
247Information Technology and Control 2021/2/50

Research on Data Currency
Rule and Quality Evaluation

ITC 2/50
Information Technology
and Control
Vol. 50 / No. 2 / 2021
pp. 247-263
DOI 10.5755/j01.itc.50.2.25583

Research on Data Currency Rule and Quality Evaluation

Received 2020/03/28 Accepted after revision 2021/04/26

 http://dx.doi.org/10.5755/j01.itc.50.2.25583

HOW TO CITE: Duan, X., Guo, B., Shen, Y., Shen, Y., Dong, X., Zhang, H. (2021). Research on Data Currency Rule and Quality Evaluation.
Information Technology and Control, 50(2), 247-263. https://doi.org/10.5755/j01.itc.50.2.25583

Corresponding authors: guobing@scu.edu.cn, sheny@cuit.edu.cn

Xuliang Duan
College of Computer Science; Sichuan University; No.24 South Section 1, Yihuan Road, Chengdu 610065, China;
College of Information Engineering; Sichuan Agricultural University; No.46, Xinkang Road, Yaan 625014, China;
phone: +8615008305394; e-mail: duanxuliang@sicau.edu.cn

Bing Guo
College of Computer Science; Sichuan University; No.24 South Section 1, Yihuan Road, Chengdu 610065, China;
phone: +8613980664852; e-mail: guobing@scu.edu.cn

Yan Shen
School of Computer Science; Chengdu University of Information Technology; No.24 Block 1, Xuefu Road,
Chengdu 610225, China; e-mail: sheny@cuit.edu.cn

Yuncheng Shen, Xiangqian Dong, Hong Zhang
College of Computer Science; Sichuan University; No.24 South Section 1, Yihuan Road, Chengdu 610065, China;
emails: {2014323040012, 2014323040006, 2014323040021}@stu.scu.edu.cn

Data currency is a temporal reference of data, it reflects the degree to which the data is current with the world
it models. Currency rule is a formal rule extracted from the data set and reflecting the currency order of the
data tuples, it can be used for both data repairing and currency quality evaluation. Based on the research of data
currency repairing, the basic form of currency rule is extended, and parallel rule extraction and update algori-
thms are proposed to meet the requirement of running on dynamic data sets. Besides, four data currency quali-
ty evaluation models are proposed and verified by experiments. The performance test show that the efficiency
of parallel algorithms is significantly improved, the rules compliance mean(CM2) model based on extended
currency rule has the highest average precision. The extended currency rules not only improve the efficiency
and adaptability, but also provide more valuable features for data quality evaluation.
KEYWORDS: data currency, currency rule, data quality, quality evaluation, parallel algorithm.

mailto:obodovskiy58@gmail.com

Information Technology and Control 2021/2/50248

1. Introduction
Currency is an important feature of data, it is a tempo-
ral reference that reflects the degree to which the data
is current with the world it models. In data mining, data
analysis, and data value-added applications, accurate
data currency determines the reliability of data analy-
sis results such as time series analysis, correlation, and
recommendation. Scholars carried out research on
data quality through direct observation, social inves-
tigation, theoretical derivation, etc., and obtained the
characteristics that have great influence on data avai-
lability: accuracy, completeness, consistency, currency
and entity identity [5]. Data quality is one of the key
factors to determine the success or failure of a corpora-
tion, incorrect or incomplete data will jeopardize a cor-
poration’s ability in decision-making and implemen-
tation [2, 14]. Data quality reflects the availability and
value of the data. Sargent [23] defined data quality as
the ability to make all data meet practical needs, Wang
and Strong [27] proposed the idea of “data quality is
determined by whether these data could be applicable
to the context and be suitable for data consumers.” In
2002, the expert report pointed out that in the field of
business, at least 2% commercial data is obsolete every
month due to changes in customer information [7, 8].
There are a lot of time-disrupted data in our data sets, if
we can‘t identify which one is „latest“, data queries may
return incorrect results, and data analysis may lead to
ambiguous conclusions, followed by data quality de-
gradation and data value reduction.
In the era of big data and artificial intelligence, per-
sonal big data as a valuable asset is growing exponen-
tially. As our various types of data are decentralized
in various platforms and systems, the data quality
problems caused by obsolescence and inaccurate
currency become more and more serious [13, 28].
Personal data is a typical kind of dynamic data. The
data reflecting the status of people‘s work and life is
constantly changing with time, and the changing fea-
ture is also the biggest challenge in the data cleaning
process. In personal data banking mode, data derives
from different systems and platforms. The time attri-
butes of these multi-source heterogeneous data are
often inaccurate, which brings great challenges to
data quality and data value [29]. For some attributes
of the data, different times correspond to different
values or different states, such as a person‘s degree

changes, marital status changes, etc. If the timestamp
is incomplete or inaccurate, the order of the records
cannot be determined which will brings great difficul-
ties in data analysis and value-added application.
Take the following student‘s course selection re-
cords as an example, shown in Table 1, Eve‘s Databa-
se semester is missing, it is possible for us to repair
it according to certain rules. For Alice and Bob, the
following 3 rules „C Programming→Data Structure“,
„C Programming→Database“, „Data Structure→Da-
tabase“ all exist in their course selection sequence.
Therefore, although Eve‘s Database semester is un-
known, but as Eve has chosen a „Data Structure“ in
his second semester, we can infer that the semester of
Eve‘s „Database“ will not be earlier than that of „Data
Structure“ according to Alice and Bob‘s rule „Data
Structure→Database“. Although it is not certain whe-
ther the semester is 3 or 4, we know that it has a high
probability of being greater than 2, so we can determi-
ne the order of the two records of Eve.

Table 1
Student's Course Selection Tuples

tid eid name course semester

t1 S1 Alice C Programming 1

t2 S1 Alice Data Structure 2

t3 S1 Alice Database 4

t4 S2 Bob C Programming 1

t5 S2 Bob Data Structure 2

t6 S2 Bob Database 3

t7 S3 Eve Database NULL

t8 S3 Eve Data Structure 2

This paper extended the basic form of currency rule,
the extended rules can be updated incrementally on
dynamic data sets, and the new added path length
attribute can provide more effective information for
currency quality evaluation. On this basis, parallel
extraction and merging algorithms for currency rules
are proposed, experimental tests show that the par-
allel algorithms are available and effective. Besides,
four data currency quality evaluation models are pro-
posed and verified by experiments.

249Information Technology and Control 2021/2/50

2. Related Works

2.1. Literature Review
There are many reasons for uncertain data, but overall
the factors can be attributed to objective limitations
and subjective intentions. Objective limitations in-
clude environmental impact, accuracy of acquisition
equipment, transmission errors and accidents caused
by missing or inaccurate data; subjective intentions
usually refer to confuse or disrupt the original accu-
rate data for privacy and security reasons. Research
on data repairing mainly focuses on data inconsisten-
cy, inaccuracy, incompleteness, etc. Researchers and
engineers have proposed a series of data repairing
methods for these problems. Since the 1980s, probabi-
listic database related research on deterministic data
has been carried out. This kind of research work intro-
duces uncertainty into the relational data model. The
research field covers model definition, pre-processing
and integration, storage and indexing, query and ana-
lytical and other aspects of basic and applied research
[12, 31]. Early data currency researches mainly focus
on the query problems of uncertain databases, try to
obtain the most accurate results on the dataset mis-
sing or with inaccurate timestamps. The main work
involves the construction of temporal database mo-
dels, the definition of query language, etc. [17, 22].
About the research on data currency repairing, solu-
tions can be roughly divided into two types: seman-
tic-based methods and statistical-based methods.
Semantic-based methods find data errors and fix
them based on domain expert knowledge, or functio-
nal dependencies, conditional dependencies, and ti-
me-dependent dependencies [1, 11]; Statistical-based
approach aims to obtain the most possible correct re-
pair strategy by analysing data laws, such as possible
world models and probabilistic databases [16, 30].
Although the currency of data is facing problems, it
is not hopeless. Around 2011, Fan et al. proposed the
currency-repairing method based on data semantics.
Under the assumption that one entity may have mul-
tiple tuples in datasets, Fan et al. conducted in-depth
research on the fields of model for data currency, re-
asoning about data currency and currency preserving
copy functions, etc., and formalized the related defini-
tion and concepts, and promoted basic research in this
field [9, 10]. On the basis of this work, a series of fruit-

ful researches have promoted the research progress of
data currency-repairing in theory and practice. Fan et
al. [11] inferred the available time information of the
data according to the currency order of the data, de-
termined the latest value of the data according to the
currency rules and constant conditional dependency
function, and solved the inconsistency of different tu-
ple attributes of the same entity to a certain extent.
From 2012 to 2016, Li et al. carried out researches
on data currency and currency evaluation, proposed
a series of solutions to the problems of currency de-
termination and currency repairing [18-20]. They in-
vestigated the methods of currency evaluation with
redundant records and currency constraints, propo-
sed the definition of currency graph, and presented
the methods of evaluating data currency relative to
queries and users using currency graphs [19]; They
also proposed a new class of rules which combining
the quality rules and statistical techniques to impro-
ve data currency, domain knowledge can be directly
expressed by the antecedents and consequents of ru-
les, and the statistical information can be described by
the distribution table of each rule [18, 20]. Ding et al.
improved the currency determination and updating
efficiency by constructing entities query B-Tree and
static-dynamic link lists on the dynamic dataset [3, 4].
The recovery of data timestamps is a research hotspot.
If the data timestamp is missing, it is difficult to per-
form exact repair; while, according to some rules, it
is a feasible strategy to restore the data sequence and
determine the interval range of missing timestamps.
Song et al. proposed a method for data timestamps
repairing using currency constraints [25]. The me-
thod adopts the minimizing modification principle to
make the event meet the currency constraint conditi-
on. On the one hand, it can recover the time range of
the event that missing timestamp, on the other hand,
it can also be used for detecting and repairing the
event that violates the currency constraint. In fact, in
most data analysis and applications, the dependence
on the data sequence relationship is more important
than the precise time. A series of algorithms such as
time series, association [24], recommendation, etc.
are basically based on the „sequence“ but not accura-
cy timestamp for analysis and processing. Therefore,
the repair of the time sequence of missing timestamp
data can satisfy the requirements of „sequence“ of
most analysis applications, and can also determine

Information Technology and Control 2021/2/50250

that the „new and old“ records meet the time-sensiti-
ve query requirements, which is beneficial to the im-
provement of data quality and data value.
Based on the requirements of repairing data currency
order, Duan et al. proposed a data currency rule model
that does not require domain knowledge [6]. The al-
gorithm extracts the currency rules and their support
value by scanning the state changes of an attribute
value of the data set. The currency rules can be used
to repair data that missing currency order, and also
provides feasibility solution for the quality evaluati-
on of data currency. Liang et al. analysed and mined
the students‘ course selection data set based on the
currency rules and decision trees [21]. They evalu-
ated each student‘s course selection data based on the
mean value of the rules’ supports, and found that data
with poor currency quality often correspond to some
abnormal situations of students, which can be used
for abnormal warning in teaching management.

2.2. Data Currency Rule

Currency rules for attribute values. The currency
rules defined in this paper refer to some regularities
of certain attributes of the same entity over different
time periods. Let the relational database schema R =
(EID, A1, ..., An), where EID is the entity identifier, di-
fferent tuples with the same EID correspond to the
same entity. EID can be generated by the entity iden-
tification technology [15, 26]; Ai is the i-th attribute of
the schema R, and its value range is dom(Ai)

21212121)][][(,, ttttEIDtEIDtRtt
iA →∧=∈∀ .

That is, for the tuples t1 and t2 of the same entity in the
relationship R, if t2 is “newer” than t1, the attribute Ai
of the tuple t2 is newer than t1.
Here, we assume that the data has been cleaned and
it is consistent, does not violate functional dependen-
cies and conditional dependencies, that is, there is no
new attribute Aj in t1 than t2, then the following relati-
onship still holds:

21212121)][][(,, ttttEIDtEIDtRtt
iA  →∧=∈∀ .

That is, for two tuples t1 and t2 of the same entity, if
Ai satisfies the currency rule, and the Ai of t2 is newer
than t1, the tuple t2 is newer than t1.

For example, our age increases with time. If two re-
cords of a person have the age attribute, respectively,
23 and 25, then the record with age 25 is obviously
newer. It is possible to use such attribute values that
reflect the records sequence to repair the data. Simi-
larly, some state changes can also reflect the sequence
of records. For example, in a person‘s records at diffe-
rent periods, the status of a degree may be Bachelor,
Master, or Doctor, and the marital status may be un-
married, married and divorced. We can confirm that
for a person, his record with Doctor degree is newer
than the record with Master degree, and record with
Married marital status is newer than that of Unmar-
ried. For states, we cannot directly compare the state
values, but it is feasible to use state transitions to in-
dicate their sequential relationship.
Currency rules for attribute states. On relati-
onship R, all the non-repetitive state values of the
attribute Ai are a finite set, and the currency rules
state diagram are expressed by a directed graph G(V,
E), wherein the vertex set V represents the finite set
of attribute values (states), and the directed edge set
E represents the direction of state transition with
chronological order. For the two tuples t1 and t2 of
the same entity on the relationship R, the values of
the attributes Ai are v1, v2, and v1 and v2 are the sta-
te nodes in the graph G. If t2 is newer than t1, for the
nodes v1 to v2 is reachable and meanwhile v2 to v1 is
unreachable, we call v1→v2 is a state currency rule,
which is expressed as follows:

Based on the requirements of repairing data
currency order, Duan et al. proposed a data
currency rule model that does not require domain
knowledge [6]. The algorithm extracts the
currency rules and their support value by
scanning the state changes of an attribute value of
the data set. The currency rules can be used to
repair data that missing currency order, and also
provides feasibility solution for the quality
evaluation of data currency. Liang et al. analysed
and mined the students' course selection data set
based on the currency rules and decision trees
[21]. They evaluated each student's course
selection data based on the mean value of the
rules’ supports, and found that data with poor
currency quality often correspond to some
abnormal situations of students, which can be
used for abnormal warning in teaching
management.

2.2 Data Currency Rule
Currency rules for attribute values. The currency
rules defined in this paper refer to some
regularities of certain attributes of the same entity
over different time periods. Let the relational
database schema R = (EID, A1, ..., An), where EID is
the entity identifier, different tuples with the same
EID correspond to the same entity. EID can be
generated by the entity identification technology
[15, 26]; Ai is the i-th attribute of the schema R, and
its value range is dom(Ai)

21212121)][][(,, ttttEIDtEIDtRtt
iA →∧=∈∀ .

That is, for the tuples t1 and t2 of the same entity in
the relationship R, if t2 is “newer” than t1, the
attribute Ai of the tuple t2 is newer than t1.

Here, we assume that the data has been cleaned
and it is consistent, does not violate functional
dependencies and conditional dependencies, that
is, there is no new attribute Aj in t1 than t2, then the
following relationship still holds:

21212121)][][(,, ttttEIDtEIDtRtt
iA  →∧=∈∀ .

That is, for two tuples t1 and t2 of the same entity,
if Ai satisfies the currency rule, and the Ai of t2 is
newer than t1, the tuple t2 is newer than t1.

For example, our age increases with time. If two
records of a person have the age attribute,
respectively, 23 and 25, then the record with age
25 is obviously newer. It is possible to use such
attribute values that reflect the records sequence to
repair the data. Similarly, some state changes can
also reflect the sequence of records. For example,
in a person's records at different periods, the
status of a degree may be Bachelor, Master, or

Doctor, and the marital status may be
unmarried, married and divorced. We can
confirm that for a person, his record with
Doctor degree is newer than the record with
Master degree, and record with Married
marital status is newer than that of
Unmarried. For states, we cannot directly
compare the state values, but it is feasible to
use state transitions to indicate their
sequential relationship.

Currency rules for attribute states. On
relationship R, all the non-repetitive state
values of the attribute Ai are a finite set, and
the currency rules state diagram are
expressed by a directed graph G(V, E),
wherein the vertex set V represents the finite
set of attribute values (states), and the
directed edge set E represents the direction of
state transition with chronological order. For
the two tuples t1 and t2 of the same entity on
the relationship R, the values of the attributes
Ai are v1, v2, and v1 and v2 are the state nodes
in the graph G. If t2 is newer than t1, for the
nodes v1 to v2 is reachable and meanwhile v2
to v1 is unreachable, we call v1→v2 is a state
currency rule, which is expressed as follows:

211221

2122

112121

)(
,,][

,][],[][,,

ttvvvv
GvGvvAt

vAtEIDtEIDtRtt

i

i

→→¬∧→
∈∈=

==∈∀

. (1)

Similarly, on a consistent data set, we can
determine:

)(
,,][

,][],[][,,

122121

2122

112121

vvvvtt
GvGvvAt

vAtEIDtEIDtRtt

i

i

→¬∧→→
∈∈=

==∈∀



. (2)

The transition of attribute states can be
represented by state diagrams. Figure 1
shows two sample state transition diagrams.
It should be noted that in the degree state
transition diagram, Bachelor to Master, Master
to Doctor are all irreversible transition, and
even if the intermediate state Master is
ignored, the Bachelor to Doctor transition is
also irreversible. Similar situation exists in
the course election transition diagram. So, we
have the following inference:

A non-binary currency rule can be expressed as
several binary currency rules. If the number of
rule nodes is N, the maximum number of unique
binary rules is:

∑
−

=

−×
=−=

1

1 2
)1()(

N

i

NNiNulesMaxBinaryR . (3)

(1)

Similarly, on a consistent data set, we can determine:

Based on the requirements of repairing data
currency order, Duan et al. proposed a data
currency rule model that does not require domain
knowledge [6]. The algorithm extracts the
currency rules and their support value by
scanning the state changes of an attribute value of
the data set. The currency rules can be used to
repair data that missing currency order, and also
provides feasibility solution for the quality
evaluation of data currency. Liang et al. analysed
and mined the students' course selection data set
based on the currency rules and decision trees
[21]. They evaluated each student's course
selection data based on the mean value of the
rules’ supports, and found that data with poor
currency quality often correspond to some
abnormal situations of students, which can be
used for abnormal warning in teaching
management.

2.2 Data Currency Rule
Currency rules for attribute values. The currency
rules defined in this paper refer to some
regularities of certain attributes of the same entity
over different time periods. Let the relational
database schema R = (EID, A1, ..., An), where EID is
the entity identifier, different tuples with the same
EID correspond to the same entity. EID can be
generated by the entity identification technology
[15, 26]; Ai is the i-th attribute of the schema R, and
its value range is dom(Ai)

21212121)][][(,, ttttEIDtEIDtRtt
iA →∧=∈∀ .

That is, for the tuples t1 and t2 of the same entity in
the relationship R, if t2 is “newer” than t1, the
attribute Ai of the tuple t2 is newer than t1.

Here, we assume that the data has been cleaned
and it is consistent, does not violate functional
dependencies and conditional dependencies, that
is, there is no new attribute Aj in t1 than t2, then the
following relationship still holds:

21212121)][][(,, ttttEIDtEIDtRtt
iA  →∧=∈∀ .

That is, for two tuples t1 and t2 of the same entity,
if Ai satisfies the currency rule, and the Ai of t2 is
newer than t1, the tuple t2 is newer than t1.

For example, our age increases with time. If two
records of a person have the age attribute,
respectively, 23 and 25, then the record with age
25 is obviously newer. It is possible to use such
attribute values that reflect the records sequence to
repair the data. Similarly, some state changes can
also reflect the sequence of records. For example,
in a person's records at different periods, the
status of a degree may be Bachelor, Master, or

Doctor, and the marital status may be
unmarried, married and divorced. We can
confirm that for a person, his record with
Doctor degree is newer than the record with
Master degree, and record with Married
marital status is newer than that of
Unmarried. For states, we cannot directly
compare the state values, but it is feasible to
use state transitions to indicate their
sequential relationship.

Currency rules for attribute states. On
relationship R, all the non-repetitive state
values of the attribute Ai are a finite set, and
the currency rules state diagram are
expressed by a directed graph G(V, E),
wherein the vertex set V represents the finite
set of attribute values (states), and the
directed edge set E represents the direction of
state transition with chronological order. For
the two tuples t1 and t2 of the same entity on
the relationship R, the values of the attributes
Ai are v1, v2, and v1 and v2 are the state nodes
in the graph G. If t2 is newer than t1, for the
nodes v1 to v2 is reachable and meanwhile v2
to v1 is unreachable, we call v1→v2 is a state
currency rule, which is expressed as follows:

211221

2122

112121

)(
,,][

,][],[][,,

ttvvvv
GvGvvAt

vAtEIDtEIDtRtt

i

i

→→¬∧→
∈∈=

==∈∀

. (1)

Similarly, on a consistent data set, we can
determine:

)(
,,][

,][],[][,,

122121

2122

112121

vvvvtt
GvGvvAt

vAtEIDtEIDtRtt

i

i

→¬∧→→
∈∈=

==∈∀



. (2)

The transition of attribute states can be
represented by state diagrams. Figure 1
shows two sample state transition diagrams.
It should be noted that in the degree state
transition diagram, Bachelor to Master, Master
to Doctor are all irreversible transition, and
even if the intermediate state Master is
ignored, the Bachelor to Doctor transition is
also irreversible. Similar situation exists in
the course election transition diagram. So, we
have the following inference:

A non-binary currency rule can be expressed as
several binary currency rules. If the number of
rule nodes is N, the maximum number of unique
binary rules is:

∑
−

=

−×
=−=

1

1 2
)1()(

N

i

NNiNulesMaxBinaryR . (3)

(2)

The transition of attribute states can be represented
by state diagrams. Figure 1 shows two sample state
transition diagrams. It should be noted that in the
degree state transition diagram, Bachelor to Master,
Master to Doctor are all irreversible transition, and
even if the intermediate state Master is ignored, the
Bachelor to Doctor transition is also irreversible. Si-

251Information Technology and Control 2021/2/50

milar situation exists in the course election transition
diagram. So, we have the following inference:
A non-binary currency rule can be expressed as several
binary currency rules. If the number of rule nodes is N,
the maximum number of unique binary rules is:

∑
−

=

−×
=−=

1

1 2
)1()(

N

i

NNiNulesMaxBinaryR . (3)

For example, „a→b→c→d“ can be expressed as six
unique binary currency rules: „a→b“, „a→c“, „a→d“,
„b→c“, „b→d“, „c→d“.

Figure 1
Degree and course selection state transition diagrams

(a) One’s degree states at different periods

(b) Course selection states of different semesters

For example, "a→b→c→d" can be expressed as six
unique binary currency rules: "a→b", "a→c", "a→
d", "b→c", "b→d", "c→d".
Figure 1

Degree and course selection state transition diagrams

Bachelor Master Doctor

(a) One's degree states at different periods

Introduction to
Computer Science

C Programming

Discrete
 Mathematics

Data
Structure

(b) Course selection states of different semesters

Support of the currency rule. Support refers to the
proportion of entities that satisfying a certain rule.
The support is defined as follows:

)(rf
|V(r)||O(r)|

|O(r)|Sr ×
+

= , (4)

where Sr represents the support of a rule r, O(r)
represents the set of entities satisfying the rule r,
|O(r)| represents the number of entities in the set,
and V(r) represents the set of entities that violate
the rule, |V(r)| is the number of entities that
violate the rule r.

f(r) is an intensity function that could be
intuitively described as: the more repetitions of a
rule, the higher of the value. It should be noted
that, refer to the definition of rule support, if there
is one and only one directed edge from a certain
state node v1 to v2, but v2 to v1 are unreachable, the
support of the rule v1→v2 is 100%, but this rule
may be a special case with low repeatability, poor
representation, and little value. The intensity
function should be defined according to the actual
features of the data. For the definition of the
intensity function f(r) in this paper, see the
following Section 3.1.

3 Parallel Currency Rule
Algorithms
3.1 Extending for the Basic Currency Rule
Duan et al. proposed the basic form of the
currency rule is R={rule, support}, and the rules are
extracted by scanning all the records of a data set
[6]. After extraction, if new records are added to

the data set, it is necessary to scan the entire
new data set to update previous currency
rule set. Moreover, the currency rules
updating can only be performed on a single
node, the cost is high for dynamic, large-scale
data set. In order to achieve the
parallelization of the algorithms, we
improved and extended the form of basic
currency rule. The extended currency rule
extraction and updating algorithms can not
only run on multiple nodes in parallel, but
also incrementally update the currency rule
set on a dynamic data set.

The extended currency rule retains more
information in the form of:

R = {rule, obey, violate, length}.

The obey is the number of entities that satisfy
the rule in the data set. The violate indicates
the number of entities that violate the rule in
the data set. The length represents the
average number of edges between the start
and the end state in the rule. After expansion,
the support of a rule can be dynamically
calculated when needed by obey and violation
values:

)(rf
violateobey

obeySr ×
+

= . (5)

In this paper, we take the following intensity
function f(r):

||
||)(

violateobeyc
violateobeyrf
−+

−
= , (6)

where c is a constant, which can be regarded
as a threshold value for filtering low-
frequency rules. For example, we take c = 10
in the experiment, when the difference
between obedience and violation is 10, the
intensity value is 0.5, the larger the
difference, the closer the intensity value is to
1.0.

The expanded currency rules have the
following important properties:

Property 1: The expanded rules are
reversible. The inverse form of a rule { a→b,
obey, violate, length } can be expressed as { b→
a, violate, obey, length }.

Property 2: The expanded rules are additive.
The two or more same rules extracted from
different data sets can be added into one rule.
For example, the following two rules R1={ a
→b, o1, v1, len1 } and R2={ a→b, o2, v2, len2 } can
be merged into:

For example, "a→b→c→d" can be expressed as six
unique binary currency rules: "a→b", "a→c", "a→
d", "b→c", "b→d", "c→d".
Figure 1

Degree and course selection state transition diagrams

Bachelor Master Doctor

(a) One's degree states at different periods

Introduction to
Computer Science

C Programming

Discrete
 Mathematics

Data
Structure

(b) Course selection states of different semesters

Support of the currency rule. Support refers to the
proportion of entities that satisfying a certain rule.
The support is defined as follows:

)(rf
|V(r)||O(r)|

|O(r)|Sr ×
+

= , (4)

where Sr represents the support of a rule r, O(r)
represents the set of entities satisfying the rule r,
|O(r)| represents the number of entities in the set,
and V(r) represents the set of entities that violate
the rule, |V(r)| is the number of entities that
violate the rule r.

f(r) is an intensity function that could be
intuitively described as: the more repetitions of a
rule, the higher of the value. It should be noted
that, refer to the definition of rule support, if there
is one and only one directed edge from a certain
state node v1 to v2, but v2 to v1 are unreachable, the
support of the rule v1→v2 is 100%, but this rule
may be a special case with low repeatability, poor
representation, and little value. The intensity
function should be defined according to the actual
features of the data. For the definition of the
intensity function f(r) in this paper, see the
following Section 3.1.

3 Parallel Currency Rule
Algorithms
3.1 Extending for the Basic Currency Rule
Duan et al. proposed the basic form of the
currency rule is R={rule, support}, and the rules are
extracted by scanning all the records of a data set
[6]. After extraction, if new records are added to

the data set, it is necessary to scan the entire
new data set to update previous currency
rule set. Moreover, the currency rules
updating can only be performed on a single
node, the cost is high for dynamic, large-scale
data set. In order to achieve the
parallelization of the algorithms, we
improved and extended the form of basic
currency rule. The extended currency rule
extraction and updating algorithms can not
only run on multiple nodes in parallel, but
also incrementally update the currency rule
set on a dynamic data set.

The extended currency rule retains more
information in the form of:

R = {rule, obey, violate, length}.

The obey is the number of entities that satisfy
the rule in the data set. The violate indicates
the number of entities that violate the rule in
the data set. The length represents the
average number of edges between the start
and the end state in the rule. After expansion,
the support of a rule can be dynamically
calculated when needed by obey and violation
values:

)(rf
violateobey

obeySr ×
+

= . (5)

In this paper, we take the following intensity
function f(r):

||
||)(

violateobeyc
violateobeyrf
−+

−
= , (6)

where c is a constant, which can be regarded
as a threshold value for filtering low-
frequency rules. For example, we take c = 10
in the experiment, when the difference
between obedience and violation is 10, the
intensity value is 0.5, the larger the
difference, the closer the intensity value is to
1.0.

The expanded currency rules have the
following important properties:

Property 1: The expanded rules are
reversible. The inverse form of a rule { a→b,
obey, violate, length } can be expressed as { b→
a, violate, obey, length }.

Property 2: The expanded rules are additive.
The two or more same rules extracted from
different data sets can be added into one rule.
For example, the following two rules R1={ a
→b, o1, v1, len1 } and R2={ a→b, o2, v2, len2 } can
be merged into:

Support of the currency rule. Support refers to the
proportion of entities that satisfying a certain rule.
The support is defined as follows:

)(rf
|V(r)||O(r)|

|O(r)|Sr ×
+

= , (4)

where Sr represents the support of a rule r, O(r) repre-
sents the set of entities satisfying the rule r, |O(r)| re-
presents the number of entities in the set, and V(r) re-
presents the set of entities that violate the rule, |V(r)|
is the number of entities that violate the rule r.
f(r) is an intensity function that could be intuitively
described as: the more repetitions of a rule, the higher
of the value. It should be noted that, refer to the de-

finition of rule support, if there is one and only one
directed edge from a certain state node v1 to v2, but v2
to v1 are unreachable, the support of the rule v1→v2 is
100%, but this rule may be a special case with low re-
peatability, poor representation, and little value. The
intensity function should be defined according to the
actual features of the data. For the definition of the
intensity function f(r) in this paper, see the following
Section 3.1.

3. Parallel Currency Rule Algorithms
3.1. Extending for the Basic Currency Rule
Duan et al. proposed the basic form of the currency
rule is R={rule, support}, and the rules are extrac-
ted by scanning all the records of a data set [6]. After
extraction, if new records are added to the data set, it
is necessary to scan the entire new data set to upda-
te previous currency rule set. Moreover, the curren-
cy rules updating can only be performed on a single
node, the cost is high for dynamic, large-scale data
set. In order to achieve the parallelization of the algo-
rithms, we improved and extended the form of basic
currency rule. The extended currency rule extraction
and updating algorithms can not only run on multiple
nodes in parallel, but also incrementally update the
currency rule set on a dynamic data set.
The extended currency rule retains more information
in the form of:
R = {rule, obey, violate, length}.
The obey is the number of entities that satisfy the rule
in the data set. The violate indicates the number of en-
tities that violate the rule in the data set. The length
represents the average number of edges between the
start and the end state in the rule. After expansion, the
support of a rule can be dynamically calculated when
needed by obey and violation values:

)(rf
violateobey

obeySr ×
+

= . (5)

In this paper, we take the following intensity function
f(r):

||
||)(

violateobeyc
violateobeyrf
−+

−
= , (6)

Information Technology and Control 2021/2/50252

where c is a constant, which can be regarded as a
threshold value for filtering low-frequency rules. For
example, we take c = 10 in the experiment, when the
difference between obedience and violation is 10, the
intensity value is 0.5, the larger the difference, the clo-
ser the intensity value is to 1.0.
The expanded currency rules have the following im-
portant properties:
Property 1: The expanded rules are reversible. The
inverse form of a rule { a→b, obey, violate, length } can
be expressed as { b→a, violate, obey, length }.
Property 2: The expanded rules are additive. The
two or more same rules extracted from different data
sets can be added into one rule. For example, the fol-
lowing two rules R1={ a→b, o1, v1, len1 } and R2={ a→b,
o2, v2, len2 } can be merged into:

R={ a→b, o1 + o2, v1 + v2, len }

2211

222111)()(
vovo

lenvolenvolen
+++

×++×+
= (7)

The two important properties of rule reversibility and
additivity are important foundations for parallelizati-
on of related algorithms.

3.2. Currency Rule Extraction Algorithm
Currency rule extraction algorithm is shown in Algo-
rithm 1. The input data set consists of records from
multiple entities, each entity has multiple records,
and each record tuple has an order label attribute. For
example, the above Table 1 contains 8 tuples of 3 enti-
ties (3 students), and the semester can be regarded as
the order label. The input data set should be pre-pro-
cessed, cleaned and consistent data.
In Algorithm 1, the rule‘ in line 6 is the inverse rule of
the current currency rule. Lines 7 to 13 respectively
update the rule and its inverse rule in rule set. The
rule update process in Algorithm 1 is shown in Algo-
rithm 2. This algorithm updates the existing rule in a
currency rule set according to the attribute values of
the new rule.
Example  1. Currency Rule Extraction. The
calculation process is illustrated by the following
example. Suppose there are now three entities, e1, e2,
e3, and each entity has multiple records. An attribute
of the records of the entities e1, e2 all have a sequence
„a→b→c→d“, entity e3 have a sequence „a→c→b→d“.

Algorithm 1. Currency Rule Extraction
Algorithm

Input: A data set containing multiple entities for
rule extraction;
Output: Currency rule set CRS of the attribute Ak

1: for each e∈E do
2: T← select all tuples of e from dataset order by

attribute Aorder ascending
 N← tuples count |T|

3: for each i from 1 to N-1 do
4: for each j from i+1 to N do
5: rule←“Ti[Ak]→Tj[Ak]“, obey←1, violate←0,

length←Tj[Aorder]-Ti[Aorder]
6: rule‘←“Tj[Ak]→Ti[Ak]“, obey‘←0, violate‘←1,

length‘←Ti[Aorder]-Tj[Aorder]
7: if CRS contains rule then
8: UpdateRule(rule, obey, violate, length)
9: else if CRS contains inversed rule‘ then
10: UpdateRule(rule‘, obey‘, violate‘, length’)
11: else AddRule(rule, obey, violate, length)
12: end if
13: end for
14: end for
15: end for
16: return CRS

Algorithm 2. Currency Rules Update Algorithm

Input: Currency rule set CRS, and rule in the form of
{rule, obey, violate, length}.
Output: The updated currency rule set CRS
1: if CRS contains rule then
2: {rule, ro, rv, rl}← select the currency rule from

CRS where rule name is rule
3: rl ← [(ro + rv)*rl + (obey + violate)*length]/(ro +

rv + obey + violate)
4: ro ← ro+obey
5: rv ← rv+violate
6: update rule with new values {rule, ro, rv, rl}
7: end if
8: return CRS

253Information Technology and Control 2021/2/50

According to Algorithm 1, the currency rules of entity
e1 are first extracted. All records of entity e1 are sor-
ted in ascending order of time labels, and the state
transition rules of a certain attribute are extracted.
The currency rules extracted from the state sequen-
ce „a→b→c→d“ are listed in Table 2. The right half
of the table is the corresponding inverse rules, which
can be deduced from the positive rules, and generally,
it is not necessary to store the inverse rules.

Table 3
Currency Rules Extracted from All Records of Entity e1 and e2

R o v len Rˇ oˇ vˇ lenˇ

a→b 2 0 1.00 b→a 0 2 1.00

a→c 2 0 2.00 c→a 0 2 2.00

a→d 2 0 3.00 d→a 0 2 3.00

b→c 2 0 1.00 c→b 0 2 1.00

b→d 2 0 2.00 d→b 0 2 2.00

c→d 2 0 1.00 d→c 0 2 1.00

Table 4
Currency Rules Extracted from All Records of 3 Entities

R o v len R’ o’ v’ len’

a→b 3 0 1.33 b→a 0 3 1.33

a→c 3 0 1.67 c→a 0 3 1.67

a→d 3 0 3.00 d→a 0 3 3.00

b→c 2 1 1.00 c→b 1 2 1.00

b→d 3 0 1.67 d→b 0 3 1.67

c→d 3 0 1.33 d→c 0 3 1.33

Table 2
Currency Rules Extracted from All Records of Entity e1

R o v len Rˇ oˇ vˇ lenˇ

a→b 1 0 1.00 b→a 0 1 1.00

a→c 1 0 2.00 c→a 0 1 2.00

a→d 1 0 3.00 d→a 0 1 3.00

b→c 1 0 1.00 c→b 0 1 1.00

b→d 1 0 2.00 d→b 0 1 2.00

c→d 1 0 1.00 d→c 0 1 1.00

Next, the records of the entity e2 are scanned to extract
and update the rules. According to the principle of ad-
ditivity and Algorithm 2, the updated currency rules
are shown in Table 3.

Finally, scan all records of entity e3 and update the
currency rules. The currency rules extracted from all
records of the three entities e1, e2, e3 are shown in Ta-
ble 4. It should be noted that the new rule „c→b“ does
not exist in the rule set, but its inverse rule „b→c“
exists, according to the principle of reversibility of the
rule, we can update the rule „b→c“ instead.

3.3. Rule Sets Merging Algorithm
The currency rule extraction algorithm can run in pa-
rallel. A possible parallel solution is to divide a large
data set into multiple small ones and distribute them
on different nodes, each node independently runs
currency rule extraction algorithm, finally, the Rule
Sets Merging Algorithm merges these rule sets extrac-
ted from small data sets into a complete currency rule
set. The merge algorithm solves the problem of paral-
lel rule extraction, and it also supports incrementally
updating the rule set on dynamic increasing data. Al-
gorithm 3 shows the merging process:

Algorithm 3. Rule Sets Merging Algorithm
Input: Two Currency Rule Sets, RuleSet1 and RuleSet2

Output: The merged RuleSet1

1: for each rule in Ruleset2 do
2: if RuleSet1 contains rule then

 Formalize the rule into {rule, obey, violate, length}
3: UpdateRule(rule, obey, violate, length) for RuleSet1

4: else if RuleSet1 contains inverse rule rule‘ then
5: UpdateRule(rule‘, violate, obey , length) for RuleSet1

6: else AddRule(rule, obey, violate, length) to RuleSet1

7: end if
8: end for
9: return RuleSet1

Example 2. Incremental Update of Currency Rules.
The algorithm supports incremental updating of cur-
rency rules on dynamic data sets. In Example 1, the
currency rules have been extracted, and the obey, vio-

Information Technology and Control 2021/2/50254

late, length values of each rule have been processed.
Assuming that some new tuples are added to the ori-
ginal data set, there is no need to scan the entire set,
the rule set only needs to be incrementally updated.
Assuming that the currency rule set extracted from
the new added tuples are {{a→e, 3, 0, 2}, {a→b, 5, 2, 2},
{d→c, 10, 1, 2}}. For each rule in the new rule set, mer-
ge it into the existing rule set according to the process
described in Algorithm 3, for this example, three ru-
les “a→e”, “a→b”, “d→c” need to be added or updated.
The merged rule set are shown in Table 5.

Table 5
The Merged Two Rule Sets

R o v len R’ o’ v’ len’

a→b 8 2 1.80 b→a 2 8 1.80

a→c 3 0 1.67 c→a 0 3 1.67

a→d 3 0 3.00 d→a 0 3 3.00

b→c 2 1 1.00 c→b 1 2 1.00

b→d 3 0 1.67 d→b 0 3 1.67

c→d 4 10 1.86 d→c 10 4 1.86

a→e 3 0 2 e→a 0 3 2

When merging rule sets, two strategies can be used.
The first strategy is to merge the 2, 3, 4, ..., n rule set
into the first set. After the last set is merged, the first
set is a complete rule set. This strategy can‘t be exe-
cuted in parallel, and the time complexity is O(n-1);
The second strategy, rule sets merging can be run in
parallel on different nodes and finally be merged into
a complete rule set, the time complexity is O(log(n)).
The two strategies diagrams are as shown in Figure 2.

4. Models for Data Currency Quality
Evaluation
The currency quality evaluation refers to a quantitati-
ve evaluation of the degree to which the state transiti-
on of an attribute of all tuples of an entity is consistent
with the currency rules. If the quality of each entity in
a data set is high, the currency quality of the data set is
also high. To evaluate the currency quality of an entity
e, first query all the tuples of e from the data set, order
the tuples by order label ascending, and then extract
all the currency rules from the sorted tuples. Finally,
use a specific model to evaluate the consistency of the
extracted rules with the currency rule set.
A sample currency rule set are shown in Table 6. The
rules are all from the above Table 5 and we calculated
the intensity and support of each rule according to the
relevant currency rule definition. For demonstration
purposes, the constant threshold in intensity functi-
on f(r) is set to c = 1.0.
Valid Rule. Here, we consider a rule with support >
0.5 as a valid rule. On the one hand, the number of
entities obeying the rule must be greater than the
number of violations, on the other hand, the rule must
appear more than a certain frequency. Of course, it
can also be determined that a rule with a support> 0.6
is the valid rule.
Consistent Rule. If the current rule exists in the rule
set and it is a valid rule, we consider the current rule
to be a consistent rule; if the inverse rule of the cur-
rent rule exists in the rule set and it is a valid rule, we
consider the current rule to be an inconsistent rule.
For example, “a→b” is a consistent rule, “b→a” is
an inconsistent rule; “d→c” is a consistent rule and
“c→d” is an inconsistent rule.

Figure 2
Two rule sets merging strategies

(a) Non-parallel merging

(b) Parallel merging

reversibility of the rule, we can update the rule "b
→c" instead.
Table 4

Currency Rules Extracted from All Records of 3 Entities
R o v len R' o’ v’ len’
a→b 3 0 1.33 b→a 0 3 1.33
a→c 3 0 1.67 c→a 0 3 1.67
a→d 3 0 3.00 d→a 0 3 3.00
b→→c 2 1 1.00 c→→b 1 2 1.00
b→d 3 0 1.67 d→b 0 3 1.67
c→d 3 0 1.33 d→c 0 3 1.33

3.3 Rule Sets Merging Algorithm
The currency rule extraction algorithm can run in
parallel. A possible parallel solution is to divide a
large data set into multiple small ones and
distribute them on different nodes, each node
independently runs currency rule extraction
algorithm, finally, the Rule Sets Merging Algorithm
merges these rule sets extracted from small data
sets into a complete currency rule set. The merge
algorithm solves the problem of parallel rule
extraction, and it also supports incrementally
updating the rule set on dynamic increasing data.
Algorithm 3 shows the merging process:

Algorithm 3 Rule Sets Merging Algorithm
Input: Two Currency Rule Sets, RuleSet1 and RuleSet2
Output: The merged RuleSet1
1: for each rule in Ruleset2 do
2: if RuleSet1 contains rule then
 Formalize the rule into {rule, obey, violate,

length}
3: UpdateRule(rule, obey, violate, length) for

RuleSet1
4: else if RuleSet1 contains inverse rule rule' then
5: UpdateRule(rule', violate, obey , length) for

RuleSet1
6: else AddRule(rule, obey, violate, length) to

RuleSet1
7: end if
8: end for
9: return RuleSet1

Example 2 Incremental Update of Currency Rules.
The algorithm supports incremental updating of
currency rules on dynamic data sets. In Example 1,
the currency rules have been extracted, and the
obey, violate, length values of each rule have been
processed. Assuming that some new tuples are
added to the original data set, there is no need to
scan the entire set, the rule set only needs to be
incrementally updated. Assuming that the
currency rule set extracted from the new added
tuples are {{a→e, 3, 0, 2}, {a→b, 5, 2, 2}, {d→c, 10, 1,
2}}. For each rule in the new rule set, merge it into
the existing rule set according to the process
described in Algorithm 3, for this example, three
rules “a→e”, “a→b”, “d→c” need to be added or

updated. The merged rule set are shown in
Table 5.
Table 5

The Merged Two Rule Sets
R o v len R' o’ v’ len’
a→→b 8 2 1.80 b→→a 2 8 1.80
a→c 3 0 1.67 c→a 0 3 1.67
a→d 3 0 3.00 d→a 0 3 3.00
b→c 2 1 1.00 c→b 1 2 1.00
b→d 3 0 1.67 d→b 0 3 1.67
c→→d 4 10 1.86 d→→c 10 4 1.86
a→→e 3 0 2 e→→a 0 3 2

When merging rule sets, two strategies can
be used. The first strategy is to merge the 2, 3,
4, ..., n rule set into the first set. After the last
set is merged, the first set is a complete rule
set. This strategy can't be executed in parallel,
and the time complexity is O(n-1); The
second strategy, rule sets merging can be run
in parallel on different nodes and finally be
merged into a complete rule set, the time
complexity is O(log(n)). The two strategies
diagrams are as shown in Figure 2.
Figure 2

Two rule sets merging strategies

(a) Non-parallel merging

(b) Parallel merging

4 Models for Data Currency
Quality Evaluation
The currency quality evaluation refers to a
quantitative evaluation of the degree to
which the state transition of an attribute of all
tuples of an entity is consistent with the
currency rules. If the quality of each entity in
a data set is high, the currency quality of the
data set is also high. To evaluate the currency
quality of an entity e, first query all the tuples
of e from the data set, order the tuples by
order label ascending, and then extract all the

reversibility of the rule, we can update the rule "b
→c" instead.
Table 4

Currency Rules Extracted from All Records of 3 Entities
R o v len R' o’ v’ len’
a→b 3 0 1.33 b→a 0 3 1.33
a→c 3 0 1.67 c→a 0 3 1.67
a→d 3 0 3.00 d→a 0 3 3.00
b→→c 2 1 1.00 c→→b 1 2 1.00
b→d 3 0 1.67 d→b 0 3 1.67
c→d 3 0 1.33 d→c 0 3 1.33

3.3 Rule Sets Merging Algorithm
The currency rule extraction algorithm can run in
parallel. A possible parallel solution is to divide a
large data set into multiple small ones and
distribute them on different nodes, each node
independently runs currency rule extraction
algorithm, finally, the Rule Sets Merging Algorithm
merges these rule sets extracted from small data
sets into a complete currency rule set. The merge
algorithm solves the problem of parallel rule
extraction, and it also supports incrementally
updating the rule set on dynamic increasing data.
Algorithm 3 shows the merging process:

Algorithm 3 Rule Sets Merging Algorithm
Input: Two Currency Rule Sets, RuleSet1 and RuleSet2
Output: The merged RuleSet1
1: for each rule in Ruleset2 do
2: if RuleSet1 contains rule then
 Formalize the rule into {rule, obey, violate,

length}
3: UpdateRule(rule, obey, violate, length) for

RuleSet1
4: else if RuleSet1 contains inverse rule rule' then
5: UpdateRule(rule', violate, obey , length) for

RuleSet1
6: else AddRule(rule, obey, violate, length) to

RuleSet1
7: end if
8: end for
9: return RuleSet1

Example 2 Incremental Update of Currency Rules.
The algorithm supports incremental updating of
currency rules on dynamic data sets. In Example 1,
the currency rules have been extracted, and the
obey, violate, length values of each rule have been
processed. Assuming that some new tuples are
added to the original data set, there is no need to
scan the entire set, the rule set only needs to be
incrementally updated. Assuming that the
currency rule set extracted from the new added
tuples are {{a→e, 3, 0, 2}, {a→b, 5, 2, 2}, {d→c, 10, 1,
2}}. For each rule in the new rule set, merge it into
the existing rule set according to the process
described in Algorithm 3, for this example, three
rules “a→e”, “a→b”, “d→c” need to be added or

updated. The merged rule set are shown in
Table 5.
Table 5

The Merged Two Rule Sets
R o v len R' o’ v’ len’
a→→b 8 2 1.80 b→→a 2 8 1.80
a→c 3 0 1.67 c→a 0 3 1.67
a→d 3 0 3.00 d→a 0 3 3.00
b→c 2 1 1.00 c→b 1 2 1.00
b→d 3 0 1.67 d→b 0 3 1.67
c→→d 4 10 1.86 d→→c 10 4 1.86
a→→e 3 0 2 e→→a 0 3 2

When merging rule sets, two strategies can
be used. The first strategy is to merge the 2, 3,
4, ..., n rule set into the first set. After the last
set is merged, the first set is a complete rule
set. This strategy can't be executed in parallel,
and the time complexity is O(n-1); The
second strategy, rule sets merging can be run
in parallel on different nodes and finally be
merged into a complete rule set, the time
complexity is O(log(n)). The two strategies
diagrams are as shown in Figure 2.
Figure 2

Two rule sets merging strategies

(a) Non-parallel merging

(b) Parallel merging

4 Models for Data Currency
Quality Evaluation
The currency quality evaluation refers to a
quantitative evaluation of the degree to
which the state transition of an attribute of all
tuples of an entity is consistent with the
currency rules. If the quality of each entity in
a data set is high, the currency quality of the
data set is also high. To evaluate the currency
quality of an entity e, first query all the tuples
of e from the data set, order the tuples by
order label ascending, and then extract all the

255Information Technology and Control 2021/2/50

Table 6
A Sample Rule Sets

R o v intensity support len

a→b 8 2 0.86 0.69 1.80

a→c 3 0 0.75 0.75 1.67

a→d 3 0 0.75 0.75 3.00

b→c 2 1 0.5 0.33 1.00

b→d 3 0 0.75 0.75 1.67

c→d 4 10 0.86 0.24 1.86

a→e 3 0 0.75 0.75 2.00

R’ o’ v’ intensity’ support’ len’

b→a 2 8 0.86 0.17 1.80

c→a 0 3 0.75 0 1.67

d→a 0 3 0.75 0 3.00

c→b 1 2 0.50 0.17 1.00

d→b 0 3 0.75 0 1.67

d→c 10 4 0.86 0.61 1.86

e→a 0 3 0.75 0 2.00

In this paper, we construct four quantitative evaluati-
on models, analyse and discuss the evaluation effect
of each model. Suppose there are now two entities e5,
e6 need to be evaluated, for a specific attribute, the sta-
te transition sequences are separately “c→b→d” and
“a→b→d”, and the extracted rules are respectively
e5{c→b, c→d, b→d} and e6{a→b, a→d, b→d}. In the
following, the definition of the evaluation models will
be explained with intuitive examples.

4.1. Consistent Rules Ratio
Consistent Rules Ratio (CR). Consistent rules ra-
tio is the degree to which all the rules extracted from
all records of an entity e are consistent with the valid
rules in currency rule set. The larger the ratio of the
number of consistent rules, the better the entity‘s
data currency quality. The CR model is defined as:

currency rules from the sorted tuples. Finally, use
a specific model to evaluate the consistency of the
extracted rules with the currency rule set.

A sample currency rule set are shown in Table 6.
The rules are all from the above Table 5 and we
calculated the intensity and support of each rule
according to the relevant currency rule definition.
For demonstration purposes, the constant
threshold in intensity function f(r) is set to c = 1.0.
Table 6

A Sample Rule Sets
R o v intensity support len
a→→b 8 2 0.86 0.69 1.80
a→→c 3 0 0.75 0.75 1.67
a→→d 3 0 0.75 0.75 3.00
b→→c 2 1 0.5 0.33 1.00
b→→d 3 0 0.75 0.75 1.67
c→d 4 10 0.86 0.24 1.86
a→→e 3 0 0.75 0.75 2.00
R' o’ v’ intensity' support’ len’
b→a 2 8 0.86 0.17 1.80
c→a 0 3 0.75 0 1.67
d→a 0 3 0.75 0 3.00
c→b 1 2 0.50 0.17 1.00
d→b 0 3 0.75 0 1.67
d→→c 10 4 0.86 0.61 1.86
e→a 0 3 0.75 0 2.00

Valid Rule. Here, we consider a rule with support
> 0.5 as a valid rule. On the one hand, the number
of entities obeying the rule must be greater than
the number of violations, on the other hand, the
rule must appear more than a certain frequency.
Of course, it can also be determined that a rule
with a support> 0.6 is the valid rule.

Consistent Rule. If the current rule exists in the
rule set and it is a valid rule, we consider the
current rule to be a consistent rule; if the inverse
rule of the current rule exists in the rule set and it
is a valid rule, we consider the current rule to be
an inconsistent rule. For example, “a→b” is a
consistent rule, “b→a” is an inconsistent rule; “d→
c” is a consistent rule and “c→d” is an inconsistent
rule.

In this paper, we construct four quantitative
evaluation models, analyse and discuss the
evaluation effect of each model. Suppose there are
now two entities e5, e6 need to be evaluated, for a
specific attribute, the state transition sequences are
separately “c→b→d” and “a→b→d”, and the
extracted rules are respectively e5{c→b, c→d, b→
d} and e6{a→b, a→d, b→d}. In the following, the
definition of the evaluation models will be
explained with intuitive examples.

4.1 Consistent Rules Ratio

Consistent rules Ratio (CR). Consistent rules
ratio is the degree to which all the rules
extracted from all records of an entity e are
consistent with the valid rules in currency
rule set. The larger the ratio of the number of
consistent rules, the better the entity's data
currency quality. The CR model is defined as:

||||
||

ntRulesInconsisteRulesConsistent
RulesConsistentCR

+
=

where the |ConsistentRules| and
|InconsistentRules| represent the number of
consistent rules and the number of
inconsistent rules, respectively.

Take the entities e5{c→b, c→d, b→d} and e6{a
→ b, a→d, b→d} as an example, for e5,
support(c→b)=0.17, support(c→d)=0.24, both
“c→b”, “c→d” are not valid rule, only rule “b
→d” with support(b→d)=0.75 is a valid rule,
so CR(e5)=0.33. For entity e6, “a→b”, “a→d”,
“b→d” are all valid, CR(e6)=1.00. Therefore, it
can be considered that the rules from records
of entity e6 are more consistent with the
existing rules, and the currency quality of the
entity e6 is better than e5.

4.2 Rules Support Mean
Rules Support Mean (SM). Suppose n rules
are extracted from all records of an entity e, si
is the support value of rule i, use the mean of
rules’ support as a model to evaluate the
currency quality of entity e. The larger the
SM value, the better the currency quality of
the data. The support mean is defined as
follows:

n
flags

SM
n

i ii∑=
×

= 1 , (9)




−

=
ntRuleInconsiste

RuleConsistent
flag

,1
,1

. (10)

In SM model, flag is used to indicate whether
the current rule is a consistent rule. If it is, the
flag is 1, if not, it is -1; If the current rule and
its inverse rule are both not valid rule in the
rule set, the flag and support value are both 0.

Take the above two entities e5 and e6 as
examples, for the three rules of entity e5, only
“b→d” is a consistent rule, and “c→d” is a
consistent rule, therefor, SM(e5)=(0+0.75-
0.61)/3=0.05; Three rules of entity e6 are all
consistent rules,
SM(e6)=(0.69+0.75+0.75)/3=0.73, so it can be
considered that the currency quality of the
entity e6 is better than e5.

, (8)

where the |ConsistentRules| and |InconsistentRu-
les| represent the number of consistent rules and the
number of inconsistent rules, respectively.

Take the entities e5{c→b, c→d, b→d} and e6{a→b,
a→d, b→d} as an example, for e5, support(c→b)=0.17,
support(c→d)=0.24, both “c→b”, “c→d” are not valid
rule, only rule “b→d” with support(b→d)=0.75 is a va-
lid rule, so CR(e5)=0.33. For entity e6, “a→b”, “a→d”,
“b→d” are all valid, CR(e6)=1.00. Therefore, it can be
considered that the rules from records of entity e6 are
more consistent with the existing rules, and the cur-
rency quality of the entity e6 is better than e5.

4.2. Rules Support Mean
Rules Support Mean (SM). Suppose n rules are
extracted from all records of an entity e, si is the
support value of rule i, use the mean of rules’ support
as a model to evaluate the currency quality of entity e.
The larger the SM value, the better the currency quali-
ty of the data. The support mean is defined as follows:

currency rules from the sorted tuples. Finally, use
a specific model to evaluate the consistency of the
extracted rules with the currency rule set.

A sample currency rule set are shown in Table 6.
The rules are all from the above Table 5 and we
calculated the intensity and support of each rule
according to the relevant currency rule definition.
For demonstration purposes, the constant
threshold in intensity function f(r) is set to c = 1.0.
Table 6

A Sample Rule Sets
R o v intensity support len
a→→b 8 2 0.86 0.69 1.80
a→→c 3 0 0.75 0.75 1.67
a→→d 3 0 0.75 0.75 3.00
b→→c 2 1 0.5 0.33 1.00
b→→d 3 0 0.75 0.75 1.67
c→d 4 10 0.86 0.24 1.86
a→→e 3 0 0.75 0.75 2.00
R' o’ v’ intensity' support’ len’
b→a 2 8 0.86 0.17 1.80
c→a 0 3 0.75 0 1.67
d→a 0 3 0.75 0 3.00
c→b 1 2 0.50 0.17 1.00
d→b 0 3 0.75 0 1.67
d→→c 10 4 0.86 0.61 1.86
e→a 0 3 0.75 0 2.00

Valid Rule. Here, we consider a rule with support
> 0.5 as a valid rule. On the one hand, the number
of entities obeying the rule must be greater than
the number of violations, on the other hand, the
rule must appear more than a certain frequency.
Of course, it can also be determined that a rule
with a support> 0.6 is the valid rule.

Consistent Rule. If the current rule exists in the
rule set and it is a valid rule, we consider the
current rule to be a consistent rule; if the inverse
rule of the current rule exists in the rule set and it
is a valid rule, we consider the current rule to be
an inconsistent rule. For example, “a→b” is a
consistent rule, “b→a” is an inconsistent rule; “d→
c” is a consistent rule and “c→d” is an inconsistent
rule.

In this paper, we construct four quantitative
evaluation models, analyse and discuss the
evaluation effect of each model. Suppose there are
now two entities e5, e6 need to be evaluated, for a
specific attribute, the state transition sequences are
separately “c→b→d” and “a→b→d”, and the
extracted rules are respectively e5{c→b, c→d, b→
d} and e6{a→b, a→d, b→d}. In the following, the
definition of the evaluation models will be
explained with intuitive examples.

4.1 Consistent Rules Ratio

Consistent rules Ratio (CR). Consistent rules
ratio is the degree to which all the rules
extracted from all records of an entity e are
consistent with the valid rules in currency
rule set. The larger the ratio of the number of
consistent rules, the better the entity's data
currency quality. The CR model is defined as:

||||
||

ntRulesInconsisteRulesConsistent
RulesConsistentCR

+
=

where the |ConsistentRules| and
|InconsistentRules| represent the number of
consistent rules and the number of
inconsistent rules, respectively.

Take the entities e5{c→b, c→d, b→d} and e6{a
→ b, a→d, b→d} as an example, for e5,
support(c→b)=0.17, support(c→d)=0.24, both
“c→b”, “c→d” are not valid rule, only rule “b
→d” with support(b→d)=0.75 is a valid rule,
so CR(e5)=0.33. For entity e6, “a→b”, “a→d”,
“b→d” are all valid, CR(e6)=1.00. Therefore, it
can be considered that the rules from records
of entity e6 are more consistent with the
existing rules, and the currency quality of the
entity e6 is better than e5.

4.2 Rules Support Mean
Rules Support Mean (SM). Suppose n rules
are extracted from all records of an entity e, si
is the support value of rule i, use the mean of
rules’ support as a model to evaluate the
currency quality of entity e. The larger the
SM value, the better the currency quality of
the data. The support mean is defined as
follows:

n
flags

SM
n

i ii∑=
×

= 1 , (9)




−

=
ntRuleInconsiste

RuleConsistent
flag

,1
,1

. (10)

In SM model, flag is used to indicate whether
the current rule is a consistent rule. If it is, the
flag is 1, if not, it is -1; If the current rule and
its inverse rule are both not valid rule in the
rule set, the flag and support value are both 0.

Take the above two entities e5 and e6 as
examples, for the three rules of entity e5, only
“b→d” is a consistent rule, and “c→d” is a
consistent rule, therefor, SM(e5)=(0+0.75-
0.61)/3=0.05; Three rules of entity e6 are all
consistent rules,
SM(e6)=(0.69+0.75+0.75)/3=0.73, so it can be
considered that the currency quality of the
entity e6 is better than e5.

, (9)

currency rules from the sorted tuples. Finally, use
a specific model to evaluate the consistency of the
extracted rules with the currency rule set.

A sample currency rule set are shown in Table 6.
The rules are all from the above Table 5 and we
calculated the intensity and support of each rule
according to the relevant currency rule definition.
For demonstration purposes, the constant
threshold in intensity function f(r) is set to c = 1.0.
Table 6

A Sample Rule Sets
R o v intensity support len
a→→b 8 2 0.86 0.69 1.80
a→→c 3 0 0.75 0.75 1.67
a→→d 3 0 0.75 0.75 3.00
b→→c 2 1 0.5 0.33 1.00
b→→d 3 0 0.75 0.75 1.67
c→d 4 10 0.86 0.24 1.86
a→→e 3 0 0.75 0.75 2.00
R' o’ v’ intensity' support’ len’
b→a 2 8 0.86 0.17 1.80
c→a 0 3 0.75 0 1.67
d→a 0 3 0.75 0 3.00
c→b 1 2 0.50 0.17 1.00
d→b 0 3 0.75 0 1.67
d→→c 10 4 0.86 0.61 1.86
e→a 0 3 0.75 0 2.00

Valid Rule. Here, we consider a rule with support
> 0.5 as a valid rule. On the one hand, the number
of entities obeying the rule must be greater than
the number of violations, on the other hand, the
rule must appear more than a certain frequency.
Of course, it can also be determined that a rule
with a support> 0.6 is the valid rule.

Consistent Rule. If the current rule exists in the
rule set and it is a valid rule, we consider the
current rule to be a consistent rule; if the inverse
rule of the current rule exists in the rule set and it
is a valid rule, we consider the current rule to be
an inconsistent rule. For example, “a→b” is a
consistent rule, “b→a” is an inconsistent rule; “d→
c” is a consistent rule and “c→d” is an inconsistent
rule.

In this paper, we construct four quantitative
evaluation models, analyse and discuss the
evaluation effect of each model. Suppose there are
now two entities e5, e6 need to be evaluated, for a
specific attribute, the state transition sequences are
separately “c→b→d” and “a→b→d”, and the
extracted rules are respectively e5{c→b, c→d, b→
d} and e6{a→b, a→d, b→d}. In the following, the
definition of the evaluation models will be
explained with intuitive examples.

4.1 Consistent Rules Ratio

Consistent rules Ratio (CR). Consistent rules
ratio is the degree to which all the rules
extracted from all records of an entity e are
consistent with the valid rules in currency
rule set. The larger the ratio of the number of
consistent rules, the better the entity's data
currency quality. The CR model is defined as:

||||
||

ntRulesInconsisteRulesConsistent
RulesConsistentCR

+
=

where the |ConsistentRules| and
|InconsistentRules| represent the number of
consistent rules and the number of
inconsistent rules, respectively.

Take the entities e5{c→b, c→d, b→d} and e6{a
→ b, a→d, b→d} as an example, for e5,
support(c→b)=0.17, support(c→d)=0.24, both
“c→b”, “c→d” are not valid rule, only rule “b
→d” with support(b→d)=0.75 is a valid rule,
so CR(e5)=0.33. For entity e6, “a→b”, “a→d”,
“b→d” are all valid, CR(e6)=1.00. Therefore, it
can be considered that the rules from records
of entity e6 are more consistent with the
existing rules, and the currency quality of the
entity e6 is better than e5.

4.2 Rules Support Mean
Rules Support Mean (SM). Suppose n rules
are extracted from all records of an entity e, si
is the support value of rule i, use the mean of
rules’ support as a model to evaluate the
currency quality of entity e. The larger the
SM value, the better the currency quality of
the data. The support mean is defined as
follows:

n
flags

SM
n

i ii∑=
×

= 1 , (9)




−

=
ntRuleInconsiste

RuleConsistent
flag

,1
,1

. (10)

In SM model, flag is used to indicate whether
the current rule is a consistent rule. If it is, the
flag is 1, if not, it is -1; If the current rule and
its inverse rule are both not valid rule in the
rule set, the flag and support value are both 0.

Take the above two entities e5 and e6 as
examples, for the three rules of entity e5, only
“b→d” is a consistent rule, and “c→d” is a
consistent rule, therefor, SM(e5)=(0+0.75-
0.61)/3=0.05; Three rules of entity e6 are all
consistent rules,
SM(e6)=(0.69+0.75+0.75)/3=0.73, so it can be
considered that the currency quality of the
entity e6 is better than e5.

(10)

In SM model, flag is used to indicate whether the cur-
rent rule is a consistent rule. If it is, the flag is 1, if not,
it is -1; If the current rule and its inverse rule are both
not valid rule in the rule set, the flag and support value
are both 0.
Take the above two entities e5 and e6 as examples, for
the three rules of entity e5, only “b→d” is a consistent
rule, and “c→d” is a consistent rule, therefor, SM(e5) =
(0+0.75-0.61)/3=0.05; Three rules of entity e6 are all
consistent rules, SM(e6) = (0.69+0.75+0.75)/3=0.73, so
it can be considered that the currency quality of the
entity e6 is better than e5.

4.3. Rules Compliance Mean
Rule Compliance. Rule compliance reflects the de-
gree of consistency between the current rule and its
corresponding rule in the rule set. Rule compliance is
defined as follow:

4.3 Rules Compliance Mean
Rule Compliance. Rule compliance reflects the
degree of consistency between the current rule
and its corresponding rule in the rule set. Rule
compliance is defined as follow:

flag
RuleLenLen

RuleLenLenRuleLenLenC ×
+

−−+
=

|| , (11)

where Len is the path length of the current rule,
RuleLen is the path length of corresponding valid
rule in rule set; if there is not a corresponding
valid rule in rule set, let RuleLen = 0. When Len = 0
and RuleLen = 0, let compliance C = 1. The flag
indicates whether the current rule is a consistent
rule, see formula (10). The value range of
compliance is [-1, 1].

Rules Compliance Mean (CM). Here we use the
mean value of compliance of n rules extracted
from multiple records of an entity as a model to
evaluate the data quality. Two types of compliance
mean models are defined, one does not consider
the impact of rule support on the evaluation
results, and the other one can reflect the impact of
rule support on result, respectively CM1 and CM2.

n
flagC

CM
n

i ii∑=
×

= 11 , (12)

n
sflagC

CM
n

i iii∑=
××

= 12 . (13)

Take the above two entities e5(c→b→d) and e6(a→
b→d) as an example, the Compliance, CM1 and
CM2 results are shown in Table 7. For entity e5,
after considering the influence of support, the
CM2 > CM1, because the support of a consistent
rule “b→d” is higher than the inconsistent rule “c
→d”.
Table 7

Currency Quality Evaluation Result
Enti-
ty Rule Len-

gth flag Comp-
liance CM1 CM2

e5
c→b 1.0 0 0.00

-0.07 -0.01 c→d 2.0 -1 -0.96
b→d 1.0 1 0.75

e6
a→b 1.0 1 0.71

0.75 0.55 a→d 2.0 1 0.80
b→d 1.0 1 0.75

From the above results, we can consider that the
rules from records of entity e6 is more consistent
with the existing rules, and the currency quality of
the entity e6 is better than that of e5.

5 Experiment and Analysis

5.1 Experimental Platform and Data
The experimental platform is a host allocated
from a hyper-converged server. The host is
configured with Intel T7700 2.4GHz CPU, 20
cores, 16G RAM and Windows 10 operating
system. The algorithms are all written in C#,
running on .Net Framework 4.5. The test
datasets and rules set are stored in MySQL
5.7 database.

The experimental data set is derived from the
course elective data of students in a
university from 2014 to 2019. The data
consistency is high and there is no abnormal
data. The data fields include the course
name, class number, student number, and
semester. Generally, compulsory courses are
usually scheduled in fixed semesters
according to the training program, which has
strong time sequence feature, and there are
no clear restrictions on elective courses.
However, the course election of students in
this university is more flexible, students can
choose compulsory courses or elective
courses for their own majors or other majors
according to their own circumstances, and
students can also take compulsory courses in
advance or afterwards semesters. For
example, a student may take a compulsory
course that should be scheduled in seventh
semester in his first semester, or one student
may retake a course that has already been
taken before, in order to get a higher score.
Therefore, the elective data that students do
not take courses according to the specified
order in the training program can be
regarded as noise data. Although there is no
abnormal data in the data set, from the
perspective of currency, there are still many
uncertainties in the data.

The relevant terms mentioned in the
experiment are explained as follows:

(1) State. State refers to the node in the state
diagram. In the experiment, we select the
course name as the state, the same course
name represents the same state, and different
course names represent different states. The
test courses election datasets have a total of
more than 2,200 courses, which means that
the number of nodes in the entire state
diagram will not exceed the number of
courses.

(2) Entity. The entity in the experiment is the
student ID. In the test dataset, an entity has
multiple data records, that is, one student has

, (11)

where Len is the path length of the current rule, Ru-
leLen is the path length of corresponding valid rule in

Information Technology and Control 2021/2/50256

rule set; if there is not a corresponding valid rule in
rule set, let RuleLen = 0. When Len = 0 and RuleLen =
0, let compliance C = 1. The flag indicates whether the
current rule is a consistent rule, see formula (10). The
value range of compliance is [-1, 1].
Rules Compliance Mean (CM). Here we use the
mean value of compliance of n rules extracted from
multiple records of an entity as a model to evalua-
te the data quality. Two types of compliance mean
models are defined, one does not consider the impact
of rule support on the evaluation results, and the other
one can reflect the impact of rule support on result,
respectively CM1 and CM2.

4.3 Rules Compliance Mean
Rule Compliance. Rule compliance reflects the
degree of consistency between the current rule
and its corresponding rule in the rule set. Rule
compliance is defined as follow:

flag
RuleLenLen

RuleLenLenRuleLenLenC ×
+

−−+
=

|| , (11)

where Len is the path length of the current rule,
RuleLen is the path length of corresponding valid
rule in rule set; if there is not a corresponding
valid rule in rule set, let RuleLen = 0. When Len = 0
and RuleLen = 0, let compliance C = 1. The flag
indicates whether the current rule is a consistent
rule, see formula (10). The value range of
compliance is [-1, 1].

Rules Compliance Mean (CM). Here we use the
mean value of compliance of n rules extracted
from multiple records of an entity as a model to
evaluate the data quality. Two types of compliance
mean models are defined, one does not consider
the impact of rule support on the evaluation
results, and the other one can reflect the impact of
rule support on result, respectively CM1 and CM2.

n
flagC

CM
n

i ii∑=
×

= 11 , (12)

n
sflagC

CM
n

i iii∑=
××

= 12 . (13)

Take the above two entities e5(c→b→d) and e6(a→
b→d) as an example, the Compliance, CM1 and
CM2 results are shown in Table 7. For entity e5,
after considering the influence of support, the
CM2 > CM1, because the support of a consistent
rule “b→d” is higher than the inconsistent rule “c
→d”.
Table 7

Currency Quality Evaluation Result
Enti-
ty Rule Len-

gth flag Comp-
liance CM1 CM2

e5
c→b 1.0 0 0.00

-0.07 -0.01 c→d 2.0 -1 -0.96
b→d 1.0 1 0.75

e6
a→b 1.0 1 0.71

0.75 0.55 a→d 2.0 1 0.80
b→d 1.0 1 0.75

From the above results, we can consider that the
rules from records of entity e6 is more consistent
with the existing rules, and the currency quality of
the entity e6 is better than that of e5.

5 Experiment and Analysis

5.1 Experimental Platform and Data
The experimental platform is a host allocated
from a hyper-converged server. The host is
configured with Intel T7700 2.4GHz CPU, 20
cores, 16G RAM and Windows 10 operating
system. The algorithms are all written in C#,
running on .Net Framework 4.5. The test
datasets and rules set are stored in MySQL
5.7 database.

The experimental data set is derived from the
course elective data of students in a
university from 2014 to 2019. The data
consistency is high and there is no abnormal
data. The data fields include the course
name, class number, student number, and
semester. Generally, compulsory courses are
usually scheduled in fixed semesters
according to the training program, which has
strong time sequence feature, and there are
no clear restrictions on elective courses.
However, the course election of students in
this university is more flexible, students can
choose compulsory courses or elective
courses for their own majors or other majors
according to their own circumstances, and
students can also take compulsory courses in
advance or afterwards semesters. For
example, a student may take a compulsory
course that should be scheduled in seventh
semester in his first semester, or one student
may retake a course that has already been
taken before, in order to get a higher score.
Therefore, the elective data that students do
not take courses according to the specified
order in the training program can be
regarded as noise data. Although there is no
abnormal data in the data set, from the
perspective of currency, there are still many
uncertainties in the data.

The relevant terms mentioned in the
experiment are explained as follows:

(1) State. State refers to the node in the state
diagram. In the experiment, we select the
course name as the state, the same course
name represents the same state, and different
course names represent different states. The
test courses election datasets have a total of
more than 2,200 courses, which means that
the number of nodes in the entire state
diagram will not exceed the number of
courses.

(2) Entity. The entity in the experiment is the
student ID. In the test dataset, an entity has
multiple data records, that is, one student has

, (12)

4.3 Rules Compliance Mean
Rule Compliance. Rule compliance reflects the
degree of consistency between the current rule
and its corresponding rule in the rule set. Rule
compliance is defined as follow:

flag
RuleLenLen

RuleLenLenRuleLenLenC ×
+

−−+
=

|| , (11)

where Len is the path length of the current rule,
RuleLen is the path length of corresponding valid
rule in rule set; if there is not a corresponding
valid rule in rule set, let RuleLen = 0. When Len = 0
and RuleLen = 0, let compliance C = 1. The flag
indicates whether the current rule is a consistent
rule, see formula (10). The value range of
compliance is [-1, 1].

Rules Compliance Mean (CM). Here we use the
mean value of compliance of n rules extracted
from multiple records of an entity as a model to
evaluate the data quality. Two types of compliance
mean models are defined, one does not consider
the impact of rule support on the evaluation
results, and the other one can reflect the impact of
rule support on result, respectively CM1 and CM2.

n
flagC

CM
n

i ii∑=
×

= 11 , (12)

n
sflagC

CM
n

i iii∑=
××

= 12 . (13)

Take the above two entities e5(c→b→d) and e6(a→
b→d) as an example, the Compliance, CM1 and
CM2 results are shown in Table 7. For entity e5,
after considering the influence of support, the
CM2 > CM1, because the support of a consistent
rule “b→d” is higher than the inconsistent rule “c
→d”.
Table 7

Currency Quality Evaluation Result
Enti-
ty Rule Len-

gth flag Comp-
liance CM1 CM2

e5
c→b 1.0 0 0.00

-0.07 -0.01 c→d 2.0 -1 -0.96
b→d 1.0 1 0.75

e6
a→b 1.0 1 0.71

0.75 0.55 a→d 2.0 1 0.80
b→d 1.0 1 0.75

From the above results, we can consider that the
rules from records of entity e6 is more consistent
with the existing rules, and the currency quality of
the entity e6 is better than that of e5.

5 Experiment and Analysis

5.1 Experimental Platform and Data
The experimental platform is a host allocated
from a hyper-converged server. The host is
configured with Intel T7700 2.4GHz CPU, 20
cores, 16G RAM and Windows 10 operating
system. The algorithms are all written in C#,
running on .Net Framework 4.5. The test
datasets and rules set are stored in MySQL
5.7 database.

The experimental data set is derived from the
course elective data of students in a
university from 2014 to 2019. The data
consistency is high and there is no abnormal
data. The data fields include the course
name, class number, student number, and
semester. Generally, compulsory courses are
usually scheduled in fixed semesters
according to the training program, which has
strong time sequence feature, and there are
no clear restrictions on elective courses.
However, the course election of students in
this university is more flexible, students can
choose compulsory courses or elective
courses for their own majors or other majors
according to their own circumstances, and
students can also take compulsory courses in
advance or afterwards semesters. For
example, a student may take a compulsory
course that should be scheduled in seventh
semester in his first semester, or one student
may retake a course that has already been
taken before, in order to get a higher score.
Therefore, the elective data that students do
not take courses according to the specified
order in the training program can be
regarded as noise data. Although there is no
abnormal data in the data set, from the
perspective of currency, there are still many
uncertainties in the data.

The relevant terms mentioned in the
experiment are explained as follows:

(1) State. State refers to the node in the state
diagram. In the experiment, we select the
course name as the state, the same course
name represents the same state, and different
course names represent different states. The
test courses election datasets have a total of
more than 2,200 courses, which means that
the number of nodes in the entire state
diagram will not exceed the number of
courses.

(2) Entity. The entity in the experiment is the
student ID. In the test dataset, an entity has
multiple data records, that is, one student has

. (13)

Take the above two entities e5(c→b→d) and
e6(a→b→d) as an example, the Compliance, CM1 and
CM2 results are shown in Table 7. For entity e5, after
considering the influence of support, the CM2 > CM1,
because the support of a consistent rule “b→d” is
higher than the inconsistent rule “c→d”.

Table 7
Currency Quality Evaluation Result

Entity Rule Length flag Compliance CM1 CM2

e5

c→b 1.0 0 0.00

-0.07 -0.01c→d 2.0 -1 -0.96

b→d 1.0 1 0.75

e6

a→b 1.0 1 0.71

0.75 0.55a→d 2.0 1 0.80

b→d 1.0 1 0.75

From the above results, we can consider that the rules
from records of entity e6 is more consistent with the
existing rules, and the currency quality of the entity e6
is better than that of e5.

5. Experiment and Analysis
5.1. Experimental Platform and Data

The experimental platform is a host allocated from a hy-
per-converged server. The host is configured with Intel
T7700 2.4GHz CPU, 20 cores, 16G RAM and Windows
10 operating system. The algorithms are all written in
C#, running on .Net Framework 4.5. The test datasets
and rules set are stored in MySQL 5.7 database.
The experimental data set is derived from the cour-
se elective data of students in a university from 2014
to 2019. The data consistency is high and there is no
abnormal data. The data fields include the course
name, class number, student number, and semester.
Generally, compulsory courses are usually scheduled
in fixed semesters according to the training program,
which has strong time sequence feature, and there are
no clear restrictions on elective courses. However, the
course election of students in this university is more
flexible, students can choose compulsory courses or
elective courses for their own majors or other majors
according to their own circumstances, and students
can also take compulsory courses in advance or after-
wards semesters. For example, a student may take a
compulsory course that should be scheduled in se-
venth semester in his first semester, or one student
may retake a course that has already been taken befo-
re, in order to get a higher score. Therefore, the elec-
tive data that students do not take courses according
to the specified order in the training program can be
regarded as noise data. Although there is no abnormal
data in the data set, from the perspective of currency,
there are still many uncertainties in the data.
The relevant terms mentioned in the experiment are
explained as follows:
1 State. State refers to the node in the state diagram.

In the experiment, we select the course name as
the state, the same course name represents the
same state, and different course names represent
different states. The test courses election datasets
have a total of more than 2,200 courses, which me-
ans that the number of nodes in the entire state di-
agram will not exceed the number of courses.

2 Entity. The entity in the experiment is the student
ID. In the test dataset, an entity has multiple data
records, that is, one student has multiple courses

257Information Technology and Control 2021/2/50

elective records, and the records with the same
student ID are the same student‘s elective data.

3 Currency rules of the state. In the following
description, it is referred to as the currency rule
or rule. For the experimental datasets, the rule can
be interpreted as the order of the students‘ courses
election.

According to the experimental needs, the data is divi-
ded into two data sets:
Dataset 1, a total of 1247945 records, is the courses
elective data from the first to the eighth semester of
18127 students of grade 2014 and 2015, with an avera-
ge of about 69 records per student.
Dataset 2, a total of 8628 records, is the courses elec-
tive data of 132 students. The 132 students come from
4 classes of the same major of grade 2016. A total of
66 students from the 2 normal classes are marked as
normal entities; the other 66 students in the other two
classes with records of course retaking or major/pro-
gram changing are marked as abnormal entities.
Dataset 1 is used to extract currency rules set, the da-
taset 1 and dataset 2 are used together for algorithm
efficiency and parallel testing, dataset 2 is used to ve-
rify the validity of data currency quality evaluation.

5.2. Performance Testing for Rules Extraction
For the rule extraction performance test, currency ru-
les are extracted from 15 entities sets of different sizes,
test 10 rounds. Test entities are randomly selected
from the Dataset 1 and Dataset 2, and the numbers of
entities in the test data sets are sequentially incremen-
ted in a certain gradient. There are 10 entities in the
first (smallest) set, and 2700 entities in the last (lar-
gest) set. Since the test entities are randomly selected,
even if the number of entities of the test set is the same,
the number of rules extracted from the set is generally
different. Of all 10 rounds, the minimum number of ru-
les for the set of 10 entities is 20482, and the maximum
number for the set of 2700 entities is 852131.

5.2.1. Non-Parallel Test for Rules Extraction
Algorithm
The results of 150 tests for all 10 rounds are shown in
the Figure 3 below. The horizontal axis indicates the
number of rules and the vertical axis indicates the
time consumed (in milliseconds). Figure 3 (a) shows
the time-consuming of extracting rules for each set

varies as the rules number increases. Figure 3 (b) sho-
ws the average time-consuming of each rule varies as
the rules number increases. In the best case, 23403
rules are extracted per millisecond, and in the worst
case, only 622 rules are extracted per millisecond.
Due to computer storage and computational resour-
ce limitations, the rules extraction time consumpti-
on and the rules number do not show a linear growth
trend of ideal conditions. In the Microsoft Excel, a
trend line and a fitted polynomial function are added
to the scatter plot, and it can be found that the time
cost and the rules number shows a polynomial growth
trend. A similar situation also occurs in the average
time cost of each rule.

(a) Total time cost of rules extraction

(b) Average time cost of each rule

multiple courses elective records, and the records
with the same student ID are the same student's
elective data.

(3) Currency rules of the state. In the following
description, it is referred to as the currency rule or
rule. For the experimental datasets, the rule can be
interpreted as the order of the students' courses
election.

According to the experimental needs, the data is
divided into two data sets:

Dataset 1, a total of 1247945 records, is the courses
elective data from the first to the eighth semester
of 18127 students of grade 2014 and 2015, with an
average of about 69 records per student.

Dataset 2, a total of 8628 records, is the courses
elective data of 132 students. The 132 students
come from 4 classes of the same major of grade
2016. A total of 66 students from the 2 normal
classes are marked as normal entities; the other 66
students in the other two classes with records of
course retaking or major/program changing are
marked as abnormal entities.

Dataset 1 is used to extract currency rules set, the
dataset 1 and dataset 2 are used together for
algorithm efficiency and parallel testing, dataset 2
is used to verify the validity of data currency
quality evaluation.

5.2 Performance Testing for Rules Extraction
For the rule extraction performance test, currency
rules are extracted from 15 entities sets of different
sizes, test 10 rounds. Test entities are randomly
selected from the Dataset 1 and Dataset 2, and the
numbers of entities in the test data sets are
sequentially incremented in a certain gradient.
There are 10 entities in the first (smallest) set, and
2700 entities in the last (largest) set. Since the test
entities are randomly selected, even if the number
of entities of the test set is the same, the number of
rules extracted from the set is generally different.
Of all 10 rounds, the minimum number of rules for
the set of 10 entities is 20482, and the maximum
number for the set of 2700 entities is 852131.

5.2.1 Non-Parallel Test for Rules Extraction
Algorithm

The results of 150 tests for all 10 rounds are shown
in the Figure 3 below. The horizontal axis indicates
the number of rules and the vertical axis indicates
the time consumed (in milliseconds). Figure 3 (a)
shows the time-consuming of extracting rules for
each set varies as the rules number increases.
Figure 3 (b) shows the average time-consuming of
each rule varies as the rules number increases. In

the best case, 23403 rules are extracted per
millisecond, and in the worst case, only 622
rules are extracted per millisecond. Due to
computer storage and computational
resource limitations, the rules extraction time
consumption and the rules number do not
show a linear growth trend of ideal
conditions. In the Microsoft Excel, a trend
line and a fitted polynomial function are
added to the scatter plot, and it can be found
that the time cost and the rules number
shows a polynomial growth trend. A similar
situation also occurs in the average time cost
of each rule.
Figure 3

f(x) = 9E-15x3 - 3E-10x2 + 0.0015x - 18.558
R² = 0.994

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

Ti
m

e
Co

st
 (m

s)

Extracted Rules Number

f(x) = 3E-21x3 + 3E-15x2 + 3E-09x + 0.001
R² = 0.9772

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

Av
er

ag
e

Ti
m

e
Co

st
 P

er
 R

ul
e

(m
s)

Extracted Rules Number
(b) Average time cost of each rule

5.2.2 Parallel Test for Rules Extraction
Algorithm

From the test dataset1 and dataset2, 1771292
records of 28076 entities are selected for
doing parallel test. The total number of
currency rules is 5573732. The test run 10
rounds, for each round, we set 1 to 24 parallel
threads to test the algorithm performance
under different parallel threads. Take the
average as the result in the case of the same
parallel threads number.

multiple courses elective records, and the records
with the same student ID are the same student's
elective data.

(3) Currency rules of the state. In the following
description, it is referred to as the currency rule or
rule. For the experimental datasets, the rule can be
interpreted as the order of the students' courses
election.

According to the experimental needs, the data is
divided into two data sets:

Dataset 1, a total of 1247945 records, is the courses
elective data from the first to the eighth semester
of 18127 students of grade 2014 and 2015, with an
average of about 69 records per student.

Dataset 2, a total of 8628 records, is the courses
elective data of 132 students. The 132 students
come from 4 classes of the same major of grade
2016. A total of 66 students from the 2 normal
classes are marked as normal entities; the other 66
students in the other two classes with records of
course retaking or major/program changing are
marked as abnormal entities.

Dataset 1 is used to extract currency rules set, the
dataset 1 and dataset 2 are used together for
algorithm efficiency and parallel testing, dataset 2
is used to verify the validity of data currency
quality evaluation.

5.2 Performance Testing for Rules Extraction
For the rule extraction performance test, currency
rules are extracted from 15 entities sets of different
sizes, test 10 rounds. Test entities are randomly
selected from the Dataset 1 and Dataset 2, and the
numbers of entities in the test data sets are
sequentially incremented in a certain gradient.
There are 10 entities in the first (smallest) set, and
2700 entities in the last (largest) set. Since the test
entities are randomly selected, even if the number
of entities of the test set is the same, the number of
rules extracted from the set is generally different.
Of all 10 rounds, the minimum number of rules for
the set of 10 entities is 20482, and the maximum
number for the set of 2700 entities is 852131.

5.2.1 Non-Parallel Test for Rules Extraction
Algorithm

The results of 150 tests for all 10 rounds are shown
in the Figure 3 below. The horizontal axis indicates
the number of rules and the vertical axis indicates
the time consumed (in milliseconds). Figure 3 (a)
shows the time-consuming of extracting rules for
each set varies as the rules number increases.
Figure 3 (b) shows the average time-consuming of
each rule varies as the rules number increases. In

the best case, 23403 rules are extracted per
millisecond, and in the worst case, only 622
rules are extracted per millisecond. Due to
computer storage and computational
resource limitations, the rules extraction time
consumption and the rules number do not
show a linear growth trend of ideal
conditions. In the Microsoft Excel, a trend
line and a fitted polynomial function are
added to the scatter plot, and it can be found
that the time cost and the rules number
shows a polynomial growth trend. A similar
situation also occurs in the average time cost
of each rule.
Figure 3

f(x) = 9E-15x3 - 3E-10x2 + 0.0015x - 18.558
R² = 0.994

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

Ti
m

e
Co

st
 (m

s)

Extracted Rules Number

f(x) = 3E-21x3 + 3E-15x2 + 3E-09x + 0.001
R² = 0.9772

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

Av
er

ag
e

Ti
m

e
Co

st
 P

er
 R

ul
e

(m
s)

Extracted Rules Number
(b) Average time cost of each rule

5.2.2 Parallel Test for Rules Extraction
Algorithm

From the test dataset1 and dataset2, 1771292
records of 28076 entities are selected for
doing parallel test. The total number of
currency rules is 5573732. The test run 10
rounds, for each round, we set 1 to 24 parallel
threads to test the algorithm performance
under different parallel threads. Take the
average as the result in the case of the same
parallel threads number.

Figure 3
Performance Test for Rules Extraction Algorithm

Information Technology and Control 2021/2/50258

5.2.2. Parallel Test for Rules Extraction Algorithm
From the test dataset1 and dataset2, 1771292 records
of 28076 entities are selected for doing parallel test.
The total number of currency rules is 5573732. The
test run 10 rounds, for each round, we set 1 to 24 pa-
rallel threads to test the algorithm performance un-
der different parallel threads. Take the average as the
result in the case of the same parallel threads number.
The experimental results show that the parallelizati-
on has obvious improvement on the algorithm effici-
ency. For test task, single-threaded operation takes
90352.75 milliseconds, and when 15 threads are pa-
ralleled, it reaches a minimum of 22399.22 millise-
conds, resulting in an efficiency increase of 75.20%.
The experimental results also show that when the pa-
rallel threads number is greater than 10, due to server
storage, disk IO, etc., continuing to increase parallel
threads number does not continuously reduce time
consumption. Test results are shown in Figure 4.

Figure 4
Parallel Test for Rules Extraction Algorithm

The experimental results show that the
parallelization has obvious improvement on the
algorithm efficiency. For test task, single-threaded
operation takes 90352.75 milliseconds, and when
15 threads are paralleled, it reaches a minimum of
22399.22 milliseconds, resulting in an efficiency
increase of 75.20%. The experimental results also
show that when the parallel threads number is
greater than 10, due to server storage, disk IO, etc.,
continuing to increase parallel threads number
does not continuously reduce time consumption.
Test results are shown in Figure 4.
Figure 4

Parallel Test for Rules Extraction Algorithm

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ti
m

e
C

os
t

Parallel Threads Number
5.3 Performance Test for Rules Merging
Algorithms
During the process of merging two rule sets, the
left set R1 and the right R2, it is necessary to
traverse each rule in left set R1 to check whether it
exists in the rule set R2. Since R1 and R2 are both
hash tables, the traversal R1 algorithm is O(n)
linear complexity, and check rule whether in R2 is
O(1) constant complexity. It can be seen that the
merging cost is mainly determined by the size of
the rule set R1.

5.3.1 Non-Parallel Test for Rule Sets Merging
Algorithm

Performance test is carried out for 10 rounds. Each
round of testing uses 30 entity sets, and each entity
sets contains 10 to 5000 entities randomly selected
from the data set under a certain gradient.
Correspondingly, 30 rule sets are extracted from
the 30 entity sets. Of the total 300 tests in 10
rounds, the rules number for the left rule sets
ranges from 22317 to 867139, and for the right sets
it is 12254 to 541369. There are 867,139 rules in the
largest left set R1, and the corresponding right R2
has 541369 rules. In the 10 rounds testing, the
average time consuming of merging the two rule

sets is 255.5ms. The results of the 10 rounds
of testing are shown in Figure 5. It can be
found that the merging time-consuming is
linear with the scale of left rule set.
Figure 5

Performance Test for Rules Merging Algorithm

y = 0.0003x - 8.6653
R² = 0.944

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

0 200000 400000 600000 800000 1000000

Ti
m

e
C

os
t o

f M
er

gi
ng

 T
w

o
R

ul
e

Se
ts

(m
s)

The Number of Rules in the Left Set
5.3.2 Parallel Test for Rule Sets Merging
Algorithm

In parallel testing, for each round of testing,
set 1 to 24 parallel threads to merge the 30
rule sets. Finally, count the data for 10
rounds of testing and calculate the average
time cost based on the number of threads.

In the case of non-parallel (single-threaded),
merging 30 rule sets takes an average of 3802
milliseconds, paralleling two threads takes
2466 milliseconds. A minimum of 1702
milliseconds is obtained when 22 threads are
executed in parallel, brings efficiency
improvement of 55.23%. Experiments show
that the parallel algorithm is effective, and
parallelization can significantly improve the
merging efficiency. Since this experiment is
performed on a single server, limited by
hardware limitations and resource
coordination between multiple threads, when
the number of threads is greater than 10, the
performance improvement is no longer
obvious. The parallel performance results are
shown in Figure 6.
Figure 6

Parallel Test for Rules Merging Algorithm

5.3. Performance Test for Rules Merging
Algorithms
During the process of merging two rule sets, the left
set R1 and the right R2, it is necessary to traverse each
rule in left set R1 to check whether it exists in the
rule set R2. Since R1 and R2 are both hash tables, the
traversal R1 algorithm is O(n) linear complexity, and
check rule whether in R2 is O(1) constant complexity.
It can be seen that the merging cost is mainly deter-
mined by the size of the rule set R1.

5.3.1. Non-Parallel Test for Rule Sets Merging
Algorithm
Performance test is carried out for 10 rounds. Each
round of testing uses 30 entity sets, and each entity
sets contains 10 to 5000 entities randomly selected
from the data set under a certain gradient. Correspon-
dingly, 30 rule sets are extracted from the 30 entity
sets. Of the total 300 tests in 10 rounds, the rules num-
ber for the left rule sets ranges from 22317 to 867139,
and for the right sets it is 12254 to 541369. There are
867,139 rules in the largest left set R1, and the corres-
ponding right R2 has 541369 rules. In the 10 rounds
testing, the average time consuming of merging the
two rule sets is 255.5ms. The results of the 10 rounds
of testing are shown in Figure 5. It can be found that
the merging time-consuming is linear with the scale
of left rule set.

Figure 5
Performance Test for Rules Merging Algorithm

The experimental results show that the
parallelization has obvious improvement on the
algorithm efficiency. For test task, single-threaded
operation takes 90352.75 milliseconds, and when
15 threads are paralleled, it reaches a minimum of
22399.22 milliseconds, resulting in an efficiency
increase of 75.20%. The experimental results also
show that when the parallel threads number is
greater than 10, due to server storage, disk IO, etc.,
continuing to increase parallel threads number
does not continuously reduce time consumption.
Test results are shown in Figure 4.
Figure 4

Parallel Test for Rules Extraction Algorithm

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ti
m

e
C

os
t

Parallel Threads Number
5.3 Performance Test for Rules Merging
Algorithms
During the process of merging two rule sets, the
left set R1 and the right R2, it is necessary to
traverse each rule in left set R1 to check whether it
exists in the rule set R2. Since R1 and R2 are both
hash tables, the traversal R1 algorithm is O(n)
linear complexity, and check rule whether in R2 is
O(1) constant complexity. It can be seen that the
merging cost is mainly determined by the size of
the rule set R1.

5.3.1 Non-Parallel Test for Rule Sets Merging
Algorithm

Performance test is carried out for 10 rounds. Each
round of testing uses 30 entity sets, and each entity
sets contains 10 to 5000 entities randomly selected
from the data set under a certain gradient.
Correspondingly, 30 rule sets are extracted from
the 30 entity sets. Of the total 300 tests in 10
rounds, the rules number for the left rule sets
ranges from 22317 to 867139, and for the right sets
it is 12254 to 541369. There are 867,139 rules in the
largest left set R1, and the corresponding right R2
has 541369 rules. In the 10 rounds testing, the
average time consuming of merging the two rule

sets is 255.5ms. The results of the 10 rounds
of testing are shown in Figure 5. It can be
found that the merging time-consuming is
linear with the scale of left rule set.
Figure 5

Performance Test for Rules Merging Algorithm

y = 0.0003x - 8.6653
R² = 0.944

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

0 200000 400000 600000 800000 1000000

Ti
m

e
C

os
t o

f M
er

gi
ng

 T
w

o
R

ul
e

Se
ts

(m
s)

The Number of Rules in the Left Set
5.3.2 Parallel Test for Rule Sets Merging
Algorithm

In parallel testing, for each round of testing,
set 1 to 24 parallel threads to merge the 30
rule sets. Finally, count the data for 10
rounds of testing and calculate the average
time cost based on the number of threads.

In the case of non-parallel (single-threaded),
merging 30 rule sets takes an average of 3802
milliseconds, paralleling two threads takes
2466 milliseconds. A minimum of 1702
milliseconds is obtained when 22 threads are
executed in parallel, brings efficiency
improvement of 55.23%. Experiments show
that the parallel algorithm is effective, and
parallelization can significantly improve the
merging efficiency. Since this experiment is
performed on a single server, limited by
hardware limitations and resource
coordination between multiple threads, when
the number of threads is greater than 10, the
performance improvement is no longer
obvious. The parallel performance results are
shown in Figure 6.
Figure 6

Parallel Test for Rules Merging Algorithm

5.3.2. Parallel Test for Rule Sets Merging
Algorithm
In parallel testing, for each round of testing, set 1 to
24 parallel threads to merge the 30 rule sets. Finally,
count the data for 10 rounds of testing and calculate
the average time cost based on the number of threads.
In the case of non-parallel (single-threaded), merging
30 rule sets takes an average of 3802 milliseconds,
paralleling two threads takes 2466 milliseconds. A
minimum of 1702 milliseconds is obtained when 22
threads are executed in parallel, brings efficiency im-

259Information Technology and Control 2021/2/50

provement of 55.23%. Experiments show that the pa-
rallel algorithm is effective, and parallelization can si-
gnificantly improve the merging efficiency. Since this
experiment is performed on a single server, limited by
hardware limitations and resource coordination be-
tween multiple threads, when the number of threads
is greater than 10, the performance improvement is
no longer obvious. The parallel performance results
are shown in Figure 6.

Figure 6
Parallel Test for Rules Merging Algorithm

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Ti
m

e
C

os
t o

f M
er

gi
ng

 A
ll

R
ul

e
Se

ts
(m

s)

Number of Merging Threads

5.4 Performance Testing for Currency
Evaluation

The data quality evaluation performance test is
carried out for 10 rounds. Each round of testing
uses 30 entity sets, and each entity sets contains 10
to 2000 entities randomly selected from the above
dataset2. For each entity of each entity set, the
currency quality is evaluated by the Support Mean
model which mentioned in section 3.3. Rules
number is the sum of rules extracted from all
entities of an entity set, and the Running time is the
total time to complete the quality evaluation of all
entities in a set.

5.4.1 Non-Parallel Test for Currency Evaluation

Figure 7 shows the non-parallel single-threaded
test results. It can be seen that the time cost and
the rules number show a linear growth trend. In
the 10 rounds of tests, when the number of entities
is 2000, the average rules number is 2906098, and
the average time cost is 9745ms.
Figure 7

Non-parallel test for currency evaluation

y = 0.0032x + 91.89
R² = 0.9912

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 500000 1000000 1500000 2000000 2500000 3000000

Ti
m

e
co

st
 o

f c
ur

re
nc

y
ev

al
ua

tio
n

(m
s)

Number of checked rules
5.4.2 Parallel Test for Currency Evaluation

In the parallel test, we randomly select a set of
2,000 entities from dataset 2 and need to evaluate
the currency quality of each entity in the set. The

test is run for 10 rounds, and each round
runs 1-24 evaluation threads, and the results
of 10 rounds are averaged.

There are 10 rounds of testing, and each
round runs 1-24 threads, and the test results
are averaged. When running in non-parallel,
the average time consumption is 9379.33ms;
when 17 threads are running in parallel, the
average time consumption is the smallest,
which is 1481.22ms, and the performance is
improved by 85.86%. The results are shown
in the following Figure 8.
Figure 8

Parallel test for currency evaluation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24

Ti
m

e
co

st
 o

f c
ur

re
nc

y
ev

al
ua

tio
n

(m
s)

Number of evaluation threads
5.5 Evaluation and Analysis of data
Currency Quality Model
Evaluation and analysis of data currency
quality model are based on the above
dataset1 and dataset2. The currency rule set
which contains 1654412 rules is extracted
from the above dataset1. In dataset2, of the
total 2329 entities, 2107 are marked as normal
entities, and 222 are marked as abnormal
entities. We need to use the rule set extracted
from dataset1 to evaluate the currency
quality of each entity in dataset2, and analyse
the evaluation results of different models.

In the experiment, the recall and precision
are used to evaluate different currency
quality evaluation models. Calculate the
precision of each model under the specific
recall levels of 60%, 65%, 70%, 75%, 80%,
85%, 90%, and 95%. With the same recall
level, the higher the precision, the better the
evaluation model.

The recall and precision are defined as
follow:

FPTP
TPP

FNTP
TPR

+
=

+
= , , (14)

where R is recall, P is precision, TP is the true

5.4. Performance Testing for Currency
Evaluation
The data quality evaluation performance test is car-
ried out for 10 rounds. Each round of testing uses 30
entity sets, and each entity sets contains 10 to 2000
entities randomly selected from the above dataset2.
For each entity of each entity set, the currency quality
is evaluated by the Support Mean model which men-
tioned in section 3.3. Rules number is the sum of ru-
les extracted from all entities of an entity set, and the
Running time is the total time to complete the quality
evaluation of all entities in a set.

5.4.1. Non-Parallel Test for Currency Evaluation
Figure 7 shows the non-parallel single-threaded test
results. It can be seen that the time cost and the rules
number show a linear growth trend. In the 10 rounds
of tests, when the number of entities is 2000, the av-
erage rules number is 2906098, and the average time
cost is 9745ms.

5.4.2. Parallel Test for Currency Evaluation
In the parallel test, we randomly select a set of 2,000
entities from dataset 2 and need to evaluate the cur-
rency quality of each entity in the set. The test is run
for 10 rounds, and each round runs 1-24 evaluation
threads, and the results of 10 rounds are averaged.
There are 10 rounds of testing, and each round runs
1-24 threads, and the test results are averaged. When
running in non-parallel, the average time consumption
is 9379.33ms; when 17 threads are running in parallel,
the average time consumption is the smallest, which
is 1481.22ms, and the performance is improved by
85.86%. The results are shown in the following Figure 8.

Figure 7
Non-parallel test for currency evaluation

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Ti
m

e
C

os
t o

f M
er

gi
ng

 A
ll

R
ul

e
Se

ts
(m

s)

Number of Merging Threads

5.4 Performance Testing for Currency
Evaluation

The data quality evaluation performance test is
carried out for 10 rounds. Each round of testing
uses 30 entity sets, and each entity sets contains 10
to 2000 entities randomly selected from the above
dataset2. For each entity of each entity set, the
currency quality is evaluated by the Support Mean
model which mentioned in section 3.3. Rules
number is the sum of rules extracted from all
entities of an entity set, and the Running time is the
total time to complete the quality evaluation of all
entities in a set.

5.4.1 Non-Parallel Test for Currency Evaluation

Figure 7 shows the non-parallel single-threaded
test results. It can be seen that the time cost and
the rules number show a linear growth trend. In
the 10 rounds of tests, when the number of entities
is 2000, the average rules number is 2906098, and
the average time cost is 9745ms.
Figure 7

Non-parallel test for currency evaluation

y = 0.0032x + 91.89
R² = 0.9912

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 500000 1000000 1500000 2000000 2500000 3000000

Ti
m

e
co

st
 o

f c
ur

re
nc

y
ev

al
ua

tio
n

(m
s)

Number of checked rules
5.4.2 Parallel Test for Currency Evaluation

In the parallel test, we randomly select a set of
2,000 entities from dataset 2 and need to evaluate
the currency quality of each entity in the set. The

test is run for 10 rounds, and each round
runs 1-24 evaluation threads, and the results
of 10 rounds are averaged.

There are 10 rounds of testing, and each
round runs 1-24 threads, and the test results
are averaged. When running in non-parallel,
the average time consumption is 9379.33ms;
when 17 threads are running in parallel, the
average time consumption is the smallest,
which is 1481.22ms, and the performance is
improved by 85.86%. The results are shown
in the following Figure 8.
Figure 8

Parallel test for currency evaluation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24

Ti
m

e
co

st
 o

f c
ur

re
nc

y
ev

al
ua

tio
n

(m
s)

Number of evaluation threads
5.5 Evaluation and Analysis of data
Currency Quality Model
Evaluation and analysis of data currency
quality model are based on the above
dataset1 and dataset2. The currency rule set
which contains 1654412 rules is extracted
from the above dataset1. In dataset2, of the
total 2329 entities, 2107 are marked as normal
entities, and 222 are marked as abnormal
entities. We need to use the rule set extracted
from dataset1 to evaluate the currency
quality of each entity in dataset2, and analyse
the evaluation results of different models.

In the experiment, the recall and precision
are used to evaluate different currency
quality evaluation models. Calculate the
precision of each model under the specific
recall levels of 60%, 65%, 70%, 75%, 80%,
85%, 90%, and 95%. With the same recall
level, the higher the precision, the better the
evaluation model.

The recall and precision are defined as
follow:

FPTP
TPP

FNTP
TPR

+
=

+
= , , (14)

where R is recall, P is precision, TP is the true

Figure 8
Parallel test for currency evaluation

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Ti
m

e
C

os
t o

f M
er

gi
ng

 A
ll

R
ul

e
Se

ts
(m

s)

Number of Merging Threads

5.4 Performance Testing for Currency
Evaluation

The data quality evaluation performance test is
carried out for 10 rounds. Each round of testing
uses 30 entity sets, and each entity sets contains 10
to 2000 entities randomly selected from the above
dataset2. For each entity of each entity set, the
currency quality is evaluated by the Support Mean
model which mentioned in section 3.3. Rules
number is the sum of rules extracted from all
entities of an entity set, and the Running time is the
total time to complete the quality evaluation of all
entities in a set.

5.4.1 Non-Parallel Test for Currency Evaluation

Figure 7 shows the non-parallel single-threaded
test results. It can be seen that the time cost and
the rules number show a linear growth trend. In
the 10 rounds of tests, when the number of entities
is 2000, the average rules number is 2906098, and
the average time cost is 9745ms.
Figure 7

Non-parallel test for currency evaluation

y = 0.0032x + 91.89
R² = 0.9912

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 500000 1000000 1500000 2000000 2500000 3000000

Ti
m

e
co

st
 o

f c
ur

re
nc

y
ev

al
ua

tio
n

(m
s)

Number of checked rules
5.4.2 Parallel Test for Currency Evaluation

In the parallel test, we randomly select a set of
2,000 entities from dataset 2 and need to evaluate
the currency quality of each entity in the set. The

test is run for 10 rounds, and each round
runs 1-24 evaluation threads, and the results
of 10 rounds are averaged.

There are 10 rounds of testing, and each
round runs 1-24 threads, and the test results
are averaged. When running in non-parallel,
the average time consumption is 9379.33ms;
when 17 threads are running in parallel, the
average time consumption is the smallest,
which is 1481.22ms, and the performance is
improved by 85.86%. The results are shown
in the following Figure 8.
Figure 8

Parallel test for currency evaluation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24

Ti
m

e
co

st
 o

f c
ur

re
nc

y
ev

al
ua

tio
n

(m
s)

Number of evaluation threads
5.5 Evaluation and Analysis of data
Currency Quality Model
Evaluation and analysis of data currency
quality model are based on the above
dataset1 and dataset2. The currency rule set
which contains 1654412 rules is extracted
from the above dataset1. In dataset2, of the
total 2329 entities, 2107 are marked as normal
entities, and 222 are marked as abnormal
entities. We need to use the rule set extracted
from dataset1 to evaluate the currency
quality of each entity in dataset2, and analyse
the evaluation results of different models.

In the experiment, the recall and precision
are used to evaluate different currency
quality evaluation models. Calculate the
precision of each model under the specific
recall levels of 60%, 65%, 70%, 75%, 80%,
85%, 90%, and 95%. With the same recall
level, the higher the precision, the better the
evaluation model.

The recall and precision are defined as
follow:

FPTP
TPP

FNTP
TPR

+
=

+
= , , (14)

where R is recall, P is precision, TP is the true

Information Technology and Control 2021/2/50260

5.5. Evaluation and Analysis of data Currency
Quality Model
Evaluation and analysis of data currency quality
model are based on the above dataset1 and dataset2.
The currency rule set which contains 1654412 rules
is extracted from the above dataset1. In dataset2, of
the total 2329 entities, 2107 are marked as normal
entities, and 222 are marked as abnormal entities. We
need to use the rule set extracted from dataset1 to eva-
luate the currency quality of each entity in dataset2,
and analyse the evaluation results of different models.
In the experiment, the recall and precision are used
to evaluate different currency quality evaluation
models. Calculate the precision of each model under
the specific recall levels of 60%, 65%, 70%, 75%, 80%,
85%, 90%, and 95%. With the same recall level, the
higher the precision, the better the evaluation model.

The recall and precision are defined as follow:

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Ti
m

e
C

os
t o

f M
er

gi
ng

 A
ll

R
ul

e
Se

ts
(m

s)

Number of Merging Threads

5.4 Performance Testing for Currency
Evaluation

The data quality evaluation performance test is
carried out for 10 rounds. Each round of testing
uses 30 entity sets, and each entity sets contains 10
to 2000 entities randomly selected from the above
dataset2. For each entity of each entity set, the
currency quality is evaluated by the Support Mean
model which mentioned in section 3.3. Rules
number is the sum of rules extracted from all
entities of an entity set, and the Running time is the
total time to complete the quality evaluation of all
entities in a set.

5.4.1 Non-Parallel Test for Currency Evaluation

Figure 7 shows the non-parallel single-threaded
test results. It can be seen that the time cost and
the rules number show a linear growth trend. In
the 10 rounds of tests, when the number of entities
is 2000, the average rules number is 2906098, and
the average time cost is 9745ms.
Figure 7

Non-parallel test for currency evaluation

y = 0.0032x + 91.89
R² = 0.9912

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 500000 1000000 1500000 2000000 2500000 3000000

Ti
m

e
co

st
 o

f c
ur

re
nc

y
ev

al
ua

tio
n

(m
s)

Number of checked rules
5.4.2 Parallel Test for Currency Evaluation

In the parallel test, we randomly select a set of
2,000 entities from dataset 2 and need to evaluate
the currency quality of each entity in the set. The

test is run for 10 rounds, and each round
runs 1-24 evaluation threads, and the results
of 10 rounds are averaged.

There are 10 rounds of testing, and each
round runs 1-24 threads, and the test results
are averaged. When running in non-parallel,
the average time consumption is 9379.33ms;
when 17 threads are running in parallel, the
average time consumption is the smallest,
which is 1481.22ms, and the performance is
improved by 85.86%. The results are shown
in the following Figure 8.
Figure 8

Parallel test for currency evaluation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24

Ti
m

e
co

st
 o

f c
ur

re
nc

y
ev

al
ua

tio
n

(m
s)

Number of evaluation threads
5.5 Evaluation and Analysis of data
Currency Quality Model
Evaluation and analysis of data currency
quality model are based on the above
dataset1 and dataset2. The currency rule set
which contains 1654412 rules is extracted
from the above dataset1. In dataset2, of the
total 2329 entities, 2107 are marked as normal
entities, and 222 are marked as abnormal
entities. We need to use the rule set extracted
from dataset1 to evaluate the currency
quality of each entity in dataset2, and analyse
the evaluation results of different models.

In the experiment, the recall and precision
are used to evaluate different currency
quality evaluation models. Calculate the
precision of each model under the specific
recall levels of 60%, 65%, 70%, 75%, 80%,
85%, 90%, and 95%. With the same recall
level, the higher the precision, the better the
evaluation model.

The recall and precision are defined as
follow:

FPTP
TPP

FNTP
TPR

+
=

+
= , , (14)

where R is recall, P is precision, TP is the true

, (14)

where R is recall, P is precision, TP is the true posi-
tive, FP is the false positive and FN is false negative.
The precision and recall are often contradiction.
Comprehensively consider the two indicators, we
also use the weighted harmonic average of precision
and recall, F-Measure, when P and R have the same
weight, the result is F1 score, defined as follows:

positive, FP is the false positive and FN is false
negative.

The precision and recall are often contradiction.
Comprehensively consider the two indicators, we
also use the weighted harmonic average of
precision and recall, F-Measure, when P and R
have the same weight, the result is F1 score,
defined as follows:

RP
RPF

+
××

=
21 . (15)

As there is no suitable public benchmark data set
for our experiments, we prefer to use these R, P,
F1 indicators to evaluate the four proposed data
quality evaluation models, rather than as absolute
standards.

In the evaluation of currency quality models, we
mainly evaluate their ability of finding abnormal
entities, the experiment programs are as follows:

(1) For each entity, extract the currency rules from
all its records, and calculate the currency quality
according to the evaluation models;

(2) Sort all entities in ascending or descending
order by the evaluated quality value;

(3) Set the recall levels to 60%, 65%, ..., 95%, and
calculate the precision of different recall levels. For
example, in the identification of abnormal entities,
if the recall is set to 60%, the number of entities to
be recalled is 66×60% = 40. Check the sorted 66
entities order by model result ascending from
front to back, count the normal and abnormal
entities respectively, until the number of abnormal
entities is 40. The count of abnormal entities is TP,
and the count of normal entities is FP, according to
the TP and FP, we can calculate the precision
value of the specific recall level. The calculation of
precision at other recall levels is the same.

The experiment compared the CR, SM, CM1 and
CM2 evaluation models. In general, the precision
of the four models are relatively high, and all of
them can meet the needs of data currency quality
evaluation. Precisions of each model at different
recall levels are shown in Figure 9 (a).

In general, the CM2 has the highest precision
under the same recall level, precision reached a
maximum of 0.9833 when the recall is 90%. The
precisions at different recall levels of the CR, SM
and CM1 models are very close. At the 70% recall
level, CM1 is better than CR and SM; when the
recall is 95%, the SM and CM1 are better than CR.
When the recall is 95%, precision of CR model is
the lowest at 0.9538.

The F1 scores of each evaluation model at different

recall levels are shown in Figure 9 (b). The
trend of F1 score of each model is basically
consistent with the trend of precision, and
the CM2 model performs best overall. The F1
score of CM2 reached a maximum of 0.9695
when the recall is 95%.
Figure 9

Models’ Precisions and F1 scores at different recall
levels

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

60% 65% 70% 75% 80% 85% 90% 95%

CR
SM
CM2
CM1

Recal

Pr
ec

isi
on

(a) Precisions at different recall levels

0.7
0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

60% 65% 70% 75% 80% 85% 90% 95%

CR
SM
CM2
CM1

Recal

F1
 S

co
re

(b) F1 scores at different recall levels

The mean value of precisions at different
recall level for 4 models are shown in Figure
10. Experimental results show that the CM2
model is generally optimal, followed by CM1
and SM, the CR model performs relatively
inferior.

By analysing the definitions of four models, it
can be found that the CR model only
considers the direction consistence and has
the least reference information; SM further
uses support information on the basis of CR;
CM1 uses the compliance degree of the rule,
which is actually measures the consistency of
the rules according to the path length feature.
On the basis of CM1, the CM2 model
references both the path length and the
support features of the rules, making full use

. (15)

As there is no suitable public benchmark data set for
our experiments, we prefer to use these R, P, F1 indi-
cators to evaluate the four proposed data quality eva-
luation models, rather than as absolute standards.
In the evaluation of currency quality models, we
mainly evaluate their ability of finding abnormal enti-
ties, the experiment programs are as follows:
1 For each entity, extract the currency rules from all

its records, and calculate the currency quality ac-
cording to the evaluation models;

2 Sort all entities in ascending or descending order
by the evaluated quality value;

3 Set the recall levels to 60%, 65%, ..., 95%, and cal-
culate the precision of different recall levels. For
example, in the identification of abnormal entities,

if the recall is set to 60%, the number of entities to
be recalled is 66×60% = 40. Check the sorted 66 en-
tities order by model result ascending from front
to back, count the normal and abnormal entities
respectively, until the number of abnormal entities
is 40. The count of abnormal entities is TP, and the
count of normal entities is FP, according to the TP
and FP, we can calculate the precision value of the
specific recall level. The calculation of precision at
other recall levels is the same.

The experiment compared the CR, SM, CM1 and
CM2 evaluation models. In general, the precision of
the four models are relatively high, and all of them can
meet the needs of data currency quality evaluation.
Precisions of each model at different recall levels are
shown in Figure 9 (a).

Figure 9
Models’ Precisions and F1 scores at different recall levels

(a) Precisions at different recall levels

(b) F1 scores at different recall levels

positive, FP is the false positive and FN is false
negative.

The precision and recall are often contradiction.
Comprehensively consider the two indicators, we
also use the weighted harmonic average of
precision and recall, F-Measure, when P and R
have the same weight, the result is F1 score,
defined as follows:

RP
RPF

+
××

=
21 . (15)

As there is no suitable public benchmark data set
for our experiments, we prefer to use these R, P,
F1 indicators to evaluate the four proposed data
quality evaluation models, rather than as absolute
standards.

In the evaluation of currency quality models, we
mainly evaluate their ability of finding abnormal
entities, the experiment programs are as follows:

(1) For each entity, extract the currency rules from
all its records, and calculate the currency quality
according to the evaluation models;

(2) Sort all entities in ascending or descending
order by the evaluated quality value;

(3) Set the recall levels to 60%, 65%, ..., 95%, and
calculate the precision of different recall levels. For
example, in the identification of abnormal entities,
if the recall is set to 60%, the number of entities to
be recalled is 66×60% = 40. Check the sorted 66
entities order by model result ascending from
front to back, count the normal and abnormal
entities respectively, until the number of abnormal
entities is 40. The count of abnormal entities is TP,
and the count of normal entities is FP, according to
the TP and FP, we can calculate the precision
value of the specific recall level. The calculation of
precision at other recall levels is the same.

The experiment compared the CR, SM, CM1 and
CM2 evaluation models. In general, the precision
of the four models are relatively high, and all of
them can meet the needs of data currency quality
evaluation. Precisions of each model at different
recall levels are shown in Figure 9 (a).

In general, the CM2 has the highest precision
under the same recall level, precision reached a
maximum of 0.9833 when the recall is 90%. The
precisions at different recall levels of the CR, SM
and CM1 models are very close. At the 70% recall
level, CM1 is better than CR and SM; when the
recall is 95%, the SM and CM1 are better than CR.
When the recall is 95%, precision of CR model is
the lowest at 0.9538.

The F1 scores of each evaluation model at different

recall levels are shown in Figure 9 (b). The
trend of F1 score of each model is basically
consistent with the trend of precision, and
the CM2 model performs best overall. The F1
score of CM2 reached a maximum of 0.9695
when the recall is 95%.
Figure 9

Models’ Precisions and F1 scores at different recall
levels

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

60% 65% 70% 75% 80% 85% 90% 95%

CR
SM
CM2
CM1

Recal

Pr
ec

isi
on

0.7
0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

60% 65% 70% 75% 80% 85% 90% 95%

CR
SM
CM2
CM1

Recal

F1
 S

co
re

(b) F1 scores at different recall levels

The mean value of precisions at different
recall level for 4 models are shown in Figure
10. Experimental results show that the CM2
model is generally optimal, followed by CM1
and SM, the CR model performs relatively
inferior.

By analysing the definitions of four models, it
can be found that the CR model only
considers the direction consistence and has
the least reference information; SM further
uses support information on the basis of CR;
CM1 uses the compliance degree of the rule,
which is actually measures the consistency of
the rules according to the path length feature.
On the basis of CM1, the CM2 model
references both the path length and the
support features of the rules, making full use

positive, FP is the false positive and FN is false
negative.

The precision and recall are often contradiction.
Comprehensively consider the two indicators, we
also use the weighted harmonic average of
precision and recall, F-Measure, when P and R
have the same weight, the result is F1 score,
defined as follows:

RP
RPF

+
××

=
21 . (15)

As there is no suitable public benchmark data set
for our experiments, we prefer to use these R, P,
F1 indicators to evaluate the four proposed data
quality evaluation models, rather than as absolute
standards.

In the evaluation of currency quality models, we
mainly evaluate their ability of finding abnormal
entities, the experiment programs are as follows:

(1) For each entity, extract the currency rules from
all its records, and calculate the currency quality
according to the evaluation models;

(2) Sort all entities in ascending or descending
order by the evaluated quality value;

(3) Set the recall levels to 60%, 65%, ..., 95%, and
calculate the precision of different recall levels. For
example, in the identification of abnormal entities,
if the recall is set to 60%, the number of entities to
be recalled is 66×60% = 40. Check the sorted 66
entities order by model result ascending from
front to back, count the normal and abnormal
entities respectively, until the number of abnormal
entities is 40. The count of abnormal entities is TP,
and the count of normal entities is FP, according to
the TP and FP, we can calculate the precision
value of the specific recall level. The calculation of
precision at other recall levels is the same.

The experiment compared the CR, SM, CM1 and
CM2 evaluation models. In general, the precision
of the four models are relatively high, and all of
them can meet the needs of data currency quality
evaluation. Precisions of each model at different
recall levels are shown in Figure 9 (a).

In general, the CM2 has the highest precision
under the same recall level, precision reached a
maximum of 0.9833 when the recall is 90%. The
precisions at different recall levels of the CR, SM
and CM1 models are very close. At the 70% recall
level, CM1 is better than CR and SM; when the
recall is 95%, the SM and CM1 are better than CR.
When the recall is 95%, precision of CR model is
the lowest at 0.9538.

The F1 scores of each evaluation model at different

recall levels are shown in Figure 9 (b). The
trend of F1 score of each model is basically
consistent with the trend of precision, and
the CM2 model performs best overall. The F1
score of CM2 reached a maximum of 0.9695
when the recall is 95%.
Figure 9

Models’ Precisions and F1 scores at different recall
levels

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

60% 65% 70% 75% 80% 85% 90% 95%

CR
SM
CM2
CM1

Recal

Pr
ec

isi
on

0.7
0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

60% 65% 70% 75% 80% 85% 90% 95%

CR
SM
CM2
CM1

Recal

F1
 S

co
re

(b) F1 scores at different recall levels

The mean value of precisions at different
recall level for 4 models are shown in Figure
10. Experimental results show that the CM2
model is generally optimal, followed by CM1
and SM, the CR model performs relatively
inferior.

By analysing the definitions of four models, it
can be found that the CR model only
considers the direction consistence and has
the least reference information; SM further
uses support information on the basis of CR;
CM1 uses the compliance degree of the rule,
which is actually measures the consistency of
the rules according to the path length feature.
On the basis of CM1, the CM2 model
references both the path length and the
support features of the rules, making full use

261Information Technology and Control 2021/2/50

In general, the CM2 has the highest precision under
the same recall level, precision reached a maximum of
0.9833 when the recall is 90%. The precisions at diffe-
rent recall levels of the CR, SM and CM1 models are
very close. At the 70% recall level, CM1 is better than
CR and SM; when the recall is 95%, the SM and CM1
are better than CR. When the recall is 95%, precision
of CR model is the lowest at 0.9538.
The F1 scores of each evaluation model at different
recall levels are shown in Figure 9 (b). The trend of F1
score of each model is basically consistent with the
trend of precision, and the CM2 model performs best
overall. The F1 score of CM2 reached a maximum of
0.9695 when the recall is 95%.

Figure 10
Mean value of precisions at different recall level

of the information of the extended currency rules,
so the overall performance is best.
Figure 10

Mean value of precisions at different recall level

0.965 0.967

0.978

0.969

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Mean value of precision at different recall levels

Pr
ec

isi
on

CR SM CM2 CM1

For data currency quality evaluation, first run the
model on labelled data (for example, we marked
entities as normal and abnormal), and then
calculate the model mean of each type of data. In
our experiment, using the CM2 model as an
example, the average CM2 of entities marked as
abnormal is 0.5761, and the average value of
entities marked as normal is 0.6459. Therefore, if
one’s CM2 < 0.5761, it can be considered that its
currency quality is very poor; while when
another’s CM2> 0.6459, it can be considered that
the entity's currency quality is very good. For
more accurate quality grading, please refer to the
recall-based method used in our experiment. In
our experiment, the CM2 model under different
recall levals, precisions, and model values are
shown in Table 8. For example, we can determine
that when an entity has a CM2> 0.6477, there is a
great possibility that it will also be an entity
marked as normal, and the quality should be
good.
Table 8

The CM2 Model Evaluation Result
Recall Precision CM2
60% 0.9750 0.5913
65% 0.9767 0.6044
70% 0.9787 0.6098
75% 0.9800 0.6123
80% 0.9811 0.6138
85% 0.9825 0.6216
90% 0.9833 0.6224
95% 0.9688 0.6248

100% 0.9296 0.6477

6 Conclusions
Currency rules can be used for both data
repairing and data quality evaluation. Based
on the current research on data currency, this
paper further studied the dynamic updating
and parallelization algorithms of currency
rules, and proposed several data currency
quality evaluation models. The main research
results are as follows:

(1) Extending the basic currency rule. The
extended currency rules can be updated
incrementally, and the new added path
length attribute can provide more effective
information for currency quality evaluation.

(2) Proposing parallel extraction and merging
algorithms for currency rules. Experimental
tests show that the parallel algorithms are
effective. Compared with non-parallel
algorithms, the extraction performance is
improved by 75.20%, merging performance is
improved by 55.23%, and the evaluation
performance is improved by 85.86%.

(3) Proposing the CR, SM, CMs data currency
evaluation models. Experimental results
show that the precisions of the four models
are relatively high, and all of them can meet
the needs of general data currency quality
evaluation. The CM2 model which references
both the path length and the support features
of the rules has the best performance, when
recall is 90%, precision is 0.9833, and when
recall is 95% F1 score is 0.9695.

In future data currency research, we will
explore data repairing and quality evaluation
methods that combine conditional function
dependence and data currency rules. The
currency rules can be considered as some
features extracted from the sequential
relationship of the data; the conditional
function dependence can be considered as
some features extracted from the
relationships between the data fields. The
fusion research on data sequence relationship
and data field relationship will help to
further improve data repair and improve
data quality evaluation effect. Research on
the fusion of two feature aspects of the
vertical sequence relationships and the
horizontal fields relationships will help to
further improve the quality of data repairing
and data currency evaluation.

The mean value of precisions at different recall level
for 4 models are shown in Figure 10. Experimental re-
sults show that the CM2 model is generally optimal,
followed by CM1 and SM, the CR model performs re-
latively inferior.
By analysing the definitions of four models, it can be
found that the CR model only considers the direction
consistence and has the least reference information;
SM further uses support information on the basis
of CR; CM1 uses the compliance degree of the rule,
which is actually measures the consistency of the
rules according to the path length feature. On the ba-
sis of CM1, the CM2 model references both the path
length and the support features of the rules, making
full use of the information of the extended currency
rules, so the overall performance is best.

For data currency quality evaluation, first run the mo-
del on labelled data (for example, we marked entities
as normal and abnormal), and then calculate the mo-
del mean of each type of data. In our experiment, using
the CM2 model as an example, the average CM2 of
entities marked as abnormal is 0.5761, and the avera-
ge value of entities marked as normal is 0.6459. There-
fore, if one’s CM2 < 0.5761, it can be considered that
its currency quality is very poor; while when another’s
CM2> 0.6459, it can be considered that the entity‘s
currency quality is very good. For more accurate qu-
ality grading, please refer to the recall-based method
used in our experiment. In our experiment, the CM2
model under different recall levals, precisions, and
model values are shown in Table 8. For example, we
can determine that when an entity has a CM2> 0.6477,
there is a great possibility that it will also be an entity
marked as normal, and the quality should be good.

Table 8
The CM2 Model Evaluation Result

Recall Precision CM2

60% 0.9750 0.5913

65% 0.9767 0.6044

70% 0.9787 0.6098

75% 0.9800 0.6123

80% 0.9811 0.6138

85% 0.9825 0.6216

90% 0.9833 0.6224

95% 0.9688 0.6248

100% 0.9296 0.6477

6. Conclusions
Currency rules can be used for both data repairing
and data quality evaluation. Based on the current re-
search on data currency, this paper further studied
the dynamic updating and parallelization algorithms
of currency rules, and proposed several data currency
quality evaluation models. The main research results
are as follows:
1 Extending the basic currency rule. The extended

currency rules can be updated incrementally, and
the new added path length attribute can provide

Information Technology and Control 2021/2/50262

more effective information for currency quality
evaluation.

2 Proposing parallel extraction and merging algori-
thms for currency rules. Experimental tests show
that the parallel algorithms are effective. Com-
pared with non-parallel algorithms, the extraction
performance is improved by 75.20%, merging per-
formance is improved by 55.23%, and the evaluati-
on performance is improved by 85.86%.

3 Proposing the CR, SM, CMs data currency evalu-
ation models. Experimental results show that the
precisions of the four models are relatively high,
and all of them can meet the needs of general data
currency quality evaluation. The CM2 model which
references both the path length and the support fe-
atures of the rules has the best performance, when
recall is 90%, precision is 0.9833, and when recall
is 95% F1 score is 0.9695.

In future data currency research, we will explore data
repairing and quality evaluation methods that combi-
ne conditional function dependence and data curren-

cy rules. The currency rules can be considered as some
features extracted from the sequential relationship of
the data; the conditional function dependence can
be considered as some features extracted from the
relationships between the data fields. The fusion re-
search on data sequence relationship and data field
relationship will help to further improve data repair
and improve data quality evaluation effect. Research
on the fusion of two feature aspects of the vertical
sequence relationships and the horizontal fields re-
lationships will help to further improve the quality of
data repairing and data currency evaluation.

Acknowledgments
This work was supported in part by the National
Natural Science Foundation of China under Grant
No. 61772352; National Key Research and Devel-
opment Projec under Grant No. 2020YFB1711800
and 2020YFB1707900; the Science and Technol-
ogy Project of Sichuan Province under Grant No.
2019YFG0400, 2020YFG0479, 2020YFG0322, and
the R&D Project of Chengdu City under Grant No.
2019-YF05-01790-GX.

References
1. Brkić, L., Mekterović, I. A Time-Constrained Algorithm

for Integration Testing in a Data Warehouse Envi-
ronment. Information Technology and Control, 2018,
47(1), 5-25. https://doi.org/10.5755/j01.itc.47.1.18171

2. Ding, X., Wang, H., Gao, Y., Li, J., Gao, H. Determining
the Currency of Dynamic Data. In: Proceedings of the
ACM Turing, Celebration Conference, ACM Press,
2017, 17. https://doi.org/10.1145/3063955.3063972

3. Ding, X., Wang, H., Gao, Y., Li, J., Gao, H. Efficient Cur-
rency Determination Algorithms for Dynamic Data. Ts-
inghua Science and Technology, 2017, 22 (3), 227-242.
https://doi.org/10.23919/TST.2017.7914196

4. Ding, X., Wang, H., Zhang, X., et al. Association Rela-
tionships Study of Multi-dimensional Data Quality.
Ruan Jian Xue Bao/Journal of Software, 2016, 27(7),
1626-1644. https://doi.org/10.13328/j.cnki.jos.005040

5. Du, Y., Shen, D., Nie, T., et al. A cleaning method for
consistency and currency in related data. Chinese
Journal of Computers, 2017, 40 (1), 92-106. https://doi.
org/10.11897/SP.J.1016.2017.00092

6. Duan, X., Guo, B., Shen, Y., et al. Data repair Algo-
rithm Based on Currency Rules. Ruan Jian Xue Bao/

Journal of Software, 2019, 30(3), 589-603. https://doi.
org/10.13328/j.cnki.jos.005688

7. Eckerson, W. Data Quality and the Bottom Line: Achiev-
ing Business Success Through a Commitment to Heigh
Quality Data. Washington: The Data Warehouse Insti-
tute, 2002.

8. Fan, W., Greets, F. Foundations of Data Quality Manage-
ment. Morgan & Claypool Publishers, 2012.

9. Fan, W., Geerts, F., Wijsen, J. Determining the Currency
of Data. ACM Transactions on Database Systems, 2012,
37(4), 1-46. https://doi.org/10.1145/2389241.2389244

10. Fan, W., Geerts, F., Wijsen, J. Determining the Cur-
rency of Data. In: Proceedings of the 30th ACM Sig-
mod-sigact-sigart Symposium on Principles of Da-
tabase Systems. ACM Press, 2011, 71-82. https://doi.
org/10.1145/1989284.1989295

11. Fan, W., Geerts, F., Yu, W. Conflict Resolution with
Data Currency and Consistency. Journal of Data
& Information Quality, 2014, 5(1-2), 6. https://doi.
org/10.1145/2631923

12. Fuhr, N., Rölleke. T. A Probabilistic Relational Al-
gebra for the Integration of Information Retrieval

https://doi.org/10.5755/j01.itc.47.1.18171
https://doi.org/10.1145/3063955.3063972
https://doi.org/10.23919/TST.2017.7914196
https://doi.org/10.1145/2389241.2389244
https://doi.org/10.1145/1989284.1989295
https://doi.org/10.1145/1989284.1989295
https://doi.org/10.1145/2631923
https://doi.org/10.1145/2631923

263Information Technology and Control 2021/2/50

and Database Systems. ACM Transactions on In-
formation Systems, 1997, 15(1), 32-66. https://doi.
org/10.1145/239041.239045

13. Guo, B., Li, Q., Duan, X.-L., Shen, Y.-C., Dong, X.-Q.,
Zhang, H., Shen, Y., Zhang, Z.-L., Luo, J. Personal Data
Bank: A New Mode of Personal Big Data Asset Man-
agement and Value-Added Services Based on Bank Ar-
chitecture. Chinese Journal of Computers, 2017, 40(1),
126-143. https://doi.org/10.11897/SP.J.1016.2017.00126

14. Huang, S.-Y., Huang, S.-M, Wu, T.-H, Hsieh, T.-Y. The
Data Quality Evaluation of Graph Information. Journal
of Computer Information Systems, 2011, 51(4), 81-91.

15. Huo, R., Wang, H., Zhu, R., Li, J.-Z., Gao, H. Map-re-
duce Based Entity Identification in Big Data. Journal
of Computer Research and Development, 2013, 50(s2),
170-179.

16. Jin, C., Liu, H., Zhou, A. Functional Dependency and
Conditional Constraint Based Data Repair. Ruan Jian
Xue Bao/Journal of Software, 2016, 27(7), 1671-1684.
https://doi.org/10.13328/j.cnki.jos.005037

17. Koubarakis, M. Representation and Querying in Tem-
poral Databases: The Power of Temporal Constraints.
In: Proceedings of the International Conference on
Data Engineering. IEEE Computer Society, 1993. 327-
334. https://doi.org/10.1109/ICDE.1993.344049

18. Li, M., Li, J. A Minimized-Rule Based Approach for Im-
proving Data Currency. Journal of Combinatorial Opti-
mization, 2016, 32(3), 812-841.https://doi.org/10.1007/
s10878-015-9904-8

19. Li, M., Li, J., Gao, H. Evaluation of data currency. Chi-
nese Journal of Computers, 2012, 35 (11), 2348-2360.
https://doi.org/10.3724/SP.J.1016.2012.02348

20. Li, M.,Li, J. Algorithms for Improving Data Currency.
Journal of Computer Research and Development, 2015,
52(9), 1992-2001. https://doi.org/10.7544/issn1000-
1239.2015.20140687

21. Liang, Y., Duan, X., Ding, Y., Kou, X., Huang, J. Data Min-
ing of Students’ Course Selection Based on Currency
Rules and Decision Tree. In Proceedings of the 2019 4th

International Conference on Big Data and Computing.
ACM, New York, NY, USA, 2019, 247-252. https://doi.
org/10.1145/3335484.3335541

22. Meyden, V. The Complexity of Querying Indefinite Data
About Linearly Ordered Domains. Journal of Comput-
er & System Sciences, 1997, 54(1), 113-135. https://doi.
org/10.1006/jcss.1997.1455

23. Sargent, P. Data Quality in Materials Information Sys-
tems. Computer-Aided Design, 1992, 24(9), 477-490.
https://doi.org/10.1016/0010-4485(92)90028-9

24. Savulionienė, L., Sakalauskas, L. A Stochastic Algorithm
of Frequent Set Search for Mining Association Rules.
Information Technology and Control, 2014, 43(2), 121-
132. https://doi.org/10.5755/j01.itc.43.2.3135

25. Song, S., Cao, Y., Wang, J. Cleaning Timestamps with
Temporal Constraints. Proceedings of the VLDB En-
dowment, 2016, 9(10), 708-719. https://doi.org/10.
14778/2977797.2977798

26. Wang, H., Fan, W. Object Identification on Com-
plex Data: A Survey. Chinese Journal of Computers,
2011, 34(10), 1843-1852. https://doi.org/10.3724/SP.
J.1016.2011.01843

27. Wang, R., Strong, D. Beyond Accuracy: What Data Qual-
ity Means to Data Consumers. Journal of Management
Information Systems, 1996, 12(4), 5-33. https://doi.org/
10.1080/07421222.1996.11518099

28. Zhang, H., Guo, B., Shen, Y.-C., Duan, X.-L., Dong, X.-Q.
An Information Source Localization Algorithm Based
on Cellular Automata Model. International Journal of
Modern Physics B, 2019, 33(28), 1950336-1-14. https://
doi.org/10.1142/S0217979219503363

29. Zhang, H., Diao, Y., Immerman, N. Recognizing Patterns
in Streams with Imprecise Timestamps. Proceedings of
the VLDB Endowment, 2010, 3(1-2), 244-255. https://
doi.org/10.1016/j.is.2012.01.002

30. Zhou, A.-Y., Jin, C.-Q., Wang, G.-R, Li, J.-Z. A Survey on
the Management of Uncertain Data. Chinese Journal of
Computers, 2009, 32(1), 1-16. https://doi.org/10.3724/
SP.J.1016.2009.00001

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1145/239041.239045
https://doi.org/10.1145/239041.239045
https://doi.org/10.1109/ICDE.1993.344049
https://doi.org/10.1007/s10878-015-9904-8
https://doi.org/10.1007/s10878-015-9904-8
https://doi.org/10.3724/SP.J.1016.2012.02348
https://doi.org/10.1145/3335484.3335541
https://doi.org/10.1145/3335484.3335541
https://doi.org/10.1006/jcss.1997.1455
https://doi.org/10.1006/jcss.1997.1455
https://doi.org/10.1016/0010-4485(92)90028-9
https://doi.org/10.5755/j01.itc.43.2.3135
https://doi.org/10.14778/2977797.2977798
https://doi.org/10.14778/2977797.2977798
https://doi.org/10.3724/SP.J.1016.2011.01843
https://doi.org/10.3724/SP.J.1016.2011.01843
https://doi.org/10.1080/07421222.1996.11518099
https://doi.org/10.1080/07421222.1996.11518099
https://doi.org/10.1142/S0217979219503363
https://doi.org/10.1142/S0217979219503363
https://doi.org/10.1016/j.is.2012.01.002
https://doi.org/10.1016/j.is.2012.01.002
https://doi.org/10.3724/SP.J.1016.2009.00001
https://doi.org/10.3724/SP.J.1016.2009.00001

