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In this paper, a distributed iterative learning formation control (DILFC) algorithm for the robust formation 
problem of multiple non-holonomic wheeled mobile robots (WMRs) in repetitive motion environment was 
proposed, and the convergence under channel noise and switching communication topology was analyzed. 
Firstly, the consensus tracking error is constructed. Next, the controller is designed based on the predicted and 
the current learning term between robots, and the switching topology is introduced into the formation algo-
rithm in the form of piecewise function. By adoption of a graph dependent matrix norm to derive a simpler con-
vergence condition. And the norm upper bound for the tracking stability of the system are obtained. The results 
show that although the channel noise accumulates in both the time domain and iteration domain, the validity 
of formation can be guaranteed by adjusting the sampling time of the system. To illustrate the effectiveness of 
the proposed scheme, numerical simulation results of a group of WMRs are presented.
KEYWORDS: multiple wheeled mobile robots, formation tracking, iterative learning control, channel noise, 
switching topology.
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1. Introduction
In recent years, WMR has been widely used in the lo-
gistics industry, military reconnaissance, agricultur-
al transportation and other practical projects [24], so 
the control of WMR has been rapidly developed, such 
as sliding mode control [27], backstepping control [7], 
adaptive control [15], feedback control [19] and ob-
server-based control [1], etc.
Due to the limited performance of a single WMR, it is 
difficult to complete a large project alone, so multiple 
WMRs cooperative control is more practical. More and 
more scholars have done a lot of research on the coop-
erative control of multiple WMRs, where formation 
control is one of the important research directions. 
Formation control is a coordinated movement that a 
group of similar WMRs formed and maintain a certain 
formation in the process of movement. Traditional 
formation research methods mainly include lead-
er-following formation [3], behavior-based method 
[2], virtual structure method [11] and based on graph 
theory distributed formation method [23]. Shao et al. 
[21] proposed a three-layer hybrid control architecture 
for controlling groups of mobile robots, to achieve for-
mation based on the leader-following scheme. Ou et al. 
[16] transformed the tracking error of the robot into 
two subsystems and designed a continuous distributed 
controller for each robot by analyzing the two subsys-
tems respectively, the group of WMRs can track the 
reference trajectory was achieved. In WMR formation 
control, battery power and the processor’s computing 
ability is limited, so how to design more efficient com-
munication and control methods between the WMRs 
to become a challenging problem to be solved. 
The distributed control scheme allows computing 
work to be divided among all WMRs in the forma-
tion, each WMR sharing information with its leader 
only via wireless network, so the design of distribut-
ed formation control scheme becomes an important 
research direction. In [10] and [18], the consensus 
information is used to construct the formation error 
and design the distributed formation algorithm. How-
ever, all of the above control approaches are asymp-
totic stable control along the time domain. Although 
stable formation can be achieved, the transient per-
formance of the system is poor at the initial stage.
In addition, there is a class of tasks that are run re-
peatedly with finite time interval in some practical 

applications of WMR. Most of the existing formation 
control algorithms are asymptotically stable control 
in time domain, but the transient performance was 
not ideal. Iterative learning control (ILC) is an ef-
fective solution for single WMR tracking trajectory 
in repetitive environment [22], which can achieve 
the complete tracking in time domain. ILC has been 
widely used in the field of collaborative control [6, 13, 
14]. Liu and Jia [14] studied the formation problem 
for discrete-time multi-agent systems with unknown 
nonlinear dynamics, a distributed iterative learning 
method was proposed based on the local formation 
error data and the sufficient conditions for preserv-
ing formation was deduced. The accurate formation 
was guaranteed in the presence of initial formation 
errors and switching topology network. Li and Li 
[13] considered the consensus tracking problem for 
a class of nonlinear multi-agent systems, an adaptive 
ILC consensus algorithm was developed, where the 
convergence condition was given based on the Lya-
punov stability theory. Bu et al. [6] provided a mod-
el-free adaptive iterative learning consensus track-
ing strategy by using the dynamical linearization 
technique along with the iteration domain, to settle 
the consensus tracking problem for nonlinear multi-
agent systems. However, the above collaborative and 
formation algorithms were designed on the founda-
tion of multi-agent systems. Since WMR is a typical 
nonlinear system with non-holonomic constraints, 
these algorithms cannot be directly applied to WMRs 
formation, so it is necessary to study multiple WMRs 
distributed formation algorithms based on ILC.
In practice, the data transmission of wireless com-
munication network between WMRs is not always 
correct, which makes it more difficult to design and 
analyze the convergence of the controller. To solve 
the problem of ILC with network constraints, a se-
ries of solutions have been proposed in [4, 5, 8, 9, 12, 
20, 26]. Zhang and Li [26] introduced the Sigma Del-
ta quantizer with limited communication data rate 
into the control system, a quantized iterative learning 
control was designed and the analysis of convergence 
utilized a decreasing learning gain. to solve the track-
ing problem of continuous-time multi-agent system 
in the case of quantization and packet losses. Bu et 
al. [5] studied the robustness of the ILC algorithm for 
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nonlinear systems with random measurement distur-
bance and proposed an improved iterative learning 
methodology of gain reduction based on p-type ILC, 
which can guarantee that the tracking error of the 
nonlinear system in presence of measurement distur-
bances to zero. 
However, unlike measurement noise and state dis-
turbance, channel noise is introduced externally. Be-
cause of the different positions it produces, channel 
noise can be divided into sensor-controller (SC) noise 
and controller-actuator (CA) noise. The former aris-
es when exchanging measurement data between the 
sensor and the controller, and involves itself in the 
learning process. The latter arises when exchanging 
input data between the controller and the actuator, 
and affects the convergence of output error directly. 
Huang and Fang [8] studied the channel noise in ILC, 
and it was found that the contributions of SC and CA 
noise to errors were affected by the learning gain. 
Huang et al. [9] proposed an adaptive learning gain 
ILC to improve the convergence performance of the 
linear system with channel noise. However, WMR as 
a typical nonlinear system, the above strategy cannot 
be directly expanded to multiple WMRs formation 
control with channel noise. 
Based on the above analysis, this paper designs a dis-
tributed iterative learning formation control algo-
rithm for formation problem of multiple WMRs, and 
explores the convergence problem of the system un-
der the channel noise and switching topologies. Com-
pared with [26] and [5], this paper mainly analyzes the 
formation system of multiple mobile robots, which is 
more complex than multi-agent system. Compared 
with [9], this paper solves the convergence problem 
of channel noise in the nonlinear system of mobile 
robots and extends it to formation motion. The main 
contributions of this paper are as follows: 
1 Compared with the traditional multiple WMRs 

formation algorithm, the proposed algorithm is 
based on the iteration axis instead of the time axis. 
The transient performance is better because it can 
track each time point in a limited running interval.

2 Based on the nonlinear system model of mobile 
robot, the consensus error is constructed. The cur-
rent and predicted errors are introduced into the 
controller as learning items to improve the forma-
tion effect of the system under channel noise. The 

upper bound of formation error is obtained and the 
effect of channel noise on the formation tracking 
effect of multiple WMRs is analyzed.

3 The formation tracking algorithm of multiple 
WMRs under fixed topology is extended to the 
iteration-varying communication topology. By 
adoption of a graph dependent matrix norm, the 
convergence condition with gain is specified. Such 
a norm enables us to derive a simpler convergence 
condition.

The rest of this paper is organized as follows. In sec-
tion 2, the necessary preliminary work and the con-
trol objective are given respectively. In section 3, the 
formation tracking controller is designed, and the in-
fluence of channel noise on formation tracking is ana-
lyzed. The numerical simulation is given in section 4. 
Finally, we conclude this paper in section 5.

2. Preliminaries and Problem 
Formulation
2.1. Preliminaries
In this paper, R  represents the set of real numbers, 
|| ||A represents a matrix norm for the matrix n nA R ×∈ , 

{}diag ⋅   represents the diagonal matrix and I rep-
resents the identity matrix. On algebraic graph theo-
ry, the communication topology between WMRs can 
be described by a mathematical matrix. The weight-
ed directed graph is denoted as { , , }G V E A= , where 

{1,2, , }V N= …  is the set of vertexes, it represents the 
set of robots in this paper. E V V⊆ ×  is the set of edges. 

{ | ( , ) }iN j V j i E= ∈ ∈ denotes the neighborhood of 
robot i. n nA R ×∈  express the weighted adjacency ma-
trix of G , where 0ija > , if ( , )i j E∈ , otherwise 0ija = . 
The Laplacian matrix of G  is expressed by L D A= − , 
where 1 2{ , , , }nD diag d d d= …  is called the in-degree 
matrix and 1

n
i j ijd a== ∑ . A directed graph is said to be 

strongly connected if a path exists between any two ver-
texes in the graph. Assume that the directed graph con-
tains at least one spanning tree, with node 0 as the root.

2.2. Problem Formulation
We consider a group of N  WMRs, each robot has 
the same mechanical structure as shown in Fig. 1. 

, , ,( ), ( ), ( )i k i k i kx t y t tθ  are the generalized position and 
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orientation of the WMR i , 1,2,...i N= . It is assumed 
that the wheels of the robot and the ground cannot 
move in a direct sideslip, then WMR has the following 
non-holonomic constraint,

, ,
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, ,
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Under the non-holonomic constraint, the dis-
crete-time model of the WMR i at the k-th iteration in 
the form as follows:
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where [0, ]t T∈  is the discrete time, 1,2,...k =  is itera-
tion times, T∆ is the sampling time. , ,( ) , ( )i k i kv t w t  are 
linear and angular velocities respectively.
The states matrix, velocities matrix and con-
trol input matrix of WMR i  are represented by 

, , ,( ), ( ), ( ( ))i k i k i kt u t B tη η  respectively,
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Then equation (2) can be rewritten as follows:

, , , ,( 1) ( ) ( ( )) ( ).i k i k i k i kt t B t u tη η η+ = + (3)

The non-holonomic WMR model (3) adopted in this 
paper satisfies the following properties:
Property 1: The nonlinear matrix function ,( ( ))i kB tη  
is globally Lipschitz in , ( )i k tη , that is

, j, , j,( ( )) ( ( )) ( ) ( ) ,i k i k b i k kB t B t l t tη η η η− ≤ −  

for [0, ]t T∀ ∈ , and bl  is a positive constant.
Property 2: the matrix function ,( ( ))i kB tη  is bound as 

,|| ( ( )) ||i k BB t bη ≤ , where Bb  is a positive constant.
In this paper, the reference trajectory dη  is regarded 
as the running track of a virtual leader WMR, and 
the virtual leader is denoted as number 0. Defining 

1{ , , , , }j nS diag s s s= … … , where 1is =  if the WMR i 
can obtain the reference trajectory, otherwise 0is = . 
We assume that the reference trajectory ( 1)d tη +  is 
known, there is a bounded expected control input 

( )du t , satisfying

( 1) ( ) ( ( )) ( ),d d d dt t B t u tη η η+ = + (4)

where || ( ) ||d udu t b≤ .
The goal of formation control in this paper is design-
ing a suitable control algorithm for the velocity ( )ku t  
of WMR, so that all WMRs can maintain the desired 
formation during the tracking along the reference 
track. For all [0, ]t T∈  and 1,2,i N= … , the following 
equation is satisfied:

,lim ( ) ( ) ( ),i k d ik
t t d tη η

→∞
= + (5)

where ( )id t  denotes the desired trajectory deviation 
of WMR i. Different WMR may have different desired 
trajectory, ie, ( ) ( )i jd t d t≠  for i j≠ . In addition, ob-
jective (5) implies , ,lim ( ) ( ) ( )j k i k jik

t t d tη η
→∞

− = .
According to the rules of communication transmis-
sion between adjacent WMRs, the consensus error is 
given:
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where ,i ja A∈  express the communication of the 
WMR i  and j  in the adjacency matrix.

Figure 1 
Configuration of WMR
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Property 1: The nonlinear matrix function 
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constant. 

In this paper, the reference trajectory dη  is 
regarded as the running track of a virtual leader 
WMR, and the virtual leader is denoted as 
number 0. Defining 1{ , , , , }j nS diag s s s= … … , 
where 1is =  if the WMR i can obtain the 
reference trajectory, otherwise 0is = . We 
assume that the reference trajectory ( 1)d tη +  is 
known, there is a bounded expected control 
input ( )du t , satisfying 
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designing a suitable control algorithm for the 
velocity ( )ku t  of WMR, so that all WMRs can 
maintain the desired formation during the 
tracking along the reference track. For all 
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where ( )id t  denotes the desired trajectory 
deviation of WMR i. Different WMR may have 
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i j≠ . In addition, objective (5) implies 
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According to the rules of communication 
transmission between adjacent WMRs, the 
consensus error is given: 
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where ,i ja A∈ express the communication of the 
WMR i  and j  in the adjacency matrix. 

Let , ,( ) ( ) ( ) ( )i k d i i kt t d t tδη η η= + −  express the 
tracking error of the WMR i . 

When WMRs transmit information over the 
wireless network, the input , ( )i ku t  and output 
error , ( )i k tδη  need to be transmitted from the 
controller to the actuator and form the sensor to 
the controller respectively. The network model 
is shown in Fig. 2. 

The CA and SC channel noise are represented 
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Let , ,( ) ( ) ( ) ( )i k d i i kt t d t tδη η η= + −  express the track-
ing error of the WMR i .
When WMRs transmit information over the wireless 
network, the input , ( )i ku t  and output error , ( )i k tδη  
need to be transmitted from the controller to the ac-
tuator and form the sensor to the controller respec-
tively. The network model is shown in Fig. 2.

Figure 2 
The WMR system transmits information over wireless 
networks
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error and the input data can be represented as 
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Remark 1: Due to the unreliability of the 
wireless network, the output errors , ( )i k tδη  
received by the controller and input data , ( )i ku t  
obtained by the actuator will be mixed with the 
channel noise during the transmission. 
Figure 2  

The WMR system transmits information over 
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With the above consensus error, the DILFC 
algorithm as shown in Fig. 3 is proposed: 
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                                       (12) 

where 1( )tΓ  and 2 ( )tΓ  are bounded learning 
gain matrices. The control signal consists is 

composed of the predicted learning term 
1 ,( ) ( 1)i kt tξ ∗Γ +  at time 1t +  that from the kth 

iteration and the current term 1 , 1( ) ( )i kt tξ ∗
+Γ  can 

improve the stability of the system under the 
unpredictable uncertainty. 

To facilitate the analysis, we have the following 
assumptions: 

Assumption 1: The initial state of each WMR is 
the same in every iteration and , (0) (0)i k dx x= . 
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directional ,m nb b  are positive constant. 

Assumption 3: Each switching communication 
graph has a spanning tree with a virtual leader 
as the root. 

Remark 2： Assumption 1 is a basic condition of 
the ILC system, the identical initial condition is 
still followed in this paper. Furthermore, in [9], 
channel noise is assumed to be bounded, and 
the same assumption is still adopted in this 
paper. So, Assumption 1 and Assumption 2 are 
reasonable. 
Figure 3  

Block diagram of the scheme performed for WMR 
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channel noise during the transmission. 
Figure 2  

The WMR system transmits information over 
wireless networks 

 
 

3. Control Algorithm Design 
and Convergence Analysis 

To design a formation algorithm under 
iteration-varying communication topology, we 
design a switching signal function 

( ) : [0, ) {1, , M}kσ ∞ …  to describe variable 
communication topology, where { }1, , Ms∈ …  
and 1{ , , }MG G Gσ = …  are identical in quantity 
and order. In the case that the topology 
structure changes with iteration, the model and 
consensus formation error are shown as follows 

, , , ,( 1) ( ) ( ( )) ( ),i k i k i k i kt t B t u tη η η∗ + = +                     (10) 

, , , ,

,

( ) ( )( ( ) ( ))

( )( ( )).
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i i k

t a t t t

s t t

ξ δη δη

δη

∗

∈
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+
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                 (11) 

With the above consensus error, the DILFC 
algorithm as shown in Fig. 3 is proposed: 

, 1 , ,1 , ,2 , 1( ) ( ) ( ) ( 1) ( ) ( ),i k i k i i k i i ku t u t t t t tξ ξ∗ ∗
+ += + Γ + + Γ   

                                       (12) 

where 1( )tΓ  and 2 ( )tΓ  are bounded learning 
gain matrices. The control signal consists is 

composed of the predicted learning term 
1 ,( ) ( 1)i kt tξ ∗Γ +  at time 1t +  that from the kth 

iteration and the current term 1 , 1( ) ( )i kt tξ ∗
+Γ  can 

improve the stability of the system under the 
unpredictable uncertainty. 

To facilitate the analysis, we have the following 
assumptions: 

Assumption 1: The initial state of each WMR is 
the same in every iteration and , (0) (0)i k dx x= . 

Assumption 2: The channel noise ( ), ( )m t n t are 
bounded for every iteration, that 
is

0
max || ( ) ||k mt T

m t b
≤ ≤

≤ , 
0
max || ( ) ||k nt T

n t b
≤ ≤

≤ , where 

directional ,m nb b  are positive constant. 

Assumption 3: Each switching communication 
graph has a spanning tree with a virtual leader 
as the root. 

Remark 2： Assumption 1 is a basic condition of 
the ILC system, the identical initial condition is 
still followed in this paper. Furthermore, in [9], 
channel noise is assumed to be bounded, and 
the same assumption is still adopted in this 
paper. So, Assumption 1 and Assumption 2 are 
reasonable. 
Figure 3  

Block diagram of the scheme performed for WMR 

 
Definition: The α -norm is defined for a 
function [ ]: 0, nT → Rh  as 

1( ) sup ( ) , 1.
t

t T
t

α
α

α∈

 ⋅ = > 
 

h h   

For convenience, we define , 1, 2, ,i i Nδ = …   as 
the i th eigenvalue of L S+ . Based on these 
assumptions, the following theorem gives the 
main results of this paper. 

Theorem: Considering multiple WMRs satisfies 
assumptions 1~3, the DILFC controller is 

To facilitate the analysis, we have the following as-
sumptions:
Assumption 1: The initial state of each WMR is the 
same in every iteration and , (0) (0)i k dx x= .
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Assumption  2: The channel noise ( ), ( )m t n t are 
bounded for every iteration, that is

0
max || ( ) ||k mt T

m t b
≤ ≤

≤ , 

0
max || ( ) ||k nt T

n t b
≤ ≤

≤ , where directional ,m nb b  are positive 
constant.
Assumption 3: Each switching communication graph 
has a spanning tree with a virtual leader as the root.
Remark 2. Assumption 1 is a basic condition of the 
ILC system, the identical initial condition is still fol-
lowed in this paper. Furthermore, in [9], channel noise 
is assumed to be bounded, and the same assumption 
is still adopted in this paper. So, Assumption 1 and As-
sumption 2 are reasonable.
Definition: The α -norm is defined for a function 

[ ]: 0, nT → Rh  as

1( ) sup ( ) , 1.
t

t T
t

α
α

α∈

 ⋅ = > 
 

h h

For convenience, we define , 1, 2, ,i i Nδ = …   as the i
th eigenvalue of L S+ . Based on these assumptions, 
the following theorem gives the main results of this 
paper.
Theorem: Considering multiple WMRs satisfies 
assumptions 1~3, the DILFC controller is adopted 
shown in equation (12). If the gain matrix satisfies

1 1 ,1,2.. [0,T]
max max ( ( ( ))) 1.i i ki N t

I B tρ δ η σ
= ∈

− Γ ≤ < (13)

The α -norm of the system consensus error is bound-
ed, and its upper bound is
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αη η

εα α
α ρ α

→∞
−

− −
≤ ⋅ +

− − −

(14)

Proof: To simplify the analysis, the compact form of 
, , ,( ), ( ), ( )i k i k i kt u t tη δη and the channel noise are given

  

adopted shown in equation (12). If the gain 
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Proof: To simplify the analysis, the compact 
form of , , ,( ), ( ), ( )i k i k i kt u t tη δη and the channel 
noise are given 
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The multiple WMRs model can be written as 

( 1) ( ) ( ( )) ( ).k k k kt t B t t+ = + uηη ηη ηη             (15) 

Similarly, a compact form of consensus error 
can be given 

( ) (( ) ) ( ),k kt L S I tδ= + ⊗ξξ ηη             (16) 

where 
1, 2, , ,( ) ( ( ) , ( ) , , ( ) ) ( ) .T T T T T n

k k k N k i kt t t t tξ ξ ξ ,ξ= ∈ Rξξ  

Then the system state and consensus error 
under channel noise are rewritten as 

( 1) ( ) ( ( )) ( ),k k k kt t B t t∗ + = + uηη ηη ηη             (17) 

( ) (( ) ) ( ).k kt L S I tδ∗ = + ⊗ ξξ ηη             (18) 

Let kH L S= + ,where k  represents change with 
iteration, substitute (18) into (12) 
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( ) ( )
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According to (17) and (18), the input error could 
be expressed as 
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Taking norm on both sides of (16), we can get 
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where  
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Form (4) and (17), the input error could be 
expressed as 
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Take the norm of both sides of the above 
equation and consider Property 1, Property 2 
and Assumption 2, it can be seen that 
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where (1 )b udz l b= + . 

Based on Assumption 1, (23) can be rewritten as 
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Substituting (24) into (21), it can be seen that 
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Multiplying both sides of (25) by ( )1 tα  to 
compute α -norm of the input error, where  

The multiple WMRs model can be written as

( 1) ( ) ( ( )) ( ).k k k kt t B t t+ = + uη η η (15)

Similarly, a compact form of consensus error can be 
given

( ) (( ) ) ( ),k kt L S I tδ= + ⊗ξ η (16)

where

  

adopted shown in equation (12). If the gain 
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bounded, and its upper bound is 
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Proof: To simplify the analysis, the compact 
form of , , ,( ), ( ), ( )i k i k i kt u t tη δη and the channel 
noise are given 
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Taking norm on both sides of (16), we can get 

, 1 , 1 ,
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+
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where  
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|| ( ) || (1 ),
|| ( ) ||,
|| ( ) || ( ) || ( ) || .

k k

k ud

k

k B m n k n

t I H t B t
l H t b
l H t
l H t b b b H t b

ρ = − ⊗
= ⊗ +
= ⊗
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Form (4) and (17), the input error could be 
expressed as 
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Take the norm of both sides of the above 
equation and consider Property 1, Property 2 
and Assumption 2, it can be seen that 
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where (1 )b udz l b= + . 

Based on Assumption 1, (23) can be rewritten as 
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Substituting (24) into (21), it can be seen that 
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   (25) 

Multiplying both sides of (25) by ( )1 tα  to 
compute α -norm of the input error, where  

(17)

  

adopted shown in equation (12). If the gain 
matrix satisfies 

1 1 ,1,2.. [0,T]
max max ( ( ( ))) 1.i i ki N t

I B tρ δ η σ
= ∈

− Γ ≤ <           (13) 

The α -norm of the system consensus error is 
bounded, and its upper bound is 
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Proof: To simplify the analysis, the compact 
form of , , ,( ), ( ), ( )i k i k i kt u t tη δη and the channel 
noise are given 
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The multiple WMRs model can be written as 

( 1) ( ) ( ( )) ( ).k k k kt t B t t+ = + uηη ηη ηη             (15) 

Similarly, a compact form of consensus error 
can be given 

( ) (( ) ) ( ),k kt L S I tδ= + ⊗ξξ ηη             (16) 

where 
1, 2, , ,( ) ( ( ) , ( ) , , ( ) ) ( ) .T T T T T n

k k k N k i kt t t t tξ ξ ξ ,ξ= ∈ Rξξ  
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under channel noise are rewritten as 

( 1) ( ) ( ( )) ( ),k k k kt t B t t∗ + = + uηη ηη ηη             (17) 
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According to (17) and (18), the input error could 
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Taking norm on both sides of (16), we can get 

, 1 , 1 ,

2 , 1 3

|| ( ) || ( ) || ( ) || || ( ) ||
|| ( ) || ,

i k i k i k

i k

t t t l t
l t l

δ ρ δ δ

δ
+

+

≤ +

+ +

u u ηη

ηη
         (21) 
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Form (4) and (17), the input error could be 
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Take the norm of both sides of the above 
equation and consider Property 1, Property 2 
and Assumption 2, it can be seen that 
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where (1 )b udz l b= + . 

Based on Assumption 1, (23) can be rewritten as 
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Substituting (24) into (21), it can be seen that 
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Multiplying both sides of (25) by ( )1 tα  to 
compute α -norm of the input error, where  

(18)

Let kH L S= + , where k  represents change with iter-
ation, substitute (18) into (12)

  

adopted shown in equation (12). If the gain 
matrix satisfies 

1 1 ,1,2.. [0,T]
max max ( ( ( ))) 1.i i ki N t

I B tρ δ η σ
= ∈

− Γ ≤ <           (13) 

The α -norm of the system consensus error is 
bounded, and its upper bound is 
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Proof: To simplify the analysis, the compact 
form of , , ,( ), ( ), ( )i k i k i kt u t tη δη and the channel 
noise are given 
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The multiple WMRs model can be written as 

( 1) ( ) ( ( )) ( ).k k k kt t B t t+ = + uηη ηη ηη             (15) 

Similarly, a compact form of consensus error 
can be given 

( ) (( ) ) ( ),k kt L S I tδ= + ⊗ξξ ηη             (16) 

where 
1, 2, , ,( ) ( ( ) , ( ) , , ( ) ) ( ) .T T T T T n

k k k N k i kt t t t tξ ξ ξ ,ξ= ∈ Rξξ  

Then the system state and consensus error 
under channel noise are rewritten as 

( 1) ( ) ( ( )) ( ),k k k kt t B t t∗ + = + uηη ηη ηη             (17) 

( ) (( ) ) ( ).k kt L S I tδ∗ = + ⊗ ξξ ηη             (18) 

Let kH L S= + ,where k  represents change with 
iteration, substitute (18) into (12) 
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( )

1 1

2 1

1

2 1

( ) ( ) ( ) ( 1)
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According to (17) and (18), the input error could 
be expressed as 
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Taking norm on both sides of (16), we can get 
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i k

t t t l t
l t l
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where  
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Form (4) and (17), the input error could be 
expressed as 
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Take the norm of both sides of the above 
equation and consider Property 1, Property 2 
and Assumption 2, it can be seen that 
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where (1 )b udz l b= + . 

Based on Assumption 1, (23) can be rewritten as 
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Substituting (24) into (21), it can be seen that 
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Multiplying both sides of (25) by ( )1 tα  to 
compute α -norm of the input error, where  

(19)

According to (17) and (18), the input error could be 
expressed as

  

adopted shown in equation (12). If the gain 
matrix satisfies 
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= ∈

− Γ ≤ <           (13) 

The α -norm of the system consensus error is 
bounded, and its upper bound is 
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Proof: To simplify the analysis, the compact 
form of , , ,( ), ( ), ( )i k i k i kt u t tη δη and the channel 
noise are given 
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The multiple WMRs model can be written as 

( 1) ( ) ( ( )) ( ).k k k kt t B t t+ = + uηη ηη ηη             (15) 

Similarly, a compact form of consensus error 
can be given 

( ) (( ) ) ( ),k kt L S I tδ= + ⊗ξξ ηη             (16) 

where 
1, 2, , ,( ) ( ( ) , ( ) , , ( ) ) ( ) .T T T T T n

k k k N k i kt t t t tξ ξ ξ ,ξ= ∈ Rξξ  

Then the system state and consensus error 
under channel noise are rewritten as 

( 1) ( ) ( ( )) ( ),k k k kt t B t t∗ + = + uηη ηη ηη             (17) 

( ) (( ) ) ( ).k kt L S I tδ∗ = + ⊗ ξξ ηη             (18) 

Let kH L S= + ,where k  represents change with 
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According to (17) and (18), the input error could 
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Taking norm on both sides of (16), we can get 
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Form (4) and (17), the input error could be 
expressed as 
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B B u

B u

ηη ηη ηη
ηη ηη ηη ηη
ηη ηη ηη
ηη

 (22) 

Take the norm of both sides of the above 
equation and consider Property 1, Property 2 
and Assumption 2, it can be seen that 

|| ( 1) || || ( ) || || ( ) || || ( ) ||
|| ( ( )) || || ( ) ||
(1 ) || ( ) || || ( ) ||

|| ( ) || || ( ) ||,

k k b k d

k k

b ud k B k

k B k

t t l t u t
t t

l b t b t
z t b t

δ δ δ
δ

δ δ
δ δ

+ ≤ +
+
≤ + +
≤ +







B u
u

u

ηη ηη ηη
ηη

ηη
ηη

      (23) 

where (1 )b udz l b= + . 

Based on Assumption 1, (23) can be rewritten as 

( )

1
1

0
1

1

0

|| ( ) || || ( ) || || (0) ||

|| ( ) .

t
t h t

k B k k
h

t
t h

B k m
h

t z b h q

z b h b

δ δ δ

δ

−
− −

=

−
− −

=

≤ +

≤ +

∑

∑

u

u

ηη ηη
   (24) 

Substituting (24) into (21), it can be seen that 

1
1

1
1

0
1

1
2 1 3

0

|| ( ) || ( ) || ( ) ||

(|| ( ) || )

(|| ( ) || ) .

k k
t

t h
B k m

h
t

t h
B k m

h

t t t

l z b h b

l z b h b l

δ ρ δ

δ

δ

+

−
− −

=

−
− −

+
=

≤

+ +

+ + +

∑

∑

u u

u

u

   (25) 

Multiplying both sides of (25) by ( )1 tα  to 
compute α -norm of the input error, where  

(20)

Taking norm on both sides of (16), we can get

  

adopted shown in equation (12). If the gain 
matrix satisfies 

1 1 ,1,2.. [0,T]
max max ( ( ( ))) 1.i i ki N t

I B tρ δ η σ
= ∈

− Γ ≤ <           (13) 

The α -norm of the system consensus error is 
bounded, and its upper bound is 

, ,lim || ( ) ( )

1 ( ) 1 ( )
2 ( ) 2 ( ).

1 ( )

i k j kk

T T

B B m

t t ||

s s

b b b
s t s

αη η

εα α
α ρ α

→∞
−

− −
≤ ⋅ +

− − −

       (14) 

Proof: To simplify the analysis, the compact 
form of , , ,( ), ( ), ( )i k i k i kt u t tη δη and the channel 
noise are given 

1, 2, ,

1, 2, ,

,
1, 2, ,

1, 2, ,

1, 2, ,

( ) [ ( ) , ( ) , , ( ) ] ,

( ) [ ( ) , ( ) , , ( ) ] ,

( ) [ ( ) , ( ) , , ( ) ]

( ) [ ( ) , ( ) , , ( ) ],

( ) [ ( ) , ( ) , , ( ) ].

T T T T
k k k N k

T T T T
k k k N k

T T T T
k k k N k

T T T T
k k k N k

T T T T
k k k N k

t t t t

t u t u t u t

t n t n t n t

t m t m t m t

t t t t

η η η

δ δη δη δη

=

=

=

=

=











u

n

m

ηη

ηη

  

The multiple WMRs model can be written as 

( 1) ( ) ( ( )) ( ).k k k kt t B t t+ = + uηη ηη ηη             (15) 

Similarly, a compact form of consensus error 
can be given 

( ) (( ) ) ( ),k kt L S I tδ= + ⊗ξξ ηη             (16) 

where 
1, 2, , ,( ) ( ( ) , ( ) , , ( ) ) ( ) .T T T T T n

k k k N k i kt t t t tξ ξ ξ ,ξ= ∈ Rξξ  

Then the system state and consensus error 
under channel noise are rewritten as 

( 1) ( ) ( ( )) ( ),k k k kt t B t t∗ + = + uηη ηη ηη             (17) 

( ) (( ) ) ( ).k kt L S I tδ∗ = + ⊗ ξξ ηη             (18) 

Let kH L S= + ,where k  represents change with 
iteration, substitute (18) into (12) 

( )
( )

( )
( )

1 1

2 1

1

2 1

( ) ( ) ( ) ( 1)

( ) ( )

( ) ( ) ( 1)

( ) ( 1).

k k N k

N k

k k k

k k

t t I t t

I t t

t H t t

H t t

δ

δ

∗
+

∗
+

+

= + ⊗ +

+ ⊗

= + ⊗ +

+ ⊗ +





u u

u

ξξ

ξξ

ηη

ηη

ΓΓ

ΓΓ

ΓΓ

ΓΓ

           (19) 

According to (17) and (18), the input error could 
be expressed as 

1 1

1 2 1

1

1 1

1 1

2 1 2

( ) ( ) ( )

( ) ( ) ( ) ( 1) ( ) ( )
[ ( ) ( ( ))] ( )

( ) ( ) ( )( ( ( ) ( ( )) ( )
( ) ( ( )) ( 1) ( )

( 1) ( ) ( ) (

k d k

d k k k

k k k k

k k d k d

k k k k

k k k k

t t t

t t t t t t
I H t B t t H

t t H t B t B t t
H t B t t H t

t H t t H

δ

δ
δ

δ

+ +

∗ ∗
+

+

= −

= − − + −
= − ⊗ −
⊗ − ⊗ −
− ⊗ + − ⊗
× + − ⊗ − ⊗

u u u

u u
u

u
m

n

ξξ ξξ
ηη

ηη ηη ηη
ηη

ηη

ΓΓ ΓΓ
ΓΓ

ΓΓ ΓΓ
ΓΓ ΓΓ

ΓΓ ΓΓ 1) ( ).kt t+n

 

                                                                              (20) 

Taking norm on both sides of (16), we can get 

, 1 , 1 ,

2 , 1 3

|| ( ) || ( ) || ( ) || || ( ) ||
|| ( ) || ,

i k i k i k

i k

t t t l t
l t l

δ ρ δ δ

δ
+

+

≤ +

+ +

u u ηη

ηη
         (21) 

where  

1

1 1

2 2

3 1 2

( ) || ( ) ( ( )) ||,
|| ( ) || (1 ),
|| ( ) ||,
|| ( ) || ( ) || ( ) || .

k k

k ud

k

k B m n k n

t I H t B t
l H t b
l H t
l H t b b b H t b

ρ = − ⊗
= ⊗ +
= ⊗
= ⊗ + + ⊗

ηηΓΓ
ΓΓ
ΓΓ
ΓΓ ΓΓ

  

Form (4) and (17), the input error could be 
expressed as 

( )

( 1) ( 1) ( 1)
( ) ( ( )) ( ) ( ) ( ( )) ( )
( ) ( ( )) ( ( )) ( )

( ( )) ( ).

k d k

d d d k k k

k d k d

k k

t t t
t t t t t t
t t t t

t t

δ

δ
δ

∗+ = + − +
= + − −

= + −

+





B u B u
B B u

B u

ηη ηη ηη
ηη ηη ηη ηη
ηη ηη ηη
ηη

 (22) 

Take the norm of both sides of the above 
equation and consider Property 1, Property 2 
and Assumption 2, it can be seen that 

|| ( 1) || || ( ) || || ( ) || || ( ) ||
|| ( ( )) || || ( ) ||
(1 ) || ( ) || || ( ) ||

|| ( ) || || ( ) ||,

k k b k d

k k

b ud k B k

k B k

t t l t u t
t t

l b t b t
z t b t

δ δ δ
δ

δ δ
δ δ

+ ≤ +
+
≤ + +
≤ +







B u
u

u

ηη ηη ηη
ηη

ηη
ηη

      (23) 

where (1 )b udz l b= + . 

Based on Assumption 1, (23) can be rewritten as 

( )

1
1

0
1

1

0

|| ( ) || || ( ) || || (0) ||

|| ( ) .

t
t h t

k B k k
h

t
t h

B k m
h

t z b h q

z b h b

δ δ δ

δ

−
− −

=

−
− −

=

≤ +

≤ +

∑

∑

u

u

ηη ηη
   (24) 

Substituting (24) into (21), it can be seen that 

1
1

1
1

0
1

1
2 1 3

0

|| ( ) || ( ) || ( ) ||

(|| ( ) || )

(|| ( ) || ) .

k k
t

t h
B k m

h
t

t h
B k m

h

t t t

l z b h b

l z b h b l

δ ρ δ

δ

δ

+

−
− −

=

−
− −

+
=

≤

+ +

+ + +

∑

∑

u u

u

u

   (25) 

Multiplying both sides of (25) by ( )1 tα  to 
compute α -norm of the input error, where  

(21)

where 
1

1 1

2 2

3 1 2

( ) || ( ) ( ( )) ||,
|| ( ) || (1 ),
|| ( ) ||,
|| ( ) || ( ) || ( ) || .

k k

k ud

k

k B m n k n

t I H t B t
l H t b
l H t
l H t b b b H t b

ρ = − ⊗
= ⊗ +
= ⊗
= ⊗ + + ⊗

ηΓ
Γ
Γ
Γ Γ  



Information Technology and Control 2021/3/50594

Form  and , the input error could be expressed as

  

adopted shown in equation (12). If the gain 
matrix satisfies 

1 1 ,1,2.. [0,T]
max max ( ( ( ))) 1.i i ki N t

I B tρ δ η σ
= ∈

− Γ ≤ <           (13) 

The α -norm of the system consensus error is 
bounded, and its upper bound is 

, ,lim || ( ) ( )

1 ( ) 1 ( )
2 ( ) 2 ( ).

1 ( )

i k j kk

T T

B B m

t t ||

s s

b b b
s t s

αη η

εα α
α ρ α

→∞
−

− −
≤ ⋅ +

− − −

       (14) 

Proof: To simplify the analysis, the compact 
form of , , ,( ), ( ), ( )i k i k i kt u t tη δη and the channel 
noise are given 

1, 2, ,

1, 2, ,

,
1, 2, ,

1, 2, ,

1, 2, ,

( ) [ ( ) , ( ) , , ( ) ] ,

( ) [ ( ) , ( ) , , ( ) ] ,

( ) [ ( ) , ( ) , , ( ) ]

( ) [ ( ) , ( ) , , ( ) ],

( ) [ ( ) , ( ) , , ( ) ].

T T T T
k k k N k

T T T T
k k k N k

T T T T
k k k N k

T T T T
k k k N k

T T T T
k k k N k

t t t t

t u t u t u t

t n t n t n t

t m t m t m t

t t t t

η η η

δ δη δη δη

=

=

=

=

=











u

n

m

ηη

ηη

  

The multiple WMRs model can be written as 

( 1) ( ) ( ( )) ( ).k k k kt t B t t+ = + uηη ηη ηη             (15) 

Similarly, a compact form of consensus error 
can be given 

( ) (( ) ) ( ),k kt L S I tδ= + ⊗ξξ ηη             (16) 

where 
1, 2, , ,( ) ( ( ) , ( ) , , ( ) ) ( ) .T T T T T n

k k k N k i kt t t t tξ ξ ξ ,ξ= ∈ Rξξ  

Then the system state and consensus error 
under channel noise are rewritten as 

( 1) ( ) ( ( )) ( ),k k k kt t B t t∗ + = + uηη ηη ηη             (17) 

( ) (( ) ) ( ).k kt L S I tδ∗ = + ⊗ ξξ ηη             (18) 

Let kH L S= + ,where k  represents change with 
iteration, substitute (18) into (12) 

( )
( )

( )
( )

1 1

2 1

1

2 1

( ) ( ) ( ) ( 1)

( ) ( )

( ) ( ) ( 1)

( ) ( 1).

k k N k

N k

k k k

k k

t t I t t

I t t

t H t t

H t t

δ

δ

∗
+

∗
+

+

= + ⊗ +

+ ⊗

= + ⊗ +

+ ⊗ +





u u

u

ξξ

ξξ

ηη

ηη

ΓΓ

ΓΓ

ΓΓ

ΓΓ

           (19) 

According to (17) and (18), the input error could 
be expressed as 

1 1

1 2 1

1

1 1

1 1

2 1 2

( ) ( ) ( )

( ) ( ) ( ) ( 1) ( ) ( )
[ ( ) ( ( ))] ( )

( ) ( ) ( )( ( ( ) ( ( )) ( )
( ) ( ( )) ( 1) ( )

( 1) ( ) ( ) (

k d k

d k k k

k k k k

k k d k d

k k k k

k k k k

t t t

t t t t t t
I H t B t t H

t t H t B t B t t
H t B t t H t

t H t t H

δ

δ
δ

δ

+ +

∗ ∗
+

+

= −

= − − + −
= − ⊗ −
⊗ − ⊗ −
− ⊗ + − ⊗
× + − ⊗ − ⊗

u u u

u u
u

u
m

n

ξξ ξξ
ηη

ηη ηη ηη
ηη

ηη

ΓΓ ΓΓ
ΓΓ

ΓΓ ΓΓ
ΓΓ ΓΓ

ΓΓ ΓΓ 1) ( ).kt t+n

 

                                                                              (20) 

Taking norm on both sides of (16), we can get 

, 1 , 1 ,

2 , 1 3

|| ( ) || ( ) || ( ) || || ( ) ||
|| ( ) || ,

i k i k i k

i k

t t t l t
l t l

δ ρ δ δ

δ
+

+

≤ +

+ +

u u ηη

ηη
         (21) 

where  

1

1 1

2 2

3 1 2

( ) || ( ) ( ( )) ||,
|| ( ) || (1 ),
|| ( ) ||,
|| ( ) || ( ) || ( ) || .

k k

k ud

k

k B m n k n

t I H t B t
l H t b
l H t
l H t b b b H t b

ρ = − ⊗
= ⊗ +
= ⊗
= ⊗ + + ⊗

ηηΓΓ
ΓΓ
ΓΓ
ΓΓ ΓΓ

  

Form (4) and (17), the input error could be 
expressed as 

( )

( 1) ( 1) ( 1)
( ) ( ( )) ( ) ( ) ( ( )) ( )
( ) ( ( )) ( ( )) ( )

( ( )) ( ).

k d k

d d d k k k

k d k d

k k

t t t
t t t t t t
t t t t

t t

δ

δ
δ

∗+ = + − +
= + − −

= + −

+





B u B u
B B u

B u

ηη ηη ηη
ηη ηη ηη ηη
ηη ηη ηη
ηη

 (22) 

Take the norm of both sides of the above 
equation and consider Property 1, Property 2 
and Assumption 2, it can be seen that 

|| ( 1) || || ( ) || || ( ) || || ( ) ||
|| ( ( )) || || ( ) ||
(1 ) || ( ) || || ( ) ||

|| ( ) || || ( ) ||,

k k b k d

k k

b ud k B k

k B k

t t l t u t
t t

l b t b t
z t b t

δ δ δ
δ

δ δ
δ δ

+ ≤ +
+
≤ + +
≤ +







B u
u

u

ηη ηη ηη
ηη

ηη
ηη

      (23) 

where (1 )b udz l b= + . 

Based on Assumption 1, (23) can be rewritten as 

( )

1
1

0
1

1

0

|| ( ) || || ( ) || || (0) ||

|| ( ) .

t
t h t

k B k k
h

t
t h

B k m
h

t z b h q

z b h b

δ δ δ

δ

−
− −

=

−
− −

=

≤ +

≤ +

∑

∑

u

u

ηη ηη
   (24) 

Substituting (24) into (21), it can be seen that 

1
1

1
1

0
1

1
2 1 3

0

|| ( ) || ( ) || ( ) ||

(|| ( ) || )

(|| ( ) || ) .

k k
t

t h
B k m

h
t

t h
B k m

h

t t t

l z b h b

l z b h b l

δ ρ δ

δ

δ

+

−
− −

=

−
− −

+
=

≤

+ +

+ + +

∑

∑

u u

u

u

   (25) 

Multiplying both sides of (25) by ( )1 tα  to 
compute α -norm of the input error, where  

(22)

Take the norm of both sides of the above equation and 
consider Property 1, Property 2 and Assumption 2, it 
can be seen that

  

adopted shown in equation (12). If the gain 
matrix satisfies 

1 1 ,1,2.. [0,T]
max max ( ( ( ))) 1.i i ki N t

I B tρ δ η σ
= ∈

− Γ ≤ <           (13) 

The α -norm of the system consensus error is 
bounded, and its upper bound is 

, ,lim || ( ) ( )

1 ( ) 1 ( )
2 ( ) 2 ( ).

1 ( )

i k j kk

T T

B B m

t t ||

s s

b b b
s t s

αη η

εα α
α ρ α

→∞
−

− −
≤ ⋅ +

− − −

       (14) 

Proof: To simplify the analysis, the compact 
form of , , ,( ), ( ), ( )i k i k i kt u t tη δη and the channel 
noise are given 

1, 2, ,

1, 2, ,

,
1, 2, ,

1, 2, ,

1, 2, ,

( ) [ ( ) , ( ) , , ( ) ] ,

( ) [ ( ) , ( ) , , ( ) ] ,

( ) [ ( ) , ( ) , , ( ) ]

( ) [ ( ) , ( ) , , ( ) ],

( ) [ ( ) , ( ) , , ( ) ].

T T T T
k k k N k

T T T T
k k k N k

T T T T
k k k N k

T T T T
k k k N k

T T T T
k k k N k

t t t t

t u t u t u t

t n t n t n t

t m t m t m t

t t t t

η η η

δ δη δη δη

=

=

=

=

=











u

n

m

ηη

ηη

  

The multiple WMRs model can be written as 

( 1) ( ) ( ( )) ( ).k k k kt t B t t+ = + uηη ηη ηη             (15) 

Similarly, a compact form of consensus error 
can be given 

( ) (( ) ) ( ),k kt L S I tδ= + ⊗ξξ ηη             (16) 

where 
1, 2, , ,( ) ( ( ) , ( ) , , ( ) ) ( ) .T T T T T n

k k k N k i kt t t t tξ ξ ξ ,ξ= ∈ Rξξ  

Then the system state and consensus error 
under channel noise are rewritten as 

( 1) ( ) ( ( )) ( ),k k k kt t B t t∗ + = + uηη ηη ηη             (17) 

( ) (( ) ) ( ).k kt L S I tδ∗ = + ⊗ ξξ ηη             (18) 

Let kH L S= + ,where k  represents change with 
iteration, substitute (18) into (12) 

( )
( )

( )
( )

1 1

2 1

1

2 1

( ) ( ) ( ) ( 1)

( ) ( )

( ) ( ) ( 1)

( ) ( 1).

k k N k

N k

k k k

k k

t t I t t

I t t

t H t t

H t t

δ

δ

∗
+

∗
+

+

= + ⊗ +

+ ⊗

= + ⊗ +

+ ⊗ +





u u

u

ξξ

ξξ

ηη

ηη

ΓΓ

ΓΓ

ΓΓ

ΓΓ

           (19) 

According to (17) and (18), the input error could 
be expressed as 

1 1

1 2 1

1

1 1

1 1

2 1 2

( ) ( ) ( )

( ) ( ) ( ) ( 1) ( ) ( )
[ ( ) ( ( ))] ( )

( ) ( ) ( )( ( ( ) ( ( )) ( )
( ) ( ( )) ( 1) ( )

( 1) ( ) ( ) (

k d k

d k k k

k k k k

k k d k d

k k k k

k k k k

t t t

t t t t t t
I H t B t t H

t t H t B t B t t
H t B t t H t

t H t t H

δ

δ
δ

δ

+ +

∗ ∗
+

+

= −

= − − + −
= − ⊗ −
⊗ − ⊗ −
− ⊗ + − ⊗
× + − ⊗ − ⊗

u u u

u u
u

u
m

n

ξξ ξξ
ηη

ηη ηη ηη
ηη

ηη

ΓΓ ΓΓ
ΓΓ

ΓΓ ΓΓ
ΓΓ ΓΓ

ΓΓ ΓΓ 1) ( ).kt t+n

 

                                                                              (20) 

Taking norm on both sides of (16), we can get 

, 1 , 1 ,

2 , 1 3

|| ( ) || ( ) || ( ) || || ( ) ||
|| ( ) || ,

i k i k i k

i k

t t t l t
l t l

δ ρ δ δ

δ
+

+

≤ +

+ +

u u ηη

ηη
         (21) 

where  

1

1 1

2 2

3 1 2

( ) || ( ) ( ( )) ||,
|| ( ) || (1 ),
|| ( ) ||,
|| ( ) || ( ) || ( ) || .

k k

k ud

k

k B m n k n

t I H t B t
l H t b
l H t
l H t b b b H t b

ρ = − ⊗
= ⊗ +
= ⊗
= ⊗ + + ⊗

ηηΓΓ
ΓΓ
ΓΓ
ΓΓ ΓΓ

  

Form (4) and (17), the input error could be 
expressed as 

( )

( 1) ( 1) ( 1)
( ) ( ( )) ( ) ( ) ( ( )) ( )
( ) ( ( )) ( ( )) ( )

( ( )) ( ).

k d k

d d d k k k

k d k d

k k

t t t
t t t t t t
t t t t

t t

δ

δ
δ

∗+ = + − +
= + − −

= + −

+





B u B u
B B u

B u

ηη ηη ηη
ηη ηη ηη ηη
ηη ηη ηη
ηη

 (22) 

Take the norm of both sides of the above 
equation and consider Property 1, Property 2 
and Assumption 2, it can be seen that 

|| ( 1) || || ( ) || || ( ) || || ( ) ||
|| ( ( )) || || ( ) ||
(1 ) || ( ) || || ( ) ||

|| ( ) || || ( ) ||,

k k b k d

k k

b ud k B k

k B k

t t l t u t
t t

l b t b t
z t b t

δ δ δ
δ

δ δ
δ δ

+ ≤ +
+
≤ + +

≤ +







B u
u

u

ηη ηη ηη
ηη

ηη
ηη

      (23) 

where (1 )b udz l b= + . 

Based on Assumption 1, (23) can be rewritten as 

( )

1
1

0
1

1

0
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Multiplying both sides of (25) by ( )1 tα  to 
compute α -norm of the input error, where  
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where (1 )b udz l b= + .
Based on Assumption 1, (23) can be rewritten as
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Proof: To simplify the analysis, the compact 
form of , , ,( ), ( ), ( )i k i k i kt u t tη δη and the channel 
noise are given 
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The multiple WMRs model can be written as 

( 1) ( ) ( ( )) ( ).k k k kt t B t t+ = + uηη ηη ηη             (15) 

Similarly, a compact form of consensus error 
can be given 

( ) (( ) ) ( ),k kt L S I tδ= + ⊗ξξ ηη             (16) 
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Taking norm on both sides of (16), we can get 
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Take the norm of both sides of the above 
equation and consider Property 1, Property 2 
and Assumption 2, it can be seen that 
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where (1 )b udz l b= + . 
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Multiplying both sides of (25) by ( )1 tα  to 
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Take the norm of both sides of the above 
equation and consider Property 1, Property 2 
and Assumption 2, it can be seen that 
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where (1 )b udz l b= + . 
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Substituting (24) into (21), it can be seen that 
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Multiplying both sides of (25) by ( )1 tα  to 
compute α -norm of the input error, where  

(25)

Multiplying both sides of (25) by ( )1 tα  to compute 
α -norm of the input error, where  max[1, ]zα > , we 
can have 
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Since the norm of a constant is still a constant, 
(26) can be written as follows 
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Then, the (27) equals 
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Define 1( ) ( ( ))k kM I H t B t− ⊗Γ ηη . There is 
always a matrix norm ensure  ( ) 1t Mρ σ= ≤ <   
when 1( ) 1Mρ σ≤ < . Further, we can find α  
large enough so that ( ) 1tρ < . Then the upper 
bound of input error of mobile robot i can be 

expressed as 
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Through the above analysis, it is shown that the 
input converges gradually after multiple 
learning and iterations. To investigate the task 
target of formation tracking, this paper makes 
the following treatment: 

Similarly, multiplying both sides of (24) by 
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According to the above results, the formation 
error of the system is related to the channel 
noise ( )k tm  and ( )k tn . Hence, when the channel 
noise is 0, lim || ( ) || 0kk

t αδ
→∞

=ηη .  

Note that 3 3N NM R ×∈   is a complex matrix, and 
the condition 1( ) 1, [0, ]M k Tρ σ≤ < ∈  is specified 
since it includes all WMRs’ kinematics and the 
complete communication topology. Next, we 
derive the convergence condition. For 
simplicity in the sequel, the time parameter is 
removed when no confusion arises. 

A matrix norm operation [25] is defined: 
* 1[( ) ]( )[( ) ] ,QU I UQ I−⋅ ⊗ ⋅ ⊗                     (32) 

where U  is a unitary matrix satisfying 
* ( )U L S UΛ = + . Λ  is an upper triangular 

matrix with diagonal entries being the 
eigenvalues of L S+ , and *  denotes matrix 
conjugate transpose.  2{ , , }NQ diag β β β=  , 

0β ≠   is a constant matrix. 

Then, we can do the following calculation, 
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Since the norm of a constant is still a constant, (26) 
can be written as follows
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Define 1( ) ( ( ))k kM I H t B t− ⊗Γ ηη . There is 
always a matrix norm ensure  ( ) 1t Mρ σ= ≤ <   
when 1( ) 1Mρ σ≤ < . Further, we can find α  
large enough so that ( ) 1tρ < . Then the upper 
bound of input error of mobile robot i can be 

expressed as 

lim || ( ) || .
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t
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≤
−

u             (30) 

Through the above analysis, it is shown that the 
input converges gradually after multiple 
learning and iterations. To investigate the task 
target of formation tracking, this paper makes 
the following treatment: 

Similarly, multiplying both sides of (24) by 
(1 )tα  to compute α -norm of the state error, 
we get 
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According to the above results, the formation 
error of the system is related to the channel 
noise ( )k tm  and ( )k tn . Hence, when the channel 
noise is 0, lim || ( ) || 0kk

t αδ
→∞

=ηη .  

Note that 3 3N NM R ×∈   is a complex matrix, and 
the condition 1( ) 1, [0, ]M k Tρ σ≤ < ∈  is specified 
since it includes all WMRs’ kinematics and the 
complete communication topology. Next, we 
derive the convergence condition. For 
simplicity in the sequel, the time parameter is 
removed when no confusion arises. 

A matrix norm operation [25] is defined: 
* 1[( ) ]( )[( ) ] ,QU I UQ I−⋅ ⊗ ⋅ ⊗                     (32) 

where U  is a unitary matrix satisfying 
* ( )U L S UΛ = + . Λ  is an upper triangular 

matrix with diagonal entries being the 
eigenvalues of L S+ , and *  denotes matrix 
conjugate transpose.  2{ , , }NQ diag β β β=  , 

0β ≠   is a constant matrix. 

Then, we can do the following calculation, 
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Since the norm of a constant is still a constant, 
(26) can be written as follows 
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Define 1( ) ( ( ))k kM I H t B t− ⊗Γ ηη . There is 
always a matrix norm ensure  ( ) 1t Mρ σ= ≤ <   
when 1( ) 1Mρ σ≤ < . Further, we can find α  
large enough so that ( ) 1tρ < . Then the upper 
bound of input error of mobile robot i can be 

expressed as 

lim || ( ) || .
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t
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Through the above analysis, it is shown that the 
input converges gradually after multiple 
learning and iterations. To investigate the task 
target of formation tracking, this paper makes 
the following treatment: 

Similarly, multiplying both sides of (24) by 
(1 )tα  to compute α -norm of the state error, 
we get 
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According to the above results, the formation 
error of the system is related to the channel 
noise ( )k tm  and ( )k tn . Hence, when the channel 
noise is 0, lim || ( ) || 0kk

t αδ
→∞

=ηη .  

Note that 3 3N NM R ×∈   is a complex matrix, and 
the condition 1( ) 1, [0, ]M k Tρ σ≤ < ∈  is specified 
since it includes all WMRs’ kinematics and the 
complete communication topology. Next, we 
derive the convergence condition. For 
simplicity in the sequel, the time parameter is 
removed when no confusion arises. 

A matrix norm operation [25] is defined: 
* 1[( ) ]( )[( ) ] ,QU I UQ I−⋅ ⊗ ⋅ ⊗                     (32) 

where U  is a unitary matrix satisfying 
* ( )U L S UΛ = + . Λ  is an upper triangular 

matrix with diagonal entries being the 
eigenvalues of L S+ , and *  denotes matrix 
conjugate transpose.  2{ , , }NQ diag β β β=  , 

0β ≠   is a constant matrix. 

Then, we can do the following calculation, 
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Since the norm of a constant is still a constant, 
(26) can be written as follows 
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Define 1( ) ( ( ))k kM I H t B t− ⊗Γ ηη . There is 
always a matrix norm ensure  ( ) 1t Mρ σ= ≤ <   
when 1( ) 1Mρ σ≤ < . Further, we can find α  
large enough so that ( ) 1tρ < . Then the upper 
bound of input error of mobile robot i can be 

expressed as 

lim || ( ) || .
1 ( )kk

t
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εδ
ρ→∞

≤
−

u             (30) 

Through the above analysis, it is shown that the 
input converges gradually after multiple 
learning and iterations. To investigate the task 
target of formation tracking, this paper makes 
the following treatment: 

Similarly, multiplying both sides of (24) by 
(1 )tα  to compute α -norm of the state error, 
we get 
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According to the above results, the formation 
error of the system is related to the channel 
noise ( )k tm  and ( )k tn . Hence, when the channel 
noise is 0, lim || ( ) || 0kk

t αδ
→∞

=ηη .  

Note that 3 3N NM R ×∈   is a complex matrix, and 
the condition 1( ) 1, [0, ]M k Tρ σ≤ < ∈  is specified 
since it includes all WMRs’ kinematics and the 
complete communication topology. Next, we 
derive the convergence condition. For 
simplicity in the sequel, the time parameter is 
removed when no confusion arises. 

A matrix norm operation [25] is defined: 
* 1[( ) ]( )[( ) ] ,QU I UQ I−⋅ ⊗ ⋅ ⊗                     (32) 

where U  is a unitary matrix satisfying 
* ( )U L S UΛ = + . Λ  is an upper triangular 

matrix with diagonal entries being the 
eigenvalues of L S+ , and *  denotes matrix 
conjugate transpose.  2{ , , }NQ diag β β β=  , 

0β ≠   is a constant matrix. 

Then, we can do the following calculation, 
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Since the norm of a constant is still a constant, 
(26) can be written as follows 
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Define 1( ) ( ( ))k kM I H t B t− ⊗Γ ηη . There is 
always a matrix norm ensure  ( ) 1t Mρ σ= ≤ <   
when 1( ) 1Mρ σ≤ < . Further, we can find α  
large enough so that ( ) 1tρ < . Then the upper 
bound of input error of mobile robot i can be 

expressed as 

lim || ( ) || .
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Through the above analysis, it is shown that the 
input converges gradually after multiple 
learning and iterations. To investigate the task 
target of formation tracking, this paper makes 
the following treatment: 

Similarly, multiplying both sides of (24) by 
(1 )tα  to compute α -norm of the state error, 
we get 
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According to the above results, the formation 
error of the system is related to the channel 
noise ( )k tm  and ( )k tn . Hence, when the channel 
noise is 0, lim || ( ) || 0kk

t αδ
→∞

=ηη .  

Note that 3 3N NM R ×∈   is a complex matrix, and 
the condition 1( ) 1, [0, ]M k Tρ σ≤ < ∈  is specified 
since it includes all WMRs’ kinematics and the 
complete communication topology. Next, we 
derive the convergence condition. For 
simplicity in the sequel, the time parameter is 
removed when no confusion arises. 

A matrix norm operation [25] is defined: 
* 1[( ) ]( )[( ) ] ,QU I UQ I−⋅ ⊗ ⋅ ⊗                     (32) 

where U  is a unitary matrix satisfying 
* ( )U L S UΛ = + . Λ  is an upper triangular 

matrix with diagonal entries being the 
eigenvalues of L S+ , and *  denotes matrix 
conjugate transpose.  2{ , , }NQ diag β β β=  , 

0β ≠   is a constant matrix. 

Then, we can do the following calculation, 
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Since the norm of a constant is still a constant, 
(26) can be written as follows 
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Then, the (27) equals 
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Define 1( ) ( ( ))k kM I H t B t− ⊗Γ ηη . There is 
always a matrix norm ensure  ( ) 1t Mρ σ= ≤ <   
when 1( ) 1Mρ σ≤ < . Further, we can find α  
large enough so that ( ) 1tρ < . Then the upper 
bound of input error of mobile robot i can be 

expressed as 

lim || ( ) || .
1 ( )kk

t
tα

εδ
ρ→∞

≤
−

u             (30) 

Through the above analysis, it is shown that the 
input converges gradually after multiple 
learning and iterations. To investigate the task 
target of formation tracking, this paper makes 
the following treatment: 

Similarly, multiplying both sides of (24) by 
(1 )tα  to compute α -norm of the state error, 
we get 
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According to the above results, the formation 
error of the system is related to the channel 
noise ( )k tm  and ( )k tn . Hence, when the channel 
noise is 0, lim || ( ) || 0kk

t αδ
→∞

=ηη .  

Note that 3 3N NM R ×∈   is a complex matrix, and 
the condition 1( ) 1, [0, ]M k Tρ σ≤ < ∈  is specified 
since it includes all WMRs’ kinematics and the 
complete communication topology. Next, we 
derive the convergence condition. For 
simplicity in the sequel, the time parameter is 
removed when no confusion arises. 

A matrix norm operation [25] is defined: 
* 1[( ) ]( )[( ) ] ,QU I UQ I−⋅ ⊗ ⋅ ⊗                     (32) 

where U  is a unitary matrix satisfying 
* ( )U L S UΛ = + . Λ  is an upper triangular 

matrix with diagonal entries being the 
eigenvalues of L S+ , and *  denotes matrix 
conjugate transpose.  2{ , , }NQ diag β β β=  , 

0β ≠   is a constant matrix. 

Then, we can do the following calculation, 

(30)

Through the above analysis, it is shown that the in-
put converges gradually after multiple learning and 
iterations. To investigate the task target of formation 
tracking, this paper makes the following treatment:
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Similarly, multiplying both sides of (24) by (1 )tα  to 
compute α -norm of the state error, we get
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Since the norm of a constant is still a constant, 
(26) can be written as follows 
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Then, the (27) equals 
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Define 1( ) ( ( ))k kM I H t B t− ⊗Γ ηη . There is 
always a matrix norm ensure  ( ) 1t Mρ σ= ≤ <   
when 1( ) 1Mρ σ≤ < . Further, we can find α  
large enough so that ( ) 1tρ < . Then the upper 
bound of input error of mobile robot i can be 

expressed as 

lim || ( ) || .
1 ( )kk

t
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εδ
ρ→∞

≤
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Through the above analysis, it is shown that the 
input converges gradually after multiple 
learning and iterations. To investigate the task 
target of formation tracking, this paper makes 
the following treatment: 

Similarly, multiplying both sides of (24) by 
(1 )tα  to compute α -norm of the state error, 
we get 
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According to the above results, the formation 
error of the system is related to the channel 
noise ( )k tm  and ( )k tn . Hence, when the channel 
noise is 0, lim || ( ) || 0kk

t αδ
→∞

=ηη .  

Note that 3 3N NM R ×∈   is a complex matrix, and 
the condition 1( ) 1, [0, ]M k Tρ σ≤ < ∈  is specified 
since it includes all WMRs’ kinematics and the 
complete communication topology. Next, we 
derive the convergence condition. For 
simplicity in the sequel, the time parameter is 
removed when no confusion arises. 

A matrix norm operation [25] is defined: 
* 1[( ) ]( )[( ) ] ,QU I UQ I−⋅ ⊗ ⋅ ⊗                     (32) 

where U  is a unitary matrix satisfying 
* ( )U L S UΛ = + . Λ  is an upper triangular 

matrix with diagonal entries being the 
eigenvalues of L S+ , and *  denotes matrix 
conjugate transpose.  2{ , , }NQ diag β β β=  , 

0β ≠   is a constant matrix. 

Then, we can do the following calculation, 

(31)

According to the above results, the formation error 
of the system is related to the channel noise ( )k tm  
and ( )k tn . Hence, when the channel noise is 0, 
lim || ( ) || 0kk

t αδ
→∞

=η . 
Note that 3 3N NM R ×∈   is a complex matrix, and the 
condition 1( ) 1, [0, ]M k Tρ σ≤ < ∈  is specified since 
it includes all WMRs’ kinematics and the complete 
communication topology. Next, we derive the conver-
gence condition. For simplicity in the sequel, the time 
parameter is removed when no confusion arises.
A matrix norm operation [25] is defined:
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Since the norm of a constant is still a constant, 
(26) can be written as follows 
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Then, the (27) equals 

1
1 0

0
1

1
0

|| ( ) || ( ) || ( ) || ( )

(1 ( ))( ) || ( ) || .
1 ( )

k
k h

k
h

k
k

t t t h

tt t
t

α α

α

δ ρ δ ε ρ

ε ρρ δ
ρ

+
+

=

+
+

≤ +

−
= +

−

∑u u

u
      (29) 

Define 1( ) ( ( ))k kM I H t B t− ⊗Γ ηη . There is 
always a matrix norm ensure  ( ) 1t Mρ σ= ≤ <   
when 1( ) 1Mρ σ≤ < . Further, we can find α  
large enough so that ( ) 1tρ < . Then the upper 
bound of input error of mobile robot i can be 

expressed as 

lim || ( ) || .
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t
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Through the above analysis, it is shown that the 
input converges gradually after multiple 
learning and iterations. To investigate the task 
target of formation tracking, this paper makes 
the following treatment: 

Similarly, multiplying both sides of (24) by 
(1 )tα  to compute α -norm of the state error, 
we get 
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According to the above results, the formation 
error of the system is related to the channel 
noise ( )k tm  and ( )k tn . Hence, when the channel 
noise is 0, lim || ( ) || 0kk

t αδ
→∞

=ηη .  

Note that 3 3N NM R ×∈   is a complex matrix, and 
the condition 1( ) 1, [0, ]M k Tρ σ≤ < ∈  is specified 
since it includes all WMRs’ kinematics and the 
complete communication topology. Next, we 
derive the convergence condition. For 
simplicity in the sequel, the time parameter is 
removed when no confusion arises. 

A matrix norm operation [25] is defined: 
* 1[( ) ]( )[( ) ] ,QU I UQ I−⋅ ⊗ ⋅ ⊗                     (32) 

where U  is a unitary matrix satisfying 
* ( )U L S UΛ = + . Λ  is an upper triangular 

matrix with diagonal entries being the 
eigenvalues of L S+ , and *  denotes matrix 
conjugate transpose.  2{ , , }NQ diag β β β=  , 

0β ≠   is a constant matrix. 

Then, we can do the following calculation, 

(32)

where U  is a unitary matrix satisfying  * ( )U L S UΛ = + * ( )U L S UΛ = + . Λ  is an upper triangular matrix 
with diagonal entries being the eigenvalues of 
L S+ , and *  denotes matrix conjugate transpose.  
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Since the norm of a constant is still a constant, 
(26) can be written as follows 
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Then, the (27) equals 
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Define 1( ) ( ( ))k kM I H t B t− ⊗Γ ηη . There is 
always a matrix norm ensure  ( ) 1t Mρ σ= ≤ <   
when 1( ) 1Mρ σ≤ < . Further, we can find α  
large enough so that ( ) 1tρ < . Then the upper 
bound of input error of mobile robot i can be 

expressed as 
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Through the above analysis, it is shown that the 
input converges gradually after multiple 
learning and iterations. To investigate the task 
target of formation tracking, this paper makes 
the following treatment: 

Similarly, multiplying both sides of (24) by 
(1 )tα  to compute α -norm of the state error, 
we get 
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According to the above results, the formation 
error of the system is related to the channel 
noise ( )k tm  and ( )k tn . Hence, when the channel 
noise is 0, lim || ( ) || 0kk

t αδ
→∞

=ηη .  

Note that 3 3N NM R ×∈   is a complex matrix, and 
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since it includes all WMRs’ kinematics and the 
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derive the convergence condition. For 
simplicity in the sequel, the time parameter is 
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By the Assumption3, then, all the eigenvalues of kH  
have positive real parts. Thus, we can conclude that if
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By the Assumption3, then, all the eigenvalues of 
kH  have positive real parts. Thus, we can 

conclude that if 

1 1 ,1,2.. [0,T]
max max ( ( ) ( ( ))) 1.i i ki N t

I t B tρ δ η σ
= ∈

− Γ ≤ <         (34) 

Then 1 ,( ) ( ( )) 1K i kI H t B tη σ− ⊗Γ ≤ < holds.  

This completes the proof. 

By analyzing the above results, it can be found 
that the SC and CA channel noise will be 
accumulated along the iteration axis and time 
axis simultaneously. However, the summation 
of ( )k tm  and ( )k tn  is limited by the upper 
bound of nonlinear function ( ( ))k tB ηη , because 

( ( ))k tB ηη  is composed of sampling time T∆ , 
and the value of T∆  is far less than 1. 
Therefore, the accumulated channel noise in the 
iterative domain and time domain can be 
significantly suppressed by the sampling time. 

Remark 3: The formation control of a class of 
robots with repetitive motion is studied in this 
paper. In some practical applications, such as 
the mobile robot of logistics warehouse 
performing the throwing task and the 
agricultural robot performing the farm work 
task, which have strong repeatability. The 
analysis and design method in this paper can be 
directly extended. 
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4. Simulation 
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In addition, the initial state of each WMR satisfies as-
sumption 1, that is, the initial state of each iteration is 
the same as that of the expected trajectory, which is 
set the following:
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Here are three communication diagrams for switch-
ing between WMRs, this is shown Fig. 4. It can be 
observed that only WMR 1 can receive the infor-
mation of the leader, assuming that the informa-
tion transmission between WMRs is directional. 
Then (1,0,0,0)S diag= , the Laplacian matrix can be 
known as:
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A randomly switching signal function ( )kσ  is defined 
and the value 1,2,3 respectively represents the cor-
responding topology. Fig. 5 shown the switching sig-
nal ( )kσ in this simulation. The switching sequence 
takes the corresponding value as iteration changes. 
To ensure that the probability of each switching sig-
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By the Assumption3, then, all the eigenvalues of 
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iterative domain and time domain can be 
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paper. In some practical applications, such as 
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By the Assumption3, then, all the eigenvalues of 
kH  have positive real parts. Thus, we can 

conclude that if 

1 1 ,1,2.. [0,T]
max max ( ( ) ( ( ))) 1.i i ki N t

I t B tρ δ η σ
= ∈

− Γ ≤ <         (34) 

Then 1 ,( ) ( ( )) 1K i kI H t B tη σ− ⊗Γ ≤ < holds.  

This completes the proof. 

By analyzing the above results, it can be found 
that the SC and CA channel noise will be 
accumulated along the iteration axis and time 
axis simultaneously. However, the summation 
of ( )k tm  and ( )k tn  is limited by the upper 
bound of nonlinear function ( ( ))k tB ηη , because 

( ( ))k tB ηη  is composed of sampling time T∆ , 
and the value of T∆  is far less than 1. 
Therefore, the accumulated channel noise in the 
iterative domain and time domain can be 
significantly suppressed by the sampling time. 

Remark 3: The formation control of a class of 
robots with repetitive motion is studied in this 
paper. In some practical applications, such as 
the mobile robot of logistics warehouse 
performing the throwing task and the 
agricultural robot performing the farm work 
task, which have strong repeatability. The 
analysis and design method in this paper can be 
directly extended. 
Figure 4 

Communication topologies among WMRs 

 
Figure 5  

Switching signal among there different 
communication topologies 

 
 

4. Simulation 

In this section, the formation tracking 
simulation of four WMRs by wireless network 
control is provided, and the communication 
topology changing with iteration is adopted. To 
verify the research effect of the previous section, 
we compared the influence of channel noise on 
the formation at different sampling times. 

We consider the following reference trajectory: 

( ) cos(( -1) )
( ) ( ) sin(( -1) ) , [0, 2 ].

( ) ( -1) / 2

d

d d

d

x t k T
t y t k T k

t T k
π

π
η π

θ π π

= × ×∆
= = × ×∆ =
 = ∆ × × +

 

The desired trajectory deviation 

1 2

3 4

0 0
, ,

0.04 0.08

0.08 0.08
, .

0.16 0.16

d d

d d

   
= =   − −   

−   
= =   − −   

 

(a) (b) (c)

Figure 4
Communication topologies among WMRs

Figure 5 
Switching signal among there different communication 
topologies

nal is equal, the rules for switching signal function 
( )kσ  as follows

1 If [ )( ) 0,0.33 , 1ik sσ ∈ = ;
2 [ )( ) 0.33,0.66 , 2ik sσ ∈ = ;
3 [ ]( ) 0.66,1 , 3ik sσ ∈ = .
The distributed algorithm (12) is adopted here, and 
the learning gain matrix 1 , ( )i k tΓ  and 2 , ( )i k tΓ  are cho-
sen as
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And the matrix norm condition in the theorem is 
1 1 ,1,2.. [0,T]

max max ( ( ) ( ( ))) 0.9998 1i i ki N t
I t B tρ δ η

= ∈
− Γ <= .

The Fig. 6(a) and Fig. 6(b) show the formation effect of 
four WMRs at k = 5 and k = 30 when the channel noise 

( ) ( ) 0k kt t= =m n  and the sample period 0.001T∆ = , 
respectively. It can be seen that with the increase of 
learning times, the formation effect is more and more 
perfect. At the same time, we also show the control 
signal in the 30 iterations through Fig. 7.
To illustrate that the proposed control algorithm has 
better transient performance in the time domain, the 
position and angular errors generated by the controller 
in reference [17] are compared. As shown in Fig. 8(a) 
and Fig. 8(b), it is obvious that the transient perfor-
mance of the non-learning controller is not ideal in the 
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Figure 6 
Plane formation trajectory of WMRs

Figure 7 
Control signals for WMRs

 
 

 

In addition, the initial state of each WMR 
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Here are three communication diagrams for 
switching between WMRs, this is shown Fig. 4. 
It can be observed that only WMR 1 can receive 
the information of the leader, assuming that the 
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A randomly switching signal function ( )kσ  is 
defined and the value 1,2,3 respectively 
represents the corresponding topology. Fig. 5 
shown the switching signal ( )kσ in this 
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corresponding value as iteration changes. To 
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Fig. 8(b), it is obvious that the transient 
performance of the non-learning controller is 
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the time domain after 30 iterations. 
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The original gain is denoted as Γ , and the gain 
of the contrast group is denoted as ′Γ . 

The maximum position and angle errors of the 
multiple WMRs under different learning gains 
are shown in Fig. 10. It can be observed that 
different learning gains affect the transient 
performance of the system, but there is no 
difference in the final convergence effect. 
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And the matrix norm condition in the theorem is 
1 1 ,1,2.. [0,T]

max max ( ( ) ( ( ))) 0.9992 1i i ki N t
I t B tρ δ η

= ∈
− Γ <= .

The original gain is denoted as Γ , and the gain of the 
contrast group is denoted as ′Γ .
The maximum position and angle errors of the multi-
ple WMRs under different learning gains are shown in 
Fig. 10. It can be observed that different learning gains 
affect the transient performance of the system, but 
there is no difference in the final convergence effect.

Figure 9 
The influence of the current learning term on the maximum 
error of robot position and angle

Figure 10 
The influence of different learning gains on the maximum 
error of robot position and heading

Figure 11 
The convergence of position and angle errors for all WMRs 
with different sampling times
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The tracking error convergence curve of the 
maximum position and angle of each WMR is 
shown in Fig. 11(a) - Fig. 11(d). Different 
sampling times were chosen for simulation, and 
the mean sum of CA and SC channel noises 
were 0.05 respectively. As can be seen from 
comparisons in these figures, the position and 
angle errors of WMR significantly decreased 
when a small sampling time was selected. 
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condition that all WMRs need to obtain the 
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both predicted and current error as learning 
terms to improve the stability of the system 
under channel noise and switching topologies. 
The sufficient conditions for the stability are 
derived theoretically. Through analysis, it is 
found that the norm of system tracking error is 
related to the function of system control input 
matrix and channel noise, and the accumulation 
of CA and SC noise in the time domain and 
iteration domain can be suppressed by reducing 
the sampling time. The results show that the 
proposed algorithm can realize the formation of 
multiple WMRs under channel noise and 
variable communication topology, and has 
better transient performance. At the same time, 
we observed that the number of times of 
learning is too much, which has a certain 
impact in practical engineering problems. This 
is also one of the questions that need further 
study in the future. 
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5. Conclusion
In this paper, we studied the robust formation prob-
lem of multiple non-holonomic WMRs in repetitive 
motion environment, a distributed formation strat-
egy based on ILC is proposed. The graph theory is 
introduced into the developed algorithm, which re-
moves the condition that all WMRs need to obtain the 
desired trajectory information. The study used both 
predicted and current error as learning terms to im-
prove the stability of the system under channel noise 
and switching topologies. The sufficient conditions 
for the stability are derived theoretically. Through 
analysis, it is found that the norm of system tracking 
error is related to the function of system control in-
put matrix and channel noise, and the accumulation 
of CA and SC noise in the time domain and iteration 
domain can be suppressed by reducing the sampling 
time. The results show that the proposed algorithm 

can realize the formation of multiple WMRs under 
channel noise and variable communication topology, 
and has better transient performance. At the same 
time, we observed that the number of times of learn-
ing is too much, which has a certain impact in practi-
cal engineering problems. This is also one of the ques-
tions that need further study in the future.
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