
495Information Technology and Control 2021/3/50

Ransomware Detection Based on
Opcode Behaviour Using K-Nearest
Neighbours Algorithm

ITC 3/50
Information Technology
and Control
Vol. 50 / No. 3 / 2021
pp. 495-506
DOI 10.5755/j01.itc.50.3.25816

Ransomware Detection Based on Opcode Behaviour
Using K-Nearest Neighbours Algorithm

Received 2020/04/16 Accepted after revision 2021/08/04

 http://dx.doi.org/10.5755/j01.itc.50.3.25816

HOW TO CITE: Stiawan, D., Daely, S. M., Heryanto, A., Afifah, N., Idris, M. Y., Budiarto, R. (2021). Ransomware Detection Based on Opcode
Behaviour Using K-Nearest Neighbours Algorithm. Information Technology and Control, 50(3), 495-506. https://doi.org/10.5755/j01.
itc.50.3.25816

Corresponding author: deris@unsri.ac.id

Deris Stiawan, Somame Morianus Daely, Ahmad Heryanto
Dept. of Computer Engineering, Universitas Sriwijaya, Palembang; Indonesia;
e-mails: deris@unsri.ac.id, somamemorianusdaely@gmail.com, hery@unsri.ac.id

Nurul Afifah
Dept. of Informatics Engineering, Universitas Sriwijaya, Palembang; Indonesia; e-mail: afifahnurul95@gmail.com

Mohd. Yazid Idris
School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor; Malaysia;e-mail: yazid@utm.my

Rahmat Budiarto
College of Computer Science and Information Technology, Albaha University, Albaha; Saudi Arabia;
e-mail: rahmat@bu.edu.sa

Ransomware is a malware that represents a serious threat to a user’s information privacy. By investigating how
ransomware works, we may be able to recognise its atomic behaviour. In return, we will be able to detect the
ransomware at an earlier stage with better accuracy. In this paper, we propose Control Flow Graph (CFG) as
an extracting opcode behaviour technique, combined with 4-gram (sequence of 4 “words”) to extract opcode
sequence to be incorporated into Trojan Ransomware detection method using K-Nearest Neighbors (K-NN)
algorithm. The opcode CFG 4-gram can fully represent the detailed behavioural characteristics of Trojan Ran-
somware. The proposed ransomware detection method considers the closest distance to a previously identified
ransomware pattern. Experimental results show that the proposed technique using K-NN, obtains the best ac-
curacy of 98.86% for 1-gram opcode and using 1-NN classifier.
KEYWORDS: Malware, Ransomware, Opcode behaviour, CFG, K-NN, Accuracy.

mailto:obodovskiy58@gmail.com

Information Technology and Control 2021/3/50496

1. Introduction
Ransomware usually encrypts files on a victim’s com-
puter and demands payment before offering to un-
lock them back. Ransomware attacks have recently
been on the rise, causing millions of dollars’ worth of
losses all over the world. This phenomenon happens
because the existing detection methods are slow and
less accuracy. Therefore, it is significant to increase
the accuracy of these malware detection methods.
K-NN is a technique for prediction and classification
[1]. The classification is based on the nearest neigh-
bour class to the training dataset of feature space,
where K shows the number of neighbours that deter-
mines the number of classes. Every decision is made
by considering the similarity of the majority of neigh-
bours in the training process [16]. This work uses op-
code N-gram features [21] for the extraction process.
In general, a program is run by executing an opcode
sequence (operational code in machine language),
then the opcode can be used to describe the program’s
behaviour. Opcode distribution on malware files is
significantly different from normal files [4]. One ap-
proach is to extract opcode sequences based on con-
trol flow graphs of opcode sequences in the malware
files [19]. Extraction of training datasets using opcode
N-gram feature extraction and taking into account
the control flow of opcode sequences [26] on malware
files including normal files, can increase accuracy in
detecting malware malicious behaviour that distin-
guishes it from normal files. The training process in
this work uses the malware files and normal files. The
static feature extraction consists of byte N-gram fea-
tures, opcode N-gram features, portable executables,
string features, and function features.
Hashemi et al. [10] took two previous works as ref-
erences. The first one is the work by Ding et al. [8],
which reports an accuracy rate of 92% for malware
detection using CFG-KNN algorithm. In that study,
the authors used opcode graphics extracted from exe-
cutable files. The second one is the work by Chakkar-
avarthy et al. [25] who used the control flow graph of
malware samples to generate an execution tree to get
the execution path. Hence, in their research, Hashemi
et al. [10] concluded to combine all possible opcode
pathways and use the N-gram method to extract be-
havioural features. By using the K-NN classification
algorithm, the malware detection achieved the high-
est accuracy of 98.80%.

The rest of this paper is arranged as follows. Section
2 presents some related works, while section 3 gives
research methodology, followed by Section 4 that dis-
cusses the evaluation on the performance. Then, Sec-
tion 5 presents the results of the experiments. Lastly,
Section 6 concludes the work.

2. Related Work
Chittooparambil et al. [6] analysed the classification
of existing ransomware along with their detection
and prevention methods. They classified the ran-
somware families from the year 1989 to 2017 and
discovered that there is not much difference in their
patterns. The main objective of their research was to
understand the operation of ransomware in Micro-
soft Windows operating systems through investigat-
ing the five stages of ransomware operation. In their
experiments, the researchers focused on three differ-
ent families of ransomware (Scareware, Lockscreen
and Crypto-Ransomware), and the five-stages of op-
eration of the ransomware; Installation, Communi-
cation, File Search, Encryption, and Extortion. Their
conclusion, from the evaluation of the existing meth-
ods was that there is no attempt to detect or stop the
ransomware in the initial two stages.
Agrawal et al. [2] adapted the deep learning methods
to be used for detecting ransomware from emula-
tion sequences. The researchers presented special-
ised recurrent neural networks for capturing local
event patterns in ransomware sequences using the
concept of attention mechanism. The researchers
demonstrated the performance of enhanced Long
Short-Term Memory (LSTM) models on a sequence
dataset derived by emulating ransomware executable
targeting the Windows environment. The research-
ers performed a detailed analysis of ransomware exe-
cutables in order to identify structural properties that
can be exploited by machine learning systems. They
recognised the presence of slight repeating patterns
within long sequences of ransomware potentially cor-
responding to repeated encryption operations. Then
the researchers presented a novel recurrent neural
network component for exploiting the repeating pat-
terns by incorporating attention mechanisms on the
inputs of a sequence learning module.

497Information Technology and Control 2021/3/50

The researchers also introduced an enhanced neural
cell to incorporate attention in learning from ransom-
ware sequences, called Attended Recent Inputs (ARI)
and subsequently used it to modify the LSTM, named
as ARI-LSTM. The researchers conducted an exper-
iment using a dataset of unique file sequences con-
sisting of ransomware and benign executables for the
Windows operating system captured from client com-
puters to train their model. Their empirical results
showed that ARI-LSTM performs significantly better
than LSTM for the task of ransomware detection. The
researchers have shown that incorporating attention
at the inputs of a sequence can be used to solve prob-
lems sensitive to relations within recent inputs.
Classifying ransomware into 10 classes which are la-
beled using avclass tool was carried out by Ouerdi et
al. [20]. In their study, the researchers used multi-lay-
er perceptron artificial neural networks (MLP-
ANNs). The objective of the work was to investigate
whether the neural networks are an effective means
for the classification of the different types of ransom-
wares. The researchers implemented the MLP-ANN
in a Java programming environment and focused on
exploiting the Malware‘O’Matic (MoM) platform and
online databases in order to get real examples of ran-
somwares that encrypt disk.
The experimental results showed that the classifi-
cation by the MLP-ANNs did not lead to a satisfying
result. They concluded that it may be due to one of
two reasons: either the choice of artificial neuron net-
works for ransomware classification was not really a
good choice or the misclassification of the ransom-
ware was the irrelevance of the strings contained in
ransomware files. They stated that the classification
was totally based on the extraction of the common
strings between ransomwares of each class. The re-
searchers suggested that future works should be car-
ried out on a classification algorithm by K-means in
order to find the relevant clusters.
Meanwhile, Craciun et al. [7] investigated the devel-
opment of ransomware programs and how they were
released in certain market segments throughout the
deep web via RaaS, exploits or spam. The research-
ers also highlighted some mistakes that were made,
which allowed recovering the encrypted data, along
with the ransomware authors preference for specific
encryption types, how they got to distribute the silent
agreement between ransomwares, coin -Miners, bot-

nets and some edge cases of encryption, which may
prove to be exploitable in the short-coming future.
A study by Kabakus [11] discussed a static analysis
to detect malware in an Android ecosystem. The re-
searcher proposed a novel Android malware detec-
tion approach based on static analysis techniques and
attempts to prove the effectiveness of the novel static
analysis features’ in terms of detecting malware in
an Android ecosystem. Each feature used by the pro-
posed approach is evaluated by using different types
of machine learning techniques in order to highlight
its impact on detecting malware and inform the dig-
ital investigators. The researcher used three publicly
available dataset; Android Genome Project, Debrin,
and F-Droid datasets. Meanwhile, for comparison the
researcher used several machine learning algorithms
including: KNN1-KNN5, Bayes Net, Naïve Bayes,
Logistic Regression, SMO-polykernel, J48, Random
Forest 100, Random Forest 1000, Random Tree, Bag-
ging and AdaBoost. The experimental result shows
that the proposed approach outperforms the above
machine learning algorithms and it is very effective in
terms of detecting Android malware. The accuracy of
the proposed static analysis approach was calculated
to be as high as 0.987 for 10,865 mobile applications.
The researcher suggests enhancing the proposed ap-
proach by considering the source code analysis to in-
terpret real intensions of API calls.
From the previous works on malware recognition/
identification, the authors of this paper have sum-
marised that investigating ransomware features in
their low-level presentation, (i.e.: the opcode), may
provide a better accuracy. In addition, the use of con-
trol flow graph analysis and N-gram feature extraction
method has shown its superiority. Thus, this work con-
tinues the investigation on finding the best patterns of
ransomware features in opcode level and will continue
to use the combination of the control flow graph anal-
ysis and N-gram feature extraction in an attempt to
come out with a better ransomware detection system.

3. Research Methodology
All processes in this work only use one physical de-
vice that enables IDA Pro and Python language pro-
gramming.
Figure 1 shows the design of the research activities.

Information Technology and Control 2021/3/50498

3.1. Dataset Representation
Dataset in this research consists of 3,000 normal files
and 3,000 ransomware files in Windows PE (Portable
Executable) format. Normal files are collected from the
System32 folders on Windows 7, Windows 8, Windows
10, while malware files consist of Trojan Ransomware
taken from the VX Heaven Virus Collection Database.

3.1.1. Representation of Normal File
The normal file dataset in this study comes from the
Windows executable file of Windows 8 operating sys-
tem. Normal files are taken from the System32 folder
with the .exe file format. The normal representation
on this file is the same as the malware dataset that
will be displayed in assembly language presentation.
Control Flow Graph will be displayed to find out how
normal files work. Every program is run by executing
a sequence of instructions (opcode) [23].
Figure 2 shows an assembly view of a normal file in
opcode sequence [24] of the execution when the pro-
gram runs. It is part of the executable control of the
program before running the main program using
the call instructions. The path of the opcode [14] se-
quence from the normal file is straightforward, where
it uses 4 instructions, which contain 1 call instruction
and 1 jump instruction.

Figure 1
Research Activities

Figure 2
Assembly View in Normal Files

 .text:0000000140007C50

 .text:0000000140007C50 sub rsp, 28h

 .text:0000000140007C54 call sub_140007BE0

 .text:0000000140007C59 add rsp, 28h

 .text:0000000140007C5D jmp shortsub_140007C68

 .text:0000000140007C5F db 0CCh

3.1.2. Representation of Ransomware File
The ransomware data are taken from the Vx Heaven
Virus database.
Similar to the normal file, the malicious code mal-
ware dataset is represented in assembly language
and Control Flow Graph before the analysis process
is carried out [5]. In the disassemble results of the
malware dataset file in Figure 3 we are able to see
the executable part of the ransomware files. It can
also be seen in Figure 3 that the executable part of
the ransomware is different from the normal file.
The following is an explanation of the ransomware
executable assembly view section. Call, is an in-
struction that a function uses to call a certain sub-

FFiigguurree 11
Research Activities

3.1 Dataset Representation

Dataset in this research consists of 3,000 normal
files and 3,000 ransomware files in Windows PE
(Portable Executable) format. Normal files are
collected from the System32 folders on Windows
7, Windows 8, Windows 10, while malware files
consist of Trojan Ransomware taken from the VX
Heaven Virus Collection Database.

3.1.1 Representation of Normal File

The normal file dataset in this study comes from
the Windows executable file of Windows 8
operating system. Normal files are taken from the
System32 folder with the .exe file format. The
normal representation on this file is the same as
the malware dataset that will be displayed in
assembly language presentation. Control Flow
Graph will be displayed to find out how normal
files work. Every program is run by executing a
sequence of instructions (opcode) [23].

FFiigguurree 22

Assembly View in Normal Files

Figure 2 shows an assembly view of a normal file
in opcode sequence [24] of the execution when
the program runs. It is part of the executable
control of the program before running the main
program using the call instructions. The path of
the opcode [14] sequence from the normal file is
straightforward, where it uses 4 instructions,
which contain 1 call instruction and 1 jump
instruction.

3.1.2 Representation of Ransomware File

The ransomware data are taken from the Vx
Heaven Virus database.

FFiigguurree 33

Assembly View in Ransomware Files

 .text:0000000140007C50
 .text:0000000140007C50 sub rsp, 28h
 .text:0000000140007C54 call sub_140007BE0
 .text:0000000140007C59 add rsp, 28h
 .text:0000000140007C5D jmp shortsub_140007C68
 .text:0000000140007C5F db 0CCh

.text:004010CC public start

.text:004010CC start proc near

.text:004010CC

.text:004010CC StartupInfo = ptr44h

.text:004010CC

.text:004010CC push ebp

.text:004010CD mov ebp, esp

.text:004010CF sub esp, 44h

.text:004010D3 call ds : GetCommandLineA

.text:004010FE cmp byte ptr [esi],

.text:00401109 cmp byte ptr [esi], 0

499Information Technology and Control 2021/3/50

.text:004010CC public start

.text:004010CC start proc near

.text:004010CC

.text:004010CC StartupInfo = ptr44h

.text:004010CC

.text:004010CC push ebp

.text:004010CD mov ebp, esp

.text:004010CF sub esp, 44h

.text:004010D3 call ds : GetCommandLineA

.text:004010FE cmp byte ptr [esi],

.text:00401109 cmp byte ptr [esi], 0

Figure 3
Assembly View in Ransomware Files

routine. A subroutine consists of a set of instruc-
tions that has a specific task and a function that has
a specific task [9].

Figure 4
Control Flow Graph in executable file

Similar to the normal file, the malicious code
malware dataset is represented in assembly
language and Control Flow Graph before the
analysis process is carried out [5]. In the
disassemble results of the malware dataset file in
Figure 3 we are able to see the executable part of
the ransomware files. It can also be seen in Figure
3 that the executable part of the ransomware is
different from the normal file. The following is an
explanation of the ransomware executable
assembly view section. Call, is an instruction that
a function uses to call a certain subroutine. A
subroutine consists of a set of instructions that has
a specific task and a function that has a specific
task [9].

3.2 Control Flow Graph

Control Flow Graph (CFG) is a graph that
represents the flow of the program in the form of
graph node(s) [15]. The executable part of the
disassemble process from normal files and
malware files that have been done previously can
be represented in CFG. Figure 4 exhibits the CFG
view of the normal executable file and malware
file of the disassemble process.

FFiigguurree 44

Control Flow Graph in executable file

The CFG executable of normal file and ransomware
file in Figure 4 are very different. CFG in a normal file
has only one execution path with 1 jump, while a
ransomware file has many execution paths with
many jumps using opcode jump type instruction if a
condition is satisfied. The executable part is carried
out when the program is executed.

 The result of detection process in Figure 4 shows that

CFG executable ransomware has many jump
instructions. The number of jumps is created at
the beginning of the execution technique
(Engineering Confusion) to avoid detection. An
analysis is needed to set the opcode behaviour.
Analysing CFG from the ransomware executable
will help to find the execution path in a different
opcode sequence from the disassemble file. A
sequence of opcode malware in disassemble
process is achieved when an extracted path, has
only one execution of the opcode sequence and
when the program is executed, another opcode
sequence is found in a different opcode
sequence. By analysing the CFG, the executable
malware will be able to find the execution path
in a different opcode sequence. The purpose of
this CFG analysis is to find all execution paths
that can possibly be executed.

3.3 Feature Extraction

Having done the CFG analysis, every opcode
sequence found in the execution path will be
extracted to the form of sequence of opcode
instructions [15]. In this work, every execution
path that had been obtained from the
disassemble file is saved in a file with .asm
format, and then opcode strings will be selected
using Python language. Opcode sequence
extraction is an input file that contains all the
execution paths that have disassembled the
executable malware or normal files obtained
from the CFG analysis process.

FFiigguurree 55

N-gram Extraction Process

3.2. Control Flow Graph

Control Flow Graph (CFG) is a graph that represents
the flow of the program in the form of graph node(s)
[15]. The executable part of the disassemble process
from normal files and malware files that have been
done previously can be represented in CFG. Figure 4
exhibits the CFG view of the normal executable file
and malware file of the disassemble process.
The CFG executable of normal file and ransomware
file in Figure 4 are very different. CFG in a normal
file has only one execution path with 1 jump, while a
ransomware file has many execution paths with many
jumps using opcode jump type instruction if a con-
dition is satisfied. The executable part is carried out
when the program is executed.
The result of detection process in Figure 4 shows that
CFG executable ransomware has many jump instruc-
tions. The number of jumps is created at the beginning
of the execution technique (Engineering Confusion) to
avoid detection. An analysis is needed to set the opcode

Information Technology and Control 2021/3/50500

Similar to the normal file, the malicious code
malware dataset is represented in assembly
language and Control Flow Graph before the
analysis process is carried out [5]. In the
disassemble results of the malware dataset file in
Figure 3 we are able to see the executable part of
the ransomware files. It can also be seen in Figure
3 that the executable part of the ransomware is
different from the normal file. The following is an
explanation of the ransomware executable
assembly view section. Call, is an instruction that
a function uses to call a certain subroutine. A
subroutine consists of a set of instructions that has
a specific task and a function that has a specific
task [9].

3.2 Control Flow Graph

Control Flow Graph (CFG) is a graph that
represents the flow of the program in the form of
graph node(s) [15]. The executable part of the
disassemble process from normal files and
malware files that have been done previously can
be represented in CFG. Figure 4 exhibits the CFG
view of the normal executable file and malware
file of the disassemble process.

FFiigguurree 44

Control Flow Graph in executable file

The CFG executable of normal file and ransomware
file in Figure 4 are very different. CFG in a normal file
has only one execution path with 1 jump, while a
ransomware file has many execution paths with
many jumps using opcode jump type instruction if a
condition is satisfied. The executable part is carried
out when the program is executed.

 The result of detection process in Figure 4 shows that

CFG executable ransomware has many jump
instructions. The number of jumps is created at
the beginning of the execution technique
(Engineering Confusion) to avoid detection. An
analysis is needed to set the opcode behaviour.
Analysing CFG from the ransomware executable
will help to find the execution path in a different
opcode sequence from the disassemble file. A
sequence of opcode malware in disassemble
process is achieved when an extracted path, has
only one execution of the opcode sequence and
when the program is executed, another opcode
sequence is found in a different opcode
sequence. By analysing the CFG, the executable
malware will be able to find the execution path
in a different opcode sequence. The purpose of
this CFG analysis is to find all execution paths
that can possibly be executed.

3.3 Feature Extraction

Having done the CFG analysis, every opcode
sequence found in the execution path will be
extracted to the form of sequence of opcode
instructions [15]. In this work, every execution
path that had been obtained from the
disassemble file is saved in a file with .asm
format, and then opcode strings will be selected
using Python language. Opcode sequence
extraction is an input file that contains all the
execution paths that have disassembled the
executable malware or normal files obtained
from the CFG analysis process.

FFiigguurree 55

N-gram Extraction Process

behaviour. Analysing CFG from the ransomware exe-
cutable will help to find the execution path in a different
opcode sequence from the disassemble file. A sequence
of opcode malware in disassemble process is achieved
when an extracted path, has only one execution of the
opcode sequence and when the program is executed,
another opcode sequence is found in a different opcode
sequence. By analysing the CFG, the executable mal-
ware will be able to find the execution path in a different
opcode sequence. The purpose of this CFG analysis is
to find all execution paths that can possibly be executed.

3.3. Feature Extraction
Having done the CFG analysis, every opcode se-
quence found in the execution path will be extracted
to the form of sequence of opcode instructions [15].
In this work, every execution path that had been ob-
tained from the disassemble file is saved in a file with
.asm format, and then opcode strings will be selected
using Python language. Opcode sequence extraction
is an input file that contains all the execution paths
that have disassembled the executable malware or
normal files obtained from the CFG analysis process.
In the process of extracting opcode sequences, mem-
ory locations and registers are ignored, only the op-
code sequence is taken. Next, the N-gram extraction
feature is used to extract the features. The N-gram
extraction feature in Figure 5 is applied in natural

Figure 5
N-gram Extraction Process

language processing and document classification be-
cause it is good at capturing substring statistics and
implicit data features. Liangboonprakong et al. [15]
used N-gram in malware detection to analyse the
opcode sequence to describe the behaviour of mal-
ware. The feature extraction in Figure 5 shows that
the N-gram extraction process is an important part,
which affects all phases of classification-based detec-
tion method that includes feature extraction, feature
selection, and classification. This work uses N = 1,
N = 2, N = 3, and N = 4 for the extraction process in
N-gram opcode. The N-gram opcode extraction will
be sorted by highest to lowest occurrence frequency.

3.4. Feature Selection
The feature selection process is carried out to select
the best representatives of features from the extract-
ed features [12]. For every extraction process from
N = 1 to N = 4, the top 10 opcodes will be chosen with
the most frequent appearances to be used in the train-
ing classification process. Each executable file is rep-
resented as a vector. The 10 highest frequency opcode
patterns in the extraction process in every executable
file are converted to vectors. Every opcode sequence
is converted into a number according to the opcode
instruction parameter. The opcode instruction pa-
rameter was previously used as a parameter for the
opcode sequence extraction process.

3.5. K-Nearest Neighbors Classifier
K-Nearest Neighbors (K-NN) algorithm is a kind of
supervised learning [13] used to detect unknown files
and classify them according to pre-existing classes
[18]. The K-NN is one of many classification algo-
rithms used to set the unknown objects based on the
majority of objects that have the same attributes and
closest distance [22].
Determining the distance between two objects can
be achieved using the Euclidean Distance d(xi, yi),
where xi is Latitude and yi is Longitude as explained
in Equation (1).

. (1)

Steps in K-NN algorithm are as follows [22].
1 Initialise the parameter of K (number of closest

neighbours)
2 Sort objects that have the smallest distance.

501Information Technology and Control 2021/3/50

3 Collect the Y category (Nearest Neighbor Classifi-
cation).

4 Using the Nearest Neighbor category, the value of
the calculated query instance can be predicted.

This work chooses the number of K=1 to K=10 to in-
vestigate the number of K with the best accuracy.

4. Performance Evaluation
The authors of this paper use Confusion Matrix to
measure the performance of the detection method,
by referring to the work in [17]. A detection system’s
performance is evaluated by three categories, name-
ly Accuracy, Precision, and Recall. The parameters
required to measure them are true positive (TP), true
negative (TN), false positive (FP), and false negative
(FN). The Accuracy measures the level of accuracy of
the method in detecting malware from all datasets as
in Equation (2).

. (2)

Precision is the ratio of the number of malware de-
tected correctly to the total number of datasets de-
tected as malware. The Precision measures all the
true positive and false positive. Precision formula is
represented in Equation (3).

. (3)

The next performance measurement is Recall, which
explains the ratio of the number of malware detected
correctly (TP) to the total number of malware data-
sets tested, which are (TP) and (FN).
The formula to measure the Recall is expressed in
Equation (4).

. (4)

5. Experimental Results
5.1. Feature Extraction Results
N-gram extraction feature is used to extract opcode
sequences with N = 1 to N = 4. As we expected, the op-
code N-gram extraction of malware files and normal

files for each different N produces a different vocabu-
lary. Figure 6 shows the different length of vocabulary
results in opcode N-gram extraction of malware files
and normal files.

Figure 6
N-gram Extraction

Figure 6 shows the opcode N-gram extracted fea-
tures of the executable malware files and normal files.
1-gram extraction produces 22 normal files and 14
malware files, while 2-gram extraction produces 57
normal files and 38 malware files.
Meanwhile, 3-gram extraction produces 80 normal
files and 56 malware files, and 4-gram extraction pro-
duces 88 normal files and 77 malware files. It is ob-
served that 4-gram extraction produces the highest
opcode features in the extraction process.

5.2. Classification Results
The experiments on the classification use a dataset
that consists of 3000 malware files and 3000 normal
files as shown in Table 1.
During the testing stage, K-NN algorithm detects new
objects that have been recognised previously during
the training stage. In the experimental scenario, clas-
sification/detection results during the training stage
and testing stage will be compared. This scenario

Table 1
Number of training and testing data for each experiment

Experiment 1 Experiment 2 Experiment 3

4500 training data 3000 training data 1500 training data

1500 testing data 3000 testing data 4500 testing data

Information Technology and Control 2021/3/50502

K
N=1 N=2 N=3 N=4

Prec Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc

1 100 98 98.86 100 96 98.2 100 95 97.33 100 92 96

2 100 97 98.4 100 96 97.93 69 100 78.8 100 93 96.2

3 100 97 98.46 100 96 98.26 100 94 96.93 100 93 96.33

4 100 97 98.33 100 97 98.53 100 93 96.66 100 93 96.66

5 100 97 98.53 100 96 98.26 100 94 96.73 100 92 96

Table 3
Confusion Matrix of Experiment 2 results (in %)

K
N=1 N=2 N=3 N=4

Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc

1 100 96 98.06 100 95 97.42 69 98 76.48 100 91 95.33

2 100 96 97.88 100 96 97.77 100 93 96.62 100 91 95.73

3 100 96 97.62 100 96 97.8 100 92 96.88 100 91 95.39

4 100 97 98.53 100 95 97.26 100 93 96.33 100 91 95.48

5 100 95 97.57 100 94 96.75 100 93 96.48 100 91 95.28

6 100 96 97.75 100 95 97.06 99 92 95.77 100 91 95.48

7 100 96 97.91 100 94 97.26 100 92 95.95 100 91 95.35

8 100 96 98.02 100 95 97.28 100 91 95.57 100 90 95

9 100 95 97.53 100 94 96.8 100 92 96.02 100 89 94.44

Table 2
Confusion Matrix of Experiment 1 results (in %)

is done to investigate the performance of the K-NN
algorithm when the number of data in the training
stage is either greater than, equal to, or less than the
number of data in the testing stage. As shown in Table
1, the scenario carries out three experiments. In Ex-
periment 1, the proportion of training data and test-
ing data is 75% and 25%. In Experiment 2, a 50/50
distribution of training dataset and testing dataset
was used. Lastly, in Experiment 3, the proportion of
training data and testing data was 25% and 75%, re-
spectively.
Table 2 shows that overall results of the Precision of
K-NN algorithm in detecting malware reached 100%,
except for (K = 2 and N = 3). In the case of (K = 2 and
N = 3) the Precision is 69%, because some normal
files were identified as malwares.

The highest Recall value of 98% was achieved for
(K=1, N=3, whereas the highest Accuracy of 98.53%
was achieved for (K=4, N=1).
Among the files detected as malware, a normal file
was also detected as malware file. Nevertheless, the
Recall value was still 100%, which means that all mal-
ware files were detected correctly as malware files. In
other words, the algorithm recognises a malware as
true malicious software. Results of Recall ≠ 100% in-
dicate that there are malware files detected as normal
files. The highest accuracy of 98.86% was achieved for
(K = 1, N = 1).
In Table 3, the scenario where the number of data
in the training stage is less than the number in the
testing stage, the K-NN algorithm reached 100%

503Information Technology and Control 2021/3/50

Table 4
Confusion Matrix of Experiment 3 results (in %)

K
N=1 N=2 N=3 N=4

Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc

1 100 97 98.6 75 99 83.8 69 99 77.7 100 92 96.96

2 91 98 94.16 100 97 98.6 100 94 96.8 100 92 96.16

3 100 97 98.53 100 96 98.1 100 94 97 100 91 95.76

4 100 97 98.63 100 96 98 100 94 97.23 100 91 95.26

5 100 97 98.56 100 95 97.46 100 93 97.5 100 92 95.93

6 100 98 98.83 100 95 97.7 100 94 97.1 100 91 95.66

7 100 96 97.76 100 96 98 100 92 96.1 100 91 95.39

8 100 97 98.46 100 96 97.96 100 93 96.6 100 91 95.66

9 100 97 98.43 100 95 97.43 100 94 96.93 100 91 95.36

Precision, except for the cases of (K = 1, N = 3) and
(K = 6, N = 3), which were 69% and 99%, respectively.
These results indicate that from all the data detected
as malware files, there were also normal files. In terms
of Recall values, the results showed that the K-NN al-
gorithm can detect malware files because the number
of malware files detected as normal files were the least
among all detections, as conducted in Experiment 2.
While referring to Table 4, it can be seen that the aver-
age of the best Precision in Experiment 3 is for N = 4,
which reached 100%. This shows that in Experiment
3, the K-NN algorithm with N = 4 detected no normal
files as malware files during the testing stage.
The highest average of Recall value was for N = 1,
while the lowest average Recall result was for N =
4. Considering also the Recall values, the K-NN al-
gorithm achieved its highest accuracy of 98.83% in
the experiment where N = 1 and the number of K =
6. Figure 7 presents the accuracy scores for the three
experiments. The opcode resulted from 1-gram fea-
ture extraction has the highest level of accuracy in
detecting malware using the K-NN algorithm. Fig-
ure 7 also shows that the K-NN algorithm’s Accuracy
can reach more than 98%, even though the number
of training data is smaller than the number of testing
data. The highest accuracy in opcode N-gram is when
N = 1 extraction feature. The K-NN algorithm can de-
tect malware with high accuracy using the opcode
N-gram where N = 1 extraction feature, compared to

Figure 7
Accuracy of the proposed method

the opcode N-gram extraction feature, where N = 2,
N = 3, and N = 4.
Figure 8 presents the Precision results. The highest
Precision result is 100%. The Precision results are
influenced by the number of false positive (FP) in-
stances. The highest value of FP is reached when a
lot of normal files in the dataset are detected as mal-
ware files. The best Precision result is 100% and is
obtained when no normal files are detected as mal-
ware files.
Figure 9 shows the plot of Recall score calculation
results. The highest Recall score obtained is 100%
with the condition that all malwares are detected.

Information Technology and Control 2021/3/50504

Figure 8
Precision of the proposed method

Figure 9
Recal value of the proposed method

The best optimal detection score with the K-Nearest
Neighbors algorithm is 98.86%. From the experience
during the experiments, Precision and Recall also af-
fect the results of Accuracy.
Visual of the segregation of ransomware files and
normal files using K-NN is shown in Figure 10. It can
be seen that only a few red dots spread a high dis-
tance from the blue dots, while most of red dots are
closer to the blue dots. It is caused by the fact that
the opcode parameters used to recognise ransom-
ware/malware are similar as a normal file.

Figure 10
Visualization of ransomware and normal files using K-NN

Figure 8 presents the Precision results. The highest
Precision result is 100%. The Precision results are
influenced by the number of false positive (FP)
instances. The highest value of FP is reached when
a lot of normal files in the dataset are detected as
malware files. The best Precision result is 100% and
is obtained when no normal files are detected as
malware files.

FFiigguurree 99

Recal value of the proposed method

90%

92%

94%

96%

98%

100%

0 2 4 6 8 10

Re
ca

l

K Va lue

Experiment 1 Experiment 2 Experiment 3

Figure 9 shows the plot of Recall score calculation
results. The highest Recall score obtained is 100%
with the condition that all malwares are detected.
The best optimal detection score with the K-Nearest
Neighbors algorithm is 98.86%. From the
experience during the experiments, Precision and
Recall also affect the results of Accuracy.

FFiigguurree 1100

Visualization of ransomware and normal files using
K-NN

Visual of the segregation of ransomware files
and normal files using K-NN is shown in
Figure 10. It can be seen that only a few red
dots spread a high distance from the blue dots,
while most of red dots are closer to the blue
dots. It is caused by the fact that the opcode
parameters used to recognise
ransomware/malware are similar as a normal
file.

6. Discussion

Table 5 shows the performance comparison
between the proposed technique and similar
techniques.

Table 5.

Comparison of CFG 4-gram with existing
works on the detection accuracy

Features Engineering Accuracy

CFG 4-gram (Proposed) 98.86%

CFG [4] 92.00%

TXT1 [4] 88.30%

TXT2 [4] 89.70%

TF-IDF [26] 97.05%

ELF [27] 91.00%

Ding et al. [8] used CFG, TXT1, and TXT2 as
features’ engineering technique and reported an
accuracy detection of 92%, 88.30%, and 89.70%,
respectively. They also revealed that the use of
the TXT technique for extracting opcode
sequence has a limitation, where the extracted
opcode sequence does not represent real
_ehavior of the Executable. Meanwhile, an
experiment by Xu et al. [27] that implements IT-
IDF yielded a detection accuracy of 97.05% and
it performed better than the results obtained by
Ahmed et al. [3], who used ELF as the features‘
engineering technique, with a detection
accuracy of 91%. Results in Table 5 shows that
the proposed technique, which uses CFG 4-
Gram, outperforms the other selected
techniques. It achieves very good accuracy
detection (i.e., 98.86%), because the _ehavior
pattern extracted by the CFG 4-Gram technique
can fully represent the behavioural
characteristics of an Executable.

Figure 8 presents the Precision results. The highest
Precision result is 100%. The Precision results are
influenced by the number of false positive (FP)
instances. The highest value of FP is reached when
a lot of normal files in the dataset are detected as
malware files. The best Precision result is 100% and
is obtained when no normal files are detected as
malware files.

FFiigguurree 99

Recal value of the proposed method

90%

92%

94%

96%

98%

100%

0 2 4 6 8 10

Re
ca

l

K Va lue

Experiment 1 Experiment 2 Experiment 3

Figure 9 shows the plot of Recall score calculation
results. The highest Recall score obtained is 100%
with the condition that all malwares are detected.
The best optimal detection score with the K-Nearest
Neighbors algorithm is 98.86%. From the
experience during the experiments, Precision and
Recall also affect the results of Accuracy.

FFiigguurree 1100

Visualization of ransomware and normal files using
K-NN

Visual of the segregation of ransomware files
and normal files using K-NN is shown in
Figure 10. It can be seen that only a few red
dots spread a high distance from the blue dots,
while most of red dots are closer to the blue
dots. It is caused by the fact that the opcode
parameters used to recognise
ransomware/malware are similar as a normal
file.

6. Discussion

Table 5 shows the performance comparison
between the proposed technique and similar
techniques.

Table 5.

Comparison of CFG 4-gram with existing
works on the detection accuracy

Features Engineering Accuracy

CFG 4-gram (Proposed) 98.86%

CFG [4] 92.00%

TXT1 [4] 88.30%

TXT2 [4] 89.70%

TF-IDF [26] 97.05%

ELF [27] 91.00%

Ding et al. [8] used CFG, TXT1, and TXT2 as
features’ engineering technique and reported an
accuracy detection of 92%, 88.30%, and 89.70%,
respectively. They also revealed that the use of
the TXT technique for extracting opcode
sequence has a limitation, where the extracted
opcode sequence does not represent real
_ehavior of the Executable. Meanwhile, an
experiment by Xu et al. [27] that implements IT-
IDF yielded a detection accuracy of 97.05% and
it performed better than the results obtained by
Ahmed et al. [3], who used ELF as the features‘
engineering technique, with a detection
accuracy of 91%. Results in Table 5 shows that
the proposed technique, which uses CFG 4-
Gram, outperforms the other selected
techniques. It achieves very good accuracy
detection (i.e., 98.86%), because the _ehavior
pattern extracted by the CFG 4-Gram technique
can fully represent the behavioural
characteristics of an Executable.

6. Discussion
Table 5 shows the performance comparison between
the proposed technique and similar techniques.

Table 5
Comparison of CFG 4-gram with existing works on the
detection accuracy

Features Engineering Accuracy

CFG 4-gram (Proposed) 98.86%

CFG [4] 92.00%

TXT1 [4] 88.30%

TXT2 [4] 89.70%

TF-IDF [26] 97.05%

ELF [27] 91.00%

Ding et al. [8] used CFG, TXT1, and TXT2 as features’
engineering technique and reported an accuracy de-
tection of 92%, 88.30%, and 89.70%, respectively.
They also revealed that the use of the TXT technique
for extracting opcode sequence has a limitation,
where the extracted opcode sequence does not rep-
resent real _ehavior of the Executable. Meanwhile,
an experiment by Xu et al. [27] that implements IT-
IDF yielded a detection accuracy of 97.05% and it
performed better than the results obtained by Ahmed

505Information Technology and Control 2021/3/50

et al. [3], who used ELF as the features‘ engineering
technique, with a detection accuracy of 91%. Results
in Table 5 shows that the proposed technique, which
uses CFG 4-Gram, outperforms the other selected
techniques. It achieves very good accuracy detection
(i.e., 98.86%), because the _ehavior pattern extracted
by the CFG 4-Gram technique can fully represent the
behavioural characteristics of an Executable.

7. Conclusion and Future Work
In this paper, using CFG 4-gram for feature engineer-
ing produces an efficient result in supporting the Tro-
jan Ransomware detection method through the K-NN

algorithm. The highest score of 98.86% accuracy in
ransomware detection is obtained during Experiment
1 for the opcode 1-gram and using 1-NN classifier al-
gorithm. Comparing to other selected feature engi-
neering techniques, overall, the proposed technique
outperforms them.
In the future, the authors plan to investigate more
on relevant and significant ransomwares’ features
through experiments on combination of several fea-
tures engineering techniques. The experiments will
be conducted on various ransomware datasets to ob-
tain more accurate attack patterns to be used to dis-
tinguish ransomware packets from normal packets
and also by considering a combination with different
classifier algorithms.

References
1. Adeniyi, D. A., Wei, Z., Yongquan, Y. Automated Web

Usage Data Mining and Recommendation System Us-
ing K-Nearest Neighbor (KNN) Classification Method.
Applied Computing and Informatics, 2016, 12, 90-108.
https://doi.org/10.1016/j.aci.2014.10.001

2. Agrawal, R., Stokes, J. W., Selvaraj, K., Marinescu, M.
Attention in Recurrent Neural Networks for Ransom-
ware Detection. Proceedings of 2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2019, 3222. https://doi.org/10.1109/
ICASSP.2019.8682899

3. Ahmed, F. S., Mustapha, N., Mustapha, A., Kakavand,
M., Foozy, C. F. M. Preliminary Analysis of Malware De-
tection in Opcode Sequences within IoT Environment.
Journal of Computer Science, 2020, 16(9), 1306-1318.
https://doi.org/10.3844/jcssp.2020.1306.1318. https://
doi.org/10.3844/jcssp.2020.1306.1318

4. Bieber, D., Sutton, C., Larochelle, H., Tarlow, D. Learning
to Execute Programs with Instruction Pointer Attention
Graph. Neural Networks, 2020, ArXiv, abs/2010.12621.

5. Bilar D. Opcodes as Predictor for Malware. Interna-
tional Journal of Electronic Security and Digital Fo-
rensics, 2007, (1), 156-168. https://doi.org/10.1504/
IJESDF.2007.016865

6. Chittooparambil, H. J., Shanmugam, B., Azam, S., Kan-
noorpatti, K., Jonkman, M., Samy, G. N. A Review of
Ransomware Families and Detection Methods. Pro-
ceedings of International Conference of Reliable In-

formation and Communication Technology, 2018, 588-
597. https://doi.org/10.1007/978-3-319-99007-1_55

7. Craciun, V. C., Mogage, A., Simion, E. Trends in Design
of Ransomware Viruses. Proceedings of Internation-
al Conference on Security for Information Technol-
ogy and Communications, 2018, 259-272. https://doi.
org/10.1007/978-3-030-12942-2_20

8. Ding, Y., Dai, W., Yan, S., Zhang, Y. Control Flow-Based
Opcode Behavior Analysis for Malware Detection.
Computers and Security, 2014, 44, 65-74. https://doi.
org/10.1016/j.cose.2014.04.003

9. Ghezelbigloo Z, VafaeiJahan M. Role-Opcode vs. Op-
code: The New Method in Computer Malware Detection.
Proceedings of 2014 International Congress on Technol-
ogy, Communication and Knowledge (ICTCK), 2014, 1-6.
https://doi.org/10.1109/ICTCK.2014.7033534

10. Hashemi, H., Azmoodeh, A., Hamzeh, A., Hashemi, S.
Graph Embedding as a New Approach for Unknown
Malware Detection. Journal of Computer Virology and
Hacking Techniques, 2016, 13(3), 153-166. https://doi.
org/10.1007/s11416-016-0278-y

11. Kabakus, A. T. What Static Analysis Can Utmost Offer
for Android Malware Detection. Information Tech-
nology and Control, 2019, 48(2), 235-240. https://doi.
org/10.5755/j01.itc.48.2.21457

12. Khammas, B. M., Monemi, A., Stephen Bassi, J., Ismail,
I., Mohd Nor, S., Marsono, M. N. Feature Selection and
Machine Learning Classification for Malware Detec-

https://doi.org/10.1016/j.aci.2014.10.001
https://doi.org/10.1109/ICASSP.2019.8682899
https://doi.org/10.1109/ICASSP.2019.8682899
https://doi.org/10.3844/jcssp.2020.1306.1318
https://doi.org/10.3844/jcssp.2020.1306.1318
https://doi.org/10.1504/IJESDF.2007.016865
https://doi.org/10.1504/IJESDF.2007.016865
https://doi.org/10.1007/978-3-319-99007-1_55
https://doi.org/10.1007/978-3-030-12942-2_20
https://doi.org/10.1007/978-3-030-12942-2_20
https://doi.org/10.1016/j.cose.2014.04.003
https://doi.org/10.1016/j.cose.2014.04.003
https://doi.org/10.1109/ICTCK.2014.7033534
https://doi.org/10.1007/s11416-016-0278-y
https://doi.org/10.1007/s11416-016-0278-y
https://doi.org/10.5755/j01.itc.48.2.21457
https://doi.org/10.5755/j01.itc.48.2.21457

Information Technology and Control 2021/3/50506

tion. Jurnal Teknologi, 2015, 77(1), 243-250. https://doi.
org/10.11113/jt.v77.3558

13. Kotsiantis, S. B., Zaharakis, I. D., Pintelas, P. E. Machine
Learning: A Review of Classification and Combining
Techniques. Artificial Intelligence Review, 2006, 26(3),
159-190. https://doi.org/10.1007/s10462-007-9052-3

14. Li, P., Chen, Z., Cui, B. Detecting Malware Based on Op-
code N-Gram and Machine Learning. In Xhafa F., Caballé
S., Barolli L. (Eds.), Advances on P2P, Parallel, Grid, Cloud
and Internet Computing. 3PGCIC Lecture Notes on Data
Engineering and Communications Technologies, 2017,
13. Springer, Cham. https://doi.org/10.1007/978-3-319-
69835-9_9

15. Liangboonprakong, C., Sornil, O. Classification of Mal-
ware Families based on N-grams Sequential Pattern
Features. Proceedings of 8th IEEE Conference on In-
dustrial Electronics and Applications (ICIEA), 2013,
777-782. https://doi.org/10.1109/ICIEA.2013.6566472

16. Liao, Y., Vemuri, V. R. Use of K-Nearest Neighbor Clas-
sifier for Intrusion Detection. Computers and Security,
2002, 21(5), 439-448. https://doi.org/10.1016/S0167-
4048(02)00514-X

17. Luque, A., Carrasco, A., Martín, A., de las Heras, A. The
impact of Class Imbalance in Classification Perfor-
mance Metrics Based on the Binary Confusion Matrix.
Pattern Recognition, 2019, 91, 216-231. https://doi.
org/10.1016/j.patcog.2019.02.023

18. Narudin, F. A., Feizollah, A., Anuar, N. B., Gani, A. Eval-
uation of Machine Learning Classifiers for Mobile Mal-
ware Detection. Soft Computing, 2014, 20(1), 343-357.
https://doi.org/10.1007/s00500-014-1511-6

19. O’Kane, P., Sezer, S., Carlin, D. Evolution of Ransom-
ware. IET Networks, 2018, 7(5), 321-327. https://doi.
org/10.1049/iet-net.2017.0207

20. Ouerdi, N., Hajji, T., Palisse, A., Lanet, J.-L., Azizi, A.

Classification of Ransomware Based on Artificial
Neural Networks. Information Systems and Technol-
ogies to Support Learning, 2018, 384-392. https://doi.
org/10.1007/978-3-030-03577-8_43

21. Ranveer, S., Hiray, S. Comparative Analysis of Feature
Extraction Methods of Malware Detection. Interna-
tional Journal of Computer Applications, 2015, 120(5),
1-7. https://doi.org/10.5120/21220-3960

22. Samaniego, L., Schulz, K. Supervised Classification of
Agricultural Land Cover using a Modified k-NN Tech-
nique (MNN) and Landsat Remote Sensing Imag-
ery. Remote Sensing, 2009, 1(4), 875-895. https://doi.
org/10.3390/rs1040875

23. Santos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P. G.
Opcode Sequences as Representation of Executables
for Data-Mining-Based Unknown Malware Detection.
Information Sciences, 2013, 231, 64-82. https://doi.
org/10.1016/j.ins.2011.08.020

24. Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C. De-
tection of Malicious Code by Applying Machine Learn-
ing Classifiers on Static Features: A State-of-the-Art
Survey. Information Security Technical Report, 2009,
14(1), 16-29.https://doi.org/10.1016/j.istr.2009.03.003

25. Sibi, C.S., Sangeetha, D., Vaidehi, V. A Survey on Malware
Analysis and Mitigation Techniques. Computer Sci-
ence Review, 2019, 32, 1-23. https://doi.org/10.1016/j.
cosrev.2019.01.002

26. Ucci, D., Aniello, L., Baldoni, R. Survey of Machine
Learning Techniques for Malware Analysis. Com-
puters and Security, 2019, 81, 123-147. https://doi.
org/10.1016/j.cose.2018.11.001

27. Xu, Z., Wen, C., Qin, S., Ming, Z. Effective Malware De-
tection Based on Behaviour and Data Features. In Lec-
ture Notes in Computer Science, 2018, 53-66. Springer
International Publishing. https://doi.org/10.1007/978-
3-319-73830-7_6

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.11113/jt.v77.3558
https://doi.org/10.11113/jt.v77.3558
https://doi.org/10.1007/s10462-007-9052-3
https://doi.org/10.1007/978-3-319-69835-9_9
https://doi.org/10.1007/978-3-319-69835-9_9
https://doi.org/10.1109/ICIEA.2013.6566472
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1016/j.patcog.2019.02.023
https://doi.org/10.1016/j.patcog.2019.02.023
https://doi.org/10.1007/s00500-014-1511-6
https://doi.org/10.1049/iet-net.2017.0207
https://doi.org/10.1049/iet-net.2017.0207
https://doi.org/10.1007/978-3-030-03577-8_43
https://doi.org/10.1007/978-3-030-03577-8_43
https://doi.org/10.5120/21220-3960
https://doi.org/10.3390/rs1040875
https://doi.org/10.3390/rs1040875
https://doi.org/10.1016/j.ins.2011.08.020
https://doi.org/10.1016/j.ins.2011.08.020
https://doi.org/10.1016/j.istr.2009.03.003
https://doi.org/10.1016/j.cosrev.2019.01.002
https://doi.org/10.1016/j.cosrev.2019.01.002
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1007/978-3-319-73830-7_6
https://doi.org/10.1007/978-3-319-73830-7_6

