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An efficient and secured approach is vital for the transmission of sensitive and secret images over the unsecure 
public Internet. In this paper, a secured color image compression method based on compressive sampling and 
the Lü system is proposed. Initially, the plainimage is sparsely represented in a transform basis. Compressive 
sampling measurements are obtained from these sparse transform coefficients by employing an incoherent 
sensing matrix. Permutation-substitution operations are performed on pixels based on the Lü system to up-
grade security levels. Keys are obtained from the input image to add input sensitivity in the scheme. Lastly, a 
fast and efficient greedy algorithm is utilized for sparse signal reconstruction. The experimental outcome and 
analysis reveal that the proposed system offers a larger key space, strong input sensitivity, low correlation coef-
ficients and producing visually good reconstructed images. 
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1. Introduction
Rapid developments in Internet infrastructure and 
applications have facilitated easy data transmission, 
particularly of social network applications that cre-
ate and share large volumes of information, mostly in 
the form of digital images. Images, which are usual-
ly large-sized and have a propensity for redundancy, 
may also contain sensitive and valuable information. 
Transmitting confidential images over the unsecure 
public Internet is fraught with risks. In this regard, 
two  challenges  are  to be addressed: the confiden-
tiality of sensitive and secret images, and their re-
dundancy. Compression best represents images in a 
condensed version with the assurance of good visual 
quality. Compressive sensing is the latest in imaging 
technology to offer efficient compression. Given that 
encryption protects image content, highly sensitive 
chaotic systems are tailor-made for image encryp-
tion. Thus, simultaneous compression and encryp-
tion resolves multimedia communication challenges. 

1.1. Related Work
In recent years, much research has been reported on 
combined compressive sampling (CS) and chaotic 
system frameworks in joint compression and encryp-
tion techniques. Liya et al. designed a cryptosystem 
based on block sparse sampling with a permuta-
tion-diffusion structure for encryption. The discrete 
transform coefficients are classified into high, low 
and medium frequency components and compressed 
simultaneously using compressive sampling. The en-
cryption is carried out using a one-dimensional logis-
tic map. Such a low-dimensional map keeps the design 
simple, produces a small key size, and provides weak-
er security than high-dimensional systems [16]. In 
[14], a hybrid compression-encryption (CE) scheme 
was designed using a 1D cascade map in which the 
Arnold transform minimizes the block effect in the 
measurement process. Ponuma et al. [23] proposed 
an image cipher based on compressive sampling, 
where parallel compressive sampling and masking 
are employed to resist common attacks. Ponuma at 
el. [24] again proposed a second image cipher using 
compressive sensing with a rotated sensing matrix 
for measurement observation. In [37], the authors in-
troduced a new analysis sparse representation-based 
hybrid compression and encryption algorithm with a 

fixed dictionary. Their scheme produced considerable 
compression results, though security is not a primary 
concern. A 2D compressive sampling-based cipher 
with the fractional random transform, with a logis-
tic map used for a Hadamard matrix construction, 
was presented in [5]. Tongfeng et al. [30] presented 
a novel hybrid chaotic map-based cryptosystem us-
ing the Fibonacci-Lucas transform, which is robust 
against cropping attacks. The methods above are 
based on 1D chaotic maps that have small key spaces 
and are, therefore, susceptible to bruteforce attacks. 
It is worthwhile, therefore, to use higher-dimensional 
chaotic systems.
Xinsheng et al. [32] proposed simultaneous com-
pression and encryption, based on sparse Bayesian 
learning and the Arnold cat map. The sparse repre-
sentation is realized by applying the discrete cosine 
transform while the SBL is adopted for compression. 
The Arnold cat map is employed for permutation 
at bit-level cubes. The scheme obtained adequate 
results in regard to security, though with poor re-
construction quality, because high-frequency coef-
ficients are coarsely quantized in the DCT. In [36], 
Yaqin et al. presented a CE scheme with compres-
sive sampling and a new chaotic system that offers 
excellent reconstruction. A secure method for data 
transmission using chaotic compressive sampling 
with the Bernoulli sensing matrix was put forward 
in [9], and performed well against malicious attacks. 
Qiaoyun et al. [26] proposed a fast image cryptosys-
tem using a hyper-chaotic modulation map, with two 
sensing matrices for measurement calculation, that 
is fast and efficient against known plaintext attacks. 
In [13], Liahua et al. designed a CE method using 
the fractional tansform and Chen’s chaotic system, 
in which the discrete fractional random transform 
is used for sparse representation. A novel compres-
sive sampling-based combined compression and en-
cryption method was developed by Shuqin et al. [28]. 
This algorithm depends entirely on two matrices: a   
scrambling matrix for permutation operations and 
a Gaussian random matrix for sensing the small and 
arbitrary number of measurements. Since the light-
weight algorithm designed for encryption only in-
cludes the permutation process, the absence of the 
diffusion process results in low resistance against 
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differential attacks. In [12], Junxin et al. reported 
that the 3D cat map-based compressive sampling 
with a structurally random matrix produced good 
information entropy results.
Miao et al. [19] designed a CE algorithm using an in-
teger wavelet transform and set partitioning in hi-
erarchical trees to produce good lossless compres-
sion performance. In [17], Kumar et al. presented an 
encryption algorithm, followed by a compression 
algorithm, for images based on Huffman coding and 
singular-value decomposition. In [31], Xiao et al. de-
signed a CE scheme using a discrete cosine transform 
dictionary and compressive sensing. Brindha et al. [2] 
proposed lossless compression and encryption us-
ing the Chinese remainder theorem and hash table, 
where the Henon map is used for scrambling. The 
scheme obtained good NPCR and UACI values. An 
encryption and compression technique for color vid-
eo images, with a rational analysis undertaken on vid-
eo sequences, was introduced in [1]. Nanrun et al. [20] 
proposed a new image CE algorithm using a key-con-
trolled sensing matrix in compressive sampling that 
produced acceptable compression and security re-
sults but high computational complexity. Nanrun et 
al. [22] introduced a hyperchaotic system-based non-
linear encryption approach that achieves confusion 
using a cycle shift operation. In [21], Nanrun et al. 
proposed a fractional Mellin transform and 2D com-
pressive sampling-based cryptosystem where CE is 
achieved simultaneously by observing measurements 
in two directions where, as the dimension increases, 
the complexity of thealgorithm also increases corre-
spondingly. Xiuli et al. [3] presented a compressive 
sampling and memristive chaotic system-based im-
age CE algorithm with zigzag confusion. Some re-
search has been based on cellular automata that pro-
duce random patterns from simple rules. In [33], Xiuli 
et al. introduced cellular automata and a compressed 
sensing-based CE algorithm in which a sensing ma-
trix is constructed by a key-controlled chaotic map to 
produce good security results.  
Zhang et al. [38] designed a joint image data compres-
sion and encryption scheme by employing cellular au-
tomata and set splitting in hierarchical-trees. It per-
forms three round of permutation and substitution 
operation in encryption. In each round of operation, 
different iterated chaotic system is used to generate 

keys. Priya et al. [25] developed an enhanced version 
of logistic map and a simple image cipher technique. 
In this algorithm, block permutation, zigzag trans-
formation operations are performed in the confusion 
phase and pixel substitution is performed in the diffu-
sion phase based on the keys obtained from enhanced 
logistic map and input image. This scheme is able to 
resist fifty percentage against the occlusion attack. A 
color image cryptosystem based on Arnold-Tent cha-
otic maps and Walsh-Hadamard transform (WHT) 
was proposed by Sneha et al. [29]. Initially, the WHT 
transform is applied on the color componenets of the 
input image. In the encryption process, the Arnold 
map is used for permutation and Tent map based key 
sequences are used for substitution. 
An image cipher using Fourier transform and CS 
was presented by Miao et al. [18]. Initially, the input 
image is divided equally with same dimensions and 
then random measurements are obtained. Here, the 
Arnold transform is employed for permutation and 
Chen map based 2D fractional transform is utilized in 
the diffusion process. A joint optical-image compres-
sion and encryption scheme by using Rivest-Sham-
ir-Adleman algorithm and CS was proposed by Lihua 
et al. [15]. The logistic-Tent map is utilized to permute 
the pixel location and intensity values are substitut-
ed by the DNA sequences. Xiuli et al. [34] and Chen 
et al. [7] presented a meaningful image combined 
compression and encryption technique based on CS. 
These schemes perform well against the known and 
chosen plaintext attacks.  
Several methods in the literature survey have exe-
cuted compression and encryption on grayscale im-
ages. Both permutation and substitution operations 
are performed in the proposed system. The discrete 
wavelet transform is utilized for sparse representa-
tion and the three-dimensional chaotic system for 
key generation. All of these measures enhance the 
performance of this system over those described in 
the references.

1.2. Motivation and Justification
Digital images provide a rich source of information 
in several domains. Images that carry sensitive and 
confidential information must be efficiently and se-
curely transmitted. Typically, images are large-sized 
and highly redundant. Efficient transmission requires 
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that redundancy be minimized by compression and 
confidentiality provided by encryption. Compressive 
sensing is a promising piece of compression tech-
nology which significantly minimizes the number of 
data points to be transmitted for accurate reconstruc-
tion. The discrete wavelet transform (DWT) is a good 
transform for images, especially in terms of efficient-
ly capturing abrupt changes in the images concerned. 
Chaotic systems are well known for their sensitivity 
and randomness-state sequences that are most use-
ful in encryption. A combination of permutation and 
substitution greatly enhances the security of encryp-
tion algorithms. The orthogonal matching pursuit is 
an efficient sparse signal reconstruction algorithm 
that  reconstructs  images as accurately as possible. 
Inspired and motivated by the work above, this pa-
per proposes a secured color image compression ap-
proach. The proposed scheme produces good results, 
thus  demonstrating that it executes compression-en-
cryption effectively. 

1.3. Outline of the Proposed Work
The proposed scheme broadly comprises six steps: 
1)  keys are generated from the 512-bit hash of the 
input image, 2) a sensing matrix is constructed us-
ing a chaotic random sequence, 3) the input image is 
sparsely represented in the DWT, 4) measurements 
are obtained by applying compressed sensing, 5) mea-
surements are scrambled, based on index sequences, 

Figure 1
Outline of the Proposed Work
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The process of reconstructing x from y is an ill-
posed inverse problem. Algorithms proposed to 
resolve the optimization problem include the 
gradient projection for sparse reconstruction, split 
Bregman iteration, backpropagation, smooth l0 and 
orthogonal matching pursuit (OMP). Signals that are 
not sparse in nature are sparsely re-represented in an 
appropriate orthogonal transform basis using 
Equation (3), where ψ is the transform basis sized  
N×N  and α is the sparse coefficient vector sized 
N×1, 
  
x=ψα                                                                      (3) 
the random measurements are calculated by 
Equation (4): 
y=Φψα                                                                   (4) 
 

and 6) the scrambled measurements are substituted 
using the XOR operation directed by true random se-
quences. The framework of the proposed scheme is 
shown in Figure 1.

1.4. Contribution 
The contributions of our work include the following:  
a) Sensing matrix construction: the Lü system-based 
sensing matrix that is constructed effectively adds 
the restricted isometric property, and resolves the 
problem of transmitting the whole sensing matrix to 
the reconstruction side; b) Dynamic key selection: 
the starting seeds, dynamically obtained from the in-
put image, enhance key sensitivity and resolve issues 
with fixed keys; and c) Intra-color channel permuta-
tion: the independent permutation of color compo-
nents significantly minimizes the correlation associ-
ation and averts statistical attacks.

1.5. Organization of the Paper
The rest of the paper is organized as follows. Section 
2 discusses compressive sensing, the discrete wave-
let transform, the orthogonal matching pursuit, the 
Lü system and the secure hash algorithm–512. Sec-
tion 3 presents the proposed secure compression 
scheme. Section 4 discusses the experimental set-
up. Section 5 presents the results and analyzes the 
performance of the proposed system. Section 6 con-
cludes the paper. 
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(2)

The process of reconstructing x from y is an ill-posed 
inverse problem. Algorithms proposed to resolve the 
optimization problem include the gradient projection 
for sparse reconstruction, split Bregman iteration, 
backpropagation, smooth l0 and orthogonal matching 
pursuit (OMP). Signals that are not sparse in nature 
are sparsely re-represented in an appropriate orthog-
onal transform basis using Equation (3), where ψ is 

the transform basis sized  N×N  and α is the sparse co-
efficient vector sized N×1,

x=ψα   (3)

the random measurements are calculated by Equa-
tion (4):

y=Φψα.   (4)

In the proposed scheme, we have used the discrete 
wavelet transform (DWT) as the sparse transform 
basis (ψ) and the orthogonal matching pursuit (OMP) 
as the signal reconstruction algorithm, both of which 
are explained below. The measurement matrix (Φ) 
constructed is based on the chaotic system described 
in the next section.

2.1.1. Discrete Wavelet Transform 
A wavelet is a rapidly decaying wave-like oscillation 
that has zero mean. Unlike sinusoids which extend 
to infinity, a wavelet exists for a finite duration. The 
key concept of wavelets is scaling, which refers to 
stretching or shrinking signals in time. A stretched 
wavelet helps capture the slowly varying changes in 
a signal while a compressed wavelet helps  capture 
abrupt changes. A wavelet transform produces good 
frequency resolutions for low-frequency components 
that are, basically, the average intensity values of im-
ages. It also produces high temporal resolutions for 
high-frequency components that are, intrinsically, 
edges of images. The two major wavelet transforms 
are the continuous wavelet transform (CWT) and dis-
crete wavelet transform (DWT). Images have smooth 
regions, interrupted by edges or abrupt changes. The 
abrupt changes are often the most interesting parts 
of the data, both perceptually and in terms of the 
information they provide. The wavelet transform 
represents these abrupt, well- localized changes ef-
ficiently, making it ideal for sparsing natural images. 
In the proposed scheme, we have used the discrete 
wavelet transform to represent images sparsely [3].

2.1.2. Orthogonal Matching Pursuit
The OMP is an efficient and fast sparse signal recovery 
algorithm presented in [7]. It reconstructs the sparse 
signal, x̄, as closely as possible from the input measure-
ment vector, y, and sensing matrix, Φ (y= Φx̄ ). It works 
in iteration as follows. The OMP considers the sensing 
matrix as a set of N columns [Φ1, Φ2…. ΦN] 
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Step1: It finds the column Φj that has the largest pro-
jection on y as Equation (5) and build the basis matrix 
(A). From this basis matrix, it calculates the first best 
measurement x̄ 1 as in Equation (6).

1 1
arg  jj N

i max y
≤ ≤

= Φ . (5)

A1 = [Φi1]. (6)

x̄ 1 = (A1
T A1)-1 A1

T y. (7)

the residue after the first iteration is 

r1 = (y - A1. x̄1). (8)

Step2: It finds the column Φj that has the largest pro-
jection on residue r1 as Equation [8] and expand the 
basis matrix (A). From this basis matrix it calculates 
the next best measurement x̄2 as in Equation (11).

2 11
  arg  jj N
i max r

≤ ≤
= Φ . (9)

A2 = [Φi1, Φi2]. (10)

x̄2 = (A2
T A2)-1 A2

T y (11)

the residue after the second iteration is 

r2 = (y – A2. x̄2).  (12)

Repeat Step2 until the difference between the residue 
in successive iterations is less than the stopping cri-
terion.

2.2. Lü Chaotic System
The motivation underlying the use of a chaotic system 
in our proposed scheme is its extreme sensitivity to 
initial conditions and its capacity for producing true 
random sequences. Key sensitivity and randomness 
play a vital role in security schemes. In this paper, the 
Lü chaotic dynamical system defined in Equation (14) 
is used in the encryption process, 

( )   

        

   – 

dx a y x
dt
dy xz cy
dt
dz xy bz
dt

= − 

= − + 

= 

, (13)

where a, b and c are parameters x, y and z are state 
variables. The Lü system shows chaos behavior at the 
parameter values a=36, b=3 and c=20 [10-11]. Figure 2 
shows the chaotic behavior of the Lü system. The two 
important aspects, stability and Lyapunov exponent, 
related to the chaotic behavior of Lü system are pre-
sented here, 

Figure 2
The chaotic behavior of the Lü system
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where a, b and c are parameters x, y and z are state 
variables. The Lü system shows chaos behavior at 
the parameter values a=36, b=3 and c=20 [10-11]. 
Figure 2 shows the chaotic behavior of the Lü 
system. The two important aspects, stability and 
Lyapunov exponent, related to the chaotic behavior 
of Lü system are presented here,  
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The above matrix is an upper-triangular matrix and 
it’s eigen values are λ1= -a, λ2 = c and λ3 = -b. Since a=36, 
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0, the coefficients of this cubic polynomial are all pos-
itive, since (a + b - c > 0), so that   f(λ) > 0 for all λ > 0. 
The Jacobian matrix at equilibrium F-, is given by

( ), ,

0

bc bc c

a a

J c c bc

bc bc b
− −

− 
 

= − 
 − − − 

.

Its eigen values are are f(λ) = λ3 + (a + b – c)λ2 + abλ + 2abc = 
0, the coefficients of this cubic polynomial are all posi-
tive, since (a + b – c > 0), so that f(λ) > 0 for all λ > 0. From 
the above brief investigations, we found that the three 
equilibrium points are saddle focus-nodes. Hence, it is 
concluded that the Lü exhibits chaotic behaviour.

Lyapunov Exponent 
The level of sensitivity to initial seeds in a dynamical 
system is defined by the Lyapunov Exponent (LE).  A 
positive maximal Lyapunov exponent is the indica-

tion of deterministic chaos [11]. The three Lyapun-
ov exponents of the Lü system for the initial seeds  
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and LE3= -17.934765), as shown in Figure 3, since two 
Lyapunov exponents are positive for the Lü system, it is 
chaotic.  These two key aspects make it clear that the Lü 
system is chaotic, and hence suitable for image cipher.

2.3. Secure Hash Algorithm-512
In this work, the SHA-512 is used to obtain the hash 
value of the plain image from which the keys are cal-
culated. The input image-based keys greatly enhance 
the strength of the presented algorithm against known 
and chosen plaintext attacks. The SHA-512 is a hash 
algorithm that generates 512 bits of fixed-size values 
which are independent of the keys [23]. The SHA-512 
processes the input in terms of block-sized 1024 bits 
and performs 80 round operations. The input is pad-
ded before applying the round functions in order to 
make the input size equal to multiples of 1024 bits. 
The key generation process is described in Section 3.1.
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that the Lü exhibits chaotic behaviour. 
Lyapunov Exponent  
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dynamical system is defined by the Lyapunov 
Exponent (LE).  A positive maximal Lyapunov 
exponent is the indication of deterministic chaos 
[11].  The three Lyapunov exponents of the Lü 
system for the initial seeds (x0=-3, y0=2, z0=20) are 
(LE1= 1.383848, LE2= 0.000740 and LE3= -
17.934765), as shown in Figure 3, since two 
Lyapunov exponents are positive for the Lü system, 
it is chaotic.  These two key aspects make it clear 
that the Lü system is chaotic, and hence suitable for 
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polynomial are all positive, since (a + b - c > 0), so 
that f(λ) > 0 for all λ > 0. From the above brief 
investigations, we found that the three equilibrium 
points are saddle focus-nodes. Hence, it is concluded 
that the Lü exhibits chaotic behaviour. 
Lyapunov Exponent  
The level of sensitivity to initial seeds in a 
dynamical system is defined by the Lyapunov 
Exponent (LE).  A positive maximal Lyapunov 
exponent is the indication of deterministic chaos 
[11].  The three Lyapunov exponents of the Lü 
system for the initial seeds (x0=-3, y0=2, z0=20) are 
(LE1= 1.383848, LE2= 0.000740 and LE3= -
17.934765), as shown in Figure 3, since two 
Lyapunov exponents are positive for the Lü system, 
it is chaotic.  These two key aspects make it clear 
that the Lü system is chaotic, and hence suitable for 
image cipher. 
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The 512-bit hash value is calculated by applying the 
secure hash algorithm on the input image. The 
starting values of the Lü system are calculated from 
the 512-bit hash, as given below.  

Step1: The 512-bit hash is divided into 64 8-bit-sized 
blocks and converted into decimal numbers, d1, d2, 
…, d64. 

Step2: The procedure for obtaining the starting values 
[x1, y1, z1] used in the construction of the sensing 
matrix is given in Equation (15),  

 x1 = 12 (mod ((d1⊕ d10⊕ d19⊕ d28 ⊕ d37⊕ d46⊕ d55 

⊕ d64), 256) + x0) 
y1 = 1

2
(mod ((d2⊕ d11⊕ d20⊕ d29 ⊕ d38⊕ d47⊕ d56 

⊕ d64), 256) + y0) 
z1 = 1

2
(mod ((d3⊕ d12⊕ d21⊕ d30 ⊕ d39⊕ d48⊕ d57 

⊕ d64), 256) + z0)                                              (15) 
where ⊕ is the XOR operation, and x0, y0 and z0 are 
the initial seeds. 

Step3: The procedure for obtaining the starting values 
[x2, y2, z2]  used in the permutation is given in 
Equation (16): 

 x2 = 1
2

(mod ((d4⊕ d13⊕ d22⊕ d31 ⊕ d40 ⊕ d49 ⊕d58 

⊕ d64), 256) + x0) 
y2 = 1

2
(mod ((d5 ⊕ d14 ⊕ d23 ⊕ d32 ⊕ d41 ⊕ d50 ⊕ 

d59 ⊕ d64), 256) + y0) 
z2  = 1

2
(mod ((d6 ⊕ d15 ⊕ d24 ⊕ d33 ⊕ d42 ⊕ d51 ⊕ 

(mod ((d9 ⊕ d18 ⊕ d27 ⊕ d36 ⊕ d45 ⊕ d54 ⊕ 
d63 ⊕ d64), 256)+ z0)

(17)

The starting values [x1, y1, z1], [x2, y2, z2] and [x3, y3, z3] 
are calculated for every new plain image, and new 
keys used.

3.2. True Random Sequence Generation
The random sequences used in the construction of 
the sensing matrix, as well as in the permutation and 
substitution processes, are obtained using the Lü sys-
tem, as follows:
Step1: Set the initial values (xi, yi and zi) and parame-
ters (a, b and c) of the system.
Step2: Solve the system using the Runge-Kutta 
scheme with a step interval of 0.0001.
Step3: Iterate the system according to the required 
length.

3.3. Sensing Matrix Construction

To recover the sparse signal with high precision, the 
sensing matrix must possess the restricted isomet-
ric property (RIP), such that it preserves significant 
information about the original signal. We construct a 
sensing matrix, based on the chaotic system, for two 
reasons. First, it is proved that chaos-based random 
sensing matrices satisfy the restricted isometric 
property with overwhelming probability [27]. Sec-
ond, it circumvents the problem of sending the full 
sensing matrix to the reconstruction side. Typically, 
in compressive sensing, the sensing matrix must be 
sent to the reconstruction end, which needs a large 
memory space and bandwidth. In our approach, 
however, only the initial values and parameters of 
the Lü system need to be sent to efficiently reduce 
memory space and bandwidth. Hence, a sensing ma-
trix constructed using the Lü system is efficient, and 
we have done so in this work. A chaotic incoherent 
sensing matrix is constructed as a circular matrixin 
which the first row of the matrix {R1 = a1, a2, a3… an} is 
obtained by iterating the Lü system 2500+N times. 
The former 2500 values of the obtained chaotic se-
quences (X, Y and Z) are then discarded to enhance 
the randomness in the sequence, and the remain-
ing N values are processed according to Equation 
(18), where Ix, Iy and Iz are the starting values of the 
Lü system. The remaining rows are produced by 
the previous row moving one element to the right, 
and multiplied by the incoherence coefficient (i), 
to enhance the nonlinear correlations between the 
columns. The more the nonlinear correlations be-
tween the columns, the higher the precision in sig-
nal reconstruction. The matrix is normalized by the 
coefficient 

 
 

 

d60 ⊕d64), 256) + z0)                                           (16) 
Step4: The procedure for obtaining the starting values 
[x3, y3, z3] used in the substitution is given in 
Equation (17): 
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3.4 Pixel Permutations 
Permutation minimizes any regular patterns present in 
the cipher text, and includes the diffusion 
characteristics in the proposed cipher. Pixel 
permutation changes the position of pixels in 
compressively-sensed measurements, as shown 
below: 
Step1: Set the initial values as [x2, y2 and z2] and 
iterate the Lü system to generate random sequences 
(X2={x1, x2….. xM}, Y2={y1, y2….. yM}) and Z2={z1, 
z2….. zM})). 
Step2: Sort the random sequences in ascending order 
(S_X2 = {sx1, sx2….. sxM}, S_Y2 = {sy1, sy2….. syM}) 
and S_Z2 = {sz1, sz2….. szM})). 
Step3: Find the index permutation vector (P_X2 = 
{px1, px2….. pxM}, P_Y2 = {py1, py2….. pyM}) and 
P_Z2 = {pz1, pz2….. pzM})). 
Step4: Rearrange all the pixels in each color channel 
of the sensed measurements,according to the index 
permutation vector. 
 
3.5 Pixel Substitutions 
A combination of permutation, followed by 
substitution, creates good mixing properties in the 
cipher. Substitution includes the confusion 
characteristics in the proposed cipher. Pixel 
substitution changes the value of pixels in the 
measurement vector, as shown below: 
Step1: Set the initial values as [x3, y3 and z3] and 
iterate the Lü system to generate random sequences 
(X3={x1, x2….. xM}, Y3={y1, y2….. yM}) and Z3={z1, 
z2….. zM})). 
Step2: Preprocess the random sequences using 
Equation (20): 
X3 =Xi ×1014 mod 256 where i= 1, 2, ..., M    
Y3 =Yi ×1014 mod 256 where i= 1, 2, ..., M      
Z3 =Zi ×1014 mod 256 where i= 1, 2, ..., M         (20) 
Step3: Perform pixel-by-pixel substitution in each 

 , where m is the number of columns. 
Hence, the chaotic sensing matrix (19) has zero 
mean and zero symmetry.

Xnew = mod ((abs (xi) – floor (xi)) × 108, Ix)  

Ynew = mod ((abs (yi) – floor (yi)) × 108, Iy)  

Znew = mod ((abs (zi) – floor (zi)) × 108, Iz)

R1(i) = [Xnew(i) ⊕ Ynew(i) ⊕ Znew(i)] 

(18)
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3.4. Pixel Permutations
Permutation minimizes any regular patterns present 
in the cipher text, and includes the diffusion char-
acteristics in the proposed cipher. Pixel permuta-
tion changes the position of pixels in compressive-
ly-sensed measurements, as shown below:
Step1: Set the initial values as [x2, y2 and z2] and it-
erate the Lü system to generate random sequences 
(X2={x1, x2….. xM}, Y2={y1, y2….. yM}) and Z2={z1, z2….. 
zM})).
Step2: Sort the random sequences in ascending order 
(S_X2 = {sx1, sx2….. sxM}, S_Y2 = {sy1, sy2….. syM}) and 
S_Z2 = {sz1, sz2….. szM})).
Step3: Find the index permutation vector (P_X2 = 
{px1, px2….. pxM}, P_Y2 = {py1, py2….. pyM}) and P_Z2 = 
{pz1, pz2….. pzM})).
Step4: Rearrange all the pixels in each color channel 
of the sensed measurements,according to the index 
permutation vector.

3.5. Pixel Substitutions
A combination of permutation, followed by substi-
tution, creates good mixing properties in the cipher. 
Substitution includes the confusion characteristics 
in the proposed cipher. Pixel substitution changes the 
value of pixels in the measurement vector, as shown 
below:
Step1: Set the initial values as [x3, y3 and z3] and iterate 
the Lü system to generate random sequences (X3={x1, 
x2….. xM}, Y3={y1, y2….. yM}) and Z3={z1, z2….. zM})).
Step2: Preprocess the random sequences using Equa-
tion (20):

X3 =Xi ×1014 mod 256 where i = 1, 2, ..., M   
Y3 =Yi ×1014 mod 256 where i = 1, 2, ..., M     
Z3 =Zi ×1014 mod 256 where i = 1, 2, ..., M

(20)

Step3: Perform pixel-by-pixel substitution in each 
color channel using Equation (21),

YR = de2bi (CSRi) ⊕ de2bi (X3i) 
YG = de2bi (CSGi) ⊕ de2bi (Y3i) 
YB = de2bi (CSBi) ⊕ de2bi (Z3i),

(21)

where CSRi, CSGi and CSBi are the color components of 
the sensed measurements (CS). 

3.6. Compression and Encryption (CE) 
A diagram of the proposed CE method is shown in 
Figure 1. The joint CE process is presented here:
Step1: Apply the SHA-512 hash method on the input 
color image, I, and obtain a 512-bit hash from which 
the initial values of the Lü system are calculated as 
described in Section 3.1.
Step2: Generate true random chaotic sequences by 
setting the initial values and parameters to the Lü 
system and iterating them as detailed in Section 3.2. 
Step3: Build the circular incoherence sensing matrix, 
Φ, with the restricted isometric property using the 
chaotic sequence given in Section 3.3.  
Step4: Represent the input image sparsely in the dis-
crete wavelet transform basis (ψ), and obtain sparse 
transform coefficients using
I = ψα.
Step5: Compress the DWT sparse coefficients using 
the circular incoherence sensing matrix and obtain 
measurements (CS) using
CS=Φψα .  
Step6: Perform uniform quantization on the mea-
surements in the range 0 to 255 using Equation (22),
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where CSmax and CSmin are  the minimum and 
maximum values of the CS measurements, and round 
(k) rounds the value of k to the nearest integer. 
Step7: Perform the pixel permutation operation on the 

sensed measurement given in Section 3.4.   
Step8: Perform the pixel substitution operation on the 
permuted measurement presented in Section 3.5.   
Step9: Reshape the substituted measurements to obtain 
the compressed-encrypted image, C.  
In the reconstruction process, inverse substitution is 
performed, followed by inverse pixel scrambling. The 
OMP is then used to recover the sparse representation 
of the image and finally, the inverse discrete wavelet 
transform is applied to get the reconstructed image (Ī). 

 
 

4. Experimental Results 
To evaluate the compression and encryption 
performance of the proposed scheme, extensive 
experimental tests were conducted in MATLAB 
R2014a. The natural color images shown in Figure 5, 
with pixels sized 512×512, are used as test plain 
images. The parameters a=35, b=3 and c=20, and the 
starting seeds x0=-3, y0=2 and z0=20, are used in the 
experiments. The input images are sparsely 
represented by employing the biorthogonal wavelet 
transform as the orthogonal transform basis (ψ), along 
with single-level decomposition. The sparse transform 
coefficients are compressed thereafter, using the 
chaotic circular sensing matrix. Finally, the 
measurements are permuted and substituted, based on 
the true random chaotic sequences, to produce a 
compressed-encrypted image. The orthogonal 
matching pursuit sparse reconstruction algorithm is 
used for image reconstruction. The input plain image, 
single-level decomposed image, compressed-encrypted 
image and corresponding reconstructed image of test 
image 11 are  shown in Figure 6.  
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where CSmax and CSmin are  the minimum and maxi-
mum values of the CS measurements, and round (k) 
rounds the value of k to the nearest integer.
Step7: Perform the pixel permutation operation on 
the sensed measurement given in Section 3.4.  
Step8: Perform the pixel substitution operation on 
the permuted measurement presented in Section 3.5.  
Step9: Reshape the substituted measurements to ob-
tain the compressed-encrypted image, C. 
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In the reconstruction process, inverse substitution 
is performed, followed by inverse pixel scrambling. 
The OMP is then used to recover the sparse repre-
sentation of the image and finally, the inverse discrete 
wavelet transform is applied to get the reconstructed 
image (Ī).

4. Experimental Results
To evaluate the compression and encryption perfor-
mance of the proposed scheme, extensive experimen-
tal tests were conducted in MATLAB R2014a. The nat-
ural color images shown in Figure 5, with pixels sized 
512×512, are used as test plain images. The parame-
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Plain test image 11, single-level decomposed image, compressed-encrypted image and corresponding reconstructed image

ters a = 35, b = 3 and c = 20, and the starting seeds x0 = 
-3, y0 = 2 and z0 = 20, are used in the experiments. The 
input images are sparsely represented by employing 
the biorthogonal wavelet transform as the orthogonal 
transform basis (ψ), along with single-level decomposi-
tion. The sparse transform coefficients are compressed 
thereafter, using the chaotic circular sensing matrix. 
Finally, the measurements are permuted and substi-
tuted, based on the true random chaotic sequences, to 
produce a compressed-encrypted image. The orthogo-
nal matching pursuit sparse reconstruction algorithm 
is used for image reconstruction. The input plain im-
age, single-level decomposed image, compressed-en-
crypted image and corresponding reconstructed image 
of test image 11 are  shown in Figure 6. 
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5. Results Analysis
A performance evaluation of the proposed scheme is 
carried out in two categories. In the first, image qual-
ity metrics such as the peak signal-to-noise ratio, 
structural similarity index, average difference, struc-
tural content, normalized cross-correlation, normal-
ized absolute error, edge strength similarity and max-
imum difference are used to test the reconstruction 
ability of the proposed system. In the second category, 
the strength of encryption of the proposed scheme is 
tested, based on the correlation coefficient, UACI, key 
sensitivity, NPCR, key space and histogram metrics. 
Experimental results demonstrate that the proposed 
scheme produced highly satisfactory results in terms 
of security. 

Peak Signal-to-Noise Ratio (PSNR) 
The PSNR and SSIM quality metrics are used to as-
sess the standard of the reconstructed image. The 
PSNR is a measure of image fidelity that computes 
the proportion between the peak image pixel value 
power and corrupting noise power [26]. The PSNR is 
defined by Equation (23),
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where MSE is the mean squared error. The blocks 
are obtained by splitting the wavelet coefficient im-
age into non-overlapping blocks (B) sized ( 𝑀𝑀𝑀𝑀
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where MSE is the mean squared error. The blocks 
are obtained by splitting the wavelet coefficient 
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 ) as shown in Figure 7, where DL denotes the 
decomposition level. Table 1 lists the total number 
of sparse vectors and their length for an image. 
Table 2 lists the PSNR values obtained by using the 
proposed approach with respect to different block 
sizes and the Table 3 shows the PSNR test result 
comparisons. 

 
Table 1  
Total number of sparse vectors and their lengths for an 
image (512 × 512) 

Decomposition-
Level (DL) 

Number of 
Sparse 
Vector 

Sparse 
Vector 
Length 

2 16384 16 
3 4096 64 
4 1024 256 

5 256 1024 
6 64 4096 
7 16 16384 

Table 2 
PSNR test results of the proposed system 

 
Input Image 

Reconstructed Images on 
Different Block Sizes 

8 × 8 16 ×16 32 × 32 
PSNR Values in db 

Input Image 1 34.1587 34.7492 35.8723 
Input Image 2  36.5571 37.1908 38.0317 
Input Image 3  34.9326 35.4641 36.5452 
Input Image 4 34.2225 34.8672 35.9675 
Input Image 5 36.0875 36.6820 37.7443 
Input Image 6 36.8196 37.6179 38.7457 
Input Image 7 34.9459 35.4932 36.6806 
Input Image 8 37.7538 38.3086 39.1460 
Input Image 9 35.8589 36.4751 37.7533 
Input Image 10  38.3305 38.0462 39.2286 
Input Image 11 37.0632 37.6342 38.8737 
Input Image 12 36.0199 36.6491 37.7490 
Input Image 13  37.6381 38.2429 39.1485 
Input Image 14 34.9170 34.4367 35.7914 
Input Image 15 36.9003 37.5477 38.4470 
Input Image 16 35.8047 35.4998 36.6618 
Input Image 17 36.7375 37.3173 38.2987 
Input Image 18 37.7809 38.2540 39.2547 
Input Image 19 36.1160 36.6729 37.5092 
Input Image 20 35.3275 36.0049 36.9416 

 
 Table 3 
 PSNR test results comparison 

Test Images 
(512 × 512) 

PSNR Values in db 
 (block size is 32 × 32) 

Proposed  
Shuqin  
et al.  
[28] 

Liya 
 et al.  
[16] 

Xinsheng 
et al. [32] 

test image 1 35.8723 34.0112 35.5183 31.7734 
test image 2  38.0317 36.4751 34.9296 32.0519 
test image 3  36.5452 36.5092 37.7236 31.8564 
test image 4 35.9675 34.7314 35.7290 31.5722 
test image 5 37.7443 35.3542 33.9897 30.9259 

 
Structural Similarity Index (SSIM) 
The SSIM measures the resemblance between the 
plain image (P) and recovered image (R) in terms of 
three features: luminance, contrast and structure. 
The SSIM value ranges between 0 and 1 [36]. Image 
distortion  is smaller when the index value 
approaches 1. The SSIM is measured by Equation 
(24),  

1LL2 LL2 HL2 

LH2 HH2 

HL1 

LH1 HH1 

(a) (b) (c) 

…. 

1HL2 1HL1 2HL1 

1LH2 1HH2 3HL1 4HL1 

1LH1 2LH1 1HH1 2HH1 

3LH1 4LH1 3HH1 1HH1 

)
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position level. Table 1 lists the total number of sparse 
vectors and their length for an image. Table 2 lists 

Figure 7
Wavelet coefficient image segmentation into blocks and 
sparse vector

Table 1 
Total number of sparse vectors and their lengths for an 
image (512 × 512)

Decomposition-Level 
(DL)

Number of Sparse 
Vector

Sparse Vector 
Length

2 16384 16

3 4096 64

4 1024 256

5 256 1024

6 64 4096

7 16 16384

Table 2
PSNR test results of the proposed system

Input Image
Reconstructed Images on  

Different Block Sizes

8 × 8 16 ×16 32 × 32

PSNR Values in db

Input Image 1 34.1587 34.7492 35.8723

Input Image 2 36.5571 37.1908 38.0317

Input Image 3 34.9326 35.4641 36.5452

Input Image 4 34.2225 34.8672 35.9675

Input Image 5 36.0875 36.6820 37.7443

Input Image 6 36.8196 37.6179 38.7457

Input Image 7 34.9459 35.4932 36.6806

Input Image 8 37.7538 38.3086 39.1460

Input Image 9 35.8589 36.4751 37.7533

Input Image 10 38.3305 38.0462 39.2286

Input Image 11 37.0632 37.6342 38.8737

Input Image 12 36.0199 36.6491 37.7490

Input Image 13 37.6381 38.2429 39.1485

Input Image 14 34.9170 34.4367 35.7914

Input Image 15 36.9003 37.5477 38.4470

Input Image 16 35.8047 35.4998 36.6618

Input Image 17 36.7375 37.3173 38.2987

Input Image 18 37.7809 38.2540 39.2547

Input Image 19 36.1160 36.6729 37.5092

Input Image 20 35.3275 36.0049 36.9416

 
 

 

Figure 7 
Wavelet coefficient image segmentation into blocks and sparse vector 

 
                 

5. Results Analysis 
A performance evaluation of the proposed scheme is 
carried out in two categories. In the first, image 
quality metrics such as the peak signal-to-noise 
ratio, structural similarity index, average difference, 
structural content, normalized cross-correlation, 
normalized absolute error, edge strength similarity 
and maximum difference are used to test the 
reconstruction ability of the proposed system. In the 
second category, the strength of encryption of the 
proposed scheme is tested, based on the correlation 
coefficient, UACI, key sensitivity, NPCR, key space 
and histogram metrics. Experimental results 
demonstrate that the proposed scheme produced 
highly satisfactory results in terms of security.  
Peak Signal-to-Noise Ratio (PSNR)  
The PSNR and SSIM quality metrics are used to 
assess the standard of the reconstructed image. The 
PSNR is a measure of image fidelity that computes 
the proportion between the peak image pixel value 
power and corrupting noise power [26]. The PSNR 
is defined by Equation (23), 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  10 𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙10 �
2552

𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀
� ,                   (23) 

where MSE is the mean squared error. The blocks 
are obtained by splitting the wavelet coefficient 
image into non-overlapping blocks (B) sized ( 𝑀𝑀𝑀𝑀

2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
×

𝑁𝑁𝑁𝑁
2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 ) as shown in Figure 7, where DL denotes the 
decomposition level. Table 1 lists the total number 
of sparse vectors and their length for an image. 
Table 2 lists the PSNR values obtained by using the 
proposed approach with respect to different block 
sizes and the Table 3 shows the PSNR test result 
comparisons. 

 
Table 1  
Total number of sparse vectors and their lengths for an 
image (512 × 512) 

Decomposition-
Level (DL) 

Number of 
Sparse 
Vector 

Sparse 
Vector 
Length 

2 16384 16 
3 4096 64 
4 1024 256 

5 256 1024 
6 64 4096 
7 16 16384 

Table 2 
PSNR test results of the proposed system 

 
Input Image 

Reconstructed Images on 
Different Block Sizes 

8 × 8 16 ×16 32 × 32 
PSNR Values in db 

Input Image 1 34.1587 34.7492 35.8723 
Input Image 2  36.5571 37.1908 38.0317 
Input Image 3  34.9326 35.4641 36.5452 
Input Image 4 34.2225 34.8672 35.9675 
Input Image 5 36.0875 36.6820 37.7443 
Input Image 6 36.8196 37.6179 38.7457 
Input Image 7 34.9459 35.4932 36.6806 
Input Image 8 37.7538 38.3086 39.1460 
Input Image 9 35.8589 36.4751 37.7533 
Input Image 10  38.3305 38.0462 39.2286 
Input Image 11 37.0632 37.6342 38.8737 
Input Image 12 36.0199 36.6491 37.7490 
Input Image 13  37.6381 38.2429 39.1485 
Input Image 14 34.9170 34.4367 35.7914 
Input Image 15 36.9003 37.5477 38.4470 
Input Image 16 35.8047 35.4998 36.6618 
Input Image 17 36.7375 37.3173 38.2987 
Input Image 18 37.7809 38.2540 39.2547 
Input Image 19 36.1160 36.6729 37.5092 
Input Image 20 35.3275 36.0049 36.9416 

 
 Table 3 
 PSNR test results comparison 

Test Images 
(512 × 512) 

PSNR Values in db 
 (block size is 32 × 32) 

Proposed  
Shuqin  
et al.  
[28] 

Liya 
 et al.  
[16] 

Xinsheng 
et al. [32] 

test image 1 35.8723 34.0112 35.5183 31.7734 
test image 2  38.0317 36.4751 34.9296 32.0519 
test image 3  36.5452 36.5092 37.7236 31.8564 
test image 4 35.9675 34.7314 35.7290 31.5722 
test image 5 37.7443 35.3542 33.9897 30.9259 

 
Structural Similarity Index (SSIM) 
The SSIM measures the resemblance between the 
plain image (P) and recovered image (R) in terms of 
three features: luminance, contrast and structure. 
The SSIM value ranges between 0 and 1 [36]. Image 
distortion  is smaller when the index value 
approaches 1. The SSIM is measured by Equation 
(24),  

1LL2 LL2 HL2 

LH2 HH2 

HL1 

LH1 HH1 

(a) (b) (c) 

…. 

1HL2 1HL1 2HL1 

1LH2 1HH2 3HL1 4HL1 
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Table 3
PSNR test results comparison

Test Images 
(512 × 512)

PSNR Values in db  (block size is 32 × 32)

Proposed Shuqin 
et al.  [28]

Liya
 et al.  [16]

Xinsheng 
et al. [32]

test image 1 35.8723 34.0112 35.5183 31.7734

test image 2 38.0317 36.4751 34.9296 32.0519

test image 3 36.5452 36.5092 37.7236 31.8564

test image 4 35.9675 34.7314 35.7290 31.5722

test image 5 37.7443 35.3542 33.9897 30.9259

the PSNR values obtained by using the proposed ap-
proach with respect to different block sizes and the 
Table 3 shows the PSNR test result comparisons.

Structural Similarity Index (SSIM)

The SSIM measures the resemblance between the 
plain image (P) and recovered image (R) in terms of 
three features: luminance, contrast and structure. 
The SSIM value ranges between 0 and 1 [36]. Image 
distortion  is smaller when the index value approach-
es 1. The SSIM is measured by Equation (24),

  

SSIM(x,y) = (2μPμR+c1)( 2σPR+c2)
�μP
2+μR

2+c1�( σP
2+σR

2+c2)
  ,                     (24) 

where μP, μR, σPR, 𝜇𝜇𝜇𝜇𝑃𝑃𝑃𝑃2 , 𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅2, c1 and c2 are the mean of 
P, the mean of R, the covariance of P and R, the 
variance of P, the variance of R, and the constant of 
c1 and c2, respectively. 
 
Average Difference (AD) 
The AD provides the average of change concerning 
the reconstructed and original plain images which, 
ideally, should be zero. The AD is defined by 
Equation (25), 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1

𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁
∑ ∑ �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖.𝑗𝑗𝑗𝑗 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1    ,                      (25) 

where Pi,j and Ri,j are the pixel values at location (i,j) 
of the plain and reconstructed images, respectively, 
M is the height and N the width of the image. 

 
Structural Content (SC) 
The SC is a kind of correlation-based metric that 
depends on the similarity between the original and 
reconstructed images, with a higher SC value 
reflecting a poor quality image. The SC is expressed 
by Equation (26): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  
∑ ∑ (𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗)2𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

∑ ∑ (𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗)2𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

   .                                         (26) 

 
Normalized Cross-Correlation (NCC)  
 The NCC metric compares the reconstructed 
and reference images, and is invariant to local 
changes in intensity and brightness. In the NCC, the 
correlation is normalized by dividing the cross-
correlation by the summation of the squares of the 
pixel values of the plain image. The NCC is 
calculated by Equation (27): 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  ∑ ∑ 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗×𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗
𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗
2

𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗=1

𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1  .                   (27) 

 
Normalized Absolute Error (NAE) 
The NAE is a proportion of the summation of 
differences between the plain and reconstructed 
pixel values to the summation of the pixel values of 
the plain image. The NAE, with an ideal value of 0, 
is defined by Equation (28): 

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁 =  
∑ ∑ (�𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗−𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗�)

𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1
∑ ∑ 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

  .                                (28) 

 
Edge Strength Similarity (ESSIM)  

This image quality metricmeasures the 
similarity between the edge strength of the plain and 
reconstructed images. The  ESSIM  is calculated by 
Equation (29), 

𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  1
𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁

∑ ∑ 2𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗�𝑀𝑀𝑀𝑀�𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗�+𝑐𝑐𝑐𝑐

(𝑀𝑀𝑀𝑀(𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗))2+(𝑀𝑀𝑀𝑀(𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗))2+𝑐𝑐𝑐𝑐
   ,   𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1 (29) 

where E(P) and E(R) are the edge strengths in the 
vertical direction of the plain  and reconstructed 
images, respectively. 
 
Maximum Difference (MD) 
The MD quantitatively provides the maximum 
difference between the reconstructed and referenced 
images. A small MD value means that the 
reconstructed image is of good quality [23], while a 
large value implies poor image quality. The MD is 
measured by Equation (30): 

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴 = 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀|𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) − 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)|  .                   (30) 
The results of all the tests above, presented in Table 
4, reveal that the sparse reconstruction process has 
produced images of acceptable quality.  

 
  Table 4 
  Experimental result of SSIM, SC, AD,MD, NCC, NAE, ESSIM, NPCR and UACI tests  

Input Image SSIM  SC  AD  MD  NCC  NAE  ESSIM NPCR UACI 
test image 1 0.6571 0.7292 0.0236 127.5809 0.7142 0.0375 0.8595 99.6280 33.4208 
test image 2 0.7035 0.7324 0.0173 143.1014 0.7210 0.0184 0.8392 99.6191 33.3896 
test image 3 0.5992 0.6504 0.0516 138.9701 0.6505 0.0231 0.8586 99.6204 33.4884 
test image 4 0.6414 0.6378 0.0239 112.2179 0.6319 0.0617 0.8194 99.6188 33.4075 
test image 5 0.6694 0.7446 0.0345 109.1685 0.7137 0.0742 0.8491 99.6185 33.3928 
test image 6 0.7152 0.6500 0.0271 157.9079 0.7208 0.0377 0.8385 99.6089 33.4058 
test image 7 0.6206 0.6483 0.0195 213.6174 0.6706 0.0810 0.8178 99.6227 33.3913 
test image 8 0.7205 0.7513 0.0170 124.3669 0.6800 0.0296 0.8596 99.6115 33.4131 
test image 9 0.7007 0.5862 0.0301 134.8350 0.6935 0.0691 0.8494 99.6131 33.3501 
test image 10 0.6984 0.6902 0.0198 110.3204 0.6926 0.0480 0.8296 99.6164 33.3351 
test image 11 0.6594 0.7430 0.0195 143.0355 0.6961 0.0494 0.8526 99.6126 33.2577 
test image 12 0.6596 0.7153 0.0225 137.0326 0.6772 0.0543 0.8353 99.6112 34.1015 
test image 13 0.7021 0.7069 0.0341 126.7063 0.6892 0.0379 0.8174 99.6156 33.3342 
test image 14 0.6637 0.6599 0.0213 119.9554 0.7186 0.0605 0.8459 99.6027 33.4178 
test image 15 0.6038 0.6402 0.0266 144.2960 0.6018 0.0443 0.8203 99.6099 33.3102 
test image 16 0.6713 0.6357 0.0197 135.6501 0.6652 0.0332 0.8295 99.6252 33.4158 
test image 17 0.6238 0.7267 0.0204 126.5483 0.6281 0.0542 0.8158 99.6092 33.3894 
test image 18 0.7103 0.6090 0.0263 129.4447 0.7034 0.0612 0.8079 99.6106 33.3182 
test image 19 0.5897 0.6213 0.0457 159.6584 0.5528 0.0476 0.8310 99.6038 33.2954 
test image 20 0.6341 0.7010 0.0267 132.0315 0.5801 0.0327 0.8426 99.6046 33.3005 

 

, (24)

where μP, μR, σPR, μP
2, σR

2, c1 and c2 are the mean of P, the 
mean of R, the covariance of P and R, the variance of 
P, the variance of R, and the constant of c1 and c2, re-
spectively.

Average Difference (AD)
The AD provides the average of change concerning the 
reconstructed and original plain images which, ideal-
ly, should be zero. The AD is defined by Equation (25),

  

SSIM(x,y) = (2μPμR+c1)( 2σPR+c2)
�μP
2+μR

2+c1�( σP
2+σR

2+c2)
  ,                     (24) 

where μP, μR, σPR, 𝜇𝜇𝜇𝜇𝑃𝑃𝑃𝑃2 , 𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅2, c1 and c2 are the mean of 
P, the mean of R, the covariance of P and R, the 
variance of P, the variance of R, and the constant of 
c1 and c2, respectively. 
 
Average Difference (AD) 
The AD provides the average of change concerning 
the reconstructed and original plain images which, 
ideally, should be zero. The AD is defined by 
Equation (25), 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1
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where Pi,j and Ri,j are the pixel values at location (i,j) 
of the plain and reconstructed images, respectively, 
M is the height and N the width of the image. 

 
Structural Content (SC) 
The SC is a kind of correlation-based metric that 
depends on the similarity between the original and 
reconstructed images, with a higher SC value 
reflecting a poor quality image. The SC is expressed 
by Equation (26): 
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Normalized Cross-Correlation (NCC)  
 The NCC metric compares the reconstructed 
and reference images, and is invariant to local 
changes in intensity and brightness. In the NCC, the 
correlation is normalized by dividing the cross-
correlation by the summation of the squares of the 
pixel values of the plain image. The NCC is 
calculated by Equation (27): 
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Normalized Absolute Error (NAE) 
The NAE is a proportion of the summation of 
differences between the plain and reconstructed 
pixel values to the summation of the pixel values of 
the plain image. The NAE, with an ideal value of 0, 
is defined by Equation (28): 
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Edge Strength Similarity (ESSIM)  

This image quality metricmeasures the 
similarity between the edge strength of the plain and 
reconstructed images. The  ESSIM  is calculated by 
Equation (29), 
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where E(P) and E(R) are the edge strengths in the 
vertical direction of the plain  and reconstructed 
images, respectively. 
 
Maximum Difference (MD) 
The MD quantitatively provides the maximum 
difference between the reconstructed and referenced 
images. A small MD value means that the 
reconstructed image is of good quality [23], while a 
large value implies poor image quality. The MD is 
measured by Equation (30): 

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴 = 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀|𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) − 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)|  .                   (30) 
The results of all the tests above, presented in Table 
4, reveal that the sparse reconstruction process has 
produced images of acceptable quality.  

 
  Table 4 
  Experimental result of SSIM, SC, AD,MD, NCC, NAE, ESSIM, NPCR and UACI tests  

Input Image SSIM  SC  AD  MD  NCC  NAE  ESSIM NPCR UACI 
test image 1 0.6571 0.7292 0.0236 127.5809 0.7142 0.0375 0.8595 99.6280 33.4208 
test image 2 0.7035 0.7324 0.0173 143.1014 0.7210 0.0184 0.8392 99.6191 33.3896 
test image 3 0.5992 0.6504 0.0516 138.9701 0.6505 0.0231 0.8586 99.6204 33.4884 
test image 4 0.6414 0.6378 0.0239 112.2179 0.6319 0.0617 0.8194 99.6188 33.4075 
test image 5 0.6694 0.7446 0.0345 109.1685 0.7137 0.0742 0.8491 99.6185 33.3928 
test image 6 0.7152 0.6500 0.0271 157.9079 0.7208 0.0377 0.8385 99.6089 33.4058 
test image 7 0.6206 0.6483 0.0195 213.6174 0.6706 0.0810 0.8178 99.6227 33.3913 
test image 8 0.7205 0.7513 0.0170 124.3669 0.6800 0.0296 0.8596 99.6115 33.4131 
test image 9 0.7007 0.5862 0.0301 134.8350 0.6935 0.0691 0.8494 99.6131 33.3501 
test image 10 0.6984 0.6902 0.0198 110.3204 0.6926 0.0480 0.8296 99.6164 33.3351 
test image 11 0.6594 0.7430 0.0195 143.0355 0.6961 0.0494 0.8526 99.6126 33.2577 
test image 12 0.6596 0.7153 0.0225 137.0326 0.6772 0.0543 0.8353 99.6112 34.1015 
test image 13 0.7021 0.7069 0.0341 126.7063 0.6892 0.0379 0.8174 99.6156 33.3342 
test image 14 0.6637 0.6599 0.0213 119.9554 0.7186 0.0605 0.8459 99.6027 33.4178 
test image 15 0.6038 0.6402 0.0266 144.2960 0.6018 0.0443 0.8203 99.6099 33.3102 
test image 16 0.6713 0.6357 0.0197 135.6501 0.6652 0.0332 0.8295 99.6252 33.4158 
test image 17 0.6238 0.7267 0.0204 126.5483 0.6281 0.0542 0.8158 99.6092 33.3894 
test image 18 0.7103 0.6090 0.0263 129.4447 0.7034 0.0612 0.8079 99.6106 33.3182 
test image 19 0.5897 0.6213 0.0457 159.6584 0.5528 0.0476 0.8310 99.6038 33.2954 
test image 20 0.6341 0.7010 0.0267 132.0315 0.5801 0.0327 0.8426 99.6046 33.3005 

 

, (25)

where Pi,j and Ri,j are the pixel values at location (i,j) of 
the plain and reconstructed images, respectively, M is 
the height and N the width of the image.

Structural Content (SC)
The SC is a kind of correlation-based metric that 
depends on the similarity between the original and 

reconstructed images, with a higher SC value re-
flecting a poor quality image. The SC is expressed by 
Equation (26):

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  
∑ ∑ (𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗)2𝑁𝑁𝑁𝑁
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𝑚𝑚𝑚𝑚=1

∑ ∑ (𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗)2𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

   . (26)

Normalized Cross-Correlation (NCC) 
The NCC metric compares the reconstructed and 
reference images, and is invariant to local changes in 
intensity and brightness. In the NCC, the correlation 
is normalized by dividing the cross-correlation by the 
summation of the squares of the pixel values of the 
plain image. The NCC is calculated by Equation (27):

  

SSIM(x,y) = (2μPμR+c1)( 2σPR+c2)
�μP
2+μR

2+c1�( σP
2+σR

2+c2)
  ,                     (24) 

where μP, μR, σPR, 𝜇𝜇𝜇𝜇𝑃𝑃𝑃𝑃2 , 𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅2, c1 and c2 are the mean of 
P, the mean of R, the covariance of P and R, the 
variance of P, the variance of R, and the constant of 
c1 and c2, respectively. 
 
Average Difference (AD) 
The AD provides the average of change concerning 
the reconstructed and original plain images which, 
ideally, should be zero. The AD is defined by 
Equation (25), 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1
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∑ ∑ �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖.𝑗𝑗𝑗𝑗 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1    ,                      (25) 

where Pi,j and Ri,j are the pixel values at location (i,j) 
of the plain and reconstructed images, respectively, 
M is the height and N the width of the image. 

 
Structural Content (SC) 
The SC is a kind of correlation-based metric that 
depends on the similarity between the original and 
reconstructed images, with a higher SC value 
reflecting a poor quality image. The SC is expressed 
by Equation (26): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  
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Normalized Cross-Correlation (NCC)  
 The NCC metric compares the reconstructed 
and reference images, and is invariant to local 
changes in intensity and brightness. In the NCC, the 
correlation is normalized by dividing the cross-
correlation by the summation of the squares of the 
pixel values of the plain image. The NCC is 
calculated by Equation (27): 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  ∑ ∑ 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗×𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗
𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗
2

𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗=1

𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1  .                   (27) 

 
Normalized Absolute Error (NAE) 
The NAE is a proportion of the summation of 
differences between the plain and reconstructed 
pixel values to the summation of the pixel values of 
the plain image. The NAE, with an ideal value of 0, 
is defined by Equation (28): 

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁 =  
∑ ∑ (�𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗−𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗�)

𝑁𝑁𝑁𝑁
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  .                                (28) 

 
Edge Strength Similarity (ESSIM)  

This image quality metricmeasures the 
similarity between the edge strength of the plain and 
reconstructed images. The  ESSIM  is calculated by 
Equation (29), 

𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  1
𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁

∑ ∑ 2𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗�𝑀𝑀𝑀𝑀�𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗�+𝑐𝑐𝑐𝑐

(𝑀𝑀𝑀𝑀(𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗))2+(𝑀𝑀𝑀𝑀(𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗))2+𝑐𝑐𝑐𝑐
   ,   𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1 (29) 

where E(P) and E(R) are the edge strengths in the 
vertical direction of the plain  and reconstructed 
images, respectively. 
 
Maximum Difference (MD) 
The MD quantitatively provides the maximum 
difference between the reconstructed and referenced 
images. A small MD value means that the 
reconstructed image is of good quality [23], while a 
large value implies poor image quality. The MD is 
measured by Equation (30): 

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴 = 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀|𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) − 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)|  .                   (30) 
The results of all the tests above, presented in Table 
4, reveal that the sparse reconstruction process has 
produced images of acceptable quality.  

 
  Table 4 
  Experimental result of SSIM, SC, AD,MD, NCC, NAE, ESSIM, NPCR and UACI tests  

Input Image SSIM  SC  AD  MD  NCC  NAE  ESSIM NPCR UACI 
test image 1 0.6571 0.7292 0.0236 127.5809 0.7142 0.0375 0.8595 99.6280 33.4208 
test image 2 0.7035 0.7324 0.0173 143.1014 0.7210 0.0184 0.8392 99.6191 33.3896 
test image 3 0.5992 0.6504 0.0516 138.9701 0.6505 0.0231 0.8586 99.6204 33.4884 
test image 4 0.6414 0.6378 0.0239 112.2179 0.6319 0.0617 0.8194 99.6188 33.4075 
test image 5 0.6694 0.7446 0.0345 109.1685 0.7137 0.0742 0.8491 99.6185 33.3928 
test image 6 0.7152 0.6500 0.0271 157.9079 0.7208 0.0377 0.8385 99.6089 33.4058 
test image 7 0.6206 0.6483 0.0195 213.6174 0.6706 0.0810 0.8178 99.6227 33.3913 
test image 8 0.7205 0.7513 0.0170 124.3669 0.6800 0.0296 0.8596 99.6115 33.4131 
test image 9 0.7007 0.5862 0.0301 134.8350 0.6935 0.0691 0.8494 99.6131 33.3501 
test image 10 0.6984 0.6902 0.0198 110.3204 0.6926 0.0480 0.8296 99.6164 33.3351 
test image 11 0.6594 0.7430 0.0195 143.0355 0.6961 0.0494 0.8526 99.6126 33.2577 
test image 12 0.6596 0.7153 0.0225 137.0326 0.6772 0.0543 0.8353 99.6112 34.1015 
test image 13 0.7021 0.7069 0.0341 126.7063 0.6892 0.0379 0.8174 99.6156 33.3342 
test image 14 0.6637 0.6599 0.0213 119.9554 0.7186 0.0605 0.8459 99.6027 33.4178 
test image 15 0.6038 0.6402 0.0266 144.2960 0.6018 0.0443 0.8203 99.6099 33.3102 
test image 16 0.6713 0.6357 0.0197 135.6501 0.6652 0.0332 0.8295 99.6252 33.4158 
test image 17 0.6238 0.7267 0.0204 126.5483 0.6281 0.0542 0.8158 99.6092 33.3894 
test image 18 0.7103 0.6090 0.0263 129.4447 0.7034 0.0612 0.8079 99.6106 33.3182 
test image 19 0.5897 0.6213 0.0457 159.6584 0.5528 0.0476 0.8310 99.6038 33.2954 
test image 20 0.6341 0.7010 0.0267 132.0315 0.5801 0.0327 0.8426 99.6046 33.3005 

 

(27)

Normalized Absolute Error (NAE)
The NAE is a proportion of the summation of differ-
ences between the plain and reconstructed pixel val-
ues to the summation of the pixel values of the plain 
image. The NAE, with an ideal value of 0, is defined by 
Equation (28):

Edge Strength Similarity (ESSIM) 
This image quality metricmeasures the similarity be-
tween the edge strength of the plain and reconstruct-
ed images. The  ESSIM  is calculated by Equation (29),

  

SSIM(x,y) = (2μPμR+c1)( 2σPR+c2)
�μP
2+μR

2+c1�( σP
2+σR

2+c2)
  ,                     (24) 

where μP, μR, σPR, 𝜇𝜇𝜇𝜇𝑃𝑃𝑃𝑃2 , 𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅2, c1 and c2 are the mean of 
P, the mean of R, the covariance of P and R, the 
variance of P, the variance of R, and the constant of 
c1 and c2, respectively. 
 
Average Difference (AD) 
The AD provides the average of change concerning 
the reconstructed and original plain images which, 
ideally, should be zero. The AD is defined by 
Equation (25), 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1
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where Pi,j and Ri,j are the pixel values at location (i,j) 
of the plain and reconstructed images, respectively, 
M is the height and N the width of the image. 

 
Structural Content (SC) 
The SC is a kind of correlation-based metric that 
depends on the similarity between the original and 
reconstructed images, with a higher SC value 
reflecting a poor quality image. The SC is expressed 
by Equation (26): 
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Normalized Cross-Correlation (NCC)  
 The NCC metric compares the reconstructed 
and reference images, and is invariant to local 
changes in intensity and brightness. In the NCC, the 
correlation is normalized by dividing the cross-
correlation by the summation of the squares of the 
pixel values of the plain image. The NCC is 
calculated by Equation (27): 
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Normalized Absolute Error (NAE) 
The NAE is a proportion of the summation of 
differences between the plain and reconstructed 
pixel values to the summation of the pixel values of 
the plain image. The NAE, with an ideal value of 0, 
is defined by Equation (28): 
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Edge Strength Similarity (ESSIM)  

This image quality metricmeasures the 
similarity between the edge strength of the plain and 
reconstructed images. The  ESSIM  is calculated by 
Equation (29), 
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where E(P) and E(R) are the edge strengths in the 
vertical direction of the plain  and reconstructed 
images, respectively. 
 
Maximum Difference (MD) 
The MD quantitatively provides the maximum 
difference between the reconstructed and referenced 
images. A small MD value means that the 
reconstructed image is of good quality [23], while a 
large value implies poor image quality. The MD is 
measured by Equation (30): 

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴 = 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀|𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) − 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)|  .                   (30) 
The results of all the tests above, presented in Table 
4, reveal that the sparse reconstruction process has 
produced images of acceptable quality.  

 
  Table 4 
  Experimental result of SSIM, SC, AD,MD, NCC, NAE, ESSIM, NPCR and UACI tests  

Input Image SSIM  SC  AD  MD  NCC  NAE  ESSIM NPCR UACI 
test image 1 0.6571 0.7292 0.0236 127.5809 0.7142 0.0375 0.8595 99.6280 33.4208 
test image 2 0.7035 0.7324 0.0173 143.1014 0.7210 0.0184 0.8392 99.6191 33.3896 
test image 3 0.5992 0.6504 0.0516 138.9701 0.6505 0.0231 0.8586 99.6204 33.4884 
test image 4 0.6414 0.6378 0.0239 112.2179 0.6319 0.0617 0.8194 99.6188 33.4075 
test image 5 0.6694 0.7446 0.0345 109.1685 0.7137 0.0742 0.8491 99.6185 33.3928 
test image 6 0.7152 0.6500 0.0271 157.9079 0.7208 0.0377 0.8385 99.6089 33.4058 
test image 7 0.6206 0.6483 0.0195 213.6174 0.6706 0.0810 0.8178 99.6227 33.3913 
test image 8 0.7205 0.7513 0.0170 124.3669 0.6800 0.0296 0.8596 99.6115 33.4131 
test image 9 0.7007 0.5862 0.0301 134.8350 0.6935 0.0691 0.8494 99.6131 33.3501 
test image 10 0.6984 0.6902 0.0198 110.3204 0.6926 0.0480 0.8296 99.6164 33.3351 
test image 11 0.6594 0.7430 0.0195 143.0355 0.6961 0.0494 0.8526 99.6126 33.2577 
test image 12 0.6596 0.7153 0.0225 137.0326 0.6772 0.0543 0.8353 99.6112 34.1015 
test image 13 0.7021 0.7069 0.0341 126.7063 0.6892 0.0379 0.8174 99.6156 33.3342 
test image 14 0.6637 0.6599 0.0213 119.9554 0.7186 0.0605 0.8459 99.6027 33.4178 
test image 15 0.6038 0.6402 0.0266 144.2960 0.6018 0.0443 0.8203 99.6099 33.3102 
test image 16 0.6713 0.6357 0.0197 135.6501 0.6652 0.0332 0.8295 99.6252 33.4158 
test image 17 0.6238 0.7267 0.0204 126.5483 0.6281 0.0542 0.8158 99.6092 33.3894 
test image 18 0.7103 0.6090 0.0263 129.4447 0.7034 0.0612 0.8079 99.6106 33.3182 
test image 19 0.5897 0.6213 0.0457 159.6584 0.5528 0.0476 0.8310 99.6038 33.2954 
test image 20 0.6341 0.7010 0.0267 132.0315 0.5801 0.0327 0.8426 99.6046 33.3005 

 

, (29)

where E(P) and E(R) are the edge strengths in the ver-
tical direction of the plain  and reconstructed images, 
respectively.

Maximum Difference (MD)
The MD quantitatively provides the maximum differ-
ence between the reconstructed and referenced images. 
A small MD value means that the reconstructed image 
is of good quality [23], while a large value implies poor 
image quality. The MD is measured by Equation (30):

  

SSIM(x,y) = (2μPμR+c1)( 2σPR+c2)
�μP
2+μR

2+c1�( σP
2+σR

2+c2)
  ,                     (24) 

where μP, μR, σPR, 𝜇𝜇𝜇𝜇𝑃𝑃𝑃𝑃2 , 𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅2, c1 and c2 are the mean of 
P, the mean of R, the covariance of P and R, the 
variance of P, the variance of R, and the constant of 
c1 and c2, respectively. 
 
Average Difference (AD) 
The AD provides the average of change concerning 
the reconstructed and original plain images which, 
ideally, should be zero. The AD is defined by 
Equation (25), 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1

𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁
∑ ∑ �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖.𝑗𝑗𝑗𝑗 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1    ,                      (25) 

where Pi,j and Ri,j are the pixel values at location (i,j) 
of the plain and reconstructed images, respectively, 
M is the height and N the width of the image. 

 
Structural Content (SC) 
The SC is a kind of correlation-based metric that 
depends on the similarity between the original and 
reconstructed images, with a higher SC value 
reflecting a poor quality image. The SC is expressed 
by Equation (26): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  
∑ ∑ (𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗)2𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

∑ ∑ (𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗)2𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

   .                                         (26) 

 
Normalized Cross-Correlation (NCC)  
 The NCC metric compares the reconstructed 
and reference images, and is invariant to local 
changes in intensity and brightness. In the NCC, the 
correlation is normalized by dividing the cross-
correlation by the summation of the squares of the 
pixel values of the plain image. The NCC is 
calculated by Equation (27): 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  ∑ ∑ 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗×𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗
𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗
2

𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗=1

𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1  .                   (27) 

 
Normalized Absolute Error (NAE) 
The NAE is a proportion of the summation of 
differences between the plain and reconstructed 
pixel values to the summation of the pixel values of 
the plain image. The NAE, with an ideal value of 0, 
is defined by Equation (28): 

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁 =  
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  .                                (28) 

 
Edge Strength Similarity (ESSIM)  

This image quality metricmeasures the 
similarity between the edge strength of the plain and 
reconstructed images. The  ESSIM  is calculated by 
Equation (29), 

𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  1
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where E(P) and E(R) are the edge strengths in the 
vertical direction of the plain  and reconstructed 
images, respectively. 
 
Maximum Difference (MD) 
The MD quantitatively provides the maximum 
difference between the reconstructed and referenced 
images. A small MD value means that the 
reconstructed image is of good quality [23], while a 
large value implies poor image quality. The MD is 

: 
𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴 = 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀|𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) − 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)|  .                   (30) 

The results of all the tests above, presented in Table 
4, reveal that the sparse reconstruction process has 
produced images of acceptable quality.  

 
  Table 4 
  Experimental result of SSIM, SC, AD,MD, NCC, NAE, ESSIM, NPCR and UACI tests  

Input Image SSIM  SC  AD  MD  NCC  NAE  ESSIM NPCR UACI 
test image 1 0.6571 0.7292 0.0236 127.5809 0.7142 0.0375 0.8595 99.6280 33.4208 
test image 2 0.7035 0.7324 0.0173 143.1014 0.7210 0.0184 0.8392 99.6191 33.3896 
test image 3 0.5992 0.6504 0.0516 138.9701 0.6505 0.0231 0.8586 99.6204 33.4884 
test image 4 0.6414 0.6378 0.0239 112.2179 0.6319 0.0617 0.8194 99.6188 33.4075 
test image 5 0.6694 0.7446 0.0345 109.1685 0.7137 0.0742 0.8491 99.6185 33.3928 
test image 6 0.7152 0.6500 0.0271 157.9079 0.7208 0.0377 0.8385 99.6089 33.4058 
test image 7 0.6206 0.6483 0.0195 213.6174 0.6706 0.0810 0.8178 99.6227 33.3913 
test image 8 0.7205 0.7513 0.0170 124.3669 0.6800 0.0296 0.8596 99.6115 33.4131 
test image 9 0.7007 0.5862 0.0301 134.8350 0.6935 0.0691 0.8494 99.6131 33.3501 
test image 10 0.6984 0.6902 0.0198 110.3204 0.6926 0.0480 0.8296 99.6164 33.3351 
test image 11 0.6594 0.7430 0.0195 143.0355 0.6961 0.0494 0.8526 99.6126 33.2577 
test image 12 0.6596 0.7153 0.0225 137.0326 0.6772 0.0543 0.8353 99.6112 34.1015 
test image 13 0.7021 0.7069 0.0341 126.7063 0.6892 0.0379 0.8174 99.6156 33.3342 
test image 14 0.6637 0.6599 0.0213 119.9554 0.7186 0.0605 0.8459 99.6027 33.4178 
test image 15 0.6038 0.6402 0.0266 144.2960 0.6018 0.0443 0.8203 99.6099 33.3102 
test image 16 0.6713 0.6357 0.0197 135.6501 0.6652 0.0332 0.8295 99.6252 33.4158 
test image 17 0.6238 0.7267 0.0204 126.5483 0.6281 0.0542 0.8158 99.6092 33.3894 
test image 18 0.7103 0.6090 0.0263 129.4447 0.7034 0.0612 0.8079 99.6106 33.3182 
test image 19 0.5897 0.6213 0.0457 159.6584 0.5528 0.0476 0.8310 99.6038 33.2954 
test image 20 0.6341 0.7010 0.0267 132.0315 0.5801 0.0327 0.8426 99.6046 33.3005 

 

. (30)

The results of all the tests above, presented in Table 
4, reveal that the sparse reconstruction process has 
produced images of acceptable quality. 
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Table 4
Experimental result of SSIM, SC, AD,MD, NCC, NAE, ESSIM, NPCR and UACI tests 

Input Image SSIM SC AD MD NCC NAE ESSIM NPCR UACI

test image 1 0.6571 0.7292 0.0236 127.5809 0.7142 0.0375 0.8595 99.6280 33.4208

test image 2 0.7035 0.7324 0.0173 143.1014 0.7210 0.0184 0.8392 99.6191 33.3896

test image 3 0.5992 0.6504 0.0516 138.9701 0.6505 0.0231 0.8586 99.6204 33.4884

test image 4 0.6414 0.6378 0.0239 112.2179 0.6319 0.0617 0.8194 99.6188 33.4075

test image 5 0.6694 0.7446 0.0345 109.1685 0.7137 0.0742 0.8491 99.6185 33.3928

test image 6 0.7152 0.6500 0.0271 157.9079 0.7208 0.0377 0.8385 99.6089 33.4058

test image 7 0.6206 0.6483 0.0195 213.6174 0.6706 0.0810 0.8178 99.6227 33.3913

test image 8 0.7205 0.7513 0.0170 124.3669 0.6800 0.0296 0.8596 99.6115 33.4131

test image 9 0.7007 0.5862 0.0301 134.8350 0.6935 0.0691 0.8494 99.6131 33.3501

test image 10 0.6984 0.6902 0.0198 110.3204 0.6926 0.0480 0.8296 99.6164 33.3351

test image 11 0.6594 0.7430 0.0195 143.0355 0.6961 0.0494 0.8526 99.6126 33.2577

test image 12 0.6596 0.7153 0.0225 137.0326 0.6772 0.0543 0.8353 99.6112 34.1015

test image 13 0.7021 0.7069 0.0341 126.7063 0.6892 0.0379 0.8174 99.6156 33.3342

test image 14 0.6637 0.6599 0.0213 119.9554 0.7186 0.0605 0.8459 99.6027 33.4178

test image 15 0.6038 0.6402 0.0266 144.2960 0.6018 0.0443 0.8203 99.6099 33.3102

test image 16 0.6713 0.6357 0.0197 135.6501 0.6652 0.0332 0.8295 99.6252 33.4158

test image 17 0.6238 0.7267 0.0204 126.5483 0.6281 0.0542 0.8158 99.6092 33.3894

test image 18 0.7103 0.6090 0.0263 129.4447 0.7034 0.0612 0.8079 99.6106 33.3182

test image 19 0.5897 0.6213 0.0457 159.6584 0.5528 0.0476 0.8310 99.6038 33.2954

test image 20 0.6341 0.7010 0.0267 132.0315 0.5801 0.0327 0.8426 99.6046 33.3005

Key Space Analysis
It is widely accepted that secret keys play a critical 
role in the security of a cryptosystem. If everything 
about an algorithm is known to the public, then the 
secret key is everything in terms of security. Hence, 
to withstand bruteforce attacks, an effective cipher 
scheme should have a key space of at least 2250 [24]. 
The keys of this method are the 512-bit image hash, 
with starting values of [x1, y1, z1, x2, y2, z2, x3, y3 and z3] 
and a valid precision of 10-14. Hence, the total key space 
approximately equals 2904 [2512× 1014 × 1014× 1014 × 1014× 
1014 × 1014× 1014 × 1014× 1014], which is good enough to 
strongly resist key-based attacks.

Key Sensitivity Analysis
Key sensitivity is salient, which means that a small 
change in the secret key producess a completely dif-
ferent cipher image. The Lü system is highly sensitive 
to the starting values, which  are used as secret keys 
in the proposed system. The key sensitivity test of the 
proposed system is carried out as follows. Test image 
11 is compressed and encrypted with the starting seed 
values of x0=-3, y0=2 and z0=20. The ciphered test im-
age 11 is then reconstructed using the same starting 
seeds, and the slightly-changed starting seed values of 
x0=-3.0000000001, y0=2 and z0=20. Figure 8 shows the 
two reconstructed images. From the results, it is clearly 
seen that the proposed system has great key sensitivity.



359Information Technology and Control 2020/3/49

Histogram Analysis
A histogram is distinctive for every image. Given that 
this statistical feature can be perceived and exploited 
by an attacker, a strong cryptosystem must provide 
a fairly uniform distribution of the pixel intensities 
of the ciphered image [27, 31]. Figs. 9 (b), (d) and (f) 
show the histograms of the original images, com-
pressed-encrypted images and reconstructed imag-
es, respectively. It is clear that since the histogram 
of the compressed-encrypted image is flat, no useful 
information can be obtained by interpreting the his-
tograms of the compressed-encrypted images.

Correlation Coefficient Analysis (CC)
A strong correlation exists between adjacent pixels 
of digital images. The CC closeness measure can be 

Figure 8
Key Sensitivity analysis
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used to assess the performance of an algorithm’s re-
sistance to statistical attacks. Since the CC of plain 
images is usually near 1 [2], the CC ofthe cipher image 
should, ideally, be close to 0. To measure the CC, 3000 
pixels were randomly selected along three directions 
(vertical, horizontal and diagonal) and the CC ob-
tained using Equation (31),

  

SSIM(x,y) = (2μPμR+c1)( 2σPR+c2)
�μP
2+μR

2+c1�( σP
2+σR

2+c2)
  ,                     (24) 

where μP, μR, σPR, 𝜇𝜇𝜇𝜇𝑃𝑃𝑃𝑃2 , 𝜎𝜎𝜎𝜎𝑅𝑅𝑅𝑅2, c1 and c2 are the mean of 
P, the mean of R, the covariance of P and R, the 
variance of P, the variance of R, and the constant of 
c1 and c2, respectively. 
 
Average Difference (AD) 
The AD provides the average of change concerning 
the reconstructed and original plain images which, 
ideally, should be zero. The AD is defined by 
Equation (25), 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1

𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁
∑ ∑ �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖.𝑗𝑗𝑗𝑗 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1    ,                      (25) 

where Pi,j and Ri,j are the pixel values at location (i,j) 
of the plain and reconstructed images, respectively, 
M is the height and N the width of the image. 
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The SC is a kind of correlation-based metric that 
depends on the similarity between the original and 
reconstructed images, with a higher SC value 
reflecting a poor quality image. The SC is expressed 
by Equation (26): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  
∑ ∑ (𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗)2𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

∑ ∑ (𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗)2𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

   .                                         (26) 

 
Normalized Cross-Correlation (NCC)  
 The NCC metric compares the reconstructed 
and reference images, and is invariant to local 
changes in intensity and brightness. In the NCC, the 
correlation is normalized by dividing the cross-
correlation by the summation of the squares of the 
pixel values of the plain image. The NCC is 
calculated by Equation (27): 

𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  ∑ ∑ 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗×𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗
𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗
2

𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗=1

𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1  .                   (27) 

 
Normalized Absolute Error (NAE) 
The NAE is a proportion of the summation of 
differences between the plain and reconstructed 
pixel values to the summation of the pixel values of 
the plain image. The NAE, with an ideal value of 0, 

 

𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁 =  
∑ ∑ (�𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗−𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗�)

𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗=1

𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1
∑ ∑ 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1

  .                                 (28) 

 
Edge Strength Similarity (ESSIM)  

This image quality metricmeasures the 
similarity between the edge strength of the plain and 
reconstructed images. The  ESSIM  is calculated by 
Equation (29), 

𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  1
𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁

∑ ∑ 2𝑀𝑀𝑀𝑀�𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗�𝑀𝑀𝑀𝑀�𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗�+𝑐𝑐𝑐𝑐

(𝑀𝑀𝑀𝑀(𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗))2+(𝑀𝑀𝑀𝑀(𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚,𝑗𝑗𝑗𝑗))2+𝑐𝑐𝑐𝑐
   ,   𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1 (29) 

where E(P) and E(R) are the edge strengths in the 
vertical direction of the plain  and reconstructed 
images, respectively. 
 
Maximum Difference (MD) 
The MD quantitatively provides the maximum 
difference between the reconstructed and referenced 
images. A small MD value means that the 
reconstructed image is of good quality [23], while a 
large value implies poor image quality. The MD is 
measured by Equation (30): 

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴 = 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀|𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) − 𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)|  .                   (30) 
The results of all the tests above, presented in Table 
4, reveal that the sparse reconstruction process has 
produced images of acceptable quality.  

 
  Table 4 
  Experimental result of SSIM, SC, AD,MD, NCC, NAE, ESSIM, NPCR and UACI tests  

Input Image SSIM  SC  AD  MD  NCC  NAE  ESSIM NPCR UACI 
test image 1 0.6571 0.7292 0.0236 127.5809 0.7142 0.0375 0.8595 99.6280 33.4208 
test image 2 0.7035 0.7324 0.0173 143.1014 0.7210 0.0184 0.8392 99.6191 33.3896 
test image 3 0.5992 0.6504 0.0516 138.9701 0.6505 0.0231 0.8586 99.6204 33.4884 
test image 4 0.6414 0.6378 0.0239 112.2179 0.6319 0.0617 0.8194 99.6188 33.4075 
test image 5 0.6694 0.7446 0.0345 109.1685 0.7137 0.0742 0.8491 99.6185 33.3928 
test image 6 0.7152 0.6500 0.0271 157.9079 0.7208 0.0377 0.8385 99.6089 33.4058 
test image 7 0.6206 0.6483 0.0195 213.6174 0.6706 0.0810 0.8178 99.6227 33.3913 
test image 8 0.7205 0.7513 0.0170 124.3669 0.6800 0.0296 0.8596 99.6115 33.4131 
test image 9 0.7007 0.5862 0.0301 134.8350 0.6935 0.0691 0.8494 99.6131 33.3501 
test image 10 0.6984 0.6902 0.0198 110.3204 0.6926 0.0480 0.8296 99.6164 33.3351 
test image 11 0.6594 0.7430 0.0195 143.0355 0.6961 0.0494 0.8526 99.6126 33.2577 
test image 12 0.6596 0.7153 0.0225 137.0326 0.6772 0.0543 0.8353 99.6112 34.1015 
test image 13 0.7021 0.7069 0.0341 126.7063 0.6892 0.0379 0.8174 99.6156 33.3342 
test image 14 0.6637 0.6599 0.0213 119.9554 0.7186 0.0605 0.8459 99.6027 33.4178 
test image 15 0.6038 0.6402 0.0266 144.2960 0.6018 0.0443 0.8203 99.6099 33.3102 
test image 16 0.6713 0.6357 0.0197 135.6501 0.6652 0.0332 0.8295 99.6252 33.4158 
test image 17 0.6238 0.7267 0.0204 126.5483 0.6281 0.0542 0.8158 99.6092 33.3894 
test image 18 0.7103 0.6090 0.0263 129.4447 0.7034 0.0612 0.8079 99.6106 33.3182 
test image 19 0.5897 0.6213 0.0457 159.6584 0.5528 0.0476 0.8310 99.6038 33.2954 
test image 20 0.6341 0.7010 0.0267 132.0315 0.5801 0.0327 0.8426 99.6046 33.3005 

 

(31)

where covar(P,R), D(P), D(R) is the covariance be-
tween P and R, variance of P,  and variance of R, re-
spectively. A correlation can range in value from -1.00 
to +1.00, where a zero value correlation coefficient 
represents no relationship between the adjacent pix-
els being compared, while a greater-than-zero value 
represents a positive relationship, and a less-than-ze-
ro (negative) value represents a negative (or indirect) 
relationship.
Table 5 lists the correlation coefficients of all the test 
images. Figure 10 shows the correlation of the com-
pressed-encrypted image for test image 6. It is seen 
from Table 5 and Figure 10 that the proposed scheme 
produced a very small degree of correlation between 
adjacent pixels, thus proving that it withstands statis-
tical attacks. 

NPCR and UACI Analysis
Commonly, the two diffusion performance criteria, 
NPCR and UACI, are employed to analyze the perfor-
mance of the algorithm against differential attacks 
[26]. The NPCR measures the percentage of dissimil-
itude in pixel numbers between two ciphered images 
such that the corresponding plain images differin only 
one pixel. The NPCR is calculated by Equation (32),

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
1
𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃

��𝐴𝐴𝐴𝐴(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)
𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1

𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=1

100% ,      (32)

where D(I, j) denotes the difference value of the corre-
sponding pixel of two images. 
The UACI measures changes in visual effects, and is 
calculated using Equation (33):

  

 
 
Correlation Coefficient Analysis (CC) 
A strong correlation exists between adjacent pixels 
of digital images. The CC closeness measure can be 
used to assess the performance of an algorithm’s 
resistance to statistical attacks. Since the CC of plain 
images is usually near 1 [2], the CC ofthe cipher 
image should, ideally, be close to 0. To measure the 
CC, 3000 pixels were randomly selected along three 
directions (vertical, horizontal and diagonal) and the 
CC obtained using Equation (31), 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 =
𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃)

�𝐴𝐴𝐴𝐴(𝑃𝑃𝑃𝑃)�𝐴𝐴𝐴𝐴(𝑃𝑃𝑃𝑃)
  ,                                          (31) 

where covar(P,R), D(P), D(R) is the covariance 
between P and R, variance of P,  and variance of R, 
respectively. A correlation can range in value from -
1.00 to +1.00, where a zero value correlation 
coefficient represents no relationship between the 
adjacent pixels being compared, while a greater-
than-zero value represents a positive relationship, 
and a less-than-zero (negative) value represents a 
negative (or indirect) relationship. 

Table 5 lists the correlation coefficients of all the 
test images. Figure 10 shows the correlation of the 
compressed-encrypted image for test image 6. It is 
seen from Table 5 and Figure 10 that the proposed 
scheme produced a very small degree of correlation 

between adjacent pixels, thus proving that it 
withstands statistical attacks.  

NPCR and UACI Analysis 
Commonly, the two diffusion performance criteria, 
NPCR and UACI, are employed to analyze the 
performance of the algorithm against differential 
attacks [26]. The NPCR measures the percentage of 
dissimilitude in pixel numbers between two ciphered 
images such that the corresponding plain images 
differin only one pixel. The NPCR is calculated by 
Equation (32), 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃 =  
1
𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃

��𝐴𝐴𝐴𝐴(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)
𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1

𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=1

100% ,                  (32) 

where D(I, j) denotes the difference value of the 
 

 
𝑈𝑈𝑈𝑈𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = 1

𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁
∑ ∑ |𝑃𝑃𝑃𝑃(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)−𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)|

255
𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗−1

𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1 × 100% .     (33)  

 
 
 
 
 

 
 

Table 5 
               Experimental result of horizontal, vertical and diagonal correlation coefficient tests  

 

Image Direction Plain image Proposed Shuqin  
et al.  [28] 

Liya 
 et al.  [16] 

Xinsheng et 
al. [32] 

test image 1 
H 0.9575 0.0004 0.0061 0.0053 0.0037 
V 0.9587 0.0011 0.0019 0.0013 0.0016 
D 0.9253 0.0017 -0.0013 0.0088 0.0021 

test image 2 
H 0.9910 0.0010 0.0087 0.0047 0.0072 
V 0.9930 0.0014 0.0064 0.0077 0.0050 
D 0.9842 0.0007 0.0080 -0.0009 -0.0027 

test image 3 
H 0.9051 0.0029 -0.0005 0.0028 0.0035 
V 0.8527 0.0018 0.0083 0.0044 0.0003 
D 0.8232 -0.0005 0.0041 0.0028 -0.0072 

test image 4 
H 0.9723 -0.0024 0.0200 0.0084 -0.1443 
V 0.9765 0.0016 0.0029 0.0022 0.0034 
D 0.9506 0.0038 0.0043 0.0026 -0.0584 

test image 5 
H 0.9840 0.0031 0.0089 0.0070 0.0085 
V 0.9547 0.0005 0.0024 0.0074 0.0060 

(33)
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Figure 9
Histogram analysis

(a)  Plain images (b)  Histogram of 
Original Images

(c) Com-
pressed-Encrypted 

Images

(d) Histogram of 
Compressed-En-
crypted Images

(e) Reconstructed 
Images

(f ) Histogram of Re-
constructed Images

 
 

 

 
 

Key Space Analysis 
It is widely accepted that secret keys play a critical 
role in the security of a cryptosystem. If everything 
about an algorithm is known to the public, then the 
secret key is everything in terms of security. Hence, 
to withstand bruteforce attacks, an effective cipher 
scheme should have a key space of at least 2250 [24]. 
The keys of this method are the 512-bit image hash, 
with starting values of [x1, y1, z1, x2, y2, z2, x3, y3 and 
z3] and a valid precision of 10-14. Hence, the total 
key space approximately equals 2904 [2512× 1014 × 
1014× 1014 × 1014× 1014 × 1014× 1014 × 1014× 1014], 
which is good enough to strongly resist key-based 
attacks. 
 
Key Sensitivity Analysis 
Key sensitivity is salient, which means that a small 
change in the secret key producess a completely 

different cipher image. The Lü system is highly 
sensitive to the starting values, which  are used as 
secret keys in the proposed system. The key 
sensitivity test of the proposed system is carried out 
as follows. Test image 11 is compressed and 
encrypted with the starting seed values of x0=-3, 
y0=2 and z0=20. The ciphered test image 11 is then 
reconstructed using the same starting seeds, and the 
slightly-changed starting seed values of x0=-
3.0000000001, y0=2 and z0=20. Figure 8 shows the 
two reconstructed images. From the results, it is 
clearly seen that the proposed system has great key 
sensitivity. 
 
 
 

 
Figure 8 
Key Sensitivity analysis 
 

  
a. Reconstructed test image 11 
with the starting seeds (x0=-3,  

y0=-2, z0=-20) 

b. Reconstructed test image 11 
with the starting seeds (x0=-

3.0000000001, y0=-2, z0=-20) 
 

 
Histogram Analysis 
A histogram is distinctive for every image. Given 
that this statistical feature can be perceived and 
exploited by an attacker, a strong cryptosystem 
must provide a fairly uniform distribution of the 
pixel intensities of the ciphered image [27, 31]. 
Figs. 9 (b), (d) and (f) show the histograms of the 

original images, compressed-encrypted images 
and reconstructed images, respectively. It is clear 
that since the histogram of the compressed-
encrypted image is flat, no useful information 
can be obtained by interpreting the histograms of 
the compressed-encrypted images. 
 

 
Figure 9 
Histogram analysis 
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Table 5
Experimental result of horizontal, vertical and diagonal correlation coefficient tests

Image Direction Plain image Proposed Shuqin et al.  [28] Liya  et al.  [16] Xinsheng et al. [32]

test image 1

H 0.9575 0.0004 0.0061 0.0053 0.0037

V 0.9587 0.0011 0.0019 0.0013 0.0016

D 0.9253 0.0017 -0.0013 0.0088 0.0021

test image 2

H 0.9910 0.0010 0.0087 0.0047 0.0072

V 0.9930 0.0014 0.0064 0.0077 0.0050

D 0.9842 0.0007 0.0080 -0.0009 -0.0027

test image 3

H 0.9051 0.0029 -0.0005 0.0028 0.0035

V 0.8527 0.0018 0.0083 0.0044 0.0003

D 0.8232 -0.0005 0.0041 0.0028 -0.0072

test image 4

H 0.9723 -0.0024 0.0200 0.0084 -0.1443

V 0.9765 0.0016 0.0029 0.0022 0.0034

D 0.9506 0.0038 0.0043 0.0026 -0.0584

test image 5

H 0.9840 0.0031 0.0089 0.0070 0.0085

V 0.9547 0.0005 0.0024 0.0074 0.0060

D 0.9410 0.0028 0.0026 0.0063 0.0047

test image 6

H 0.9810 0.0001 0.0076 0.0058 0.0117

V 0.9821 0.0025 0.0031 -0.0009 0.0026

D 0.9678 0.0013 0.0009 0.0049 0.0021

test image 7

H 0.8944 0.0029 0.0061 0.0019 0.0046

V 0.8844 0.0031 0.0055 0.0012 0.0024

D 0.8196 0.0026 0.0067 0.0056 0.0054

test image 8

H 0.9930 0.0023 0.0060 0.0089 0.0033

V 0.9901 -0.0002 0.0031 0.0055 0.0070

D 0.9834 0.0024 0.0064 0.0075 0.0029

test image 9

H 0.9580 -0.0008 0.0057 0.0025 0.0082

V 0.9593 0.0020 0.0053 0.0038 0.0054

D 0.9251 0.0009 -0.0011 0.0040 0.0013

test image 10

H 0.9778 0.0007 0.0026 -0.0007 0.0001

V 0.9881 -0.0004 0.0099 0.0079 0.0081

D 0.9695 0.0021 0.0021 0.0068 0.0011

test image 11

H 0.9790 -0.0013 0.0059 0.0076 0.0055

V 0.9820 0.0020 0.0054 0.0049 0.0078

D 0.9691 0.0009 0.0079 0.0078 0.0014

test image 12

H 0.9539 0.0026 0.0019 0.0026 0.0025

V 0.9548 0.0029 0.0074 0.0055 0.0019

D 0.9403 0.0078 0.0086 0.0027 0.0081

test image 13

H 0.9292 -0.0193 0.0037 0.0049 0.0012

V 0.9733 0.0008 0.0066 0.0078 0.0037

D 0.9094 0.0012 0.0015 0.0004 0.0026
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Image Direction Plain image Proposed Shuqin et al.  [28] Liya  et al.  [16] Xinsheng et al. [32]

test image 14
H 0.9869 0.0026 0.0099 0.0077 0.0060
V 0.9836 -0.0275 0.0071 -0.0021 -0.0217
D 0.9660 0.0006 -0.0307 0.0004 0.0024

test image 15
H 0.9520 -0.0117 0.0082 0.0028 0.0023
V 0.9460 0.0005 0.0064 0.0014 0.0091
D 0.9071 0.0024 0.0051 0.0059 0.0032

test image 16
H 0.9526 0.0036 0.0028 0.0193 0.0013
V 0.9416 -0.1446 0.0093 0.0078 0.0086
D 0.9189 0.0001 0.0015 0.0032 0.0033

test image 17
H 0.9704 0.0018 0.0042 0.0057 0.0014
V 0.9842 0.0007 0.0026 0.0043 0.0074
D 0.9608 0.0024 0.0022 -0.0031 0.0055

test image 18
H 0.9803 0.0015 -0.0182 -0.0030 -0.0085
V 0.9847 -0.0069 0.0085 0.0021 0.0063
D 0.9660 0.0005 0.0047 0.0032 0.0029

test image 19
H 0.9883 0.0007 0.0050 0.0064 0.0077
V 0.9866 0.0019 0.0062 0.0019 0.0026
D 0.9811 -0.0043 -0.0037 -0.0033 -0.0105

test image 20
H 0.9676 0.0023 0.0084 0.0095 0.0008
V 0.9727 0.0009 0.0006 0.0052 0.0063
D 0.9370 -0.0173 0.0010 0.0017 0.0049

Figure 10
The adjacent pixel distribution of test image 6 in horizontal, vertical and diagonal direction before and after encryption  

 
 

Table 6 
               Comparison of efficiency of the proposed approach with recent methods 

 

Test Images 
(512 × 512) 

SSIM values SC values 

Proposed  Shuqin 
 et al.  [28] 

Liya  
et al.  [16] 

Xinsheng et 
al. [32] Proposed  Shuqin 

 et al.  [28] 
Liya  
et al.  [16] 

Xinsheng et 
al. [32] 

test image 1 0.6571 0.5756 0.6803 0.7023 0.7292 0.7133 0.7206 0.6810 

test image 2  0.7035 0.6295 0.5398 0.6809 0.7324 0.7208 0.7286 0.6731 

test image 3  0.5992 0.5406 0.6351 0.6013 0.6504 0.7466 0.7160 0.6345 

test image 4 0.6414 0.6919 0.6835 0.7142 0.6378 0.6871 0.7031 0.6392 

test image 5 0.6694 0.5184 0.5965 0.6274 0.7446 0.7354 0.7462 0.7026 

AD values MD values 
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test image 5 0.8491 0.8472 0.8596 0.8175 3.6629 3.4311 5.7215 10.6314



Information Technology and Control 2020/3/49366

Table 7
The NIST suite test results of compressed-encrypted testimage-10

Statistical Test Block/Temp  (size) p-value D-R level Result Conclusion

Frequency (Monobit) - 0.469022 3% pass random

Frequency (within a block) 10 0.847349 3% Pass random

Runs - 0.791520 3% pass random

Longest run (once in a block) 104 0.663015 3% pass random

Rank (Binary matrix) - 0.430209 3% pass random

Discrete Fourier Transform (Spectral) - 0.514816 3% pass random

Non-overlapping template matching 10 0.655314 3% pass random

Overlapping template matching 9 0.812206 3% pass random

Universal (Maurer) 12 0.445638 3% pass random

Linear complexity 103 0.591405 3% pass random

Serial - 0.832110 3% pass random

Approximate entropy - 0.542388 3% pass random

Cumulative sums - 0.498896 3% pass random

Random excursions - 0.536804 3% pass random

Random excursions  variant - 0.516897 3% pass random

Table 8
The NIST suite test results of compressed-encrypted testimage-20

Statistical Test Block/Temp  (size) p-value D-R level Result Conclusion

Frequency (Monobit) - 0.718365 3% pass random

Frequency (within a block) 10 0.497408 3% Pass random

Runs - 0.560134 3% pass random

Longest- run (once in a block) 104 0.408517 3% pass random

Rank (Binary matrix) - 0.798925 3% pass random

Discrete- Fourier-Transform (Spectral) - 0.690325 3% pass random

Non-overlapping template matching 10 0.533291 3% pass random

Overlapping template matching 9 0.658403 3% pass random

Universal (Maurer) 12 0.860152 3% pass random

Linear complexity 103 0.626527 3% pass random

Serial - 0.558243 3% pass random

Approximate entropy - 0.572843 3% pass random

Cumulative sums - 0.603549 3% pass random

Random excursions - 0.483721 3% pass random

Random excursions  variant - 0.631473 3% pass random
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Computational Complexity
The computation complexity of the proposed tech-
nique is evaluated in terms of time complexity. This 
method utilizes the faster logical exclusive-or oper-
ation and a single round of encryption to minimize, 
as far as feasible, the time consumed. The running 
time of the proposed method is listed in Table 9. As 
can be seen from the results, the speed of the com-
pression-encryption process is acceptable, though 
the time taken by the reconstruction algorithm in this 
approach is slightly longer. The time-consuming op-
eration in the proposed scheme, which is sparse sig-
nal recovery, is the outcome of arriving at the optimal 
solution during the reconstruction process. The com-
pression-encryption speed of the proposed scheme is 
compared to that of the schemes presented in refer-

Table 9
Experimental outcomes of Time-Complexity

ences [16, 28, 32], with the results depicted in Table 6. 
The results show that the proposed technique is fast-
er than the methods in references [16, 32], and a little 
slower than the method in reference [28].

NIST Statistical Test for Cipher Image
The NIST statistical package (SP 800-22) is a test suite 
comprising 15 tests that are used to evaluate the differ-
ent types of randomness in the cipher images obtained 
using the proposed technique [36, 38]. To perform 
this test, we have used 20 encrypted images of dimen-
sions 512×512. The decision rule level is set to 3% (i.e., 
a p-value ≥ 0.03 indicates success in the test). Every 
ciphered image produced by the proposed algorithm 
has successfully passed the entire suite of 15 tests. The 
NIST test outcomes of testimage-10 and testimage-20 
are presented in Tables 7 and 8, it is hence concluded 
that the encrypted images show strong randomness. 

5.1. Discussion
The proposed scheme is compared here with three peer 
encryption-compression methods. The image quali-
ty test results listed in Table 4 show that the average 
SSIM, NCC and ESSIM values of the reconstructed 
images in the proposed scheme are 0.6621, 0.6700 and 
0.8459, respectively, proving that the quality of the re-
constructed image is acceptable and outclasses that of-
fered by the other two methods. The total key space of 
the proposed scheme approximately equals 2904, which 
helps it resist key-based attacks strongly. The key sen-
sitivity test result reveals that the proposed system 
has great key sensitivity. Figure 9 shows that since the 
histogram of the compressed-encrypted image is flat, 
no fruitful information can be obtained from such an 
image. As observed from Table 5 and Figure 10, the cor-
relation between adjacent pixels of the compressed-en-
crypted image is almost 0 in all the three directions, 
demonstrating that the proposed scheme performs 
well against statistical attacks. Table 4 shows that the 
unified average changing intensity and number of pix-
el change rate values of the compressed-encrypted 
image in the proposed scheme, at 33.44% and 99.61%, 
respectively, are close to ideal values and thus help ef-
fectively defeat differential attacks. Additionally, in 
our approach, only the starting values of the Lü system 
need to be sent to the reconstruction side (rather than 
the whole sensing matrix) to efficiently reduce mem-
ory space and bandwidth. Moreover, the chaos-based 
random sensing matrices used in the proposed scheme 

Test Images (512 
× 512)

Compression-En-
cryption Time 

(sec)

Reconstruction 
Time (sec)

test image 1 3.5393 27.8928

test image 2 4.3531 29.1220

test image 3 3.9194 27.9049

test image 4 3.4765 28.0990

test image 5 3.6629 27.4607

test image 6 4.5502 28.9812

test image 7 3.4300 27.3059

test image 8 4.2483 28.4579

test image  9 3.7211 27.9951

test image 10 4.1470 29.2530

test image 11 4.1197 28.5117

test image 12 3.7389 27.6971

test image 13 4.3850 28.6045

test image 14 3.6276 27.4114

test image 15 3.5781 28.1245

test image 16 3.6034 27.4976

test image 17 4.1482 29.3319

test image 18 3.6020 28.3683

test image 19 3.9887 27.9506

test image 20 3.7114 27.6330
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restrict the isometric property with an overwhelming 
probability that greatly enhances reconstruction qual-
ity, and the keys derived from the input image cause the 
scheme to be input image-sensitive. The analysis above 
makes it plain that the secured compression method 
presented has produced good results.

 

6. Conclusion 
This paper has proposed secured color image compres-
sion based on compressive sampling and the Lü system. 

The proposed method offers a larger key space (2904). 
The input sensitive key-based encryption produced 
an average UACI and PSNR of 33.44% and 99.61%, 
respectively. The outputs are close to ideal values and 
thus help effectively to defeat differential attacks. The 
sensing matrix used in the compressive sensing is 
based on the Lü chaotic system that overwhelmingly 
holds the isometric property. The intra-permutation 
greatly decreases the correlation in the ciphered image 
(close to zero). The experimental results indicate that 
the encryption performance is highly satisfactory and 
the reconstruction performance acceptable. 
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