
253 

ISSN 1392–124X (print), ISSN 2335–884X (online) INFORMATION TECHNOLOGY AND CONTROL, 2013, Vol.42, No.3 

Cell Attribute-Based Algorithm for Crack Visualization 

Ruslan Pacevič, Arnas Kačeniauskas 

Laboratory of Parallel Computing, Vilnius Gediminas Technical University 
Saulėtekio Ave. 11, Vilnius, LT-10223, Lithuania 

e-mail: arnas.kaceniauskas@vgtu.lt 

Remigijus Kutas 

Department of Information Systems, Vilnius Gediminas Technical University, 
Saulėtekio Ave. 11, Vilnius, LT-10223, Lithuania 

e-mail: remigijus.kutas@vgtu.lt 

Darius Markauskas 

Institute of Mechanics, Vilnius Gediminas Technical University 
Saulėtekio Ave. 11, Vilnius, LT-10223, Lithuania 

Lukas Radvilavičius 

Laboratory of Security of Information Technologies, Vilnius Gediminas Technical University 
Saulėtekio Ave. 11, Vilnius, LT-10223, Lithuania 

  http://dx.doi.org/10.5755/j01.itc.42.3.2575 

Abstract. The paper presents the development of the visualization algorithm for propagating cracks. The novel 
algorithm is based on the cell attribute obtained from the damaged lattice connections employed for discrete element 
computations of mono-dispersed particulate media. Generation of the cells is efficiently performed by using the 
positions of particles and the lattice connections. The developed visualization algorithm is implemented in the 
distributed visualization software VisPartDEM. The efficiency of the software is tested visualizing the datasets 
resulting from computations of the lattice-based discrete element method. The performance of the developed algorithm 
is compared with that of the visualization algorithms based on the Voronoi diagrams and the inscribed spheres. 

Keywords: visualization; cracks; cell atribute; distributed software vispartdem; discrete element method. 

 

1. Introduction 
The discrete element method (DEM) was proposed 

by Cundall in the context of rock mechanics [1] and 
has been implemented in many other fields, such as 
geo-materials, granular materials and concrete [21]. It 
is a fast emerging computational method designed to 
solve problems with discontinuous materials and 
geometrical behaviour. Several different particle- and 
lattice-based approaches have been developed in the 
frame of DEM. Particle-based approach [11][20] 
assumes the particle elements are rigid spheres or 
discs, which can overlap or detach. The contact forces 

between two particles are determined from the overlap 
and relative movements of the particle pair according 
to a specified force-displacement law. An approach 
when continuum may be represented by material 
particles interacting via network elements can be 
called lattice-type model [2][10]. It comprises atomic 
concept used basically by physicists. DEM can 
simulate the motion of individual particles and also 
the behaviour of bulk material formed by assembling 
many particles through the lattice connections. The 
lattice-based DEM [9] and the bonded particle model 
[14] can take into account most kinds of 
discontinuities and simulate fracture problems [16]. 



R. Pacevič, A. Kačeniauskas, R. Kutas, D. Markauskas, L. Radvilavičius 

254 

Discrete element computations are based on the 
positions of particles, forces acting between them, and 
Newton’s laws. Particle systems have no permanent 
connections or usual grid that can be applied for 
spatial discretization or visualization purposes [5]. The 
defects are identified between the pairs of the 
neighbouring particles on the lattice connections or 
bonds [9][16]. The one-dimensional connections are 
not well suited for the reliable interpolation and 
common visualization techniques in 2D or 3D. 
Moreover, there is no direct technique how to 
visualize the crack geometry according to the 
individual defects. Thus, the main visualization task is 
to identify the fractured regions and to define the 
cracks from the broken lattice connections and the 
geometry of the neighbouring particles. 

The novel cell attribute-based algorithm is 
proposed for visualization of cracks in mono-
dispersed particulate media. The proposed cell 
generation algorithm employs the one-dimensional 
lattice connections as the edges of the newly generated 
cells. The visualization algorithm maps broken lattice 
connections to generated cells. In this case, spatial 
crack representation is visualized as the scalar cell 
attribute. The paper is organised as follows. In Section 
2, the related work is discussed. Section 3 presents the 
developed algorithm for visualization of cracks. In 
Section 4, the main features of employed visualization 
software are described. In Section 5, visualization 
issues and performance of the software are discussed, 
while the concluding remarks are given in Section 6. 

2. Related work 
The surface reconstruction from a set of sample 

points is motivated by numerous applications and has 
always been a popular field of research. Most surface 
reconstruction methods roughly fall into two 
categories: implicit surface methods [17] and 
Delaunay-based methods [3]. Widely accepted are the 
results given by Delaunay tetrahedrization, whose 
implementation is also included into the various 
numerical libraries [3]. An approach, which directly 
extracts smooth surfaces from unstructured point-
based volume data without prior resampling or mesh 
generation, is proposed by Rosenthal and Linsen [17]. 
However, the common surface extraction algorithms 
cannot be directly applied because of the absence of 
suitable field data and the complex nature of crack 
surfaces including the holes.  

In the lattice-based DEM methods, cracks and the 
related phenomena are often visualized in the most 
straightforward way. The geometry of large cracks can 
be simply visualized by positions of coloured particles 
[7][16], but this technique is unsuitable for the initial 
stages of crack formation. The coloured lattice 
connections [10] can be treated as the main alternative 
to the rendered particles. However, the coloured lattice 
connections do not provide any valuable information 
on the geometry of the crack surfaces. The proposed 

visualization technique is based on the space 
tessellation. Traditional Delaunay [19] or advancing 
front [12] mesh generation algorithms cannot be 
applied, because the mesh geometry is already 
available from particle positions, while the mesh 
topology should be consistent with the lattice 
connections. Thus, there were no attempts to visualize 
the crack surfaces by using the cell attributes. 

3. Visualization algorithm 
The simple cell attribute-based algorithm is 

designed for visualization of propagating cracks that 
can be treated as the dynamically changing indirectly 
defined surfaces. The developed visualization 
algorithm generates 2D or 3D meshes from the 
provided 1D connections. It also maps the defects 
identified by the broken lattice connections to the cell 
attributes of the generated mesh cells.  

The general scheme of the algorithm is presented 
in Figure 1. Initially, the dataset is read by using a 
nearly standard reader. The cell attribute-based 
algorithm consists of two main blocks that can be 
implemented in software as one or several filters. The 
first block generates the mesh topology from 1D 
connections of the lattice employed in DEM 
computations. It is the most time consuming 
procedure, which is performed only once. Usually, 
cells are generated before visualizing the results of the 
first time step. Sometimes the mesh topology can be 
imported from the non-standard DEM computations 
employing the mesh for the specific computational 
purposes [9]. The second block calculates the cell 
attributes from the broken lattice connections. The 
algorithm simply calculates how many 1D 
connections of the particular cell are broken and 
assigns this value to the cell attribute. Finally, the 
calculated cell attributes are mapped to the predefined 
colours and rendered on screen by using the available 
mapper and the renderer, respectively. 

 
Figure 1. The cell attribute-based visualization algorithm 



Cell Attribute-Based Algorithm for Crack Visualization 

255 

Generation of the cells, covering the whole domain 
of interest, is the most time consuming procedure. The 
common mesh generation algorithms cannot be 
applied, because of very different input data. The 
mesh points are already available from the particle 
positions. Moreover, the one-dimensional lattice 
connections should be employed as the edges of the 
newly generated cells. The initial algorithm for 
generating the topology was based on loops that check 
all neighbouring nodes and all possible variants. Its 
performance was found to be satisfactory visualizing 
the two-dimensional datasets. In the case of the 3D 
datasets, its execution time was very long. Thus, an 
improved algorithm based on the point sets was 
designed. 

Figure 2 presents the improved algorithm designed 
for generating the three-dimensional mesh topology. 
During the preparation of data structures the lists of 
the connected neighbours are assembled for all lattice 
points (particles). Then a loop, running through all 
points, is started. In 3D, two types of cells are 
considered to cover wider range of computational 
lattices. Thus, the generated 3D topology consists 
from pyramids with triangular or quadrilateral bases, 
which are generated in separate blocks of the 
algorithm. In order to speed up computations, the 
point triplets and the point quadruplets are generated 
for identifying all possible triangular or quadrilateral 
bases, respectively. The following loop runs through 
the generated point triplets or point quadruplets 
connected to the processed point. The important 
condition checks the existence of the connection 
between points of the triplet forming the base of the 
pyramid. In the case of a pyramid with a quadrilateral 
base, this condition is more complex, because it is 
necessary to check the absence of the diagonals of the 
quadrilateral base. Moreover, this case is significantly 
more sophisticated, because resulting octahedron with 
eight faces can be divided to two pyramids in different 
ways. Thus, the additional loop, running through the 
points connected to any point of quadrilateral base, is 
performed to find the whole octahedron. The 
following condition checks the existence of the 
necessary octahedron connections. Finally, in both 
cases, the main block creates the new cells if such 
tetrahedron or octahedron has not been created yet. 
The octahedron is immediately divided into two 
pyramids with the quadrilateral base, because they can 
be efficiently processed by any visualization software. 

Let N= {q1, q2, q3,…, qn} be a finite set of points, 
represented by centres of particles, in a sub-domain Ω 
of the space R3. The algorithm generates a partition of 
the sub-domain Ω into the non-overlapping regions Ωi, 
such that  

 iΩ=Ω  (1) 

where each Ωi is the 4 node tetrahedron or the 
pyramid defined by 5 nodes of N. Initially, the gene-
rated tetrahedra satisfy the Delaunay conditions. Four 
non-coplanar points qi, qj, qk and ql form a Delaunay  

 
Figure 2. Generating the mesh topology in 3D 



R. Pacevič, A. Kačeniauskas, R. Kutas, D. Markauskas, L. Radvilavičius 

256 

tetrahedron D if and only if there exists a location 
x∈Ω, which is equally close to qi, qj, qk and ql and 
closer to qi, qj, qk , ql than to any other pm∈N. The 
location x is the centre of the sphere which passes 
through the points qi, qj, qk , ql and which contains no 
other points pm∈N. However, after some period of 
time the particles move, the lattice deforms and 
tetrahedra do not satisfy the Delaunay conditions in 
the highly fractured regions.  

The calculation of the cell attributes from the 
broken lattice connections is illustrated in Figure 3. 
The input array (S(i), i=1, …, M) indicates if the 
lattice connection between two neighbouring particles 
 

 
Figure 3. Computing the cell attributes 

is broken. M is the total number of the lattice 
connections. The unity value of the array element 
means that the connection is broken. The algorithm 
calculates how many 1D connections of the particular 
cell e are broken by using a simple formula: 

∑
=

=
k

j
e jISa

1
))((  (2) 

where ae is the attribute of a cell Ωe from formula (1). 
k is the number of cell connections. I is the array of 
global connection indices of the cell e. In Figure 3, the 
outer loop runs through all cells of the newly 
generated mesh, while the inner loop runs through all 
connections (edges) of the considered cell. The 
following block implements the trivial sum of the 
formula (2). The calculated value is assigned to the 
array of the cell attributes. Finally, the array of the 
calculated attributes is incorporated in data structures. 
At the end of the visualization pipeline (Figure 1) the 
calculated cell attributes are mapped to colours by 
using the predefined lookup table.  

4. Visualization software 
The developed algorithm was implemented in the 

distributed software VisPartDEM developed for 

visualization of discrete particle systems at the 
Laboratory of Parallel Computing of Vilnius 
Gediminas Technical University. Initially, the 
distributed architecture of VisPartDEM was designed 
for grid infrastructures built by gLite middleware [4]. 
Client software including a GUI and a Remote Viewer 
was downloaded by using Java Web Start technology. 
VisPartDEM client, implemented as Java application, 
connects to any user interface computer by means of 
JSCH library [6]. Traditional gLite commands for user 
authentication and authorization, job submission and 
monitoring were enwrapped by Java programming 
language. Parallel visualization engine of VisPartDEM 
based on VTK [18] was run on working nodes of any 
computing element while the compressed video 
stream was transferred from the zero MPI node to the 
client by the Remote Viewer [8]. This architecture was 
extended to support the other infrastructures, such as 
Rocks clusters and graphics workstations.  

 
Figure 4. Interactivity of the Remote Viewer 

The Remote Viewer (Figure 4) of VisPartDEM 
employed GVid software [13] as video streaming 
module to provide users with the high interactivity 
level. As a result, the video stream was transferred 
through the network from the working node and 
displayed on the client. Thus, remote user had 
interactivity provided by the Remote Viewer based on 
GVid software and VTK widgets. 

5. The performance of the algorithm 
The developed cell attribute-based algorithm is 

applied to visualize crack propagation in mono-
dispersed particle media. The employed lattice-based 
discrete element model [16] is able to describe the 
elastic solid problem exhibiting non-uniform 
distribution of fracture force values. The uniaxial 
tension problem was investigated to validate the 
relevance and accuracy of the employed model and 
visualization algorithm.  

Crack propagation in the rectangular plate was 
visualized in order to validate extraction of geometric 
representation of propagating cracks in 2D. The 
geometry of the domain and the boundary conditions 
are illustrated in Figure 5. Two plate boundaries are 



Cell Attribute-Based Algorithm for Crack Visualization 

257 

assumed to be clamped by connecting it to rigid walls, 
while other boundaries are free. External excitation is 
kinematic and it is implemented via the motion of the 
clamped boundaries defined by the constant velocity 
(u = 0.05 m/s) to simulate tension in the specimen 
with the dimensions of 0.376 x 0.107 m. The 
simulated system consists of 4679 particles, while the 
lattice is formed from 13722 springs that are treated as 
the 1D connections visualizing the obtained results. 
The initial defect, specified by 3 broken connections, 
is marked by using a red colour (Figure 5). 

 
Figure 5. Geometry and lattice of the 2D benchmark 

To validate the proposed algorithms for the 3D 
problem, the crack propagation in 3D specimen 
(0.211 x 0.1 x 0.1 m) was visualized. As in the 2D 
problem, the tension was applied via the prescribed 
velocity (u = 0.025 m/s) of the clamped boundaries. 
The particulate specimen consists of 46875 particles, 
while the lattice is formed from 267674 springs. The 
initial defect is placed at the middle of one specimen 
side. The benchmark tests were performed on an HP 
xw4600 workstation (C1) and the ordinary personal 
computer (C2) to validate the computational 
performance of the cell attribute-based algorithm. 
Hardware characteristics of the first computer (HP 
xw4600 named C1) are listed below: Intel® 
Core2Quad Q9450 2.66 GHz CPU (12 MB L2 cache 
and bus frequency equal 1333 MHz), 8 GB DDR2 
800 MHz RAM, 2x250 GB HDD (SATA II Extensions 
and 16 MB cache), Nvidia GeForce GTX560 Ti 
(384 CUDA cores, 1645 MHz processor clock, 
822 MHz graphics clock, 1024 MB GDDR-5, 
4008 Gbps memory clock, 128 GB/sec memory 
bandwidth) GPU. Hardware characteristics of the 
second computer (the personal computer named C2) 
are listed below: Intel® Core2Quad Q6600 2.40 GHz 
CPU (2 x 4 MB L2 cache and bus frequency equal 
1066 MHz), 320 GB HDD (SATA II Extensions and 
16 MB cache), 4 GB DDR2 800 RAM and Nvidia 
GeForce 9800GTX+ (128 CUDA cores, 1688 MHz 
processor clock, 738 MHz graphics clock, 512 MB 
GDDR-2, 1100 Gbps memory clock, 47.2 GB/sec 
memory bandwidth) GPU.  

Figure 6 presents visualization of cracks 
performed by the cell attribute-based algorithm in 2D. 
The lattice connections represented by coloured tubes 
are plotted for illustrative purposes. A red tube 
indicates that the corresponding lattice connection is 
already broken and the force coupling neighbouring 
particles is equal to zero. Cracks are visualized by 
colour mapping of the calculated cell attributes on the 
generated triangles (1). The predefined colour table is 
employed for relevant visualization of the investigated 
phenomenon. The cells coloured in blue do not 

contain cracks, which indicates zero values of the cell 
attribute calculated by the formula (2). The triangles 
including only one broken connection are coloured in 
cyan. The cells that have two broken connections are 
coloured in yellow. It means that crack cuts the cell. 
The triangles coloured in red contain the branching 
crack, because all edges of the cell are broken and the 
investigated region is highly fractured. 

 
Figure 6. Visualization of the lattice and cracks in 2D 

Figure 7 shows crack propagation in 3D. In this 
case, the colour mapping is more sophisticated, 
because the generated topology contains two types of 
cells, i.e. pyramids with triangular or quadrilateral 
bases. The 3D cells that do not contain the broken 
connections are extracted by the filter vtkExtractCells. 
Pyramids containing small defects, i.e. one or two 
broken connections, are coloured in cyan. The yellow 
colour represents the cells containing 3 or 4 broken 
connections, which illustrates the cells cut by the 
crack surface. The red pyramids, containing more than 
4 broken connections, indicate the highly fractured 
regions of material. The crack propagating upwards 
from the specimen bottom, damaged by the initial 
defect, can be clearly observed in Figure 7.  

 
Figure 7. Visualization of cracks in 3D 

Figure 8 shows the contribution of the 
visualization time consumed by the first time step of 
the 3D benchmark on the HP workstation (C1) and on 
the personal computer (C2). The charts compare the 
contribution of cell generation (Cells), attribute 
calculation (Attributes), incorporation of new arrays 
into VTK data structures (VTKStruct) and rendering 
(Render) to the total visualization time. Mapping was 
not considered because it took a very short time equal 
approximately to 0.00007 s. The impact of data reader 
was also not significant. Figure 8 also presents 



R. Pacevič, A. Kačeniauskas, R. Kutas, D. Markauskas, L. Radvilavičius 

258 

quantitative comparison of the 3D benchmark time 
obtained by using two different modifications of the 
cell generation algorithm. The columns INI represent 
the results of the initial algorithm while the columns 
ALG represent that of the improved algorithm based 
on the point sets. The improved algorithm for 
generating the 3D topology was 4.85 and 3.89 times 
faster than the initial algorithm on C1 and C2, 
respectively. The HP workstation generated the cells 
up to 27.9% faster. It can be explained by larger CPU 
clock speed and larger memory cash. The time 
consumed by attribute calculation, VTK data 
structures and rendering is small and hardly 
observable in Figure 8. However, these visualization 
procedures consumed up to 12.4% of the benchmark 
time in the case of the improved algorithm for 
generating the 3D topology. 

 
Figure 8. Contribution of different visualization procedures 

to the total benchmark time 

The performance of the developed visualization 
algorithm is quantitatively compared with that of the 
visualization techniques based on the inscribed 
spheres and the Voronoi diagrams, which are 
implemented in the Voro++ library [15]. Alternatively, 
the space can be partitioned into Voronoi cells to plot 
cracks on the Voronoi faces. The space partition can 
be obtained inscribing the spheres in the cells and 
joining their centres. The resulting partitions can be 
employed for crack visualization as well as treated as 
the alternatives to the cell attribute-based algorithm. 
Figure 9 shows the accumulated time consumed by the 
visualization filters based on different space partition 
methods visualizing the six time steps of the 3D 
benchmark. The curves INI-C1 and INI-C2 represent 
the performance of the initial algorithm, which checks 
all neighbouring nodes, measured on the HP 
workstation C1 and on the personal computer C2, 
respectively. The curves ALG-C1 and ALG-C2 
illustrate the performance of the improved algorithm 
for generating the cells obtained on the C1 and on the 
C2, respectively. The curves VOR-C1 and VOR-C2 
show the performance of the algorithm for generating 
the Voronoi diagrams, while the curves INS-C1 and 

INS-C2 represent the performance of the algorithm for 
generating the space partition, based on the inscribed 
spheres, measured on the C1 and the C2, respectively. 

 
Figure 9. Increase of the total execution time consumed by 

the different visualization techniques  

Despite the fact that the Voronoi diagrams-based 
algorithm generates new vertices together with the 
desired topology, its performance is very close to that 
of the improved algorithm for generating the cells for 
the first time step. However, the positions of particles 
change in time as well as the vertices of the Voronoi 
diagrams that should be generated for each time step. 
In the contrary, the lattice topology is constant in time 
as well as the cells generated for cell attribute-based 
visualization. Thus, employing the cell attribute-based 
algorithm for crack visualization the cells should be 
generated only once. The attribute mapping takes 
negligible time as can be seen from the nearly constant 
curves in Figure 9 and the columns of Figure 8. The 
space partitioning method, based on the inscribed 
spheres, also generates the mesh topology only once, 
but it needs to update the coordinates of all vertices at 
the each time step. Thus, the accumulative time of the 
filters, represented by the curves INS-C1 and INS-C2, 
slightly increases. It is evident that the generation of 
the cells impressively outperforms the generation of 
the Voronoi diagrams after several time steps. The 
measured difference between the execution time of the 
cell attribute-based algorithm and that of the inscribed 
spheres-based algorithm also increases in time. In the 
most of DEM computations, hundreds of thousands 
and millions of time steps should be performed, 
therefore, the cell attribute-based algorithm has the 
superior performance. 

6. Conclusions 
In this paper, the cell attribute-based algorithm for 

visualization of propagating cracks is presented. In the 
performed benchmarks, the calculation of the cell 
attributes took up to 5.4% of the total visualization 
time. The performed investigation showed that 
generating the required topology was the most time 
consuming part of the algorithm. In the 3D case, the 



Cell Attribute-Based Algorithm for Crack Visualization 

259 

generation of cells took up to 87.6% of the total 
benchmark time. The quantitative comparison of the 
computational performance revealed that the 
generation of the cells significantly outperformed the 
generation of the Voronoi diagrams and the space 
partition based on the inscribed spheres for the time-
dependent crack propagation. The main advantage of 
the cell attribute-based visualization technique is very 
simple and fast computation of the required attribute. 
The distributed software VisPartDEM, employing the 
implemented cell-based algorithm, was able 
efficiently to visualize the cracks propagating in 
mono-dispersed particulate media. 

Acknowledgement 
The research is supported by the Ministry of 

Education and Science of the Republic of Lithuania 
through the project “Research and development of 
technologies for virtualization, visualization and 
security e-services” (VP1-3.1-ŠMM-08-K-01-012). 

References 
[1] P. A. Cundall, O. D. L. Strack. A discrete numerical 

model for granular assemblies. Geotechnique, 1979, 
Vol. 29, No. 1, 47–65. 

[2] G. Cusatis, Z. P. Bazant, L. Cedolin. Confinement-
shear lattice CSL model for fracture propagation in 
concrete. Computer Methods in Applied Mechanics 
and Engineering, 2006, Vol. 195, No. 52, 7154-7171. 

[3] K. T. Dey, S. Goswami. Tight cocone: a water-tight 
surface reconstructor. Proc. of the eighth ACM 
symposium on Solid modeling and applications, 2003, 
pp. 127–134. 

[4] gLite. <http://glite.cern.ch/>. 
[5] C. D. Hansen, C. R. Johnson. The Visualization 

Handbook. Elsevier, 2005. 
[6] JSCH. <www.jcraft.com/jsch/>. 
[7] A. Kaceniauskas, R. Pacevic, A. Bugajev, 

T. Katkevicius. Efficient visualization by using 
ParaView software on BalticGrid. Information 
Technology and Control, 2010, Vol. 39, No. 2, 
108-115. 

[8] A. Kaceniauskas, R. Pacevic. VizLitG: grid visualiza-
tion e-service enabling partial dataset transfer from 
storage elements of glite-based grid infrastructure. 
Journal of Grid Computing, 2011, Vol. 9, No. 4, 
573-589. 

[9] R. Kacianauskas, V. Vadluga. Lattice-based six-
spring discrete element model for discretisation 
problems of 2D isotropic and anisotropic solids. 
Mechanika, 2009, Vol. 76, No. 2, 11–19. 

[10] G. Lilliu, J. G. M. Van Mier. 3D lattice type fracture 
model for concrete. Engineering Fracture Mechanics, 
2003, Vol. 70, No. 7–8, 927–941. 

[11] D. Markauskas, A. Kaceniauskas, A. Maknickas. 
Dynamic domain decomposition applied to hopper 
discharge simulation by discrete element method. 
Information Technology and Control, 2011, Vol. 40, 
No. 4, 286–292. 

[12] P. Möller, P. Hansbo. On advancing front mesh 
generation in three dimensions. International Journal 
for Numerical Methods in Engineering, 1995, Vol. 38, 
No. 21, 3551–3569. 

[13] M. Polak, D. Kranzlmüller. Interactive videostrea-
ming visualization on grids. Future Generation 
Computer Systems, 2008, Vol. 24, No. 1, 39–45. 

[14] D. O. Potyondy, P. A. Cundall. A bonded-particle 
model for rock. International Journal of Rock 
Mechanics and Mining Sciences, 2004, Vol. 41, No. 8, 
1329–1364. 

[15] C. H. Rycroft. Voro++: A three-dimensional Voronoi 
cell library in C++. Chaos: An Interdisciplinary 
Journal of Nonlinear Science, 2009, Vol. 19, No. 4, 
041111. 

[16] J. Rojek, E. Onate, C. Labra, H. Kargl. Discrete 
element simulation of rock cutting. International 
Journal of Rock Mechanics and Mining Sciences, 
2011, Vol. 48, No. 6, 996–1010. 

[17] P. Rosenthal, L. Linsenm. Smooth surface extraction 
from unstructured point-based volume data using 
PDEs. IEEE Transactions on Visualization and 
Computer Graphics, 2008, Vol. 14, No. 6, 1531-1546. 

[18] W. Schroeder, K. Martin, B. Lorensen. Visualization 
Toolkit: An Object-Oriented Approach to 3D 
Graphics, 4th Edition. Kitware. Inc., 2006. 

[19] J. R. Shewchuk. Delaunay refinement algorithms for 
triangular mesh generation. Computational Geometry, 
2002, Vol. 22, No. 1–3, 21–74. 

[20] J. H. Walther, I. F. Sbalzarini. Large-scale parallel 
discrete element simulations of granular flow. 
Engineering Computations, 2009, Vol. 26, No. 6, 
688-697. 

[21] H. P. Zhu, Z. Y. Zhou, R. Y. Yang, A. B. Yu. 
Discrete particle simulation of particulate systems: A 
review of major applications and findings. Chemical 
Engineering Science, 2008, Vol. 63, No. 23, 
5728-5770. 

Received October 2012. 

 

 


