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During target tracking, certain multi-modal background scenes are unsuitable for off-line training model. To 
solve this problem, based on the Gaussian mixture model and considering  time correlation between pixels, a 
method that combines the random sampling operator and neighborhood space propagation theory is proposed 
to simplify the model update process. To accelerate the model convergence, the parameters update strategy 
based on observation vector proposed in this paper. Finally, a three channel-multimodal background model 
fusing the HSI color space and gradient information is established in this study. Combining with simplify up-
date theory, the algorithm execution efficiency of HSG-GMM with three channels can reach about 0.05s per-
frame. Experiments indicate that the algorithm has good detection performance when inhibiting ghosts, dy-
namic background, and shade; thus, the execution efficiency can meet the needs of real-time computing.
KEYWORDS: Mixed Gaussian; random sub-sampling; neighborhood correlation; multi-channel.
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1. Introduction
Moving target detection and tracking are affected 
by scene transformation, occlusion, and noise, and a 
variety of techniques have introduced to solve such 
problems. Zhou [23] proposed a multi-level features 
extraction for discontinuous target tracking and 
matched the features with Gaussian weight func-
tion. Somayyeh [15] completed the target tracking 
by combined the PF and genetis algorithm together. 
Unfortunately, even in CVPR2015-2018, most target 
tracking algorithms are based on target detection; 
hence, model training requires a large amount of off-
line labeled data. With the noise in the multi-modal 
video environment, the characters of moving targets 
may irregularly change; thus, a more stable and ro-
bust online moving target detection algorithm may 
be required.
The current primary moving target detection algo-
rithm contains the following: optical flow method 
[1, 12-13], inter-frame difference method, and back-
ground subtraction method [19-20, 24]. The factors 
such as noise and multi-light source in the optical 
flow method would have a serious impact on the cal-
culation of the optical flow field distribution. The 
inter-frame difference method can achieve better re-
sults for simple background, but it is sensitive to envi-
ronmental noise. The background subtraction meth-
od achieves accurate detection and high precision, 
and this type of method is widely utilized. The back-
ground is modeled based on the video sequences, and 
the parameters of the model are used to approximate 
the pixel value extension of the background. Thus, the 
performance of this method significantly depends 
on the accuracy of background models. There is un-
certainty present in actual complex scenes, such as 
dynamic backgrounds and lighting changes [2], and 
these factors pose a great challenge to accurate back-
ground modeling.
Scholars have performed much research on back-
ground modeling methods [20, 10-11]. Lai [12] pro-
posed the Gaussian mixture model (GMM) using a 
mixed Gaussian distribution model to character-
ize the pixel points in the image frame and obtains 
the background model through online learning and 
training. Li [14] proposed a single-pixel time-se-
ries-histogram is used to model the background. The 

foreground target area is cleaner and has fewer error 
pixels; however, the method has a large storage over-
head and the background generation is slow. Zhu [25] 
proposed a three-frame difference-based learning 
rate self-adaption method to update the parameters 
of the mixed Gaussian background model, to reduce 
misdetection in the light mutation and target fast mo-
tion scenes. Chen [14] introduced the guided filtering, 
updating method with spaced neighborhood and the 
space-time smoothing method to mitigate false target 
moving detection. 
The ViBe algorithm [3] introduced random clustering, 
and employed a random strategy to update the sample 
pixels, hence avoiding building a model with big data. 
Ge [16] completed the infrared objects classification 
using Kullback-Leibler divergence of Gaussian distri-
bution. 
However, almost all of these methods have the follow-
ing shortcomings:
1 When a moving target exists in the initial frame, 

the detection result may produce a "ghost" reflec-
tion.

2 The pixel-by-pixel calculation operation ignores 
the correlation between pixels, so the operational 
efficiency is low.

3 The threshold or parameter is fixed during the 
sample or model update process, resulting in a 
large difference in terms of target detection accu-
racy in different scenarios.

In this paper, a moving target is detected using an 
improved GMM, and the initial parameters of the 
model are obtained via the inter-frame difference 
method. A calculation method for the neighborhood 
correlation is proposed to update the parameters of 
the Gaussian model. The single pixel feature is com-
bined with the neighborhood random correlation, 
and the execution efficiency is accounted for when 
establishing the multimodal background model. The 
active degree of the pixel is introduced to adjust the 
learning rate and to accelerate the convergence of 
the model. Finally, the color-gradient method is ad-
opted to complete the multi-channel Gaussian mix-
ture model in order to help achieve moving target 
detection.
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2.Improved GMM Parameter Update 
Method
2.1. Parameter Initialization Method Based 
on the Spatial Neighborhood of Five-Frame 
Difference
To achieve parameter initialization of the mixed 
Gaussian model, the method combined five-frame 
difference and intra-frame neighborhood averaging 
as proposed in this paper.
First, five consecutive frames of images are extracted 
using the intermediate frame to perform differential 
operations on the two frames. The difference result 
is binarized and then subjected to an AND operation 
to detect whether the current frame contains target 
information. After removing the motion region from 
the background image, the five-frame mean value of 
the corresponding position is calculated as the initial 
mean value. Meanwhile, an accumulation matrix CA 
is proposed to record the number of neighboring pixel 
points:

( ) ( ) ( ) ( ), , 1, , ,CA x y CA x y f x y x yµ αλ= + − <( ) ( ) ( ) ( ), , 1, , ,CA x y CA x y f x y x yµ αλ= + − < . (1)

Mean matrix and standard deviation are updated as 
follows:
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Additionally, one of the Gaussian distributions in the 
mixed Gaussian model is constructed: 
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The parameters of the other Gaussian models are ob-
tained as follows:
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2.2. Model Parameter Updating Strategy 
Combining Random Subsampling and 
Neighborhood Spatial Propagation Theory
Considering the continuity of image spatial infor-
mation, mutual difference and similarity exist be-
tween pixels [3]. The mutual difference can explore 
the variation of pixel points. The similarity between 
neighborhoods can reduce redundant information 
between pixels [13], and simultaneously avoid repeat-
ing modeling with similarities. Therefore, the adja-
cent pixel correlation theory is proposed to measure 
the correlation of pixels in the neighborhood of the 
GMM parameter updating process. For the neighbor-
hood of pixels with the same category, the parameter 
updating calculation of the Gaussian distribution is 
not performed. Generally, the pixel correlation of the 
background image is high, and the computation of pa-
rameter updating based on neighborhood pixel cor-
relation metrics can greatly decrease.

ix , iy  are the gray values for two adjacent pixels in the 
ith frame of the sequence images in sliding window N 
at time t (showed in Figure1).

Figure 1 
Sequence of images in sliding window N at time t
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2.2 Model Parameter Updating 
Strategy Combining Random 
Subsampling and Neighborhood 
Spatial Propagation Theory 

Considering the continuity of image spatial 
information, mutual difference and similarity exist 
between pixels [3]. The mutual difference can 
explore the variation of pixel points. The similarity 
between neighborhoods can reduce redundant 
information between pixels [13], and 
simultaneously avoid repeating modeling with 
similarities. Therefore, the adjacent pixel correlation 
theory is proposed to measure the correlation of 
pixels in the neighborhood of the GMM parameter 
updating process. For the neighborhood of pixels 
with the same category, the parameter updating 
calculation of the Gaussian distribution is not 
performed. Generally, the pixel correlation of the 
background image is high, and the computation of 
parameter updating based on neighborhood pixel 
correlation metrics can greatly decrease. 

ix , iy  are the gray values for two adjacent pixels in 
the ith frame of the sequence images in sliding 
window N at time t (showed in Figure1). 
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number of frames participating in the 
neighborhood correlation calculation of the 
image sequence. 

The concept of the sliding window [1] is 
introduced herein to estimate the real-time 
mean and variance value online.  

To calculate the neighborhood correlation for 
any time t, the former t-N+1 frame image is 
essential. 

 
Figure 1 Sequence of images in sliding 
window N at time t 

To simplify calculations and reduce storage 
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where K is the number of Gaussian 
distributions, and the cross-correlation 
function is 
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(General sliding window N=50). The 
neighborhood pixel correlation is 
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The current pixel correlation in 8-
neighborhood is calculated to update the 
GMM parameters using Eq. 7. When the pixel 
correlation value exceeds a certain threshold 
Tγ , the neighborhood pixel can directly be 
divided into the same Gaussian model with 
the current pixel, thereby avoiding duplicated 
computations. Otherwise, for the pixels that 
do not belong to the same category, the model 
update strategy is still adopted. Such an 
update strategy utilizes the spatial 
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and N is the number of frames participating in the 
neighborhood correlation calculation of the image 
sequence.
The concept of the sliding window [1] is introduced 
herein to estimate the real-time mean and variance 
value online. 
To calculate the neighborhood correlation for any 
time t, the former t-N+1 frame image is essential.
To simplify calculations and reduce storage space, ( )tE x  
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and ( )tD x  are simplified and replaced by the weighted 
average of the mean and variance value of GMM:
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where K is the number of Gaussian distributions, and 
the cross-correlation function is
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pixel correlation is
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The current pixel correlation in 8-neighborhood is 
calculated to update the GMM parameters using Eq. 
7. When the pixel correlation value exceeds a certain 
threshold Tγ , the neighborhood pixel can directly be 
divided into the same Gaussian model with the cur-
rent pixel, thereby avoiding duplicated computa-
tions. Otherwise, for the pixels that do not belong to 
the same category, the model update strategy is still 
adopted. Such an update strategy utilizes the spatial 
propagation characteristics of pixel values, and the 
background model gradually spreads to the neighbor-
hood, which is beneficial for speeding up the recogni-
tion of the ghost region.
In the process of practical calculation, the image block 
update approach was implemented for the current im-
age. Only the GMM parameters of the  center point in 
the window of a 3 x 3 neighborhood could be updated 
firstly, then centered on the current point, the pixel 
correlation ˆxyγ  in 8-neighborhood is calculated, after 
normalization correlation processing relative to the 
center point, the normalized correlation distance be-
tween each neighborhood point and the center point is
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when the correlation distance 'ˆ
xy

γ
 

is less than the 
threshold 'T

γ
 (typically set to 0.25), the neighborhood 

pixel can directly be divided into the same Gaussian 
model with the current pixel. Otherwise, for the pix-
els that do not belong to the same category, the model 
update strategy is still adopted.
In the meantime, Ge [16] noted that when the model of 
pixel change cannot be accurately judged, the random 
update strategy can partly simulate the uncertainty 
variation. Owing to the slow update of the background 
in the image, even if there is a dynamic background, 
the background will not significantly change between 
adjacent frames. Therefore, updating the pixels de-
termined as the background frame by frame is unnec-
essary. For this, a random sub-sampling strategy is 
proposed in this paper to select the background pix-
els and update model parameters: the pixels that have 
been identified as background are randomly selected 
by 1 ϕ  to participate in the model update calcula-
tions, combined with the neighborhood correlation 
update strategy, the neighborhood spatial propaga-
tion characteristics are used to make model copies 
with the neighborhood of these update points.
Random subsampling and neighborhood correlation 
blocks update strategy combined the spatial and se-
quential correlation and variability together, and 
therefore updating frequency of the background pix-
els can be slashed by at least an order of magnitude.

Figure 2 
Model parameter update process  
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2.3 Parameters Update Strategy 
Based on Observation Vector 

In the basic GMM algorithm, the parameters of 
the Gaussian model can be updated as: 

( )
( )( ) ( )
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(9) 

where 
,k tϖ is the weight of kth Gaussian 

model. α is the learning rate. ,k tµ is the mean 
value of the kth Gaussian model. 2

,k tσ is the 
variance of the kth Gaussian model. 

( ) ( ) ,k t k tx p xβ α= × where ( )k tp x is the 
probability value of the kth Gaussian model at 
the point tx . 
During the update processing, the models that 
are matched can update all the parameters 
using Eq. 9, other models that are not matched 
can only update the weights, and this may 
slow down the GMM update speed. It may be 
assumed that the kth Gaussian distribution 
does not match at the first n frames, and the 
weight is updated to ( ), ,01 n

k t kϖ α ϖ= − ×
, 

where α  is usually small, which makes the  
reduction rate of ,k tϖ  slower; however, this 
distribution should not conform to the 
background model, and such a distribution 
may achieve faster convergence. 

A count vector with K elements is introduced 
in this paper, where kc  records the 
observations of the kth Gaussian distribution. 
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2.3. Parameters Update Strategy Based on 
Observation Vector
In the basic GMM algorithm, the parameters of the 
Gaussian model can be updated as:
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where ,k tϖ
 
is the weight of kth Gaussian model. α

is the learning rate. ,k tµ is the mean value of the kth 
Gaussian model. 2

,k tσ  
is the variance of the kth Gauss-

ian model. ( ) ( ) ,k t k tx p xβ α= ×  where ( )k tp x  
is the 

probability value of the kth Gaussian model at the 
point tx .
During the update processing, the models that are 
matched can update all the parameters using Eq. 9, 
other models that are not matched can only update 
the weights, and this may slow down the GMM update 
speed. It may be assumed that the kth Gaussian dis-
tribution does not match at the first n frames, and the 
weight is updated to ( ), ,01 n

k t kϖ α ϖ= − × , where α  is 
usually small, which makes the  reduction rate of ,k tϖ  
slower; however, this distribution should not conform 
to the background model, and such a distribution may 
achieve faster convergence.
A count vector with K elements is introduced in this 
paper, where kc  records the observations of the kth 
Gaussian distribution.
The posterior probability that the pixel matches the 
kth Gaussian distribution is calculated as
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where ( ) ( ), , 11k t k t k tq xϖ α ϖ α−= − × + . If the pixel 

does not match successfully, ( )
1

0
K

j t
j

p x
=

=∑ , then all 

Gaussian components are degraded.

3. Target Detection Based on  
Color-Gradient Method
The pixel information cannot be fully utilized when 
establishing the mixed Gaussian model based solely 
on gradation modeling, and the detection result may 
generate many hollow regions. Maha [16] produced 
a multi-information fusion method to achieve the 
description of the targets. A background modeling 
method based on color information is derived [17, 
21]. Nevertheless, RGB color space mixes the col-
or and brightness information together, and when 
the brightness changes, the values of the three-color 
channels will all change, which reduces the color dis-
crimination ability. In contrast, in an HSI space, lumi-
nance is relatively independent, and Jiang [9] verifies 
that the performance of HSI is superior to that of RGB 
in target detection. The color has good invariance for 
target shape, scale, etc., and gradient has good invari-
ance for illumination. According to this, color and 
gradient features are fused in this paper to establish 
a three-channel-GMM method to complete the back-
ground model and then detect the target. 
First, the gradient is obtained from the original gray 
image. Second, the hue and saturation features are 
extracted in the HSI space. The background model 
is then initialized and trained separately for the hue, 
saturation, and gradient features. Finally, the Hue, 
Saturation, Gradient (HSG) channels are obtained. 
The mixed Gaussian modeling of the three channels 
can present the background in detail. Detection of the 
moving targets is completed. If the HSI value of the 
current pixel matches any Gaussian distribution in 
one channel, the point is divided into the background; 
otherwise, it is identified as the motion foreground. 
Herein, this three-channel based GMM algorithm is 
called HSG_GMM.
To verify the sophistication of the new algorithm, the 
traditional GMM, RGB_GMM algorithm, ViBe algo-
rithm, and the HSG_GMM algorithm that is proposed 
herein were executed in the same hardware panel: 
Intel Core i5-5300U CPU, 8G RAM; the frame size is 
352×228, and the results are shown in Figure 3.
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The average execution efficiency of ViBe is about 
0.04s per-frame, and therefore it can be used for re-
al-time target detection. The mean value of GMM is 
approximately 0.07s, which is suitable for non-strict 
demands for real-time execution. RGB-GMM has 
the lowest efficiency (about 0.5s per-frame) and can 
only be used for off-line detection. HSG-GMM pro-
posed in this paper adopts a three-channel Gaussian 
modeling method although it increases the number of 
channels. The introduction of a combination of ran-
dom sub-sample and neighborhood correlation met-
ric measurements can decrease the final total compu-
tation (about 0.05s per-frame). Although the actual 
running time cannot be compared with that of ViBe, it 
can still achieve real-time processing while meeting 
accuracy requirements.

4. Experiment and Analysis
4.1. Performance Analysis
The experiment was conducted using the LASIESTA 
Database [6] of Grupo de Tratamiento de Imagenes of 
Universidad Politecica de Madrid (UPM). And com-
pare the results achieved by HSG_GMM algorithm 
proposed in this paper with results achieved by other 
methods (which contained the traditional GMM [12], 
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3. Target Detection Based on 
Color-Gradient Method 
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together, and when the brightness changes, the 
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saturation, and gradient features. Finally, the Hue, 
Saturation, Gradient (HSG) channels are obtained. 
The mixed Gaussian modeling of the three channels 

can present the background in detail. 
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any Gaussian distribution in one channel, the 
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were executed in the same hardware panel: 
Intel Core i5-5300U CPU, 8G RAM; the frame 
size is 352×228, and the results are shown in 
Figure 3. 
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Figure 5 shows the detection result for the 161st 
frame. For the detection of pure background without 
moving target, the precision values of different algo-
rithms are identical in addition to some random noise. 
However, for the moving target detection, GMM and 
RGB_GMM could generate more holes, and ViBe can 
inhibit background noise, but the holes in the target 
still remain.

4.2. Effect Comparison

4.2.1.  Static Background Test
The video sequence “singnal.avi” is used to verify the 
effectiveness when there is a moving target in the ini-
tial static background.

Figure 6 showed the results of four different algo-
rithms in detecting the 6th 14th and 58th frames in the 
video sequence “singnal.avi”. The “ghost reflection” 
caused by the initial motion target in the basic GMM 
algorithm and the ViBe algorithm is well suppressed 
in the proposed algorithm. For the influence of the col-
or feature, the RGB_GMM retained more noise in the 
scene. The detected moving target is more complete, 
and the noise interference caused by the instability of 
the RGB value is overcome by the HSG_GMM algo-
rithm. The update strategy utilizes the spatial prop-
agation characteristics of pixel values speeds up the 
recognition efficiency, and the ghost reflection can be 
retrained obviously, but other erroneous judgement 
in the boundary has been introduced, and this made 
the edge of the target vague. 
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Figure 6 
Detection result of moving target in initial video in static background: (a) Initial image; (b) GMM result;  (c) RGB_GMM 
result; (d) ViBe result; (e) HSG_GMM result
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Figure 7 
Moving target detection in a dynamic background environment: (a1)–(a3): initial image; (b1)–(b3): GMM;  (c1)–(c3): RGB-
GMM; (d1)–(d3): ViBe; (e1)–(e3): HSG-GMM
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background of the snowflake to a greater extent than 
the basic GMM; however, the noise cannot be elim-
inated absolutely. The HSG-GMM algorithm can 
essentially eliminate the influence of the complex 
background, and the detected moving target area is 
also relatively complete. The observation vector in-
troduced in the HSG-GMM algorithm has an ability 
enhancement for noise suppression than ViBe, hence 
the HSG-GMM algorithm obtained a better back-
ground model and an integrated target region.

5. Conclusions
A parameter initialization method based on the spa-
tial neighborhood of a five-frame difference improved 
the accuracy of the initial value of the parameters, and 
the constructed mixed Gaussian model is more in line 
with the characteristics of the background pixels. The 
parameters update strategy based on observation vec-
tor proposed in this paper speed up the converges of 
the models, combining with the random subsampling 

and neighborhood spatial propagation theory, the 
algorithm execution efficiency of HSG-GMM with 
three channels can reach about 0.05s per-frame. Col-
or information of the HSI space is combined with gra-
dient information to construct a multi-channel model 
establishment and update mechanism, which makes 
the background model close to perfect.
Experiments show that the proposed algorithm HSG-
GMM is greatly improved when suppressing the in-
fluence of complex backgrounds and detecting target 
integrity. The influence of the moving target in the 
initial stage is eliminated and there are fewer target 
holes; however, some other erroneous judgement in 
the boundary has been introduced, and this made the 
edge of the target vague. Furthermore, some failed 
experiment showed that the HSG-GMM algorithm 
could not detect the slow-moving targets more clearly 
under camera motion conditions than ViBe.

Acknowledgement 
The authors acknowledge the National Natural Sci-
ence Foundation of China (Grant: 11771115).

References 
1. Barron, J. L., Fleet, D. J., Beauchemin, S. S., Burkitt, T. 

A. Performance of Optical Flow Techniques. Computer 
Vision and Pattern Recognition, 1994, 12, 43-77. https://
doi.org/10.1007/BF01420984

2. Bouwmans, T., El Baf, F., Vachon, B. Background 
Modeling Using Mixture of Gaussians for Fore-
ground Detection - A Survey. Recent Patents Com-
puter Science, 2008, 1(3), 219-237. https://doi.
org/10.2174/1874479610801030219

3. Barnich, O., Droogenbroeck, M. V. ViBe: A Universal 
Background Subtraction Algorithm for Video Sequenc-
es. IEEE Transactions on Image Processing, 20(6), 
1709-1724. https://doi.org/10.1109/TIP.2010.2101613

4. Chen, Y. Y., Wang, J. Q, Lu, H. Q. Learning Sharable Mod-
els for Robust Background Subtraction. IEEE Interna-
tional Conference on Multimedia and Expo, Turin, It-
aly, 2015. https://doi.org/10.1109/ICME.2015.7177419

5. Choi, M., Sweetman, B. Efficient Calculation of Statisti-
cal Moments for Structural Health Monitoring. Struc-
tural Health Monitoring, 2010, 9(1), 13-24. https://doi.
org/10.1177/1475921709341014

6. Cuevas, C., Yáñez, E. M., García, N. Labeled Dataset for 
Integral Evaluation of Moving Object Detection Algo-

rithms: LASIESTA. Computer Vision Image Under-
standing, 2016, 152, 103-117. https://doi.org/10.1016/j.
cviu.2016.08.005

7. Ge, H. L., Zhu, Z. Y., Lou, K. Classification of Infrared 
Objects in Manifold Space Using Kullback-Leibler Di-
vergence of Gaussian Distributions of Image Points. 
Symmetry, 2020, 12(3), 434. https://doi.org/10.3390/
sym12030434

8. Goyette, N., Jodoin, P. M., Porikli, F., Konrad, J., Ish-
war, P. Changedetection.net: A New Change Detection 
Benchmark Dataset. 2012 IEEE Computer Society 
Conference on Computer Vision and Pattern Recog-
nition (CVPR), Workshops, Rhode Island, 2012, 1-8. 
https://doi.org/10.1109/CVPRW.2012.6238919

9. Jiang, Y. S., Ma, J. W. Combination Features and Models 
for Human Detection. IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), Boston, USA, 
2015,240.https://doi.org/10.1109/CVPR.2015.7298620

10. Kaewtrakulpong, P., Bowden, R. An Improved Adaptive 
Background Mixture Model for Realtime Tracking with 
Shadow Detection. Video-Based Surveillance Systems, 
Springer, Boston, MA, 2002, 11, 135-144. https://doi.
org/10.1007/978-1-4615-0913-4_11



345Information Technology and Control 2020/3/49

11. Kang, K., Cao, Y., Zhang, J. Salient object Detection 
and Classification for Stereoscopic Images. Multi-
media Tools App, 2016, 75(3), 1443-1457. https://doi.
org/10.1007/s11042-014-2142-8

12. Lai, L. J., Xu, Z. Y., Zhang, X. Y. An Improved Gradient 
Optical Flow Method for Image Stabilization System. 
Infrared Laser Engineering, 2016, 45(4), 273-279. 
https://doi.org/10.3788/irla201645.0428004

13. Li, W. J, Yao, J. G., Dong, T. Z. Moving Vehicle Detec-
tion Based on an Improved Interframe Difference and 
a Gaussian Mode. 2015 8th International Congress on 
Image and Signal Processing (CISP), Shenyang, 2015, 
969-973. https://doi.org/10.1109/CISP.2015.7408019

14. Li, X. Y., Ma, D. Z., Fu, Y. Moving Object Detection Using 
Mixed Gauss Background Model Based on Three Frame 
Differencing. Journal of Jilin University, 2018, 36(4), 
61-69.

15. Moghaddasi, S. S., Faraji, N. A Hybrid Algorithm Based on 
Particle Filter and Genetic Algorithm for Target Track-
ing. Expert Systems with Applications, 2020, 147(1), 
113188. https://doi.org/10.1016/j.eswa.2020.113188

16. Maha, M. A., Shedeed, H. A., Hussein, A. S. A new Tech-
nique for Background Modeling and Subtraction for 
Motion Detection in Real-time Videos. The 17th IEEE 
International Conference on Image Processing, Hong 
Kong, China, 2010, 3453. https://doi.org/10.1109/
ICIP.2010.5653748

17. Martin, D., Fahad, S. K., Michael, F. Adaptive color Attri-
butes for Real-time Visual Tracking. IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), 
Columbus, USA, 2014, 1090. http://dx.doi.org/ 10.1109/
CVPR.2014.143

18. Noh, S. J., Jeon, M. A New Framework for Background 
Subtraction Using Multiple Cues. Asian Conference on 

Computer Vision, Daejeon Korea, 2012, 49. https://doi.
org/10.1007/978-3-642-37431-9_38

19. Stauffer, C., Grimson, W. L. Adaptive background Mix-
ture Models for Real-time Tracking. Computer Society 
Conference on Computer Vision and Pattern Recogni-
tion, IEEE Computer Society Press: Washington, DC, 
USA 1999, 2246.

20. Wren, C. R., Azarbayejani, A., Darrell T. Pfinder: Re-
al-time Tracking of the Human Body. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 
1997, 19(7), 780-785. https://doi.org/10.1109/34.598236

21. Xu, Y., Dong, J. T., Wang, S. H. Adaptive image Interpo-
lation Algorithm Based on the Fuzzy Logic. Acta Phys-
ica Sinica, 2010, 59(11), 7535-7539. http://dx.doi.org/
CNKI:SUN:WLXB.0.2010-11-004.

22. Yandi L., Xu X. P., Wang H. C. Application of RHT 
Based on Character String Constraint in Ellipse Detec-
tion. Chinese Journal of Scientific Instrument, 2017, 
38(1), 50-56. http://dx.doi.org/ 10.3969/j.issn.0254-
3087.2017.02.023.

23. Zhou, B., Duan, X. M., Ye, D. J., Wei, W., Wozniak, M., 
Polap, D., Damaševičius, R. Multi-Level Features Ex-
traction for Discontinuous Target Tracking in Remote 
Sensing Image Monitoring. Sensors, 2019, 19(22), 4855. 
https://doi.org/10.3390/s19224855

24. Zhao, X. D., Liu, P., Liu, J. F., Tang, X. Adaptive Back-
ground Estimation of Outdoor Illumination Varia-
tions for Foreground Detection. Acta Automatica Si-
nica, 2011, 37(8), 915-922. https://doi.org/10.1109/
VCIP.2011.6115943

25. Zhu, W. J., Wang, G. L., Tian, J. Spatio-temporal Adap-
tive Mixture of Gaussians for Moving Objects Detection 
in Complex Background Scenes. Transaction of Beijing 
Institute of Technology, 2018, 38(2), 165-172. 

This article is an Open Access article distributed under the terms and conditions of the Creative 
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).




