed weights and LE 
is based on collar graph. LE guarantees that the rel-
evant points in the dimensionality reduction space 
(the points connected in the collar graph) are as close 
as possible, so that the method keeps the original data 
structure unchanged after dimensionality reduction. 
There are MDS, Isomap and neural network in di-
mensionality reduction method for preserving global 
features. After dimensionality reduction, both MDS 
and Isomap keep the distance between the samples 
and the original distance unchanged.
RBM consists of a visible layer and a hidden layer, 
which is a stochastic neural network model. Similar 
to a general feedforward neural network, RBM is not 
connected between neurons in the same layer, and 
adjacent layers are completely connected. The hid-
den layer can be considered as the feature extraction 
layer, and the output of the hidden layer can be used as 
dimensionality reduction. A symmetric AE network 
is also composed of neural networks, the output layer 
reconstructs the input layer so that the network can 
encode the data. After the training is completed, the 
output of the hidden layer can be used as the dimen-
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posed of neural networks, the output layer reconstructs 
the input layer so that the network can encode the data. 
After the training is completed, the output of the hidden 
layer can be used as the dimensionality reduction as 
well as the hidden layer of the RBM. AE shows that if 
the hidden layer of the model can also reconstruct the 
input data at this time, the hidden layer data is sufficient 
to represent the input data. Then, the output of the hid-
den layer can be considered as an effective feature that 
is automatically learned from the model. Table 1 sum-

marizes the relationship between these methods. 

Table 1 

Feature dimension reduction methods 

Linear PCA 

Nonlinear 

Preserving     
local features 

LLE, LE 

Preserving 
global features 

MDS, Isomap 

Neural network RBM, AE 

All of the above seven methods have been used to 
reduce the dimensionality of the data. In this pa-
per, they will be compared by text data dimen-
sionality reduction experiment. In addition, the 
Section 3 also proposed to adopt VAE to reduce 
the dimension of sparse text data, this method will 
also be tested by comparative experiments.   

 

 
3. Methodology 

VAE is a generation model that generates data 
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Figure 2, by limiting 𝑧𝑧𝑧𝑧 to satisfy a certain Gaussi-
an distribution, then obtaining z from the Gaussi-
an distribution ( )p z , and finally generating the 
data from the distribution ( | )p x zθ . The theory 
proves that the data of arbitrary distribution (x)p  
can be generated by the hidden variable z satisfy-
ing the Gaussian distribution through the neural 
network. As shown in Figure 2, in the probabilis-
tic graph model of VAE, the generated model 

( | )p x zθ  (the solid line z x→ ) is equivalent to 
the decoder and the recognition model ( | )q z xϕ  
(the dotted line x z→ ) is equivalent to the en-
coder. 
 
Figure 2 
The probabilistic graph model of VAE 

 
3.1 Objective Function 

In general, in order to make the generated data x̂   
the most similar to the original data x, the distri-
bution ( )p xθ   should be maximize. Then, the 
maximum likelihood method is used to maximize 
the following likelihood functions: 

In summary, the structure of the AE and the dimen-
sionality reduction process are shown below. The 
AE has a three-layer neural network structure of 
input layer, hidden layer, and output layer which 
are represented as encoding layer, hidden layer and 
decoding layer, respectively. The neurons of the in-
put layer and the output layer of the AE are both set 
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sionality reduction as well as the hidden layer of the 
RBM. AE shows that if the hidden layer of the model 
can also reconstruct the input data at this time, the 
hidden layer data is sufficient to represent the input 
data. Then, the output of the hidden layer can be con-
sidered as an effective feature that is automatically 
learned from the model. Table 1 summarizes the rela-
tionship between these methods.

Table 1
Feature dimension reduction methods

Linear PCA

Nonlinear

Preserving local features LLE, LE

Preserving global features MDS, Isomap

Neural network RBM, AE

All of the above seven methods have been used to 
reduce the dimensionality of the data. In this paper, 
they will be compared by text data dimensionali-
ty reduction experiment. In addition, the Section 3 
also proposed to adopt VAE to reduce the dimension 
of sparse text data, this method will also be tested by 
comparative experiments.  

3. Methodology
VAE is a generation model that generates data based 
on a certain distribution z. As shown in Figure 2, by 
limiting z to satisfy a certain Gaussian distribution, 
then obtaining z from the Gaussian distribution ( )p z , 
and finally generating the data from the distribution 

( | )p x zθ . The theory proves that the data of arbitrary 
distribution (x)p  can be generated by the hidden vari-
able z satisfying the Gaussian distribution through 
the neural network. As shown in Figure 2, in the prob-
abilistic graph model of VAE, the generated model 

( | )p x zθ  (the solid line z x→ ) is equivalent to the de-

coder and the recognition model ( | )q z xϕ  (the dotted 
line x z→ ) is equivalent to the encoder.

3.1. Objective Function

In general, in order to make the generated data x̂  the 
most similar to the original data x, the distribution 

( )p xθ  should be maximize. Then, the maximum like-
lihood method is used to maximize the following like-
lihood functions:

( ) ( )( )p x p x z p z dzθ θ θ= |∫ , (15)

where, ( | )p x zθ  represents the reconstruction of the 
original data x from the hidden variable z. The prior 
distribution of the hidden variable z is represent-
ed by ( )p zθ . The hidden variable z is obtained from 
the original data, and the process is represented by 

( | )p z xθ . Since ( | )p z xθ  is relatively difficult to calcu-
late, the VAE replaces the real posterior ( | )p z xθ  with 
an approximate posterior ( | )q z xϕ  obeying the Gauss-
ian distribution. In order to measure the similarity 
between the two distributions, Kullback-Leibler di-
vergence (KL divergence) is often used to measure 
the distance between two random distributions, 
and when two random distributions are the same, 
their KL divergence is zero. Then 
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The KL divergence is not negative, 
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Then according to the above formula, the inequality is 
derived: 

  ( )log ( ) , ;p x L xθ θ ϕ≥ . (20) 

Maximizing the logarithmic likelihood function
log ( )p xθ   to lead the posterior distribution ( | )q z xϕ  to 
be close to the true posterior distribution ( | ),p z xθ

which means that ( ( | ) ( | ))KLD q z x p z xϕ θ   is close to 
0. In VAE, ( ), ;L xθ ϕ  is considered to be the lower 
bound of the variation of log ( )p xθ . In order to opti-
mize log ( )p xθ  and ( ( | ) ( | ))KLD q z x p z xϕ θ , the loss 
function of VAE can be obtained from the lower bound 
of the variation, i.e. 
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In the loss function ( ), ;L xθ ϕ  of VAE: 
( ( | ) ( | ))KLD q z x p z xϕ θ  is regularizer, and 

( ) log ( )q z x p x z
ϕ θ| |    is reconstruction error. 

The process of optimizing the loss function 
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N
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L x L xθ ϕ θ ϕ
=

=∑  is equivalent to op-

timizing the two parts regularizer and 
reconstruction error above. 

··Regularization terms 

( )p zθ  obeys the Gaussian of ( )0;N I  and 

( | )q z xϕ  obeys the Gaussian of ( )2,N µ σ , con-

forms to the formula. 
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j is the dimension of z. 

··Reconstruction error term 

To evaluate the expectation of the function ( )f z   

relative to ( | )iq z xφ , the Monte Carlo evaluation 
is used here. 

In the distribution , ~ ( | )i l iz q z xφ , sample L′  

hidden variables ,i lz , 1, 2,3, ,l L= ′
  ( L′  is usu-

ally 1), and then average the ( )f z . In this way, a 
concrete formula of the reconstructed error term 
can be obtained. 
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Since z is not derivable, µ ε σ+ ⋅  is used to con-
vert z into derivable µ  and σ . Finally, the re-
construction error term is derived as shown in the 
following equation. 
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Finally, the structure of the whole VAE neural 
network is shown in the Figure 3. The first half of 
the model is the encoder and the second half of 
the model is the decoder. The dotted line indicates 
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Then according to the above formula, the inequality is 
derived: 

  ( )log ( ) , ;p x L xθ θ ϕ≥ . (20) 

Maximizing the logarithmic likelihood function
log ( )p xθ   to lead the posterior distribution ( | )q z xϕ  to 
be close to the true posterior distribution ( | ),p z xθ

which means that ( ( | ) ( | ))KLD q z x p z xϕ θ   is close to 
0. In VAE, ( ), ;L xθ ϕ  is considered to be the lower 
bound of the variation of log ( )p xθ . In order to opti-
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function of VAE can be obtained from the lower bound 
of the variation, i.e. 
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In the loss function ( ), ;L xθ ϕ  of VAE: 
( ( | ) ( | ))KLD q z x p z xϕ θ  is regularizer, and 

( ) log ( )q z x p x z
ϕ θ| |    is reconstruction error. 
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j is the dimension of z. 
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Since z is not derivable, µ ε σ+ ⋅  is used to con-
vert z into derivable µ  and σ . Finally, the re-
construction error term is derived as shown in the 
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Therefore,
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Then according to the above formula, the inequality is 
derived: 

  ( )log ( ) , ;p x L xθ θ ϕ≥ . (20) 

Maximizing the logarithmic likelihood function
log ( )p xθ   to lead the posterior distribution ( | )q z xϕ  to 
be close to the true posterior distribution ( | ),p z xθ

which means that ( ( | ) ( | ))KLD q z x p z xϕ θ   is close to 
0. In VAE, ( ), ;L xθ ϕ  is considered to be the lower 
bound of the variation of log ( )p xθ . In order to opti-
mize log ( )p xθ  and ( ( | ) ( | ))KLD q z x p z xϕ θ , the loss 
function of VAE can be obtained from the lower bound 
of the variation, i.e. 
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In the loss function ( ), ;L xθ ϕ  of VAE: 
( ( | ) ( | ))KLD q z x p z xϕ θ  is regularizer, and 

( ) log ( )q z x p x z
ϕ θ| |    is reconstruction error. 
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j is the dimension of z. 
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To evaluate the expectation of the function ( )f z   

relative to ( | )iq z xφ , the Monte Carlo evaluation 
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hidden variables ,i lz , 1, 2,3, ,l L= ′
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Since z is not derivable, µ ε σ+ ⋅  is used to con-
vert z into derivable µ  and σ . Finally, the re-
construction error term is derived as shown in the 
following equation. 
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The KL divergence is not negative,
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Then according to the above formula, the inequality is 
derived: 
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Maximizing the logarithmic likelihood function
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function of VAE can be obtained from the lower bound 
of the variation, i.e. 
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In the loss function ( ), ;L xθ ϕ  of VAE: 
( ( | ) ( | ))KLD q z x p z xϕ θ  is regularizer, and 

( ) log ( )q z x p x z
ϕ θ| |    is reconstruction error. 

The process of optimizing the loss function 

( ) ( )( )
1

, ; , ;
N

i

i

L x L xθ ϕ θ ϕ
=

=∑  is equivalent to op-

timizing the two parts regularizer and 
reconstruction error above. 

··Regularization terms 

( )p zθ  obeys the Gaussian of ( )0;N I  and 

( | )q z xϕ  obeys the Gaussian of ( )2,N µ σ , con-

forms to the formula. 
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j is the dimension of z. 

··Reconstruction error term 

To evaluate the expectation of the function ( )f z   

relative to ( | )iq z xφ , the Monte Carlo evaluation 
is used here. 

In the distribution , ~ ( | )i l iz q z xφ , sample L′  

hidden variables ,i lz , 1, 2,3, ,l L= ′
  ( L′  is usu-

ally 1), and then average the ( )f z . In this way, a 
concrete formula of the reconstructed error term 
can be obtained. 
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Since z is not derivable, µ ε σ+ ⋅  is used to con-
vert z into derivable µ  and σ . Finally, the re-
construction error term is derived as shown in the 
following equation. 
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Finally, the structure of the whole VAE neural 
network is shown in the Figure 3. The first half of 
the model is the encoder and the second half of 
the model is the decoder. The dotted line indicates 

(18)
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tribution of the hidden variable z is represented by 

( )p zθ . The hidden variable z is obtained from the 
original data, and the process is represented by 

( | )p z xθ . Since ( | )p z xθ  is relatively difficult to cal-
culate, the VAE replaces the real posterior ( | )p z xθ  
with an approximate posterior ( | )q z xϕ  obeying the 
Gaussian distribution. In order to measure the similarity 
between the two distributions, Kullback-Leibler diver-
gence (KL divergence) is often used to measure the dis-
tance between two random distributions, and when two 
random distributions are the same, their KL divergence 
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The KL divergence is not negative, 
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Then according to the above formula, the inequality is 
derived: 
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0. In VAE, ( ), ;L xθ ϕ  is considered to be the lower 
bound of the variation of log ( )p xθ . In order to opti-
mize log ( )p xθ  and ( ( | ) ( | ))KLD q z x p z xϕ θ , the loss 
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of the variation, i.e. 
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Since z is not derivable, µ ε σ+ ⋅  is used to con-
vert z into derivable µ  and σ . Finally, the re-
construction error term is derived as shown in the 
following equation. 
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Finally, the structure of the whole VAE neural 
network is shown in the Figure 3. The first half of 
the model is the encoder and the second half of 
the model is the decoder. The dotted line indicates 
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Figure 2
The probabilistic graph model of VAE

 
 

 

 
2.9 Conclusion 

In unsupervised feature dimension reduction methods, 
the methods can be divided into linear and nonlinear 
methods. Among them, PCA described in this section is 
the linear method. 

Nonlinear dimensionality reduction can divided into 
two types of dimensionality reduction which are pre-
serving local features and preserving global features. 
Preserving local features methods in dimensionality re-
duction involves reconstruction weight and using the 
collar graph. LLE abandons the global optimal dimen-
sionality reduction of all samples, but guarantees local 
optimum. LLE is a dimensionality reduction method 
based on reconstructed weights and LE is based on col-
lar graph. LE guarantees that the relevant points in the 
dimensionality reduction space (the points connected in 
the collar graph) are as close as possible, so that the 
method keeps the original data structure unchanged af-
ter dimensionality reduction. There are MDS, Isomap 
and neural network in dimensionality reduction method 
for preserving global features. After dimensionality re-
duction, both MDS and Isomap keep the distance be-
tween the samples and the original distance unchanged. 

RBM consists of a visible layer and a hidden layer, 
which is a stochastic neural network model. Similar to a 
general feedforward neural network, RBM is not con-
nected between neurons in the same layer, and adjacent 
layers are completely connected. The hidden layer can 
be considered as the feature extraction layer, and the 
output of the hidden layer can be used as dimensionali-
ty reduction. A symmetric AE network is also com-
posed of neural networks, the output layer reconstructs 
the input layer so that the network can encode the data. 
After the training is completed, the output of the hidden 
layer can be used as the dimensionality reduction as 
well as the hidden layer of the RBM. AE shows that if 
the hidden layer of the model can also reconstruct the 
input data at this time, the hidden layer data is sufficient 
to represent the input data. Then, the output of the hid-
den layer can be considered as an effective feature that 
is automatically learned from the model. Table 1 sum-

marizes the relationship between these methods. 

Table 1 

Feature dimension reduction methods 

Linear PCA 

Nonlinear 

Preserving     
local features 

LLE, LE 

Preserving 
global features 

MDS, Isomap 

Neural network RBM, AE 

All of the above seven methods have been used to 
reduce the dimensionality of the data. In this pa-
per, they will be compared by text data dimen-
sionality reduction experiment. In addition, the 
Section 3 also proposed to adopt VAE to reduce 
the dimension of sparse text data, this method will 
also be tested by comparative experiments.   

 

 
3. Methodology 

VAE is a generation model that generates data 
based on a certain distribution 𝑧𝑧𝑧𝑧 . As shown in 
Figure 2, by limiting 𝑧𝑧𝑧𝑧 to satisfy a certain Gaussi-
an distribution, then obtaining z from the Gaussi-
an distribution ( )p z , and finally generating the 
data from the distribution ( | )p x zθ . The theory 
proves that the data of arbitrary distribution (x)p  
can be generated by the hidden variable z satisfy-
ing the Gaussian distribution through the neural 
network. As shown in Figure 2, in the probabilis-
tic graph model of VAE, the generated model 

( | )p x zθ  (the solid line z x→ ) is equivalent to 
the decoder and the recognition model ( | )q z xϕ  
(the dotted line x z→ ) is equivalent to the en-
coder. 
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In general, in order to make the generated data x̂   
the most similar to the original data x, the distri-
bution ( )p xθ   should be maximize. Then, the 
maximum likelihood method is used to maximize 
the following likelihood functions: 
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Then according to the above formula, the inequality 
is derived:

( )log ( ) , ;p x L xθ θ ϕ≥ . (20)

Maximizing the logarithmic likelihood function
log ( )p xθ  to lead the posterior distribution ( | )q z xϕ  
to be close to the true posterior distribution ( | ),p z xθ  
which means that 

  

 ( ) ( )( )p x p x z p z dzθ θ θ= |∫ , (15) 

where, ( | )p x zθ  represents the reconstruction of the 
original data x from the hidden variable z. The prior dis-
tribution of the hidden variable z is represented by 

( )p zθ . The hidden variable z is obtained from the 
original data, and the process is represented by 

( | )p z xθ . Since ( | )p z xθ  is relatively difficult to cal-
culate, the VAE replaces the real posterior ( | )p z xθ  
with an approximate posterior ( | )q z xϕ  obeying the 
Gaussian distribution. In order to measure the similarity 
between the two distributions, Kullback-Leibler diver-
gence (KL divergence) is often used to measure the dis-
tance between two random distributions, and when two 
random distributions are the same, their KL divergence 
is zero. Then ( )q z xϕ |  represents ( | )q z xϕ∑ ,  i.e. 
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The KL divergence is not negative, 

 ( ( ) ( )) 0KLD q z x p z xϕ θ| | ≥
 (18) 

 
 

 ( )
( )( )

, ;
log ( ) log ( ) log ( )q z x

L x
q z x p z p x z

ϕ ϕ θ θ

θ ϕ

|
 = − | + + | 

.

 (19) 

Then according to the above formula, the inequality is 
derived: 
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log ( )p xθ   to lead the posterior distribution ( | )q z xϕ  to 
be close to the true posterior distribution ( | ),p z xθ

which means that ( ( | ) ( | ))KLD q z x p z xϕ θ   is close to 
0. In VAE, ( ), ;L xθ ϕ  is considered to be the lower 
bound of the variation of log ( )p xθ . In order to opti-
mize log ( )p xθ  and ( ( | ) ( | ))KLD q z x p z xϕ θ , the loss 
function of VAE can be obtained from the lower bound 
of the variation, i.e. 
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In the loss function ( ), ;L xθ ϕ  of VAE: 
( ( | ) ( | ))KLD q z x p z xϕ θ  is regularizer, and 

( ) log ( )q z x p x z
ϕ θ| |    is reconstruction error. 

The process of optimizing the loss function 
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timizing the two parts regularizer and 
reconstruction error above. 

··Regularization terms 

( )p zθ  obeys the Gaussian of ( )0;N I  and 

( | )q z xϕ  obeys the Gaussian of ( )2,N µ σ , con-

forms to the formula. 
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j is the dimension of z. 

··Reconstruction error term 

To evaluate the expectation of the function ( )f z   

relative to ( | )iq z xφ , the Monte Carlo evaluation 
is used here. 

In the distribution , ~ ( | )i l iz q z xφ , sample L′  

hidden variables ,i lz , 1, 2,3, ,l L= ′
  ( L′  is usu-

ally 1), and then average the ( )f z . In this way, a 
concrete formula of the reconstructed error term 
can be obtained. 
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Since z is not derivable, µ ε σ+ ⋅  is used to con-
vert z into derivable µ  and σ . Finally, the re-
construction error term is derived as shown in the 
following equation. 
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Finally, the structure of the whole VAE neural 
network is shown in the Figure 3. The first half of 
the model is the encoder and the second half of 
the model is the decoder. The dotted line indicates 
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random distributions are the same, their KL divergence 
is zero. Then ( )q z xϕ |  represents ( | )q z xϕ∑ ,  i.e. 
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The KL divergence is not negative, 

 ( ( ) ( )) 0KLD q z x p z xϕ θ| | ≥
 (18) 
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Then according to the above formula, the inequality is 
derived: 

  ( )log ( ) , ;p x L xθ θ ϕ≥ . (20) 

Maximizing the logarithmic likelihood function
log ( )p xθ   to lead the posterior distribution ( | )q z xϕ  to 
be close to the true posterior distribution ( | ),p z xθ

which means that ( ( | ) ( | ))KLD q z x p z xϕ θ   is close to 
0. In VAE, ( ), ;L xθ ϕ  is considered to be the lower 
bound of the variation of log ( )p xθ . In order to opti-
mize log ( )p xθ  and ( ( | ) ( | ))KLD q z x p z xϕ θ , the loss 
function of VAE can be obtained from the lower bound 
of the variation, i.e. 
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In the loss function ( ), ;L xθ ϕ  of VAE: 
( ( | ) ( | ))KLD q z x p z xϕ θ  is regularizer, and 

( ) log ( )q z x p x z
ϕ θ| |    is reconstruction error. 

The process of optimizing the loss function 
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, ; , ;
N

i

i

L x L xθ ϕ θ ϕ
=

=∑  is equivalent to op-

timizing the two parts regularizer and 
reconstruction error above. 

··Regularization terms 

( )p zθ  obeys the Gaussian of ( )0;N I  and 

( | )q z xϕ  obeys the Gaussian of ( )2,N µ σ , con-

forms to the formula. 
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j is the dimension of z. 

··Reconstruction error term 

To evaluate the expectation of the function ( )f z   

relative to ( | )iq z xφ , the Monte Carlo evaluation 
is used here. 

In the distribution , ~ ( | )i l iz q z xφ , sample L′  

hidden variables ,i lz , 1, 2,3, ,l L= ′
  ( L′  is usu-

ally 1), and then average the ( )f z . In this way, a 
concrete formula of the reconstructed error term 
can be obtained. 
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Since z is not derivable, µ ε σ+ ⋅  is used to con-
vert z into derivable µ  and σ . Finally, the re-
construction error term is derived as shown in the 
following equation. 
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Finally, the structure of the whole VAE neural 
network is shown in the Figure 3. The first half of 
the model is the encoder and the second half of 
the model is the decoder. The dotted line indicates 
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tion of VAE can be obtained from the lower bound of 
the variation, i.e.

  

 ( ) ( )( )p x p x z p z dzθ θ θ= |∫ , (15) 

where, ( | )p x zθ  represents the reconstruction of the 
original data x from the hidden variable z. The prior dis-
tribution of the hidden variable z is represented by 

( )p zθ . The hidden variable z is obtained from the 
original data, and the process is represented by 

( | )p z xθ . Since ( | )p z xθ  is relatively difficult to cal-
culate, the VAE replaces the real posterior ( | )p z xθ  
with an approximate posterior ( | )q z xϕ  obeying the 
Gaussian distribution. In order to measure the similarity 
between the two distributions, Kullback-Leibler diver-
gence (KL divergence) is often used to measure the dis-
tance between two random distributions, and when two 
random distributions are the same, their KL divergence 
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The KL divergence is not negative, 
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Then according to the above formula, the inequality is 
derived: 

  ( )log ( ) , ;p x L xθ θ ϕ≥ . (20) 

Maximizing the logarithmic likelihood function
log ( )p xθ   to lead the posterior distribution ( | )q z xϕ  to 
be close to the true posterior distribution ( | ),p z xθ

which means that ( ( | ) ( | ))KLD q z x p z xϕ θ   is close to 
0. In VAE, ( ), ;L xθ ϕ  is considered to be the lower 
bound of the variation of log ( )p xθ . In order to opti-
mize log ( )p xθ  and ( ( | ) ( | ))KLD q z x p z xϕ θ , the loss 
function of VAE can be obtained from the lower bound 
of the variation, i.e. 
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In the loss function ( ), ;L xθ ϕ  of VAE: 
( ( | ) ( | ))KLD q z x p z xϕ θ  is regularizer, and 

( ) log ( )q z x p x z
ϕ θ| |    is reconstruction error. 

The process of optimizing the loss function 
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=∑  is equivalent to op-

timizing the two parts regularizer and 
reconstruction error above. 

··Regularization terms 

( )p zθ  obeys the Gaussian of ( )0;N I  and 

( | )q z xϕ  obeys the Gaussian of ( )2,N µ σ , con-

forms to the formula. 
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j is the dimension of z. 

··Reconstruction error term 

To evaluate the expectation of the function ( )f z   

relative to ( | )iq z xφ , the Monte Carlo evaluation 
is used here. 

In the distribution , ~ ( | )i l iz q z xφ , sample L′  

hidden variables ,i lz , 1, 2,3, ,l L= ′
  ( L′  is usu-

ally 1), and then average the ( )f z . In this way, a 
concrete formula of the reconstructed error term 
can be obtained. 
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Since z is not derivable, µ ε σ+ ⋅  is used to con-
vert z into derivable µ  and σ . Finally, the re-
construction error term is derived as shown in the 
following equation. 
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Finally, the structure of the whole VAE neural 
network is shown in the Figure 3. The first half of 
the model is the encoder and the second half of 
the model is the decoder. The dotted line indicates 
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In the loss function ( ), ;L xθ ϕ  of VAE: 
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original data x from the hidden variable z. The prior dis-
tribution of the hidden variable z is represented by 

( )p zθ . The hidden variable z is obtained from the 
original data, and the process is represented by 
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culate, the VAE replaces the real posterior ( | )p z xθ  
with an approximate posterior ( | )q z xϕ  obeying the 
Gaussian distribution. In order to measure the similarity 
between the two distributions, Kullback-Leibler diver-
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Then according to the above formula, the inequality is 
derived: 

  ( )log ( ) , ;p x L xθ θ ϕ≥ . (20) 

Maximizing the logarithmic likelihood function
log ( )p xθ   to lead the posterior distribution ( | )q z xϕ  to 
be close to the true posterior distribution ( | ),p z xθ

which means that ( ( | ) ( | ))KLD q z x p z xϕ θ   is close to 
0. In VAE, ( ), ;L xθ ϕ  is considered to be the lower 
bound of the variation of log ( )p xθ . In order to opti-
mize log ( )p xθ  and ( ( | ) ( | ))KLD q z x p z xϕ θ , the loss 
function of VAE can be obtained from the lower bound 
of the variation, i.e. 
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In the loss function ( ), ;L xθ ϕ  of VAE: 
( ( | ) ( | ))KLD q z x p z xϕ θ  is regularizer, and 

( ) log ( )q z x p x z
ϕ θ| |    is reconstruction error. 

The process of optimizing the loss function 

( ) ( )( )
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L x L xθ ϕ θ ϕ
=

=∑  is equivalent to op-

timizing the two parts regularizer and 
reconstruction error above. 

··Regularization terms 

( )p zθ  obeys the Gaussian of ( )0;N I  and 

( | )q z xϕ  obeys the Gaussian of ( )2,N µ σ , con-

forms to the formula. 
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j is the dimension of z. 

··Reconstruction error term 

To evaluate the expectation of the function ( )f z   

relative to ( | )iq z xφ , the Monte Carlo evaluation 
is used here. 

In the distribution , ~ ( | )i l iz q z xφ , sample L′  

hidden variables ,i lz , 1, 2,3, ,l L= ′
  ( L′  is usu-

ally 1), and then average the ( )f z . In this way, a 
concrete formula of the reconstructed error term 
can be obtained. 
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Since z is not derivable, µ ε σ+ ⋅  is used to con-
vert z into derivable µ  and σ . Finally, the re-
construction error term is derived as shown in the 
following equation. 
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Finally, the structure of the whole VAE neural 
network is shown in the Figure 3. The first half of 
the model is the encoder and the second half of 
the model is the decoder. The dotted line indicates 

 is regularizer, and 
( ) log ( )q z x p x z

ϕ θ| |    is reconstruction error. The process 
of optimizing the loss function ( ) ( )( )
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L x L xθ ϕ θ ϕ
=
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is equivalent to optimizing the two parts regularizer 
and reconstruction error above.
 _ Regularization terms

( )p zθ  obeys the Gaussian of ( )0;N I  and ( | )q z xϕ  obeys 
the Gaussian of ( )2,N µ σ , conforms to the formula.

2 2 2

1

( ( ( )) 1 (1 log( ) ( ) ( ) )
2

i
KL

d
i i i
j j j

j

D q z x p zϕ θ σ µ σ
=

− | = + − −∑ .
 
(22)

j is the dimension of z.
 _ Reconstruction error term

To evaluate the expectation of the function ( )f z  relative 
to ( | )iq z xφ , the Monte Carlo evaluation is used here.

In the distribution , ~ ( | )i l iz q z xφ , sample L′ hid-
den variables ,i lz , 1,2,3, ,l L= ′  (L′ is usually 1), and 
then average the ( )f z . In this way, a concrete formu-
la of the reconstructed error term can be obtained. 
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Since z is not derivable, µ ε σ+ ⋅  is used to convert z into 
derivable µ  and σ . Finally, the reconstruction error 
term is derived as shown in the following equation.
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Finally, the structure of the whole VAE neural net-
work is shown in the Figure 3. The first half of the 
model is the encoder and the second half of the model 
is the decoder. The dotted line indicates sampling and 
the solid line indicates forward propagation. Among 

 
 

 

sampling and the solid line indicates forward propaga-
tion. Among them, the encoding layer represents the 
process of extracting the characteristics of text data, the 

hidden layer is the VAE sampling process, and 
the decoding layer represents the process of re-
storing the sampled data to the original data. 

Figure 3 
Variational Auto-Encoder  

3.2 Optimization Algorithm 

Through the derivation process, it can be obtained that 
as a variational self-encoding of an auto-encoder struc-
ture, the encoding layer is a process of extracting fea-
tures of text data. The hidden layer first calculates the 
mean and variance of the output of the coding layer, 
and then generates a Gaussian distribution for sampling. 
The decoding layer is a process of reconstructing the 
sampled data. Finally, the VAE feature extraction algo-
rithm generated by the variational lower bound 
( ), ;L xθ ϕ  is trained with the stochastic gradient de-

scent method, as detailed in Algorithm 1. 

3.3 Text Feature Dimension for Deep VAE 

In the first step, unstructured text data cannot be direct-
ly used as input to the VAE network for which text data 
need to be vectorized. Before that, a series of prepro-
cessing is required for text data, including lemmatiza-
tion, deletion of stop words and removal of low-
frequency words. Lemmatization refers to the transfor-
mation of morphological words such as singular, plural 
and tense into prototypes. Stop word is a very common 
word that is not strongly related to a particular domain 
terminology. Stop words contain no information and 
should be deleted. Low frequency words refer to words 
that only appear in a few texts and have no practical 
meaning to most texts, so they need to be removed. 

And then, the clean secondary sequence obtained after 
pretreatment is transformed by using TF-IDF to obtain 
the TF-IDF value corresponding to each word. For the 
text vector of an article, it is represented as the long 
vector composed of all words in the m-dimensional 
corpus. The corresponding value of words appearing in 
article j is the TF-IDF value obtained through calcula-
tion, while the corresponding value of words not ap-
pearing is 0 e.t. 

{ }1, 3, 4, 6, ,, 0, , ,0, ,0, ,0,j j j j j m jX T T T T T= 
. (25) 

Through the above process, the text vector 

{ } 1
m m n

i iX x ×
=

= ∈  corresponding to n articles 

are obtained. Finally, input m nX ×∈  into Algo-
rithm 1 to get the final d-dimensional feature rep-
resentation of m nX ×∈ . This means that 

m nX ×∈  will be used as input, and a VAE mod-
el based on input will be trained according to Al-
gorithm 1. When the iteration ends and the loss 
converges, m nX ×∈   will be input into the 
trained model again, and finally the hidden layer z 
will be extracted as the output. The output z at this 
time is the low-dimensional feature of d nZ ×∈  . 
This concept is illustrated in Figure 4. 

 

Algorithm 1 VAE is trained by stochastic gra-
dient descent. Use the variational lower bound 
( ), ;L xθ ϕ  

Input:  Training data { } 1
m m n

i iX x ×
=

= ∈ , 

      learning rate α , minibatch M, training epochs 
T. 

      Number of neurons: input layer neurons = m, 

      1st hidden encoder layer neurons = 1m , 

      2nd hidden encoder layer neurons = 2m , 

      hidden layer 𝑧𝑧𝑧𝑧 neurons = d, 

      1st hidden decoder layer neurons = 2m , 

Figure 3
Variational Auto-Encoder 
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them, the encoding layer represents the process of 
extracting the characteristics of text data, the hidden 
layer is the VAE sampling process, and the decoding 
layer represents the process of restoring the sampled 
data to the original data.

3.2 .Optimization Algorithm
Through the derivation process, it can be obtained 
that as a variational self-encoding of an auto-encoder 
structure, the encoding layer is a process of extracting 
features of text data. The hidden layer first calculates 
the mean and variance of the output of the coding 
layer, and then generates a Gaussian distribution for 
sampling. The decoding layer is a process of recon-
structing the sampled data. Finally, the VAE feature 
extraction algorithm generated by the variational 
lower bound ( ), ;L xθ ϕ  is trained with the stochastic 
gradient descent method, as detailed in Algorithm 1.

3.3 Text Feature Dimension for Deep VAE
In the first step, unstructured text data cannot be 
directly used as input to the VAE network for which 
text data need to be vectorized. Before that, a series 
of preprocessing is required for text data, including 
lemmatization, deletion of stop words and removal 
of low-frequency words. Lemmatization refers to the 
transformation of morphological words such as sin-
gular, plural and tense into prototypes. Stop word is 
a very common word that is not strongly related to a 
particular domain terminology. Stop words contain 
no information and should be deleted. Low frequency 
words refer to words that only appear in a few texts 
and have no practical meaning to most texts, so they 
need to be removed.
And then, the clean secondary sequence obtained af-
ter pretreatment is transformed by using TF-IDF to 
obtain the TF-IDF value corresponding to each word. 
For the text vector of an article, it is represented as 
the long vector composed of all words in the m-di-
mensional corpus. The corresponding value of words 
appearing in article j is the TF-IDF value obtained 
through calculation, while the corresponding value of 
words not appearing is 0 e.t.

{ }1, 3, 4, 6, ,, 0, , ,0, ,0, ,0,j j j j j m jX T T T T T=  . (25)

Through the above process, the text vector 
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Through the derivation process, it can be obtained that 
as a variational self-encoding of an auto-encoder struc-
ture, the encoding layer is a process of extracting fea-
tures of text data. The hidden layer first calculates the 
mean and variance of the output of the coding layer, 
and then generates a Gaussian distribution for sampling. 
The decoding layer is a process of reconstructing the 
sampled data. Finally, the VAE feature extraction algo-
rithm generated by the variational lower bound 
( ), ;L xθ ϕ  is trained with the stochastic gradient de-

scent method, as detailed in Algorithm 1. 
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ly used as input to the VAE network for which text data 
need to be vectorized. Before that, a series of prepro-
cessing is required for text data, including lemmatiza-
tion, deletion of stop words and removal of low-
frequency words. Lemmatization refers to the transfor-
mation of morphological words such as singular, plural 
and tense into prototypes. Stop word is a very common 
word that is not strongly related to a particular domain 
terminology. Stop words contain no information and 
should be deleted. Low frequency words refer to words 
that only appear in a few texts and have no practical 
meaning to most texts, so they need to be removed. 

And then, the clean secondary sequence obtained after 
pretreatment is transformed by using TF-IDF to obtain 
the TF-IDF value corresponding to each word. For the 
text vector of an article, it is represented as the long 
vector composed of all words in the m-dimensional 
corpus. The corresponding value of words appearing in 
article j is the TF-IDF value obtained through calcula-
tion, while the corresponding value of words not ap-
pearing is 0 e.t. 

{ }1, 3, 4, 6, ,, 0, , ,0, ,0, ,0,j j j j j m jX T T T T T= 
. (25) 

Through the above process, the text vector 

{ } 1
m m n

i iX x ×
=

= ∈  corresponding to n articles 

are obtained. Finally, input m nX ×∈  into Algo-
rithm 1 to get the final d-dimensional feature rep-
resentation of m nX ×∈ . This means that 

m nX ×∈  will be used as input, and a VAE mod-
el based on input will be trained according to Al-
gorithm 1. When the iteration ends and the loss 
converges, m nX ×∈   will be input into the 
trained model again, and finally the hidden layer z 
will be extracted as the output. The output z at this 
time is the low-dimensional feature of d nZ ×∈  . 
This concept is illustrated in Figure 4. 

 

Algorithm 1 VAE is trained by stochastic gra-
dient descent. Use the variational lower bound 
( ), ;L xθ ϕ  

Input:  Training data { } 1
m m n

i iX x ×
=

= ∈ , 

      learning rate α , minibatch M, training epochs 
T. 

      Number of neurons: input layer neurons = m, 

      1st hidden encoder layer neurons = 1m , 

      2nd hidden encoder layer neurons = 2m , 

      hidden layer 𝑧𝑧𝑧𝑧 neurons = d, 

      1st hidden decoder layer neurons = 2m , 

 corresponding to n articles are ob-
tained. Finally, input 

 
 

 

sampling and the solid line indicates forward propaga-
tion. Among them, the encoding layer represents the 
process of extracting the characteristics of text data, the 

hidden layer is the VAE sampling process, and 
the decoding layer represents the process of re-
storing the sampled data to the original data. 

Figure 3 
Variational Auto-Encoder  

3.2 Optimization Algorithm 

Through the derivation process, it can be obtained that 
as a variational self-encoding of an auto-encoder struc-
ture, the encoding layer is a process of extracting fea-
tures of text data. The hidden layer first calculates the 
mean and variance of the output of the coding layer, 
and then generates a Gaussian distribution for sampling. 
The decoding layer is a process of reconstructing the 
sampled data. Finally, the VAE feature extraction algo-
rithm generated by the variational lower bound 
( ), ;L xθ ϕ  is trained with the stochastic gradient de-

scent method, as detailed in Algorithm 1. 

3.3 Text Feature Dimension for Deep VAE 

In the first step, unstructured text data cannot be direct-
ly used as input to the VAE network for which text data 
need to be vectorized. Before that, a series of prepro-
cessing is required for text data, including lemmatiza-
tion, deletion of stop words and removal of low-
frequency words. Lemmatization refers to the transfor-
mation of morphological words such as singular, plural 
and tense into prototypes. Stop word is a very common 
word that is not strongly related to a particular domain 
terminology. Stop words contain no information and 
should be deleted. Low frequency words refer to words 
that only appear in a few texts and have no practical 
meaning to most texts, so they need to be removed. 

And then, the clean secondary sequence obtained after 
pretreatment is transformed by using TF-IDF to obtain 
the TF-IDF value corresponding to each word. For the 
text vector of an article, it is represented as the long 
vector composed of all words in the m-dimensional 
corpus. The corresponding value of words appearing in 
article j is the TF-IDF value obtained through calcula-
tion, while the corresponding value of words not ap-
pearing is 0 e.t. 

{ }1, 3, 4, 6, ,, 0, , ,0, ,0, ,0,j j j j j m jX T T T T T= 
. (25) 

Through the above process, the text vector 

{ } 1
m m n

i iX x ×
=

= ∈  corresponding to n articles 

are obtained. Finally, input m nX ×∈  into Algo-
rithm 1 to get the final d-dimensional feature rep-
resentation of m nX ×∈ . This means that 

m nX ×∈  will be used as input, and a VAE mod-
el based on input will be trained according to Al-
gorithm 1. When the iteration ends and the loss 
converges, m nX ×∈   will be input into the 
trained model again, and finally the hidden layer z 
will be extracted as the output. The output z at this 
time is the low-dimensional feature of d nZ ×∈  . 
This concept is illustrated in Figure 4. 

 

Algorithm 1 VAE is trained by stochastic gra-
dient descent. Use the variational lower bound 
( ), ;L xθ ϕ  

Input:  Training data { } 1
m m n

i iX x ×
=

= ∈ , 

      learning rate α , minibatch M, training epochs 
T. 

      Number of neurons: input layer neurons = m, 

      1st hidden encoder layer neurons = 1m , 

      2nd hidden encoder layer neurons = 2m , 

      hidden layer 𝑧𝑧𝑧𝑧 neurons = d, 

      1st hidden decoder layer neurons = 2m , 

 into Algorithm 1 to 
get the final d-dimensional feature representation of 

 
 

 

sampling and the solid line indicates forward propaga-
tion. Among them, the encoding layer represents the 
process of extracting the characteristics of text data, the 

hidden layer is the VAE sampling process, and 
the decoding layer represents the process of re-
storing the sampled data to the original data. 

Figure 3 
Variational Auto-Encoder  

3.2 Optimization Algorithm 

Through the derivation process, it can be obtained that 
as a variational self-encoding of an auto-encoder struc-
ture, the encoding layer is a process of extracting fea-
tures of text data. The hidden layer first calculates the 
mean and variance of the output of the coding layer, 
and then generates a Gaussian distribution for sampling. 
The decoding layer is a process of reconstructing the 
sampled data. Finally, the VAE feature extraction algo-
rithm generated by the variational lower bound 
( ), ;L xθ ϕ  is trained with the stochastic gradient de-

scent method, as detailed in Algorithm 1. 

3.3 Text Feature Dimension for Deep VAE 

In the first step, unstructured text data cannot be direct-
ly used as input to the VAE network for which text data 
need to be vectorized. Before that, a series of prepro-
cessing is required for text data, including lemmatiza-
tion, deletion of stop words and removal of low-
frequency words. Lemmatization refers to the transfor-
mation of morphological words such as singular, plural 
and tense into prototypes. Stop word is a very common 
word that is not strongly related to a particular domain 
terminology. Stop words contain no information and 
should be deleted. Low frequency words refer to words 
that only appear in a few texts and have no practical 
meaning to most texts, so they need to be removed. 

And then, the clean secondary sequence obtained after 
pretreatment is transformed by using TF-IDF to obtain 
the TF-IDF value corresponding to each word. For the 
text vector of an article, it is represented as the long 
vector composed of all words in the m-dimensional 
corpus. The corresponding value of words appearing in 
article j is the TF-IDF value obtained through calcula-
tion, while the corresponding value of words not ap-
pearing is 0 e.t. 

{ }1, 3, 4, 6, ,, 0, , ,0, ,0, ,0,j j j j j m jX T T T T T= 
. (25) 

Through the above process, the text vector 

{ } 1
m m n

i iX x ×
=

= ∈  corresponding to n articles 

are obtained. Finally, input m nX ×∈  into Algo-
rithm 1 to get the final d-dimensional feature rep-
resentation of m nX ×∈ . This means that 

m nX ×∈  will be used as input, and a VAE mod-
el based on input will be trained according to Al-
gorithm 1. When the iteration ends and the loss 
converges, m nX ×∈   will be input into the 
trained model again, and finally the hidden layer z 
will be extracted as the output. The output z at this 
time is the low-dimensional feature of d nZ ×∈  . 
This concept is illustrated in Figure 4. 

 

Algorithm 1 VAE is trained by stochastic gra-
dient descent. Use the variational lower bound 
( ), ;L xθ ϕ  

Input:  Training data { } 1
m m n

i iX x ×
=

= ∈ , 

      learning rate α , minibatch M, training epochs 
T. 

      Number of neurons: input layer neurons = m, 

      1st hidden encoder layer neurons = 1m , 

      2nd hidden encoder layer neurons = 2m , 

      hidden layer 𝑧𝑧𝑧𝑧 neurons = d, 

      1st hidden decoder layer neurons = 2m , 

. This means that 

 
 

 

sampling and the solid line indicates forward propaga-
tion. Among them, the encoding layer represents the 
process of extracting the characteristics of text data, the 

hidden layer is the VAE sampling process, and 
the decoding layer represents the process of re-
storing the sampled data to the original data. 

Figure 3 
Variational Auto-Encoder  

3.2 Optimization Algorithm 

Through the derivation process, it can be obtained that 
as a variational self-encoding of an auto-encoder struc-
ture, the encoding layer is a process of extracting fea-
tures of text data. The hidden layer first calculates the 
mean and variance of the output of the coding layer, 
and then generates a Gaussian distribution for sampling. 
The decoding layer is a process of reconstructing the 
sampled data. Finally, the VAE feature extraction algo-
rithm generated by the variational lower bound 
( ), ;L xθ ϕ  is trained with the stochastic gradient de-

scent method, as detailed in Algorithm 1. 

3.3 Text Feature Dimension for Deep VAE 

In the first step, unstructured text data cannot be direct-
ly used as input to the VAE network for which text data 
need to be vectorized. Before that, a series of prepro-
cessing is required for text data, including lemmatiza-
tion, deletion of stop words and removal of low-
frequency words. Lemmatization refers to the transfor-
mation of morphological words such as singular, plural 
and tense into prototypes. Stop word is a very common 
word that is not strongly related to a particular domain 
terminology. Stop words contain no information and 
should be deleted. Low frequency words refer to words 
that only appear in a few texts and have no practical 
meaning to most texts, so they need to be removed. 

And then, the clean secondary sequence obtained after 
pretreatment is transformed by using TF-IDF to obtain 
the TF-IDF value corresponding to each word. For the 
text vector of an article, it is represented as the long 
vector composed of all words in the m-dimensional 
corpus. The corresponding value of words appearing in 
article j is the TF-IDF value obtained through calcula-
tion, while the corresponding value of words not ap-
pearing is 0 e.t. 

{ }1, 3, 4, 6, ,, 0, , ,0, ,0, ,0,j j j j j m jX T T T T T= 
. (25) 

Through the above process, the text vector 

{ } 1
m m n

i iX x ×
=

= ∈  corresponding to n articles 

are obtained. Finally, input m nX ×∈  into Algo-
rithm 1 to get the final d-dimensional feature rep-
resentation of m nX ×∈ . This means that 

m nX ×∈  will be used as input, and a VAE mod-
el based on input will be trained according to Al-
gorithm 1. When the iteration ends and the loss 
converges, m nX ×∈   will be input into the 
trained model again, and finally the hidden layer z 
will be extracted as the output. The output z at this 
time is the low-dimensional feature of d nZ ×∈  . 
This concept is illustrated in Figure 4. 

 

Algorithm 1 VAE is trained by stochastic gra-
dient descent. Use the variational lower bound 
( ), ;L xθ ϕ  

Input:  Training data { } 1
m m n

i iX x ×
=

= ∈ , 

      learning rate α , minibatch M, training epochs 
T. 

      Number of neurons: input layer neurons = m, 

      1st hidden encoder layer neurons = 1m , 

      2nd hidden encoder layer neurons = 2m , 

      hidden layer 𝑧𝑧𝑧𝑧 neurons = d, 

      1st hidden decoder layer neurons = 2m , 

 will be used as 
input, and a VAE model based on input will be trained 
according to Algorithm 1. When the iteration ends 
and the loss converges, 

 
 

 

sampling and the solid line indicates forward propaga-
tion. Among them, the encoding layer represents the 
process of extracting the characteristics of text data, the 

hidden layer is the VAE sampling process, and 
the decoding layer represents the process of re-
storing the sampled data to the original data. 

Figure 3 
Variational Auto-Encoder  

3.2 Optimization Algorithm 

Through the derivation process, it can be obtained that 
as a variational self-encoding of an auto-encoder struc-
ture, the encoding layer is a process of extracting fea-
tures of text data. The hidden layer first calculates the 
mean and variance of the output of the coding layer, 
and then generates a Gaussian distribution for sampling. 
The decoding layer is a process of reconstructing the 
sampled data. Finally, the VAE feature extraction algo-
rithm generated by the variational lower bound 
( ), ;L xθ ϕ  is trained with the stochastic gradient de-

scent method, as detailed in Algorithm 1. 

3.3 Text Feature Dimension for Deep VAE 

In the first step, unstructured text data cannot be direct-
ly used as input to the VAE network for which text data 
need to be vectorized. Before that, a series of prepro-
cessing is required for text data, including lemmatiza-
tion, deletion of stop words and removal of low-
frequency words. Lemmatization refers to the transfor-
mation of morphological words such as singular, plural 
and tense into prototypes. Stop word is a very common 
word that is not strongly related to a particular domain 
terminology. Stop words contain no information and 
should be deleted. Low frequency words refer to words 
that only appear in a few texts and have no practical 
meaning to most texts, so they need to be removed. 

And then, the clean secondary sequence obtained after 
pretreatment is transformed by using TF-IDF to obtain 
the TF-IDF value corresponding to each word. For the 
text vector of an article, it is represented as the long 
vector composed of all words in the m-dimensional 
corpus. The corresponding value of words appearing in 
article j is the TF-IDF value obtained through calcula-
tion, while the corresponding value of words not ap-
pearing is 0 e.t. 

{ }1, 3, 4, 6, ,, 0, , ,0, ,0, ,0,j j j j j m jX T T T T T= 
. (25) 

Through the above process, the text vector 

{ } 1
m m n

i iX x ×
=

= ∈  corresponding to n articles 

are obtained. Finally, input m nX ×∈  into Algo-
rithm 1 to get the final d-dimensional feature rep-
resentation of m nX ×∈ . This means that 

m nX ×∈  will be used as input, and a VAE mod-
el based on input will be trained according to Al-
gorithm 1. When the iteration ends and the loss 
converges, m nX ×∈   will be input into the 
trained model again, and finally the hidden layer z 
will be extracted as the output. The output z at this 
time is the low-dimensional feature of d nZ ×∈  . 
This concept is illustrated in Figure 4. 

 

Algorithm 1 VAE is trained by stochastic gra-
dient descent. Use the variational lower bound 
( ), ;L xθ ϕ  

Input:  Training data { } 1
m m n

i iX x ×
=

= ∈ , 

      learning rate α , minibatch M, training epochs 
T. 

      Number of neurons: input layer neurons = m, 

      1st hidden encoder layer neurons = 1m , 

      2nd hidden encoder layer neurons = 2m , 

      hidden layer 𝑧𝑧𝑧𝑧 neurons = d, 

      1st hidden decoder layer neurons = 2m , 

 will be input into 
the trained model again, and finally the hidden layer 
z will be extracted as the output. The output z at this 
time is the low-dimensional feature of 

 
 

 

sampling and the solid line indicates forward propaga-
tion. Among them, the encoding layer represents the 
process of extracting the characteristics of text data, the 

hidden layer is the VAE sampling process, and 
the decoding layer represents the process of re-
storing the sampled data to the original data. 

Figure 3 
Variational Auto-Encoder  

3.2 Optimization Algorithm 

Through the derivation process, it can be obtained that 
as a variational self-encoding of an auto-encoder struc-
ture, the encoding layer is a process of extracting fea-
tures of text data. The hidden layer first calculates the 
mean and variance of the output of the coding layer, 
and then generates a Gaussian distribution for sampling. 
The decoding layer is a process of reconstructing the 
sampled data. Finally, the VAE feature extraction algo-
rithm generated by the variational lower bound 
( ), ;L xθ ϕ  is trained with the stochastic gradient de-

scent method, as detailed in Algorithm 1. 

3.3 Text Feature Dimension for Deep VAE 

In the first step, unstructured text data cannot be direct-
ly used as input to the VAE network for which text data 
need to be vectorized. Before that, a series of prepro-
cessing is required for text data, including lemmatiza-
tion, deletion of stop words and removal of low-
frequency words. Lemmatization refers to the transfor-
mation of morphological words such as singular, plural 
and tense into prototypes. Stop word is a very common 
word that is not strongly related to a particular domain 
terminology. Stop words contain no information and 
should be deleted. Low frequency words refer to words 
that only appear in a few texts and have no practical 
meaning to most texts, so they need to be removed. 

And then, the clean secondary sequence obtained after 
pretreatment is transformed by using TF-IDF to obtain 
the TF-IDF value corresponding to each word. For the 
text vector of an article, it is represented as the long 
vector composed of all words in the m-dimensional 
corpus. The corresponding value of words appearing in 
article j is the TF-IDF value obtained through calcula-
tion, while the corresponding value of words not ap-
pearing is 0 e.t. 

{ }1, 3, 4, 6, ,, 0, , ,0, ,0, ,0,j j j j j m jX T T T T T= 
. (25) 

Through the above process, the text vector 

{ } 1
m m n

i iX x ×
=

= ∈  corresponding to n articles 

are obtained. Finally, input m nX ×∈  into Algo-
rithm 1 to get the final d-dimensional feature rep-
resentation of m nX ×∈ . This means that 

m nX ×∈  will be used as input, and a VAE mod-
el based on input will be trained according to Al-
gorithm 1. When the iteration ends and the loss 
converges, m nX ×∈   will be input into the 
trained model again, and finally the hidden layer z 
will be extracted as the output. The output z at this 
time is the low-dimensional feature of d nZ ×∈  . 
This concept is illustrated in Figure 4. 

 

Algorithm 1 VAE is trained by stochastic gra-
dient descent. Use the variational lower bound 
( ), ;L xθ ϕ  

Input:  Training data { } 1
m m n

i iX x ×
=

= ∈ , 

      learning rate α , minibatch M, training epochs 
T. 

      Number of neurons: input layer neurons = m, 

      1st hidden encoder layer neurons = 1m , 

      2nd hidden encoder layer neurons = 2m , 

      hidden layer 𝑧𝑧𝑧𝑧 neurons = d, 

      1st hidden decoder layer neurons = 2m , 

. This 
concept is illustrated in Figure 4.

Algorithm 1. VAE is trained by stochastic gradient 

descent. Use the variational lower bound ( ), ;L xθ ϕ

Input:  Training data 

 
 

 

sampling and the solid line indicates forward propaga-
tion. Among them, the encoding layer represents the 
process of extracting the characteristics of text data, the 

hidden layer is the VAE sampling process, and 
the decoding layer represents the process of re-
storing the sampled data to the original data. 

Figure 3 
Variational Auto-Encoder  

3.2 Optimization Algorithm 

Through the derivation process, it can be obtained that 
as a variational self-encoding of an auto-encoder struc-
ture, the encoding layer is a process of extracting fea-
tures of text data. The hidden layer first calculates the 
mean and variance of the output of the coding layer, 
and then generates a Gaussian distribution for sampling. 
The decoding layer is a process of reconstructing the 
sampled data. Finally, the VAE feature extraction algo-
rithm generated by the variational lower bound 
( ), ;L xθ ϕ  is trained with the stochastic gradient de-

scent method, as detailed in Algorithm 1. 

3.3 Text Feature Dimension for Deep VAE 

In the first step, unstructured text data cannot be direct-
ly used as input to the VAE network for which text data 
need to be vectorized. Before that, a series of prepro-
cessing is required for text data, including lemmatiza-
tion, deletion of stop words and removal of low-
frequency words. Lemmatization refers to the transfor-
mation of morphological words such as singular, plural 
and tense into prototypes. Stop word is a very common 
word that is not strongly related to a particular domain 
terminology. Stop words contain no information and 
should be deleted. Low frequency words refer to words 
that only appear in a few texts and have no practical 
meaning to most texts, so they need to be removed. 

And then, the clean secondary sequence obtained after 
pretreatment is transformed by using TF-IDF to obtain 
the TF-IDF value corresponding to each word. For the 
text vector of an article, it is represented as the long 
vector composed of all words in the m-dimensional 
corpus. The corresponding value of words appearing in 
article j is the TF-IDF value obtained through calcula-
tion, while the corresponding value of words not ap-
pearing is 0 e.t. 

{ }1, 3, 4, 6, ,, 0, , ,0, ,0, ,0,j j j j j m jX T T T T T= 
. (25) 

Through the above process, the text vector 

{ } 1
m m n

i iX x ×
=

= ∈  corresponding to n articles 

are obtained. Finally, input m nX ×∈  into Algo-
rithm 1 to get the final d-dimensional feature rep-
resentation of m nX ×∈ . This means that 

m nX ×∈  will be used as input, and a VAE mod-
el based on input will be trained according to Al-
gorithm 1. When the iteration ends and the loss 
converges, m nX ×∈   will be input into the 
trained model again, and finally the hidden layer z 
will be extracted as the output. The output z at this 
time is the low-dimensional feature of d nZ ×∈  . 
This concept is illustrated in Figure 4. 

 

Algorithm 1 VAE is trained by stochastic gra-
dient descent. Use the variational lower bound 
( ), ;L xθ ϕ  

Input:  Training data { } 1
m m n

i iX x ×
=

= ∈ , 

      learning rate α , minibatch M, training epochs 
T. 

      Number of neurons: input layer neurons = m, 

      1st hidden encoder layer neurons = 1m , 

      2nd hidden encoder layer neurons = 2m , 

      hidden layer 𝑧𝑧𝑧𝑧 neurons = d, 

      1st hidden decoder layer neurons = 2m , 

,
learning rate α , minibatch M, training epochs T.
Number of neurons: input layer neurons = m,
1st hidden encoder layer neurons = m1,
2nd hidden encoder layer neurons = m2,
hidden layer z neurons = d,
1st hidden decoder layer neurons = m2,
2nd hidden encoder layer neurons =  m1,
output layer neurons = m.

Output:  Z (Input 

  

      2nd hidden encoder layer neurons = 1m , 

      output layer neurons = m. 

Output:  Z (Input { } 1
m m n

i iX x ×
=

= ∈  into the 
trained encoder to obtain the low-dimensional 

feature { } 1
d d n

i iZ z ×
=

= ∈ ) 

1:  Random initialization parameter θ , ϕ  

2:  for epoch = 1:T do 

3: Sample M samples randomly from data set 

{ } 1
m m n

i iX x ×
=

= ∈  : MX  

4: Sample 𝜀𝜀𝜀𝜀 from the noise distribution ( )0;N I : 
ε  

5: g is updated according to , ( , ; , )ML xθ ϕ θ ϕ ε∇  

6: Using gradients g to update parameters θ , ϕ  

7: Using gradients parameters ϕ  to update enco-
ders' weight matrix qW . Using gradients parame-
ters θ  to update decoders' weight matrix pW  

8: end for 

9: return The low-dimensional feature Z is obtai-
ned by the trained encoder network ( | )q z xϕ  of 

the data set X 

 
Figure 4 
Text feature dimension for VAE 

 
 

 
4. Experimental Results and Discussion 

In this section, the VAE algorithm is used to reduce the 
dimensionality of 3 datasets and compare it with 7 clas-
sical dimensionality reduction methods. Then, the text 
data is generated as a labeled text vector (X, Y), where 

{ } 1
m m n

i iX x ×
=

= ∈ , labels n
iY y= ∈ . The VAE 

network is first trained using the text vector X, and then 

the encoder output { } 1
d d n

i iZ z ×
=

= ∈  is taken as 
the low dimensional feature of the text vector X. 
Finally, VAE is compared with other feature di-
mension reduction methods in the classification 
experiment. 

In addition, this paper uses the Tensorflow 
framework to design and implement all models, 
and uses the GPU version to accelerate the train-
ing time of the model. Complete all deep learning 
work under the following configuration: 

CPU: Inter(R) Core(TM) i7-7700HQ 
CPU@2.80GHz, memory: 24.0G DDR4, graphics 
card: NVIDIA GeForce GTX 1060 3.0G, tensor-
flow-gpu: 1.5. 

All the images generated by the experiment were 
drawn using matlab2016. 

4.1 Dataset Summarization 

Experiments are contained three public text da-
tasets, such as text data and gene expression. 

Basehock has 1993 data and each line in data rep-
resents a text feature vector is 4862 dimension. 

DBWorld contains 64 e-mails collected from 
DBWorld mailing list [50]. DBWorld has 64 data 
and each data has 3721 dimension vectors. 

In RCV1_4Class dataset, there are 9,625 docu-
ments with 29,992 distinct words and including 4 
categories [5]. It means that RCV1_4Class has 
9625 data and each data has 29992 dimension 
vectors. 

These datasets are described in Table 2. 
Table 2 
Data description 
ID Database #Instances #Features #Classes 

1 DBWorld 64 3721 2 

2 Basehock 1993 4862 2 

3 RCV1_4Class 9625 29992 4 

4.2 Experimental Setting 

To verify the efficiency of VAE, the VAE is 
compared with the following seven feature di-
mensional reduction methods mentioned in the re-
lated work chapter. They are PCA, MDS, LLE, 
LE, Isomap, RBM and AE. Figure 5 shows the 
comparison of dimension reduction by the above 
methods in the Swiss roll dataset. 
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al datasets. The performance of these new datasets 
are compared by inputting kNN, RF and SVM. Since 
the evaluation of the classification results is very im-
portant, this paper uses the evaluation method as de-
scribed below. There are positive and negative sam-
ples in the binary classification problem [45].
In order to verify the feature dimensionality reduction 
performance of different methods, accuracy, precision, 
recall and F1-score are used as evaluation indicators.
By using ten cross tests, ten classification results can 
be obtained at last. So that, the classification accuracy 
shown at last is composed of average value and stan-
dard deviation (mean% ± std%), and the best results 
are highlighted in bold.

4.4. Sensitivity of the Parameters
In VAE, the effect of dimensionality reduction and the 
performance of the final classification effect will be 
affected by different parameter settings. In the follow-
ing pages, some parameters of the VAE model in Algo-

rithm 1 are changed to analyze the dimensionality re-
duction effect and classification results of all datasets. 
As can be seen in Figure 7, although the global losses 
of the different datasets is different, the global losses 
of all datasets begins to converge after about 20 iter-
ations. It can be seen from the experiment in Figure 7 
that the text data converges rapidly. Therefore, in the 
following experiment, the number of iterations for 
training the VAE model is fixed at 20, and DBWorld 
dataset uses full batch size and the other datasets use 
minibatch that the small batch data are set to 200.
The implementation of VAE network in this paper is 
based on a multi-layer symmetric AE network, the 
effect of encoder hidden layers' neurons and decoder 
hidden layers' neurons on accuracy need to be studied. 
For Algorithm 1, the m1 is set as {100,150,200,250,300, 
350,400,450,500}, the m2 is set as {100,150,200,250, 
300,350,400,450,500}, and set the hidden layer dimen-
sion z to 100. Figure 8 shows the relationship among 
classification accuracy, encoder hidden layers' neu-

Figure 7
Relationship among global loss, number of iterations and hidden dimension. The global losses of all datasets begin to 
stabilize after approximately 20 iterations
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rons and decoder hidden layers' neurons. It can be seen 
from Table 3 that different datasets have different sen-
sitivity to network structure. This may be due to the 
size of the datasets, infer from Tables 2 and Table 3, it 
can be concluded that for more dimensional data, more 
neurons are needed to extract features better.

Database Encoder1 Encoder2 Decoder1 Decoder2

DBWorld 100 350 350 100

Basehock 250 350 350 250

RCV1_4Class 500 500 500 500

Table 3
Parameter under the highest accuracy

Figure 9
Relationship among classification accuracy, number of hidden layers and learning rate
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Then, in order to continue learning the effect of 
learning rate α on accuracy refer to Table 3 and the 
α is set as {0.0005,0.0006,…, 0.0009,0.001,0.002, 
0.003,0.004} and the hidden layer dimension is set to 
{20,30,40,50,60,70,80,90,100}. Figure 9 shows the re-
lationship among classification accuracy, number of 
hidden layers and learn rate. It can be seen from Figure 
9 that different datasets have different sensitivity to 
learning rate. The classification accuracy of DBWorld 
and Basehock fluctuate randomly with the change 
of learning rate, while the classification accuracy of 
RCV1_4Class is hardly affected by learning rate.

4.5. Experimental Results
Table 4 shows the classification effect of all differ-
ent dimensional reduction algorithms on different 
datasets by kNN classifier. Tables 5 and 6 show the 
classification effect by SVM and RF, two categories 

of DBWorld and Basehock datasets, and four cate-
gories of RCV1_4Class dataset obtained the highest 
classification accuracy in the three classification al-
gorithms. In kNN classification algorithm, the classi-
fication results of accuracy obtained according to the 
above datasets order are 90.75%, 94.76% and 95.12%. 
In SVM classification algorithm, the classification re-
sults of accuracy are 92.86%, 97.55%, and 95.63%. In 
RF classification algorithm, the classification results 
of accuracy are 89.19%, 97.34%, and 95.48%. In partic-
ular, in the RCV1_4Class dataset, VAE obtained the 
accuracy rates of 95.12%, 95.63% and 95.48% in the 
three classifiers respectively, which are much higher 
than the classification result of other dimension re-
duction methods. In the following experiments, three 
other evaluation indicators of the classification algo-
rithm are also tested, it can be found that the dimen-
sionality reduction of the text data has little deviation 
in the four evaluations.
The results of the classification experiments show 
that VAE performs better than other dimensionality 
reduction methods in sparse and discrete datasets. 
VAE performed well in both the two and four cate-
gories. In the DBWorld dataset, even though there 
are only 64 datasets, VAE still achieves the highest 
results in the case of less training data, and VAE has 
achieved a greater improvement than AE. In contrast, 
in Basehock and RCV1_4Class datasets with high 
data dimensions and large data volumes, VAE can also 
achieve the best classification results. 
The text features are transformed from the original 
high-dimensional and high-sparse vector into the 
low-dimensional dense vector. VAE conduct dimen-
sionality reduction on the text data, through the clas-
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Table 4
Classification results of different datasets by kNN

Evaluation metric Accuracy Recall

method/dateset DBWorld Basehock RCV1_4Class DBWorld Basehock RCV1_4Class
PCA 90.54±11.11 83.67±2.33 91.97±1.19 93.11±7.94 89.08±1.60 93.43±0.97
MDS 89.29±8.83 84.08±2.96 91.88±0.74 92.28±7.48 89.35±1.99 93.39±0.61
LLE 73.21±17.00 84.12±1.47 81.14±1.43 80.94±10.9 89.39±0.98 84.64±1.19
LE 66.43±17.17 91.06±1.52 88.39±1.16 70.56±7.31 94.02±1.07 90.57±0.99

Isomap 64.46±19.48 85.57±2.31 89.09±0.87 71.94±10.67 90.39±1.43 91.10±0.75
RBM 65.36±21.08 80.93±2.93 55.19±1.75 71.39±11.72 87.22±1.89 64.06±1.45

AE 63.57±15.50 89.81±3.13 82.16±1.14 69.28±7.05 93.21±2.11 85.50±0.95
VAE 90.75±11.23 94.76±1.27 95.12±0.72 93.24±9.57 96.48±0.84 95.71±0.66

Evaluation metric Precision F1-Score

PCA 94.33±7.30 89.14±1.52 93.41±0.98 91.84±9.85 89.02±1.55 93.40±0.97
MDS 91.83±7.54 89.46±1.86 93.31±0.63 91.15±7.58 89.30±2.00 93.32±0.62
LLE 84.35±13.69 89.39±0.97 84.79±1.17 76.31±14.78 89.32±0.96 84.67±1.18
LE 62.79±16.00 94.00±1.03 90.50±0.89 62.59±10.8 93.99±1.03 90.50±0.95

Isomap 62.54±20.61 90.71±1.53 91.12±0.75 63.28±15.61 90.27±1.54 91.05±0.76
RBM 65.87±18.37 87.51±1.92 63.96±1.45 63.71±15.03 87.14±1.98 63.76±1.43

AE 62.24±17.11 93.17±2.13 85.56±1.03 61.55±10.91 93.15±2.10 85.50±0.99
VAE 94.98±9.54 96.5±0.86 95.95±0.63 94.10±9.56 96.48±0.85 95.81±0.64

Table 5
Classification results of different datasets by SVM

Evaluation metric Accuracy Recall

method/dateset DBWorld Basehock RCV1_4Class DBWorld RCV1_4Class
PCA 90.46±7.17 81.43±2.23 85.78±0.90 90.28±4.97 88.12±0.76
MDS 90.54±8.83 86.37±1.54 85.78±1.26 91.28±10.48 88.15±0.96
LLE 86.61±10.25 89.07±2.23 74.26±1.24 88.33±11.40 79.19±0.92
LE 84.11±15.58 94.81±13.80 87.49±1.02 88.83±11.49 89.74±0.76

Isomap 75.89±13.58 89.96±2.39 89.36±1.16 79.39±13.26 91.26±0.97
RBM 78.39±19.52 81.38±2.22 46.31±1.88 83.33±14.64 55.49±1.52

AE 86.43±14.36 96.55±1.38 88.89±1.06 90.33±10.64 90.83±0.88
VAE 92.86±12.98 97.55±0.93 95.63±0.57 92.00±10.43 96.32±0.50

Evaluation metric Precision F1-Score

PCA 90.11±5.11 87.70±1.34 88.38±0.83 90.53±5.77 88.18±0.79
MDS 90.77±13.1 90.87±1.03 88.34±0.94 89.83±11.95 88.19±0.96
LLE 86.72±12.39 92.73±1.57 79.84±0.91 86.31±11.69 79.21±0.93
LE 86.67±13.66 96.54±0.92 89.95±0.83 84.65±14.54 89.80±0.80

Isomap 78.94±16.24 93.27±1.59 91.31±0.97 76.84±14.04 91.26±0.97
RBM 84.89±15.27 87.53±1.50 56.67±1.98 82.63±14.84 55.40±1.68

AE 90.89±10.03 97.66±0.99 91.07±0.86 88.89±11.86 90.93±0.88
VAE 90.91±10.53 98.34±0.60 96.26±0.50 91.45±10.66 96.28±0.50
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sification experiment can be concluded that VAE can 
well extract the semantic information in the text. In-
fer from this method of text dimensionality reduction 
greatly reduces the time and space cost of subsequent 
classification experiments.
In summary, VAE is feasible for dimensionality re-
duction of text data.

5. Conclusions and Future Work
In this paper, some datasets perform unsupervised 
dimensionality reduction by using VAE. Without la-
bels, VAE learned the low-dimensional representation 
from the high-dimensional text data. Through several 
comparison experiments, VAE still performs well in 
dimensionality reduction of text datasets. The classi-
fication accuracy of VAE on different data sets is im-
proved by at least 0.21% and at most 3.7%. Under the 
appropriate number of iterations and parameters, the 

Table 6
Classification results of different datasets by RF

Evaluation metric Accuracy Recall

method/dateset DBWorld Basehock RCV1_4Class DBWorld Basehock RCV1_4Class

PCA 86.19±18.16 86.80±1.52 92.64±0.48 86.25±18.43 86.77±1.47 92.44±0.53

MDS 84.52±17.51 86.35±1.29 92.90±0.79 84.58±17.79 86.30±1.23 92.75±0.84

LLE 83.33±16.19 85.90±2.78 83.76±1.25 79.00±21.00 85.91±2.80 83.35±1.32

LE 83.10±18.76 93.18±1.66 91.08±0.67 83.75±17.84 93.14±1.57 90.77±0.72

Isomap 78.10±18.77 85.35±2.31 91.51±0.72 78.75±18.68 85.41±2.32 91.25±0.75

RBM 73.57±20.80 76.11±2.94 31.44±1.15 73.17±20.78 76.14±2.92 26.43±0.55

AE 65.95±17.50 91.97±1.95 78.77±1.34 63.17±16.38 92.01±1.88 78.05±1.32

VAE 89.19±17.84 97.34±0.95 95.48±0.58 86.83±18.34 97.34±0.92 95.14±0.67

Evaluation metric Precision F1-Score

PCA 88.00±16.99 86.83±1.50 92.52±0.43 85.17±19.51 86.76±1.50 92.47±0.49

MDS 86.75±16.46 86.43±1.24 92.76±0.72 83.45±18.80 86.29±1.28 92.74±0.78

LLE 81.92±19.00 85.88±2.78 84.72±1.03 78.21±20.87 85.87±2.79 83.63±1.28

LE 86.58±16.99 93.25±1.74 90.99±0.62 82.19±19.58 93.15±1.66 90.85±0.67

Isomap 80.9±18.44 85.42±2.41 91.45±0.71 77.40±19.33 85.32±2.32 91.32±0.73

RBM 69.92±29.46 76.30±3.02 37.82±6.97 69.17±25.61 76.03±2.91 15.94±0.74

AE 64.83±20.75 92.08±2.06 79.13±1.20 60.28±18.50 91.95±1.95 78.38±1.31

VAE 89.08±17.67 97.37±0.96 95.27±0.58 87.94±18.53 97.33±0.95 95.19±0.63

ability of VAE to reconstruct text data and reduce fea-
ture dimension has good effect. However, in data clas-
sification, the elements in the sample are assumed to 
be independent of each other. How to improve classifi-
cation standards has not been further explored. In fact, 
the classification effect is not ideal for samples with 
only reduced dimensions. In the future work, VAE will 
adapt to more datasets in the dimensionality reduction 
and have better performance in text classification.
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