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This study focuses on the maximization of the minimum completion time using identical parallel processors. 
The objective of this maximization is to ensure fair distribution. A set of processes is to be scheduled to several 
identical parallel processors, and this problem is proved as NP-hard. The research for this paper is based pri-
marily on the performance of the proposed heuristics with other methods cited in the literature review. Our 
heuristics are developed mainly using the randomization method and the iterative utilization of the knapsack 
problem to solve the above-mentioned problem. The heuristics are assessed by several instances represented 
in the experimental results. The results shew that the knapsack-based heuristic provides a performance that is 
almost like the heuristic in the literature review but with better running time.
KEYWORDS: Parallel processors; algorithms; heuristic; knapsack problem.

1. Introduction
Nowadays, it is crucial to reduce manufacturing costs 
in companies across the world. The machines used in 
manufactories comprise rare resources because, in 
general, machines are costly. Thus, the proper distri-
bution of processes is essential from an industrial and 
financial point of view.

Suitable scheduling that reduces costs in the in-
dustrial sectors can help managers make decisions. 
There is a need to have a system that provides data 
and information. Several heuristics algorithms were 
compared for this study, while the first heuristics 
were based on the randomized algorithms, and the 
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second was based on meta-heuristics. The presented 
work is focused on improved methods for scheduling 
problems, which provides an extension to help deci-
sion-analytics using methods that help organizations 
and firms. The scheduling problem has several appli-
cations in manufacturing, networks, communication, 
budgeting, and many more fields. The solutions to 
these problems affect everyday activities and manag-
ers with relevant effects on the public and private do-
mains and largely on all society. Various applications 
of the studied problem and their scheduling in sever-
al areas have been studied. The scheduling problems 
were used, and a presentation of a wide variety of the 
distribution of resource models by assigning a math-
ematical formulation and model to compute optimal 
solutions to these models was formulated.
In our study, we focus on the maximization of the 
minimum load machines for the identical parallel 
machines problem. In several works, researchers use 
the term "machine covering problem" to describe the 
same problem. Deuermeyer et al. [5] introduced the 
machine covering problem. Several definitions for the 
studied problem and results are described  [13].
Different industrial applications implement the solu-
tion of the machine covering problem to reduce costs. 
Moreover, the application of the solution to gas turbine 
aircraft engine maintenance is developed, and some 
proposed solutions based on mathematical modeling is 
presented [9]. Additionally, this research presents the 
results of the implementation coded in Cplex.
The literature review of the studied problem is not ex-
tensive. However, some works related to the covering 
machine are examined in several cases.
Semi-online scheduling for identical parallel ma-
chines and the study of the machine covering prob-
lems is presented [22]. Notably, in the latter work an 
optimal solution with several semi-online versions 
was developed.
Jiang et al. [17] shew that the offline scheduling ver-
sion can provide a solution in O(mn). In addition, 
the latter research shews that the ratio measuring 
the competitiveness of a randomized online method 
has several fixed values, for m-uniform-machine and 
m-identical machine problems.
Other researches articulated the machine covering 
problem but only on two uniform machines [4], [12], 
[20] and [21]. Among the more recent works, a specif-

ic problem regarding the preemptive scheduling in the 
case of the semi-online problem was developed [12]. In 
this work, an exact solution using an algorithm for the 
semi-online case for every machine fixed speed ratio of 
s was developed. In addition, the latter study has shown 
that an idle time must exist when the procedure of the 
algorithms was assigned for any bounded s.
An improvement of the (2+ε)-competitive algorithm 
with constant reassignment factor was developed 
[19]. The main result for the latter work is that for any 
ε>0, one can maintain a (1+ε)-competitive solution for 
several constant rescheduled factors r(ε). 
Wu et al. [24] focused their research on the machine 
covering problems on two hierarchical machines, 
with added constraints, such as tasks that are corre-
spondingly grouped into two hierarchical groups. 
A random method was presented for the online prob-
lem with a running time of O(√mlnm) [3]. A deter-
ministic algorithm enhanced this recent work with a 
competitive ratio of 11/6 ≤ 1.834  [6].
Machine covering was also applied with partial infor-
mation on identical parallel machines [25].
Gálvez  et al. [7] presented a theorem that bounded 
the migration factor for the online algorithms for the 
machine covering problem with migration. In this 
context, the latter research shew that there exists, for 
any ε>0, (4/3+ε)-competitive algorithm with a migra-
tion factor O(1/ε5), and an approximation ratio of the 
local search algorithm in the interval [1.691,1.75] . 
Gerke et al. [8] considered a specific problem based on 
a stochastic variant of the Santa Claus problem. 
Recently Walter et al. [23] proposed a new exact al-
gorithm based on the branch-and-bound algorithm 
to solve the problem of maximizing the minimum. 
Several enhanced lower bounds and heuristics were 
also developed in this work. In addition, in the latter 
work, a comparison study of the results given [11] was 
developed. The studied problem has several appli-
cations in our real-life and is practical. Our study is 
based on the mathematical modeling of two new low-
er bounds. The model utilizes the randomized method 
and the iterative solution of several subset problems.
Recently, several studies have focused on the fair dis-
tribution [1], [2], [14], [15] and [16].
In this study, we organize the work as follows. In Sec-
tion 2, we describe the studied problem with exam-
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ples and provide variable definitions and notations 
that will be used in the study. The proposed heuris-
tics are presented in Section 3. Section 4 is devoted to 
the experimental results that shew a comparison be-
tween the proposed heuristics and those cited in the 
literature review. Finally, a conclusion is provided in 
the last Section.

2. Problem Definition
In this Section, the definition is presented of the stud-
ied problem. This problem can be described as fol-
lows. Denoted by J, the set of n independent process-
es will be scheduled on p identical parallel processors 
represented by the set {pr1,…,prp}. Each process j is de-
fined by its processing time, which is denoted by pj. All 
processes have positive processing time { }

1
, ,

n
p p… . 

p

i
C denotes the load of the ith processor. The load of 
a processor is calculated by the summation of all the 
processing times corresponding to the processes 
scheduled on the processor. Let jC be the time when 
the process j finishes its execution. The minimum 
completion time is denoted by Cmin. The goal is to de-
termine a suitable schedule that maximizing Cmin. The 
problem is denoted by P||Cmin using the notation de-
scribed in [10]. This problem has an inextinguishable 
theoretical interest because the impact of the appli-
cation in real-life. Indeed, the studied problem van be 
applied on different domain of application (financial, 
industrial, computer science, aircraft, health care, 
railway, etc.) In this work, we present some heuristics 
to provide a solution to the problem. 
Example 1. Let n=6 and p=2. We display the process-
ing time for each process in Table 1.
Figure 1 presents a schedule to assign the processes 
on the processors. 

Table 1 
Processing time of 6-processes

j 1 2 3 4 5 6

pj 5 10 4 2 3 1

Figure 1
6-2 processes-processors processing time distribution

From Figure 1, we observe that the minimum comple-
tion time Cmin on the processors is 7. The objective is 
to search a schedule that maximizes the obtained Cmin. 
Here for this example the gap between the first pro-
cessor and the second one is 18-7=11.
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gap. Let the following schedule (Figure 2) 
obtained for the same instance in Table 1.  

 

 

 

 

 

 

 

 
Fig. 2. Maxi-min schedule 

In Figure 2, the Cmin=12. Thus, the gap 
between the two processors is 13-12=1. 
Comparing with schedule illustrated in 
Figure 1, the new schedule is better and give a 
minimum gap by maximizing the minimum 
completion time. 
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Applying another algorithm can minimize the gap. 
Let the following schedule (Figure 2) obtained for the 
same instance in Table 1. 
In Figure 2, the Cmin=12. Thus, the gap between the 
two processors is 13-12=1. Comparing with schedule 
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completion time.
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This work compares the LPT rule [11] and the pro-
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3.1. Iterative Randomized Heuristic (IR)
The LPT rule is based on the ordering of all processes 
in the non-increasing order of their processing time. 
After that, we schedule the first longest process on 
the most available processor, and so on. The idea of 
the proposed heuristic is to extend the selection of 
the longest process. This implies that we do not select 
the longest process, but randomly select a process 
between the two longest processes. A generalization 
of this idea is to iterate the procedure multiple times. 
Indeed, the selected process is chosen among k pro-
cesses having the longest processing time. The choice 
of the process is given a probability α.
In practice, the probability is calculated as follows. A 
random number r will be chosen between 1 and k. The 
selected process will be the process that has the rth 
longest processing time among the unscheduled pro-
cesses. When the number of unscheduled processes nu 
is less than r, we choose r randomly between 1 and nu.
The iterative randomized heuristic is displayed in Al-
gorithm 1.

Algorithm 1: Iterative randomized heuristic algorithm

Step 0 Set it=1, k=2.

Step 1 Jk=J.

Step 2 R=random[1-min(k,|Jk|)]. 

Step 3 Assign the rth longest process Lr to the 
most available processor.

Step 4 Jk=Jk\Lr, if Jk ≠∅  goto Step 2

Step 5 Calculate ,
min
k itC .

Step 6 it=it+1 

Step 7 If it<lim go to Step 1

Step 8
1 1000

,
min minmax

it

k k itC C
≤ ≤

=

Step 9 k=k+1, if k<7 then it=1 and go to Step 1

Step 10 min
1 5

min max k

k

C C
≤ ≤

=

Step 11 Return Cmin. Stop.

3.2. Iterative Knapsack Problem Heuristic 
(IK)
This heuristic is articulated primarily for the given 
idea. An upper bound was calculated for the studied 
problem denoted by UB. After that, we solve a knap-
sack problem searching the assignment of the maxi-
mum processes on the first processor, not reaching 
the UB value. The resolution of the knapsack problem 
will give as a set of processes that will be scheduled 
for the first processor. Now, we apply the same pro-
cedure to the remaining processes and search for the 
processes that will be assigned to the second proces-
sor, and so on, until we assign all the given processes. 
For this heuristic, a greedy iterative method is adopt-
ed to solve a knapsack (KS) family problem KS(l) with 
l={0,…,p-1}.
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 J1=J and Jl+1=Jl\Ol, where Ol is an optimal 
set given by KS(l). 
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 UB(O,k) is an upper bound for the P||Cmin 
the problem of a reduced instance defined 
on k≤p processors and a subset of 
processes O O J⊆ . In practice, we 
choose the trivial upper bound. 

Consequently, the algorithm for the iterative 
knapsack heuristic begins by solving KS(O) to 
determine a subset of processes J0 where total 
processing time is maximal but not more 
significant than the value of an upper bound. 
These processes will be scheduled on the first 
processor. Then, the algorithm computes an 
upper bound on the remaining processes and 
processors. This is mean that the new problem 
will be defined by p-1 processors and process-
set J\J1. Now, the knapsack problem is solved 
to determine an optimal subset of processes 
that will be assigned to a second processor, 
and so on. 

The processes that belong to Op=Jp-1\Op-1 are 
scheduled on the pth processor. Since KS is an 
NP-hard, we utilize, in our algorithm, the 
pseudo-code developed in [18], which is 
based on the resolution of the problem in 
pseudo-polynomial time using dynamic 
programming. The iterative knapsack 
heuristic is displayed in Algorithm 2. 
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𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟔𝟔𝟔𝟔 it=it+1  
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟕𝟕𝟕𝟕 If it<lim go to 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟏𝟏𝟏𝟏. 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟖𝟖𝟖𝟖 
1 1000

,
min minmax

it

k k itC C
≤ ≤

=  

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟗𝟗𝟗𝟗 k=k+1, if k<7 then it=1 and go to 
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟏𝟏𝟏𝟏 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎 min
1 5

min max k

k

C C
≤ ≤

=  

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 Return Cmin. Stop. 

 

where: 
 _ J1=J and Jl+1=Jl\Ol, where Ol is an optimal set given 

by KS(l).

 _ | | 1l
j j

Jw p
p l

= −
−

.

 _ UB(O,k) is an upper bound for the P||Cmin the 
problem of a reduced instance defined on k≤p 
processors and a subset of processes O O J⊆ . In 
practice, we choose the trivial upper bound.

Consequently, the algorithm for the iterative knap-
sack heuristic begins by solving KS(O) to determine 
a subset of processes J0 where total processing time 
is maximal but not more significant than the value of 
an upper bound. These processes will be scheduled 
on the first processor. Then, the algorithm computes 
an upper bound on the remaining processes and pro-
cessors. This is mean that the new problem will be de-
fined by p-1 processors and process-set J\J1. Now, the 
knapsack problem is solved to determine an optimal 
subset of processes that will be assigned to a second 
processor, and so on.
The processes that belong to Op=Jp-1\Op-1 are sched-
uled on the pth processor. Since KS is an NP-hard, we 
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utilize, in our algorithm, the pseudo-code developed 
in [18], which is based on the resolution of the prob-
lem in pseudo-polynomial time using dynamic pro-
gramming. The iterative knapsack heuristic is dis-
played in Algorithm 2.

Algorithm 2: Iterative knapsack heuristic

Step 0 Initialize l=0, J0=J.

Step 1 For l=0 to p-1 do

Step 2 u=UB(Jl,p-l)

Step 3 Zl=KS(l), Ol is the list returned by KS(l).

Step 4 Schedule Ol on processor prl+1 

Step 5 Jl+1=Jl\Ol

End For

Step 6 Calculate Cmin value.

Step 7 Return Cmin. Stop.

Algorithm 2, given above, shows that the iteration 
while solving several knapsack problems until we 
schedule all processes on the processors. In practice, 
we choose the trivial upper bound U0 cited in [11].

4. Experimental Results
After the written algorithms to give a lower bound of 
the studied problems, we show the results returned 
by the developed heuristics with a statistic analy-
sis. These algorithms were coded using Microsoft 
Visual C++, then executed on an Intel(R) Core (TM) 
i7-3337U CPU @ 1.8GHz and 8GB RAM. A set of in-
stances were being generated to test the proposed 
lower bounds. We list the generating manner of in-
stances from several classes described in [11] and 
[23]. Indeed, the processing time pj was generated 
based on two distributions.
The first distribution is the uniform one (U), and the 
second is the normal one (N). The classes are:
 _ Class 1: pj ∈ U [1,100].
 _ Class 2: pj ∈ U [20,300].
 _ Class 3: pj ∈ U [5,100].
 _ Class 4: pj ∈ N [50,100].

 _ Class 5: pj ∈ N [20,100].

The choice of n,p and Class will fix the number of gen-
erated instances. Therefore, the pair (n,p) has several 
possibilities, as given in Table 2.

Table 2
Generation of (n,p) 

n p

10 2,3,5

20,50 2,3,5,10,15

100,250,500,1000,2500,5000,10000 3,5,10,15

For each triplet (n,p,Class), we generate ten instances 
of the processing time.
In Table 2, the total number of instances is 2050 in-
stances. To measure the performance of heuristics, 
we must define some metrics as follows:
 _ LB: the best heuristic value obtained after running 

of all lower bounds.
 _ L: the studied heuristic.
 _ Max: the number of instances when L=LB.

 _ 100
L LB

Gap
L

−
=

 _ Agap: the average Gap .

Time : the spent time to run heuristic in seconds, and 
we denote by "-" if the time is less than 0.001 s.
In Table 3, we present the average of the indicators 
Max, Perc, Agap and Time, for each heuristic over the 
2050 instances. As shown in the table, the best heuris-
tic is MSS having 85.3% and an average time 0.340 s 
compared with IK which has 78.6% and an average 
time of 0.004s. The advantage of the proposed heu-
ristic IK is that it is faster than MSS, and there exists 
only a 6.7% difference between them in terms of Perc.

Table 3 
Overall heuristics results in comparison

  LPT MSS IK IR

Max 838 2046 1886 1294

Perc 34.9% 85.3% 78.6% 53.9%

Agap 0.01 0.00 0.01 0.00

Time 0.000 0.340 0.004 10.928
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Table 4 shows that the behavior of Gap and Time, 
according to n. From this table, we can observe that 
when n is greater than 100, all heuristics are assigned 
a zero Gap value. This reflects the ease of the problem 
when the number of processors is less than the num-
ber of processes. 
Table 4 shows that for IK, there is only n= {10,20} 
where Gap is not equal to zero. However, for all re-
maining values of n Gap is 0. The maximum Gap value 
is 0.03 and obtained for heuristic IK when n=20.
The second maximum value of Gap is 0.02 and ob-
tained for heuristic LPT when n= {10,20,50} and IK 
when n=10. It is clear from Table 4 that heuristic IR 
is the most time consuming compared with heuristics 
MSS and IK reaching 84.613 s when n=10000.
Figure 2 gives the variation of the average gap (Agap) 
according to n.
Figure 3 shows that Agap decreases when n in-
crease. In addition, the Agap is around 0.01 when n 
in {10,20,50}. The Agap becomes to decrease from 
n=100. As shown in Figure 3, when n=10000, Agap is 
less than 0.00003.
Further, Table 5 gives the variation of Gap and Time 
according to the number of processors. For all heuris-
tics, excluding MSS, the time increases as p increases. 
The average Gap of all heuristics, given in the column 
Total, shows that instances when p≥10 are more diffi-
cult to solve because the Agap is not equal to zero. We 

Figure 3 
Agap variation according to  n
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Figure 3 shows that Agap decreases when n 
increase. In addition, the Agap is around 0.01 when 
n in {10,20,50}. The Agap becomes to decrease from 
n=100. As shown in Figure 3, when n=10000, Agap 
is less than 0.00003. 

Further, Table 5 gives the variation of Gap and 
𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 according to the number of processors. For all 
heuristics, excluding MSS, the time increases as p 
increases. The average Gap of all heuristics, given 
in the column Total, shows that instances when 
p≥10 are more difficult to solve because the Agap is 
not equal to zero. We observe that, in Table 5, when 
p is increasing, the running time also increases. This 
is due to the increasing complexity of the problem.   

Table 6 shows the behavior of Gap and Time 
according to Class. For each class, we have 410 
instances. Table 6 shows that the classes have 
almost the same difficulty for all heuristics. A slight 
difference in IK heuristic and IR. Indeed, for IK the 
higher Agap is obtained for Classes 1 and 4. 

However, for IR the higher Agap is obtained 
for classes 3 and 5. 

The results show that more time is consumed 
for the IR heuristic when n=10000 and p=15 
with 84.949 s. The maximum value of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is 
obtained for IK heuristic with 0.05. 

 

5. Conclusion 
In this study, we presented the problem of the 
maximization of the Cmin (Max-Min) on the 
identical parallel processors. The problem is 
exhibited strong NP-hard characteristics. We 
developed novel heuristics to solve the 
problem approximately with an acceptable 
time execution. The first method iteratively 
solves by randomly selecting the processes 
having a fixed largest completion time. The 
second method is based on the utilization of 
the knapsack problems by dividing the initial 
problem into several sub-problems and an 
upper bound as a limit to schedule processes 
on the fixed processor. The experimental 
results show that the knapsack-based 
heuristic gives the same result as the heuristic 
given in literature review 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  with better 
processing time. 
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observe that, in Table 5, when p is increasing, the run-
ning time also increases. This is due to the increasing 
complexity of the problem.  
Table 6 shows the behavior of Gap and Time accord-
ing to Class. For each class, we have 410 instances. 
Table 6 shows that the classes have almost the same 
difficulty for all heuristics. A slight difference in IK 
heuristic and IR. Indeed, for IK the higher Agap is ob-
tained for Classes 1 and 4. However, for IR the higher 
Agap is obtained for classes 3 and 5.
The results show that more time is consumed for the 
IR heuristic when n=10000 and p=15 with 84.949 s. 
The maximum value of Agap is obtained for IK heu-
ristic with 0.05.
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5. Conclusion
In this study, we presented the problem of the maxi-
mization of the Cmin (Max-Min) on the identical par-
allel processors. The problem is exhibited strong NP-
hard characteristics. We developed novel heuristics to 
solve the problem approximately with an acceptable 
time execution. The first method iteratively solves by 
randomly selecting the processes having a fixed larg-
est completion time. The second method is based on 
the utilization of the knapsack problems by dividing 
the initial problem into several sub-problems and an 

upper bound as a limit to schedule processes on the 
fixed processor. The experimental results show that 
the knapsack-based heuristic gives the same result as 
the heuristic given in literature review MSS with bet-
ter processing time.
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p
LPT MSS IK IR Total

Gap Time Gap Time Gap Time Gap Time Gap Time

2 0.01 0.000 0.00 0.001 0.00 0.000 0.00 0.006 0.00 0.002

3 0.01 0.000 0.00 0.385 0.00 0.001 0.00 10.847 0.00 2.809

5 0.00 0.000 0.00 0.227 0.00 0.003 0.00 11.248 0.00 2.870

10 0.01 0.000 0.00 0.269 0.01 0.006 0.00 12.578 0.01 3.213

15 0.01 0.000 0.00 0.576 0.01 0.009 0.01 12.645 0.01 3.308

Table 5 
Gap and Time variation according to p 

Class
LPT MSS IK IR Total

Gap Time Gap Time Gap Time Gap Time Gap Time

1 0.00 0.000 0.00 0.209 0.01 0.003 0.00 11.024 0.00 2.809

2 0.01 0.000 0.00 0.347 0.00 0.004 0.00 10.554 0.00 2.726

3 0.01 0.000 0.00 0.496 0.00 0.005 0.01 11.011 0.00 2.878

4 0.01 0.000 0.00 0.220 0.01 0.004 0.00 11.033 0.00 2.814

5 0.01 0.000 0.00 0.429 0.00 0.006 0.01 11.017 0.00 2.863

Table 6
Gap and Time variation according to Class
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