
5Information Technology and Control 2021/1/50

Max-Min Processors Scheduling

ITC 1/50
Information Technology
and Control
Vol. 50 / No. 1 / 2021
pp. 5-12
DOI 10.5755/j01.itc.50.1.25531

Max-Min Processors Scheduling

Received 2020/03/19 Accepted after revision 2021/02/18

 http://dx.doi.org/10.5755/j01.itc.50.1.25531

HOW TO CITE: Alquhayz, H., Jemmali, M. (2021). Max-Min Processors Scheduling. Information Technology and Control, 50(1), 5-12.
https://doi.org/10.5755/j01.itc.50.1.25531

Corresponding author: m.jemmali@mu.edu.sa

Hani Alquhayz
Department of Computer Science and Information, College of Science at Zulfi, Majmaah University,
Al-Majmaah 11952, Saudi Arabia

Mahdi Jemmali
Department of Computer Science and Information, College of Science at Zulfi, Majmaah University,
Al-Majmaah 11952, Saudi Arabia
Mars Laboratory, University of Sousse, Tunisia
Department of Computer Science, Higher Institute of Computer Science and Mathematics of Monastir,
University of Monastir, Monastir, 5000, Tunisia

This study focuses on the maximization of the minimum completion time using identical parallel processors.
The objective of this maximization is to ensure fair distribution. A set of processes is to be scheduled to several
identical parallel processors, and this problem is proved as NP-hard. The research for this paper is based pri-
marily on the performance of the proposed heuristics with other methods cited in the literature review. Our
heuristics are developed mainly using the randomization method and the iterative utilization of the knapsack
problem to solve the above-mentioned problem. The heuristics are assessed by several instances represented
in the experimental results. The results shew that the knapsack-based heuristic provides a performance that is
almost like the heuristic in the literature review but with better running time.
KEYWORDS: Parallel processors; algorithms; heuristic; knapsack problem.

1. Introduction
Nowadays, it is crucial to reduce manufacturing costs
in companies across the world. The machines used in
manufactories comprise rare resources because, in
general, machines are costly. Thus, the proper distri-
bution of processes is essential from an industrial and
financial point of view.

Suitable scheduling that reduces costs in the in-
dustrial sectors can help managers make decisions.
There is a need to have a system that provides data
and information. Several heuristics algorithms were
compared for this study, while the first heuristics
were based on the randomized algorithms, and the

mailto:obodovskiy58@gmail.com

Information Technology and Control 2021/1/506

second was based on meta-heuristics. The presented
work is focused on improved methods for scheduling
problems, which provides an extension to help deci-
sion-analytics using methods that help organizations
and firms. The scheduling problem has several appli-
cations in manufacturing, networks, communication,
budgeting, and many more fields. The solutions to
these problems affect everyday activities and manag-
ers with relevant effects on the public and private do-
mains and largely on all society. Various applications
of the studied problem and their scheduling in sever-
al areas have been studied. The scheduling problems
were used, and a presentation of a wide variety of the
distribution of resource models by assigning a math-
ematical formulation and model to compute optimal
solutions to these models was formulated.
In our study, we focus on the maximization of the
minimum load machines for the identical parallel
machines problem. In several works, researchers use
the term "machine covering problem" to describe the
same problem. Deuermeyer et al. [5] introduced the
machine covering problem. Several definitions for the
studied problem and results are described [13].
Different industrial applications implement the solu-
tion of the machine covering problem to reduce costs.
Moreover, the application of the solution to gas turbine
aircraft engine maintenance is developed, and some
proposed solutions based on mathematical modeling is
presented [9]. Additionally, this research presents the
results of the implementation coded in Cplex.
The literature review of the studied problem is not ex-
tensive. However, some works related to the covering
machine are examined in several cases.
Semi-online scheduling for identical parallel ma-
chines and the study of the machine covering prob-
lems is presented [22]. Notably, in the latter work an
optimal solution with several semi-online versions
was developed.
Jiang et al. [17] shew that the offline scheduling ver-
sion can provide a solution in O(mn). In addition,
the latter research shews that the ratio measuring
the competitiveness of a randomized online method
has several fixed values, for m-uniform-machine and
m-identical machine problems.
Other researches articulated the machine covering
problem but only on two uniform machines [4], [12],
[20] and [21]. Among the more recent works, a specif-

ic problem regarding the preemptive scheduling in the
case of the semi-online problem was developed [12]. In
this work, an exact solution using an algorithm for the
semi-online case for every machine fixed speed ratio of
s was developed. In addition, the latter study has shown
that an idle time must exist when the procedure of the
algorithms was assigned for any bounded s.
An improvement of the (2+ε)-competitive algorithm
with constant reassignment factor was developed
[19]. The main result for the latter work is that for any
ε>0, one can maintain a (1+ε)-competitive solution for
several constant rescheduled factors r(ε).
Wu et al. [24] focused their research on the machine
covering problems on two hierarchical machines,
with added constraints, such as tasks that are corre-
spondingly grouped into two hierarchical groups.
A random method was presented for the online prob-
lem with a running time of O(√mlnm) [3]. A deter-
ministic algorithm enhanced this recent work with a
competitive ratio of 11/6 ≤ 1.834 [6].
Machine covering was also applied with partial infor-
mation on identical parallel machines [25].
Gálvez et al. [7] presented a theorem that bounded
the migration factor for the online algorithms for the
machine covering problem with migration. In this
context, the latter research shew that there exists, for
any ε>0, (4/3+ε)-competitive algorithm with a migra-
tion factor O(1/ε5), and an approximation ratio of the
local search algorithm in the interval [1.691,1.75] .
Gerke et al. [8] considered a specific problem based on
a stochastic variant of the Santa Claus problem.
Recently Walter et al. [23] proposed a new exact al-
gorithm based on the branch-and-bound algorithm
to solve the problem of maximizing the minimum.
Several enhanced lower bounds and heuristics were
also developed in this work. In addition, in the latter
work, a comparison study of the results given [11] was
developed. The studied problem has several appli-
cations in our real-life and is practical. Our study is
based on the mathematical modeling of two new low-
er bounds. The model utilizes the randomized method
and the iterative solution of several subset problems.
Recently, several studies have focused on the fair dis-
tribution [1], [2], [14], [15] and [16].
In this study, we organize the work as follows. In Sec-
tion 2, we describe the studied problem with exam-

7Information Technology and Control 2021/1/50

ples and provide variable definitions and notations
that will be used in the study. The proposed heuris-
tics are presented in Section 3. Section 4 is devoted to
the experimental results that shew a comparison be-
tween the proposed heuristics and those cited in the
literature review. Finally, a conclusion is provided in
the last Section.

2. Problem Definition
In this Section, the definition is presented of the stud-
ied problem. This problem can be described as fol-
lows. Denoted by J, the set of n independent process-
es will be scheduled on p identical parallel processors
represented by the set {pr1,…,prp}. Each process j is de-
fined by its processing time, which is denoted by pj. All
processes have positive processing time { }

1
, ,

n
p p… .

p

i
C denotes the load of the ith processor. The load of
a processor is calculated by the summation of all the
processing times corresponding to the processes
scheduled on the processor. Let jC be the time when
the process j finishes its execution. The minimum
completion time is denoted by Cmin. The goal is to de-
termine a suitable schedule that maximizing Cmin. The
problem is denoted by P||Cmin using the notation de-
scribed in [10]. This problem has an inextinguishable
theoretical interest because the impact of the appli-
cation in real-life. Indeed, the studied problem van be
applied on different domain of application (financial,
industrial, computer science, aircraft, health care,
railway, etc.) In this work, we present some heuristics
to provide a solution to the problem.
Example 1. Let n=6 and p=2. We display the process-
ing time for each process in Table 1.
Figure 1 presents a schedule to assign the processes
on the processors.

Table 1
Processing time of 6-processes

j 1 2 3 4 5 6

pj 5 10 4 2 3 1

Figure 1
6-2 processes-processors processing time distribution

From Figure 1, we observe that the minimum comple-
tion time Cmin on the processors is 7. The objective is
to search a schedule that maximizes the obtained Cmin.
Here for this example the gap between the first pro-
cessor and the second one is 18-7=11.

2. Problem Definition
In this Section, the definition is presented of the
studied problem. This problem can be described as
follows. Denoted by J, the set of n independent
processes will be scheduled on p identical parallel
processors represented by the set {pr1,…,prp}. Each
process j is defined by its processing time, which is
denoted by pj. All processes have positive
processing time { }

1
, ,

n
p p… . p

i
C denotes the load of

the ith processor. The load of a processor is
calculated by the summation of all the processing
times corresponding to the processes scheduled on
the processor. Let jC be the time when the process
j finishes its execution. The minimum completion
time is denoted by Cmin. The goal is to determine a
suitable schedule that maximizing Cmin. The
problem is denoted by P||Cmin using the notation
described in [10]. This problem has an
inextinguishable theoretical interest because the
impact of the application in real-life. Indeed, the
studied problem van be applied on different
domain of application (financial, industrial,
computer science, aircraft, health care, railway, etc.)
In this work, we present some heuristics to provide
a solution to the problem.

Example 1

Let n=6 and p=2. We display the processing time
for each process in Table 1.

TABLE I. PROCESSING TIME OF 6-PROCESSES

𝑗𝑗𝑗𝑗 1 2 3 4 5 6
𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 5 10 4 2 3 1

Figure 1 presents a schedule to assign the processes
on the processors.

Fig. 1. 6-2 processes-processors processing time distribution

From Figure 1, we observe that the minimum
completion time Cmin on the processors is 7. The
objective is to search a schedule that maximizes the
obtained Cmin. Here for this example the gap
between the first processor and the second one is

18-7=11.

Applying another algorithm can minimize the
gap. Let the following schedule (Figure 2)
obtained for the same instance in Table 1.

Fig. 2. Maxi-min schedule

In Figure 2, the Cmin=12. Thus, the gap
between the two processors is 13-12=1.
Comparing with schedule illustrated in
Figure 1, the new schedule is better and give a
minimum gap by maximizing the minimum
completion time.

3. Heuristics
In this work, several heuristics will be
presented. The first one is based on the
iterative probabilistic method, and the second
is based on the repeating resolution of the
subset problems generated from two
processor problems.

This work compares the LPT rule [11] and the
proposed heuristics.

3.1. Iterative Randomized Heuristic (IR)

The 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 rule is based on the ordering of all
processes in the non-increasing order of their
processing time. After that, we schedule the
first longest process on the most available
processor, and so on. The idea of the proposed
heuristic is to extend the selection of the
longest process. This implies that we do not
select the longest process, but randomly select
a process between the two longest processes.
A generalization of this idea is to iterate the
procedure multiple times. Indeed, the selected
process is chosen among 𝑘𝑘𝑘𝑘 processes having
the longest processing time. The choice of the
process is given a probability α.

In practice, the probability is calculated as
follows. A random number 𝑟𝑟𝑟𝑟 will be chosen
between 1 and 𝑘𝑘𝑘𝑘. The selected process will be
the process that has the rth longest processing

𝐶𝐶𝐶𝐶1 = 18

2

3 6

1

𝐶𝐶𝐶𝐶5 = 13 𝐶𝐶𝐶𝐶2 = 10

𝐶𝐶𝐶𝐶3 = 4

Processor 1

Processor 2

𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 7

𝐶𝐶𝐶𝐶1
𝑝𝑝𝑝𝑝 = 18

𝐶𝐶𝐶𝐶2
𝑝𝑝𝑝𝑝 = 7

5

4

𝐶𝐶𝐶𝐶6 = 5 𝐶𝐶𝐶𝐶4 = 7

𝐶𝐶𝐶𝐶6 = 13

2

3

6

1

𝐶𝐶𝐶𝐶4 = 12 𝐶𝐶𝐶𝐶2 = 10

𝐶𝐶𝐶𝐶3 = 4

Processor 1

Processor 2

𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 12

𝐶𝐶𝐶𝐶1
𝑝𝑝𝑝𝑝 = 13

𝐶𝐶𝐶𝐶2
𝑝𝑝𝑝𝑝 = 12 5

4

𝐶𝐶𝐶𝐶1 = 9 𝐶𝐶𝐶𝐶4 = 12

Applying another algorithm can minimize the gap.
Let the following schedule (Figure 2) obtained for the
same instance in Table 1.
In Figure 2, the Cmin=12. Thus, the gap between the
two processors is 13-12=1. Comparing with schedule
illustrated in Figure 1, the new schedule is better and
give a minimum gap by maximizing the minimum
completion time.

Figure 2
Maxi-min schedule

2. Problem Definition
In this Section, the definition is presented of the
studied problem. This problem can be described as
follows. Denoted by J, the set of n independent
processes will be scheduled on p identical parallel
processors represented by the set {pr1,…,prp}. Each
process j is defined by its processing time, which is
denoted by pj. All processes have positive
processing time { }

1
, ,

n
p p… . p

i
C denotes the load of

the ith processor. The load of a processor is
calculated by the summation of all the processing
times corresponding to the processes scheduled on
the processor. Let jC be the time when the process
j finishes its execution. The minimum completion
time is denoted by Cmin. The goal is to determine a
suitable schedule that maximizing Cmin. The
problem is denoted by P||Cmin using the notation
described in [10]. This problem has an
inextinguishable theoretical interest because the
impact of the application in real-life. Indeed, the
studied problem van be applied on different
domain of application (financial, industrial,
computer science, aircraft, health care, railway, etc.)
In this work, we present some heuristics to provide
a solution to the problem.

Example 1

Let n=6 and p=2. We display the processing time
for each process in Table 1.

TABLE I. PROCESSING TIME OF 6-PROCESSES

𝑗𝑗𝑗𝑗 1 2 3 4 5 6
𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 5 10 4 2 3 1

Figure 1 presents a schedule to assign the processes
on the processors.

Fig. 1. 6-2 processes-processors processing time distribution

From Figure 1, we observe that the minimum
completion time Cmin on the processors is 7. The
objective is to search a schedule that maximizes the
obtained Cmin. Here for this example the gap
between the first processor and the second one is

18-7=11.

Applying another algorithm can minimize the
gap. Let the following schedule (Figure 2)
obtained for the same instance in Table 1.

Fig. 2. Maxi-min schedule

In Figure 2, the Cmin=12. Thus, the gap
between the two processors is 13-12=1.
Comparing with schedule illustrated in
Figure 1, the new schedule is better and give a
minimum gap by maximizing the minimum
completion time.

3. Heuristics
In this work, several heuristics will be
presented. The first one is based on the
iterative probabilistic method, and the second
is based on the repeating resolution of the
subset problems generated from two
processor problems.

This work compares the LPT rule [11] and the
proposed heuristics.

3.1. Iterative Randomized Heuristic (IR)

The 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 rule is based on the ordering of all
processes in the non-increasing order of their
processing time. After that, we schedule the
first longest process on the most available
processor, and so on. The idea of the proposed
heuristic is to extend the selection of the
longest process. This implies that we do not
select the longest process, but randomly select
a process between the two longest processes.
A generalization of this idea is to iterate the
procedure multiple times. Indeed, the selected
process is chosen among 𝑘𝑘𝑘𝑘 processes having
the longest processing time. The choice of the
process is given a probability α.

In practice, the probability is calculated as
follows. A random number 𝑟𝑟𝑟𝑟 will be chosen
between 1 and 𝑘𝑘𝑘𝑘. The selected process will be
the process that has the rth longest processing

𝐶𝐶𝐶𝐶1 = 18

2

3 6

1

𝐶𝐶𝐶𝐶5 = 13 𝐶𝐶𝐶𝐶2 = 10

𝐶𝐶𝐶𝐶3 = 4

Processor 1

Processor 2

𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 7

𝐶𝐶𝐶𝐶1
𝑝𝑝𝑝𝑝 = 18

𝐶𝐶𝐶𝐶2
𝑝𝑝𝑝𝑝 = 7

5

4

𝐶𝐶𝐶𝐶6 = 5 𝐶𝐶𝐶𝐶4 = 7

𝐶𝐶𝐶𝐶6 = 13

2

3

6

1

𝐶𝐶𝐶𝐶4 = 12 𝐶𝐶𝐶𝐶2 = 10

𝐶𝐶𝐶𝐶3 = 4

Processor 1

Processor 2

𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 12

𝐶𝐶𝐶𝐶1
𝑝𝑝𝑝𝑝 = 13

𝐶𝐶𝐶𝐶2
𝑝𝑝𝑝𝑝 = 12 5

4

𝐶𝐶𝐶𝐶1 = 9 𝐶𝐶𝐶𝐶4 = 12

3. Heuristics
In this work, several heuristics will be presented. The
first one is based on the iterative probabilistic meth-
od, and the second is based on the repeating resolu-
tion of the subset problems generated from two pro-
cessor problems.
This work compares the LPT rule [11] and the pro-
posed heuristics.

Information Technology and Control 2021/1/508

3.1. Iterative Randomized Heuristic (IR)
The LPT rule is based on the ordering of all processes
in the non-increasing order of their processing time.
After that, we schedule the first longest process on
the most available processor, and so on. The idea of
the proposed heuristic is to extend the selection of
the longest process. This implies that we do not select
the longest process, but randomly select a process
between the two longest processes. A generalization
of this idea is to iterate the procedure multiple times.
Indeed, the selected process is chosen among k pro-
cesses having the longest processing time. The choice
of the process is given a probability α.
In practice, the probability is calculated as follows. A
random number r will be chosen between 1 and k. The
selected process will be the process that has the rth
longest processing time among the unscheduled pro-
cesses. When the number of unscheduled processes nu
is less than r, we choose r randomly between 1 and nu.
The iterative randomized heuristic is displayed in Al-
gorithm 1.

Algorithm 1: Iterative randomized heuristic algorithm

Step 0 Set it=1, k=2.

Step 1 Jk=J.

Step 2 R=random[1-min(k,|Jk|)].

Step 3 Assign the rth longest process Lr to the
most available processor.

Step 4 Jk=Jk\Lr, if Jk ≠∅ goto Step 2

Step 5 Calculate ,
min
k itC .

Step 6 it=it+1

Step 7 If it<lim go to Step 1

Step 8
1 1000

,
min minmax

it

k k itC C
≤ ≤

=

Step 9 k=k+1, if k<7 then it=1 and go to Step 1

Step 10 min
1 5

min max k

k

C C
≤ ≤

=

Step 11 Return Cmin. Stop.

3.2. Iterative Knapsack Problem Heuristic
(IK)
This heuristic is articulated primarily for the given
idea. An upper bound was calculated for the studied
problem denoted by UB. After that, we solve a knap-
sack problem searching the assignment of the maxi-
mum processes on the first processor, not reaching
the UB value. The resolution of the knapsack problem
will give as a set of processes that will be scheduled
for the first processor. Now, we apply the same pro-
cedure to the remaining processes and search for the
processes that will be assigned to the second proces-
sor, and so on, until we assign all the given processes.
For this heuristic, a greedy iterative method is adopt-
ed to solve a knapsack (KS) family problem KS(l) with
l={0,…,p-1}.

time among the unscheduled processes. When the
number of unscheduled processes nu is less than r,
we choose r randomly between 1 and nu.

The iterative randomized heuristic is displayed in
Algorithm 1.

3.2. Iterative Knapsack Problem Heuristic (IK)

This heuristic is articulated primarily for the given
idea. An upper bound was calculated for the
studied problem denoted by UB. After that, we
solve a knapsack problem searching the
assignment of the maximum processes on the first
processor, not reaching the UB value. The

resolution of the knapsack problem will give
as a set of processes that will be scheduled for
the first processor. Now, we apply the same
procedure to the remaining processes and
search for the processes that will be assigned
to the second processor, and so on, until we
assign all the given processes.

For this heuristic, a greedy iterative method is
adopted to solve a knapsack (KS) family
problem KS(l) with l={0,…,p-1}.

() :

max

. : (,)

{0,1},

l

l

l j j
j J

j j l
j J

j l

KS l

Z p y

s t w y UB J p l

y j J

∈

∈

 =
 
 ≤ − 
 
 ∈ ∀ ∈ 

∑

∑

where:

 J1=J and Jl+1=Jl\Ol, where Ol is an optimal
set given by KS(l).

 | | 1l
j j

Jw p
p l

= −
−

.

 UB(O,k) is an upper bound for the P||Cmin
the problem of a reduced instance defined
on k≤p processors and a subset of
processes O O J⊆ . In practice, we
choose the trivial upper bound.

Consequently, the algorithm for the iterative
knapsack heuristic begins by solving KS(O) to
determine a subset of processes J0 where total
processing time is maximal but not more
significant than the value of an upper bound.
These processes will be scheduled on the first
processor. Then, the algorithm computes an
upper bound on the remaining processes and
processors. This is mean that the new problem
will be defined by p-1 processors and process-
set J\J1. Now, the knapsack problem is solved
to determine an optimal subset of processes
that will be assigned to a second processor,
and so on.

The processes that belong to Op=Jp-1\Op-1 are
scheduled on the pth processor. Since KS is an
NP-hard, we utilize, in our algorithm, the
pseudo-code developed in [18], which is
based on the resolution of the problem in
pseudo-polynomial time using dynamic
programming. The iterative knapsack
heuristic is displayed in Algorithm 2.

Algorithm 1: Iterative randomized heuristic
algorithm
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟎𝟎𝟎𝟎 Set it=1,k=2.
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟏𝟏𝟏𝟏 Jk=J.
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟐𝟐𝟐𝟐 R=random[1-min(k,|Jk|)].

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟑𝟑𝟑𝟑 Assign the rth longest process Lr to
the most available processor.

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟒𝟒𝟒𝟒 Jk=Jk\Lr, if Jk ≠∅ goto 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟐𝟐𝟐𝟐
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟓𝟓𝟓𝟓 Calculate ,

min
k itC .

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟔𝟔𝟔𝟔 it=it+1
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟕𝟕𝟕𝟕 If it<lim go to 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟏𝟏𝟏𝟏.

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟖𝟖𝟖𝟖
1 1000

,
min minmax

it

k k itC C
≤ ≤

=

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟗𝟗𝟗𝟗 k=k+1, if k<7 then it=1 and go to
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟏𝟏𝟏𝟏

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎 min
1 5

min max k

k

C C
≤ ≤

=

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 Return Cmin. Stop.

where:
 _ J1=J and Jl+1=Jl\Ol, where Ol is an optimal set given

by KS(l).

 _ | | 1l
j j

Jw p
p l

= −
−

.

 _ UB(O,k) is an upper bound for the P||Cmin the
problem of a reduced instance defined on k≤p
processors and a subset of processes O O J⊆ . In
practice, we choose the trivial upper bound.

Consequently, the algorithm for the iterative knap-
sack heuristic begins by solving KS(O) to determine
a subset of processes J0 where total processing time
is maximal but not more significant than the value of
an upper bound. These processes will be scheduled
on the first processor. Then, the algorithm computes
an upper bound on the remaining processes and pro-
cessors. This is mean that the new problem will be de-
fined by p-1 processors and process-set J\J1. Now, the
knapsack problem is solved to determine an optimal
subset of processes that will be assigned to a second
processor, and so on.
The processes that belong to Op=Jp-1\Op-1 are sched-
uled on the pth processor. Since KS is an NP-hard, we

9Information Technology and Control 2021/1/50

utilize, in our algorithm, the pseudo-code developed
in [18], which is based on the resolution of the prob-
lem in pseudo-polynomial time using dynamic pro-
gramming. The iterative knapsack heuristic is dis-
played in Algorithm 2.

Algorithm 2: Iterative knapsack heuristic

Step 0 Initialize l=0, J0=J.

Step 1 For l=0 to p-1 do

Step 2 u=UB(Jl,p-l)

Step 3 Zl=KS(l), Ol is the list returned by KS(l).

Step 4 Schedule Ol on processor prl+1

Step 5 Jl+1=Jl\Ol

End For

Step 6 Calculate Cmin value.

Step 7 Return Cmin. Stop.

Algorithm 2, given above, shows that the iteration
while solving several knapsack problems until we
schedule all processes on the processors. In practice,
we choose the trivial upper bound U0 cited in [11].

4. Experimental Results
After the written algorithms to give a lower bound of
the studied problems, we show the results returned
by the developed heuristics with a statistic analy-
sis. These algorithms were coded using Microsoft
Visual C++, then executed on an Intel(R) Core (TM)
i7-3337U CPU @ 1.8GHz and 8GB RAM. A set of in-
stances were being generated to test the proposed
lower bounds. We list the generating manner of in-
stances from several classes described in [11] and
[23]. Indeed, the processing time pj was generated
based on two distributions.
The first distribution is the uniform one (U), and the
second is the normal one (N). The classes are:
 _ Class 1: pj ∈ U [1,100].
 _ Class 2: pj ∈ U [20,300].
 _ Class 3: pj ∈ U [5,100].
 _ Class 4: pj ∈ N [50,100].

 _ Class 5: pj ∈ N [20,100].

The choice of n,p and Class will fix the number of gen-
erated instances. Therefore, the pair (n,p) has several
possibilities, as given in Table 2.

Table 2
Generation of (n,p)

n p

10 2,3,5

20,50 2,3,5,10,15

100,250,500,1000,2500,5000,10000 3,5,10,15

For each triplet (n,p,Class), we generate ten instances
of the processing time.
In Table 2, the total number of instances is 2050 in-
stances. To measure the performance of heuristics,
we must define some metrics as follows:
 _ LB: the best heuristic value obtained after running

of all lower bounds.
 _ L: the studied heuristic.
 _ Max: the number of instances when L=LB.

 _ 100
L LB

Gap
L

−
=

 _ Agap: the average Gap .

Time : the spent time to run heuristic in seconds, and
we denote by "-" if the time is less than 0.001 s.
In Table 3, we present the average of the indicators
Max, Perc, Agap and Time, for each heuristic over the
2050 instances. As shown in the table, the best heuris-
tic is MSS having 85.3% and an average time 0.340 s
compared with IK which has 78.6% and an average
time of 0.004s. The advantage of the proposed heu-
ristic IK is that it is faster than MSS, and there exists
only a 6.7% difference between them in terms of Perc.

Table 3
Overall heuristics results in comparison

 LPT MSS IK IR

Max 838 2046 1886 1294

Perc 34.9% 85.3% 78.6% 53.9%

Agap 0.01 0.00 0.01 0.00

Time 0.000 0.340 0.004 10.928

Information Technology and Control 2021/1/5010

Table 4 shows that the behavior of Gap and Time,
according to n. From this table, we can observe that
when n is greater than 100, all heuristics are assigned
a zero Gap value. This reflects the ease of the problem
when the number of processors is less than the num-
ber of processes.
Table 4 shows that for IK, there is only n= {10,20}
where Gap is not equal to zero. However, for all re-
maining values of n Gap is 0. The maximum Gap value
is 0.03 and obtained for heuristic IK when n=20.
The second maximum value of Gap is 0.02 and ob-
tained for heuristic LPT when n= {10,20,50} and IK
when n=10. It is clear from Table 4 that heuristic IR
is the most time consuming compared with heuristics
MSS and IK reaching 84.613 s when n=10000.
Figure 2 gives the variation of the average gap (Agap)
according to n.
Figure 3 shows that Agap decreases when n in-
crease. In addition, the Agap is around 0.01 when n
in {10,20,50}. The Agap becomes to decrease from
n=100. As shown in Figure 3, when n=10000, Agap is
less than 0.00003.
Further, Table 5 gives the variation of Gap and Time
according to the number of processors. For all heuris-
tics, excluding MSS, the time increases as p increases.
The average Gap of all heuristics, given in the column
Total, shows that instances when p≥10 are more diffi-
cult to solve because the Agap is not equal to zero. We

Figure 3
Agap variation according to n

reflects the ease of the problem when the number

of processors is less than the number of processes.

Table 4 shows that for IK, there is only n= {10,20}
where Gap is not equal to zero. However, for all
remaining values of n Gap is 0. The maximum Gap
value is 0.03 and obtained for heuristic IK when
n=20.

The second maximum value of Gap is 0.02 and
obtained for heuristic LPT when n= {10,20,50} and
IK when n=10. It is clear from Table 4 that heuristic
IR is the most time consuming compared with
heuristics MSS and IK reaching 84.613 s when
n=10000.

Figure 2 gives the variation of the average gap
(Agap) according to n.

Fig. 3. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 variation according to 𝑛𝑛𝑛𝑛

Figure 3 shows that Agap decreases when n
increase. In addition, the Agap is around 0.01 when
n in {10,20,50}. The Agap becomes to decrease from
n=100. As shown in Figure 3, when n=10000, Agap
is less than 0.00003.

Further, Table 5 gives the variation of Gap and
𝐿𝐿𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 according to the number of processors. For all
heuristics, excluding MSS, the time increases as p
increases. The average Gap of all heuristics, given
in the column Total, shows that instances when
p≥10 are more difficult to solve because the Agap is
not equal to zero. We observe that, in Table 5, when
p is increasing, the running time also increases. This
is due to the increasing complexity of the problem.

Table 6 shows the behavior of Gap and Time
according to Class. For each class, we have 410
instances. Table 6 shows that the classes have
almost the same difficulty for all heuristics. A slight
difference in IK heuristic and IR. Indeed, for IK the
higher Agap is obtained for Classes 1 and 4.

However, for IR the higher Agap is obtained
for classes 3 and 5.

The results show that more time is consumed
for the IR heuristic when n=10000 and p=15
with 84.949 s. The maximum value of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is
obtained for IK heuristic with 0.05.

5. Conclusion
In this study, we presented the problem of the
maximization of the Cmin (Max-Min) on the
identical parallel processors. The problem is
exhibited strong NP-hard characteristics. We
developed novel heuristics to solve the
problem approximately with an acceptable
time execution. The first method iteratively
solves by randomly selecting the processes
having a fixed largest completion time. The
second method is based on the utilization of
the knapsack problems by dividing the initial
problem into several sub-problems and an
upper bound as a limit to schedule processes
on the fixed processor. The experimental
results show that the knapsack-based
heuristic gives the same result as the heuristic
given in literature review 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 with better
processing time.

Acknowledgment
The authors extend their appreciation to the
Deanship of Scientific Research at Majmaah
University for funding this work under project
number (RGP-2019-13).

References

[1] Alharbi, M., Jemmali, M. Algorithms for
Investment Project Distribution on Regions.
Computational Intelligence and Neuroscience, 2020,
2020.
[2] Alquhayz, H., Jemmali, M., Otoom, M. M.
Dispatching-Rule Variants Algorithms for Used
Spaces of Storage Supports. Discrete Dynamics
in Nature and Society, 2020, 2020.
[3] Azar, Y., Epstein, L. On-line Machine
Covering. Journal of Scheduling, 1998, 1, 67-77.
[4] Chen, X., Epstein, L., Tan, Z. Semi-online
Machine Covering for Two Uniform Machines.
Theoretical Computer Science, 2009, 410, 5047-
5062.
[5] Deuermeyer, B. L., Friesen, D. K., Langston,

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016

0 2000 4000 6000 8000 10000

A
G

A
P

n

n
LPT MSS IK IR Total

Gap Time Gap Time Gap Time Gap Time Gap Time

10 0.02 0.000 0.00 0.002 0.02 0.000 0.00 0.002 0.01 0.001

20 0.02 0.000 0.00 0.004 0.03 0.001 0.01 0.007 0.01 0.003

50 0.02 0.000 0.00 0.005 0.00 0.001 0.01 0.014 0.01 0.005

100 0.01 0.000 0.00 0.006 0.00 0.001 0.01 0.036 0.00 0.011

250 0.00 0.000 0.00 0.012 0.00 0.001 0.00 0.131 0.00 0.036

500 0.00 0.000 0.00 0.033 0.00 0.002 0.00 0.364 0.00 0.100

1000 0.00 0.000 0.00 0.093 0.00 0.003 0.00 1.115 0.00 0.303

2500 0.00 0.000 0.00 0.344 0.00 0.006 0.00 5.673 0.00 1.506

5000 0.00 0.000 0.00 0.637 0.00 0.011 0.00 20.034 0.00 5.171

10000 0.00 0.000 0.00 2.297 0.00 0.021 0.00 84.613 0.00 21.733

Table 4
Gap and Time variation according to n

observe that, in Table 5, when p is increasing, the run-
ning time also increases. This is due to the increasing
complexity of the problem.
Table 6 shows the behavior of Gap and Time accord-
ing to Class. For each class, we have 410 instances.
Table 6 shows that the classes have almost the same
difficulty for all heuristics. A slight difference in IK
heuristic and IR. Indeed, for IK the higher Agap is ob-
tained for Classes 1 and 4. However, for IR the higher
Agap is obtained for classes 3 and 5.
The results show that more time is consumed for the
IR heuristic when n=10000 and p=15 with 84.949 s.
The maximum value of Agap is obtained for IK heu-
ristic with 0.05.

11Information Technology and Control 2021/1/50

5. Conclusion
In this study, we presented the problem of the maxi-
mization of the Cmin (Max-Min) on the identical par-
allel processors. The problem is exhibited strong NP-
hard characteristics. We developed novel heuristics to
solve the problem approximately with an acceptable
time execution. The first method iteratively solves by
randomly selecting the processes having a fixed larg-
est completion time. The second method is based on
the utilization of the knapsack problems by dividing
the initial problem into several sub-problems and an

upper bound as a limit to schedule processes on the
fixed processor. The experimental results show that
the knapsack-based heuristic gives the same result as
the heuristic given in literature review MSS with bet-
ter processing time.

Acknowledgment
The authors extend their appreciation to the Deanship
of Scientific Research at Majmaah University for fund-
ing this work under project number (RGP-2019-13).

p
LPT MSS IK IR Total

Gap Time Gap Time Gap Time Gap Time Gap Time

2 0.01 0.000 0.00 0.001 0.00 0.000 0.00 0.006 0.00 0.002

3 0.01 0.000 0.00 0.385 0.00 0.001 0.00 10.847 0.00 2.809

5 0.00 0.000 0.00 0.227 0.00 0.003 0.00 11.248 0.00 2.870

10 0.01 0.000 0.00 0.269 0.01 0.006 0.00 12.578 0.01 3.213

15 0.01 0.000 0.00 0.576 0.01 0.009 0.01 12.645 0.01 3.308

Table 5
Gap and Time variation according to p

Class
LPT MSS IK IR Total

Gap Time Gap Time Gap Time Gap Time Gap Time

1 0.00 0.000 0.00 0.209 0.01 0.003 0.00 11.024 0.00 2.809

2 0.01 0.000 0.00 0.347 0.00 0.004 0.00 10.554 0.00 2.726

3 0.01 0.000 0.00 0.496 0.00 0.005 0.01 11.011 0.00 2.878

4 0.01 0.000 0.00 0.220 0.01 0.004 0.00 11.033 0.00 2.814

5 0.01 0.000 0.00 0.429 0.00 0.006 0.01 11.017 0.00 2.863

Table 6
Gap and Time variation according to Class

References
1. Alharbi, M., Jemmali, M. Algorithms for Investment

Project Distribution on Regions. Computational In-
telligence and Neuroscience, 2020, 2020. https://doi.
org/10.1155/2020/3607547

2. Alquhayz, H., Jemmali, M., Otoom, M. M. Dispatch-
ing-Rule Variants Algorithms for Used Spaces of Stor-
age Supports. Discrete Dynamics in Nature and Society,
2020, 2020. https://doi.org/10.1155/2020/1072485

3. Azar, Y., Epstein, L. On‐line Machine Covering.
Journal of Scheduling, 1998, 1, 67-77. https://doi.
org/10.1002/(SICI)1099-1425(199808)1:2<67::AID-
JOS6>3.0.CO;2-Y

4. Chen, X., Epstein, L., Tan, Z. Semi-online Machine
Covering for Two Uniform Machines. Theoretical
Computer Science, 2009, 410, 5047-5062. https://doi.
org/10.1016/j.tcs.2009.08.001

https://doi.org/10.1155/2020/3607547
https://doi.org/10.1155/2020/3607547
https://doi.org/10.1155/2020/1072485
https://doi.org/10.1002/(SICI)1099-1425(199808)1:2%3C67::AID-JOS6%3E3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1099-1425(199808)1:2%3C67::AID-JOS6%3E3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1099-1425(199808)1:2%3C67::AID-JOS6%3E3.0.CO;2-Y
https://doi.org/10.1016/j.tcs.2009.08.001
https://doi.org/10.1016/j.tcs.2009.08.001

Information Technology and Control 2021/1/5012

5. Deuermeyer, B. L., Friesen, D. K., Langston, M. A.
Scheduling to Maximize the Minimum Processor Fin-
ish Time in a Multiprocessor System. SIAM Journal on
Algebraic Discrete Methods, 1982, 3, 190-196. https://
doi.org/10.1137/0603019

6. Ebenlendr, T., Noga, J., Sgall, J., Woeginger, G. A Note on
Semi-Online Machine Covering. International Work-
shop on Approximation and Online Algorithms, 2005,
110-118. https://doi.org/10.1007/11671411_9

7. Gálvez, W., Soto, J. A., Verschae, J. Improved Online
Algorithms for the Machine Covering Problem with
Bounded Migration. 12th Workshop on Models and Algo-
rithms for Planning and Scheduling Problems, 2015, 21.

8. Gerke, S., Panagiotou, K., Schwartz, J., Steger, A. Max-
imizing the Minimum Load for Random Processing
Times. ACM Transactions on Algorithms (TALG), 2015,
11, 17. https://doi.org/10.1145/2651421

9. Gharbi, A. Scheduling Maintenance Actions for Gas
Turbines Aircraft Engines. Constraints, 2014, 10, 4.

10. Graham, R. L., Lawler, E. L., Lenstra, J. K., Kan, A. R.
Optimization and Approximation in Deterministic
Sequencing and Scheduling: A Survey. Annals of Dis-
crete Mathematics, 1979, vol. 5, 287-326. https://doi.
org/10.1016/S0167-5060(08)70356-X

11. Haouari, M., Jemmali, M. Maximizing the Minimum
Completion time on Parallel Machines. 4OR, 2008, 6,
375-392. https://doi.org/10.1007/s10288-007-0053-5

12. He, Y., Jiang, Y. Optimal Semi-Online Preemptive Al-
gorithms for Machine Covering on Two Uniform Ma-
chines. Theoretical Computer Science, 2005, 339, 293-
314. https://doi.org/10.1016/j.tcs.2005.02.008

13. Imreh, C. Maximizing the Minimum Machine Load.
Encyclopedia of Algorithms, 2008, 1-3. https://doi.
org/10.1007/978-3-642-27848-8_503-1

14. Jemmali, M. Approximate Solutions for the Projects
Revenues Assignment Problem. Communications
in Mathematics and Applications, 2019, 10, 653-658.
https://doi.org/10.26713/cma.v10i3.1238

15. Jemmali, M., Alquhayz, H. Equity Data Distribution
Algorithms on Identical Routers. International Confer-
ence on Innovative Computing and Communications,

2020, 297-305. https://doi.org/10.1007/978-981-15-
0324-5_26

16. Jemmali, M., Melhim, L. K. B., Alharbi, S. O. B., Ba-
jahzar, A. S. Lower Bounds for Gas Turbines Aircraft
Engines. Communications in Mathematics and Appli-
cations, 2019, 10, 637-642. https://doi.org/10.26713/
cma.v10i3.1218

17. Jiang, Y., Tan, Z., He, Y. Preemptive Machine Covering
on Parallel Machines. Journal of Combinatorial Opti-
mization, 2005, 10, 345-363. https://doi.org/10.1007/
s10878-005-4923-5

18. Pisinger, D. Dynamic Programming on the Word
RAM. Algorithmica, 2003, 35, 128-145. https://doi.
org/10.1007/s00453-002-0989-y

19. Skutella, M., Verschae, J. A Rbust PTAS for Machine
Covering and Packing. European Symposium on Al-
gorithms, 2010, 36-47. https://doi.org/10.1007/978-3-
642-15775-2_4

20. Tan, Z., Cao, S. Semi-Online Machine Covering on Two
Uniform Machines WITH Known Total Size. Comput-
ing, 2006, 78, 369-378. https://doi.org/10.1007/s00607-
006-0187-x

21. Tan, Z., He, Y., Epstein, L. Optimal On-line Algorithms
for the Uniform Machine Scheduling Problem with Or-
dinal Data. Information and Computation, 2005, 196,
57-70. https://doi.org/10.1016/j.ic.2004.10.002

22. Tan, Z., Wu, Y. Optimal Semi-Online Algorithms for Ma-
chine Covering. Theoretical Computer Science, 2007,
372, 69-80. https://doi.org/10.1016/j.tcs.2006.11.015

23. Walter, R., Wirth, M., Lawrinenko, A. Improved Ap-
proaches to the EXACT SOLUTION OF THE Machine
Covering Problem. Journal of Scheduling, 2017, 20, 147-
164. https://doi.org/10.1007/s10951-016-0477-x

24. Wu, Y., Cheng, T., Ji, M. Optimal Algorithms for
Semi-Online Machine Covering on Two Hierarchical
Machines. Theoretical Computer Science, 2014, 531, 37-
46. https://doi.org/10.1016/j.tcs.2014.02.015

25. Wu, Y., Yang, Q., Huang, Y. Machine Covering with
Combined Partial Information. Journal of Statistical
Planning and Inference, 2010, 140, 2351-2354. https://
doi.org/10.1016/j.jspi.2010.01.030

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1137/0603019
https://doi.org/10.1137/0603019
https://doi.org/10.1007/11671411_9
https://doi.org/10.1145/2651421
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1007/s10288-007-0053-5
https://doi.org/10.1016/j.tcs.2005.02.008
https://doi.org/10.1007/978-3-642-27848-8_503-1
https://doi.org/10.1007/978-3-642-27848-8_503-1
https://doi.org/10.26713/cma.v10i3.1238
https://doi.org/10.1007/978-981-15-0324-5_26
https://doi.org/10.1007/978-981-15-0324-5_26
https://doi.org/10.26713/cma.v10i3.1218
https://doi.org/10.26713/cma.v10i3.1218
https://doi.org/10.1007/s10878-005-4923-5
https://doi.org/10.1007/s10878-005-4923-5
https://doi.org/10.1007/s00453-002-0989-y
https://doi.org/10.1007/s00453-002-0989-y
https://doi.org/10.1007/978-3-642-15775-2_4
https://doi.org/10.1007/978-3-642-15775-2_4
https://doi.org/10.1007/s00607-006-0187-x
https://doi.org/10.1007/s00607-006-0187-x
https://doi.org/10.1016/j.ic.2004.10.002
https://doi.org/10.1016/j.tcs.2006.11.015
https://doi.org/10.1007/s10951-016-0477-x
https://doi.org/10.1016/j.tcs.2014.02.015
https://doi.org/10.1016/j.jspi.2010.01.030
https://doi.org/10.1016/j.jspi.2010.01.030

