
375Information Technology and Control 2021/2/50

Big Data Full-Text Search
Index Minimization Using
Text Summarization

ITC 2/50
Information Technology
and Control
Vol. 50 / No. 2 / 2021
pp. 375-389
DOI 10.5755/j01.itc.50.2.25470

 Big Data Full-Text Search Index Minimization Using Text Summarization

Received 2020/03/10 Accepted after revision 2021/05/03

 http://dx.doi.org/10.5755/j01.itc.50.2.25470

HOW TO CITE: Iqbal, W., Ilyas, W., Bukhari, F., Almustafa, K. M., Nawaz, Z. (2021). Big Data Full-Text Search Index Minimization Using Text
Summarization. Information Technology and Control, 50(2), 375-389. https://doi.org/10.5755/j01.itc.50.2.25470

Corresponding author: waheed.iqbal@pucit.edu.pk

Waheed Iqbal, Waqas Ilyas Malik, Faisal Bukhari
Punjab University College of Information Technology (PUCIT), University of the Punjab, Lahore, Pakistan

Khaled Mohamad Almustafa
College of Computer and Information Sciences, Prince Sultan University Riyadh, Saudi Arabia

Zubair Nawaz
Punjab University College of Information Technology (PUCIT), University of the Punjab, Lahore, Pakistan

An efficient full-text search is achieved by indexing the raw data with an additional 20 to 30 percent storage
cost. In the context of Big Data, this additional storage space is huge and introduces challenges to entertain
full-text search queries with good performance. It also incurs overhead to store, manage, and update the large
size index. In this paper, we propose and evaluate a method to minimize the index size to offer full-text search
over Big Data using an automatic extractive-based text summarization method. To evaluate the effectiveness
of the proposed approach, we used two real-world datasets. We indexed actual and summarized datasets us-
ing Apache Lucene and studied average simple overlapping, Spearman’s rho correlation, and average ranking
score measures of search results obtained using different search queries. Our experimental evaluation shows
that automatic text summarization is an effective method to reduce the index size significantly. We obtained a
maximum of 82% reduction in index size with 42% higher relevance of the search results using the proposed
solution to minimize the full-text index size.
KEYWORDS: Big Data, Indexing, Searching, Index Minimization, Text Summarization.

mailto:obodovskiy58@gmail.com

Information Technology and Control 2021/2/50376

1. Introduction
Recent advancements and adaptation of technology
are contributing to growing digital data exponential-
ly. For example, nowadays inexpensive and readily
available network-enabled electronic devices (smart-
phones, laptops, personal computers, and tablets), the
adaptation of social networks, and electronic health-
care gadgets are widely used and generate enormous
data. This increasing growth of data poses special
challenges to process, store, and analyze it [27]. To
overcome this challenge, recently a new research area
namely Big Data has emerged. One of the important
research problems in Big Data is to provide efficient
full-text search services on a large dataset. A com-
mon technique to provide text search is through data
indexing [5, 6]. There are many data structures in
practice to provide data indexing. One of the widely
used data structure is inverted index [6]. This data
structure is based on the hash table. Each entry in
the inverted index is a key-value pair, where the key
is a term and the value is a list of document identifiers
containing the term. All of the terms from the specif-
ic dataset are also known as term dictionary and the
corresponding list of document identifiers are known
as posting list. An inverted index after compression is
roughly 20-30% of the actual size of the dataset.
Apache Lucene is the most used library to index data
[24, 29, 32] for providing full-text search. It uses in-
verted index data structure to provide efficient data
search capabilities. Furthermore, Lucene uses com-
pression techniques to reduce the size of the index.
However, still, the index size remains around 20% to
30% of the actual size of the data. To entertain search
queries, Lucene loads the inverted index into a phys-
ical memory as a hash table containing term dictio-
nary and posting lists. For each query consisting of
multiple words, Lucene identifies the corresponding
posting lists, merge them, and rank the documents to
return as a search query result.
Lucene index generation is a time-consuming task
specifically for large datasets [17, 40]. Figure 1 shows
profiling of index time for different sizes of datasets
using Lucene. The figure shows actual and expected
index time for the datasets. The actual line is plotted
after profiling index time for different dataset sizes
varying from 1 GB to 200 GB. Whereas, the expect-
ed line is plotted by fitting the line using small size

datasets varying from 1 GB to 10 GB. This shows that
on increasing size of datasets, the performance of
Lucene decreases significantly. We advocate that a
large dataset can be reduced to a smaller representa-
tive dataset for indexing to offer full-text search with
better performance.
Traditionally data index is minimized using posting
list compression techniques [50, 51]. Compression
algorithms provide an effective reduction in space
but introduce overhead on decompression as it re-
quires to serve the queries which reduce the speed of
search queries drastically for a large index size. We
advocate to reduce the actual dataset using text au-
tomatic summarization method and then posting list
compression methods can further be used to reduce
the index size. Automatic text summarization [35] is
a process to create a summary of a text document by
significantly reducing its size. However, it ensures to
retain important points of the document. In this pa-
per, we investigate to minimize the index size of Big
Data using an automatic text summarization method.
To evaluate the effectiveness of this approach, we per-
formed four different experiments using two datasets
to study average overlapping, average ranking score,
and Spearman’s rho correlation measures of search
results using different search queries in comparison
with actual datasets.

Figure 1
Apache Lucene index generation time profiling using
different sizes of datasets

11.. IInnttrroodduuccttiioonn
Recent advancements and adaptation of
technology are contributing to growing digital data
exponentially. For example, nowadays inexpensive
and readily available network-enabled electronic
devices (smartphones, laptops, personal
computers, and tablets), the adaptation of social
networks, and electronic healthcare gadgets are
widely used and generate enormous data. This
increasing growth of data poses special challenges
to process, store, and analyze it [27]. To overcome
this challenge, recently a new research area namely
Big Data has emerged. One of the important
research problems in Big Data is to provide efficient
full-text search services on a large dataset. A
common technique to provide text search is
through data indexing [5, 6]. There are many data
structures in practice to provide data indexing. One
of the widely used data structure is inverted index
[6]. This data structure is based on the hash table.
Each entry in the inverted index is a key-value pair,
where the key is a term and the value is a list of
document identifiers containing the term. All of the
terms from the specific dataset are also known as
term dictionary and the corresponding list of
document identifiers are known as posting list. An
inverted index after compression is roughly 20-30%
of the actual size of the dataset.

Apache Lucene is the most used library to index
data [24, 29, 32] for providing full-text search. It
uses inverted index data structure to provide
efficient data search capabilities. Furthermore,
Lucene uses compression techniques to reduce the
size of the index. However, still, the index size
remains around 20% to 30% of the actual size of the
data. To entertain search queries, Lucene loads the
inverted index into a physical memory as a hash
table containing term dictionary and posting lists.
For each query consisting of multiple words,
Lucene identifies the corresponding posting lists,
merge them, and rank the documents to return as a
search query result.

Lucene index generation is a time-consuming task
specifically for large datasets [17, 40]. Figure 1
shows profiling of index time for different sizes of
datasets using Lucene. The figure shows actual and
expected index time for the datasets. The actual line
is plotted after profiling index time for different
dataset sizes varying from 1 GB to 200 GB.
Whereas, the expected line is plotted by fitting the
line using small size datasets varying from 1 GB to
10 GB. This shows that on increasing size of

datasets, the performance of Lucene decreases
significantly. We advocate that a large dataset
can be reduced to a smaller representative
dataset for indexing to offer full-text search
with better performance.

Figure 1

Apache Lucene index generation time profiling
using different sizes of datasets.

Traditionally data index is minimized using
posting list compression techniques [50, 51].
Compression algorithms provide an effective
reduction in space but introduce overhead on
decompression as it requires to serve the
queries which reduce the speed of search
queries drastically for a large index size. We
advocate to reduce the actual dataset using
text automatic summarization method and
then posting list compression methods can
further be used to reduce the index size.
Automatic text summarization [35] is a
process to create a summary of a text
document by significantly reducing its size.
However, it ensures to retain important points
of the document. In this paper, we investigate
to minimize the index size of Big Data using
an automatic text summarization method. To
evaluate the effectiveness of this approach, we
performed four different experiments using
two datasets to study average overlapping,
average ranking score, and Spearman’s rho
correlation measures of search results using
different search queries in comparison with
actual datasets.

The main contributions of this paper includes:

• We propose an automatic extractive-
based text summarization for Big Data index
minimization for the full-text search problem.

• We evaluate the effectiveness of the

377Information Technology and Control 2021/2/50

The main contributions of this paper includes:
 _ We propose an automatic extractive-based text

summarization for Big Data index minimization
for the full-text search problem.

 _ We evaluate the effectiveness of the proposed
method by studying relevance and overlapping of
the search query results with baseline datasets.

 _ Study the effect of different text summarization
threshold levels on data index minimization and
search results.

The rest of this paper is organized as follow. Related
work is discussed in Section 2. Commonly used Big
Data tools for fulltext search are discussed in Sec-
tion 3. The proposed solution for index generation
using automatic text summarization is presented
in Section 4. Experimental evaluation setup is dis-
cussed in Section 5. Experimental results are pre-
sented in Section 6. Finally, the conclusion is drawn
and future work is discussed in Section 7.

2. Related Work
There have been excellent efforts to develop tools,
methods, and programming models to store, process,
and analyze Big Data [3, 31, 41]. The full-text search on
the Big Data is a challenging and interesting problem
which recently gained attention. Many applications
and domains are using full-text search. For example,
Cuggia et al. [9] developed a full-text search engine
to use clinical notes for identifying different diseas-
es. Garcelon et al. [15] use full-text search to detect
the family history of patients from a biomedical data
warehouse. Hanauer et al. [19] develop a search query
recommendations system which exploits the query
semantics using synonym variants of the query text
and obtain most relevant data from electronic health
record system. Abe et al. [1] present a high-speed full-
text search engine for system log files. The solution
automatically converts system log files into an effi-
cient searchable index and provide good performance
to facilitate full-text search for end-users. Wang et
al. [44] use full-text search for large-scale cloud data
center monitoring. Their proposed solution is based
on tree index structure and correlation methods to in-
dex the data and obtain relevant results.
Full-text search on Big Data is commonly achieved us-
ing data indexing and hashing methods. A comprehen-

sive survey on Big Data indexing methods is reported by
Gani et al. [13]. Zhu et al. [51] introduced sparse hash-
ing for effectively searching high-dimensional data by
reducing the dimensionality of data dynamically. He et
al. [20] proposed and evaluated deep learning solution
to image-text retrieval using two convolution-based
networks to offer efficient image-text retrieval. Wang
et al. [43] present a survey on learning to hash algo-
rithms and categorize them. The learning to the hash
method is used to find data elements from the database
on given query so the distance of the selected data ele-
ments is minimum with the query text.
There have been several efforts to minimize search
index using posting list compression techniques.
For example, Zhang et al. [50] discussed inverted in-
dex compression for high-performance information
retrieval systems by compressing posting list. This
work explained various posting list compression algo-
rithms and then proposed a solution to select method
to use disk speed, cache size, and memory effectively
to improve performance for search engines. Yan et al.
[47] proposed to reorder document IDs in the posting
list for higher data index compression. They proposed
a method to optimize compression for posting list and
query processing by optimally reordering the docu-
ments. Wang et al. [42] proposes a new inverted list
compression method based on multiple techniques
including fixed-bit encoding, inblock compression,
dynamic data partitioning, and cache-aware optimi-
zation to improve the query performance. Another
work by Claude et al. [7] introduced a new method to
compress inverted indexes for applications required
full-text facility on a large repository of repetitive
documents like version control systems. Wu et al. [46]
reduce the indexing space and time by using indexing
blocks instead of individual records for minimizing
the query processing time.
The relevance of the full-text search results is import-
ant and many studies have been performed to observe
user’s behavior towards the ranking of the full-text
search results. Most of these studies show that only a
few tops ranked results are important from user’s per-
spective [22, 23, 37, 38]. Bar-Ilan et al. [4] discussed
different techniques used to correlate the rankings
of search engine results. This work applied different
methods of comparison of top 10 results using a specif-
ic set of queries and compared ranked results returned
by major search engines. Ghose et al. [16] present a

Information Technology and Control 2021/2/50378

study of ranking results obtained from a search engine
based on consumer behavior and revenue of search en-
gine using hierarchical Bayesian model. Williams et al.
[45] use pseudo-relevance feedback recursively to im-
prove search results for given text query.
Automatic text summarization is a well-established
research area [2, 12] which reduces the size of the
text significantly. However, it ensures to retain im-
portant sentences and central idea of the given text
while reducing its size. Two different methods exist
for automatic text summarization namely Extractive
and Abstractive. In Extractive method [28], import-
ant sentences are picked up from the given text to
generate a compact summary. It first ranks sentences
according to their importance and then assigns them
relevance score and finally selects the sentences with
the higher score as a summary of the document. In
Abstractive method [14, 25], Natural Language Pro-
cessing (NLP) methods are used to generate the sum-
mary of given text document. This method generates
the summary with possibly new vocabulary and sen-
tences similar to a human generated summary of the
documents. Recently, advanced techniques are used
to improve automatic text summary generation. For
example, [48] introduced deep learning for automatic
text summarization.
To our knowledge, no work has investigated the use of
text summarization methods for Big Data search in-
dex minimization. We take the first step to introduce
text summarization for reducing search index size
significantly while providing higher relevance of the
search results.

3. Big Data Indexing Tools
3.1. Apache Lucene
Apache Lucene [32] is a high-performance open-
source information retrieval library written in Java
programming language. It is primarily used for index-
ing and searching of text data. Lucene provides fast
indexing and fast searching capabilities for very large
datasets. It can process roughly 150 GB/hour of data
on latest hardware [10] with heap consumption of only
1 MB. The index size generated by Lucene is 20-30%
of actual dataset size. Besides simple indexing and
searching functionality, Lucene also ranks the search
results to show the most relevant results in descending

order of relevance. These features make it appealing to
use and build Big Data solutions on top of Lucene.

3.2. Apache Solr
Apache Solr [18] is a highly scalable enterprise search
engine that uses Lucene for indexing and searching
functionality. Solr extends Lucene and provides func-
tionality like rich documents processing (including
PDF, XML, HTML etc.), integration with the data-
base, index replication and load balancing for fault
tolerance. Solr also provides Distributed Searching
by introducing the concept of Shards. Solr provides
REST-based XML/JSON APIs that make it integra-
ble with most of the programming languages. Solr
exploits the fast-searching capability of Lucene and
make sure the availability of documents for searching
immediately after they are added for indexing.

3.3. Elasticsearch
Elasticsearch [26] is also an enterprise search engine.
Like Solr, it also uses Lucene for indexing and search-
ing. Elasticsearch is much similar to Solr in terms
of its functionality. Elasticsearch, like Solr also pro-
vides distribution of index by dividing it into different
Shards. It maintains replicas of every Shard. Elastic-
search also provides a feature of Gateway that allows
recovery in case of any server crash. Elasticsearch
supports NoSQL solutions which makes it attractive
to use as a database with Big Data applications. How-
ever, it doesn’t support distributed transactions.

3.4. Cloudera Search
Cloudera Search uses Hadoop Distributed File Sys-
tem (HDFS) for storing data indices to provide near
to real-time full-text search facility. It is based on
Apache Solr and provides fast individual and batch
indexing of text data. It works by indexing events
(streamed by Flume) while they are being stored in
HDFS. It first maps all events to Solr schema and then
uses Lucene for indexing of events. Cloudera Search
offers fault tolerance by leveraging the benefits of
HDFS. Cloudera Search is easy to integrate with
HBase to provide full-text search.

3.5. Sphinx
Sphinx is an open-source search engine written in
C++ which uses native protocols to communicate
with any Data Base Management System (DBMS).

379Information Technology and Control 2021/2/50

This allows Sphinx to directly index data of any
DBMS. It also works with NoSQL-based database
and allows the user to use it with raw text data to in-
dex and use it in their applications. Sphinx also allows
RDBMS like query style (use of WHERE, GROUP BY
etc. clauses). It offers aggregate functions for sum,
average, minimum, maximum etc. It also allows the
distributed searching and very easy to integrate with
any application.

3.6. Xapian
Xapian is an open-source search engine library writ-
ten in C++. It is fast and highly scalable for searching
text documents and can scale up to hundreds of mil-
lions of documents. Xapian has a built-in support for
Probabilistic IR models for the ranking of results. It
also allows the use of Boolean operators like AND,
OR etc. Xapian allows transactions with a guarantee
of data consistency in case of any failure. Some of the
important features available in Xapian are data up-
dates, automatic spell correction, probabilistic rank-
ing algorithms, and intuitive usage of synonyms for
the given text query.
Among all of these Apache Lucene is the most pow-
erful, mature, and famous among Big Data applica-
tion developers to use for offering the full-text search
facility. Moreover, the flexibility of Apache Lucene
to use its APIs and easy customization of the source
code helps greatly to integrate and implement our
proposed index minimization method.

4. Proposed Index Minimization
Using Text Summarization
Our proposed solution is based on automatic text
summarization for Big Data index minimization to
offer efficient fulltext search. We explained automatic
text summarization method and the proposed system
in the following subsections in turn.

4.1. Automatic Text Summarization Methods
Automatic text summarization is a process to cre-
ate a summary of a text document by significantly
reducing its size. However, it ensures to retain im-
portant points of the document. Mainly, two differ-
ent methods exist for automatic text summarization

[35] namely Extractive and Abstractive. In Extractive
method, important keywords, and sentences from the
original text are selected to create the summary. How-
ever, in Abstractive method, natural language pro-
cessing techniques are used to create the summary.
This method generates a summary which looks clos-
er to a human generated summary of the document.
But this method may not use sentences and keywords
from the original document to prepare the summary.
Searching text documents heavily rely on the key-
words present in the documents, therefore, in our
context Extractive method is appropriate to prepare
the summary of the document. Then, we index the
summary to significantly reduce the index size. Most
of the Extractive methods generate a summary by
finding the similarity between sentences and then as-
signing a similarity score to them. Finally, our method
selects sentences having the higher similarity scores
to prepare the summary. There are two common-
ly used approaches to prepare extractive-based text
summary known as Textrank-based [30] and cen-
troid-based [33]. Textrank-based algorithm prepares
a complete graph of sentences. Where each sentence
represents a vertex in the graph and edges represent
intersection score between two sentences. In this
paper, we chosen centroid-based [33] algorithm to
prepare the summary of text documents as this meth-
od is better than textrank-based text summarization
algorithm [11]. We explained the centroid-based text
summarization method in the following subsection.

4.1.1. Centroid-based Text Summarization
The centroid-based algorithm identifies a set of key-
words, labels them as centroid and then identify co-
sine similarity [33, 39] among other keywords to the
centroid. To identify set of centroid keywords for a
document, many techniques exist. For example, Co-
hen [8] proposed to use n-gram statistics to identify
the set of keywords. Ramos [34] proposes to use term
frequency-inverse document frequency (tf-idf) of
keywords to prepare a set of important keywords of a
document. Once the list of keywords is prepared then
cosine similarity score for each sentence is computed
with the centroid set of keywords. Finally, sentences
with higher cosine similarity are picked. However,
the number of selected sentences is defined by the
user as a percentage of the text (summary threshold)
required to be part of the summary.

Information Technology and Control 2021/2/50380

Figure 2
Proposed Big Data index generation and query serving system using text summarization

More formally, let di is a given document to gener-
ate a summary, a user defined τ which represents
maximum summary size in percentage for the given
document, and C = {k1, k2,..., kn} is a set of keywords
identified as a list of centroid keywords using tif-idf
measure. A vector measure. A vector 𝐶𝐶𝐶𝐶

→
 represent the tf represent the tf-idf vector of C.

The document di consists of a set of sentences S = {S1,
S2, S3,...,Sm} and we have a tf-idf vector

measure. A vector 𝐶𝐶𝐶𝐶
→

 represent the tf-idf vector of C.
The document di consists of a set of sentences S = {S
1,S 2,S 3,...,S m} and we have a tf-idf vector 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖

→

identified for each sentence. We use the following
formula to identify the consine similarity between
each 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖

→
 with 𝐶𝐶𝐶𝐶

→
:

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ,𝐶𝐶𝐶𝐶) = 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
→
⋅𝐶𝐶𝐶𝐶
→

∥𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
→
∥2∥𝐶𝐶𝐶𝐶

→
∥2

 (1)

Then we get a list of similarity for each sentence in
the document:

⎝

⎜
⎛

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆1,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆2,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆3,𝐶𝐶𝐶𝐶)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆4,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆5,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆6,𝐶𝐶𝐶𝐶)

… … …
… … …

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚−2,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚−1,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚,𝐶𝐶𝐶𝐶)⎠

⎟
⎞

Then we sort the sentences by their similarity
scores and identify top sentences that give the
summary size less than given τ. We call τ as a
summary threshold which defines the user choice
of the size of summary required to generate for the
given text document.

44..22.. PPrrooppoosseedd SSyysstteemm
Figure 2 shows our proposed system to index data
using text summarization and serving user queries.

The data indexing process works by
aggregating data from different data sources
like websites, social networks, server logs, and
smart devices. The data from these sources are
collected as text documents and passed to the
text summarization method which generates
summaries for all given documents. Then a
preprocessing step is performed which uses
NLP methods like stop word removal and
stemming to filter insignificant data.
Stopword removes all frequent words like a,
the, their, we, etc. Stemming reduces the
words to their roots which greatly help to
minimize the vocabulary of the given
documents. Once the pre-processing is done,
the important extracted keywords are then
passed to the indexing library (Apache
Lucene) which prepares an inverted index
using the given keywords and document IDs.
Once the inverted index is ready, then users
can invoke queries using the methods
exposed by the indexing library. For the given
queries, indexing library identifies the related
documents, sorts them with ranking scores
and returns a list of documents to the users.

generation time and size for both datasets.

55.. EExxppeerriimmeennttaall EEvvaalluuaattiioonn
In this section, we explain dataset, evaluation
criteria, and experiments performed to
evaluate the proposed method to index Big
Data for full-text search applications. We
performed all experiments using a core i7

Figure 2

Proposed Big Data index generation and query serving system using text summarization.

 identified for
each sentence. We use the following formula to iden-
tify the consine similarity between each

measure. A vector 𝐶𝐶𝐶𝐶
→

 represent the tf-idf vector of C.
The document di consists of a set of sentences S = {S
1,S 2,S 3,...,S m} and we have a tf-idf vector 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖

→

identified for each sentence. We use the following
formula to identify the consine similarity between
each 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖

→
 with 𝐶𝐶𝐶𝐶

→
:

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ,𝐶𝐶𝐶𝐶) = 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
→
⋅𝐶𝐶𝐶𝐶
→

∥𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
→
∥2∥𝐶𝐶𝐶𝐶

→
∥2

 (1)

Then we get a list of similarity for each sentence in
the document:

⎝

⎜
⎛

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆1,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆2,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆3,𝐶𝐶𝐶𝐶)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆4,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆5,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆6,𝐶𝐶𝐶𝐶)

… … …
… … …

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚−2,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚−1,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚,𝐶𝐶𝐶𝐶)⎠

⎟
⎞

Then we sort the sentences by their similarity
scores and identify top sentences that give the
summary size less than given τ. We call τ as a
summary threshold which defines the user choice
of the size of summary required to generate for the
given text document.

44..22.. PPrrooppoosseedd SSyysstteemm
Figure 2 shows our proposed system to index data
using text summarization and serving user queries.

The data indexing process works by
aggregating data from different data sources
like websites, social networks, server logs, and
smart devices. The data from these sources are
collected as text documents and passed to the
text summarization method which generates
summaries for all given documents. Then a
preprocessing step is performed which uses
NLP methods like stop word removal and
stemming to filter insignificant data.
Stopword removes all frequent words like a,
the, their, we, etc. Stemming reduces the
words to their roots which greatly help to
minimize the vocabulary of the given
documents. Once the pre-processing is done,
the important extracted keywords are then
passed to the indexing library (Apache
Lucene) which prepares an inverted index
using the given keywords and document IDs.
Once the inverted index is ready, then users
can invoke queries using the methods
exposed by the indexing library. For the given
queries, indexing library identifies the related
documents, sorts them with ranking scores
and returns a list of documents to the users.

generation time and size for both datasets.

55.. EExxppeerriimmeennttaall EEvvaalluuaattiioonn
In this section, we explain dataset, evaluation
criteria, and experiments performed to
evaluate the proposed method to index Big
Data for full-text search applications. We
performed all experiments using a core i7

Figure 2

Proposed Big Data index generation and query serving system using text summarization.

 with measure. A vector 𝐶𝐶𝐶𝐶
→

 represent the tf:

measure. A vector 𝐶𝐶𝐶𝐶
→

 represent the tf-idf vector of C.
The document di consists of a set of sentences S = {S
1,S 2,S 3,...,S m} and we have a tf-idf vector 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖

→

identified for each sentence. We use the following
formula to identify the consine similarity between
each 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖

→
 with 𝐶𝐶𝐶𝐶

→
:

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ,𝐶𝐶𝐶𝐶) = 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
→
⋅𝐶𝐶𝐶𝐶
→

∥𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
→
∥2∥𝐶𝐶𝐶𝐶

→
∥2

 (1)

Then we get a list of similarity for each sentence in
the document:

⎝

⎜
⎛

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆1,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆2,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆3,𝐶𝐶𝐶𝐶)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆4,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆5,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆6,𝐶𝐶𝐶𝐶)

… … …
… … …

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚−2,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚−1,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚,𝐶𝐶𝐶𝐶)⎠

⎟
⎞

Then we sort the sentences by their similarity
scores and identify top sentences that give the
summary size less than given τ. We call τ as a
summary threshold which defines the user choice
of the size of summary required to generate for the
given text document.

44..22.. PPrrooppoosseedd SSyysstteemm
Figure 2 shows our proposed system to index data
using text summarization and serving user queries.

The data indexing process works by
aggregating data from different data sources
like websites, social networks, server logs, and
smart devices. The data from these sources are
collected as text documents and passed to the
text summarization method which generates
summaries for all given documents. Then a
preprocessing step is performed which uses
NLP methods like stop word removal and
stemming to filter insignificant data.
Stopword removes all frequent words like a,
the, their, we, etc. Stemming reduces the
words to their roots which greatly help to
minimize the vocabulary of the given
documents. Once the pre-processing is done,
the important extracted keywords are then
passed to the indexing library (Apache
Lucene) which prepares an inverted index
using the given keywords and document IDs.
Once the inverted index is ready, then users
can invoke queries using the methods
exposed by the indexing library. For the given
queries, indexing library identifies the related
documents, sorts them with ranking scores
and returns a list of documents to the users.

generation time and size for both datasets.

55.. EExxppeerriimmeennttaall EEvvaalluuaattiioonn
In this section, we explain dataset, evaluation
criteria, and experiments performed to
evaluate the proposed method to index Big
Data for full-text search applications. We
performed all experiments using a core i7

Figure 2

Proposed Big Data index generation and query serving system using text summarization.

(1)

Then we get a list of similarity for each sentence in
the document:

measure. A vector 𝐶𝐶𝐶𝐶
→

 represent the tf-idf vector of C.
The document di consists of a set of sentences S = {S
1,S 2,S 3,...,S m} and we have a tf-idf vector 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖

→

identified for each sentence. We use the following
formula to identify the consine similarity between
each 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖

→
 with 𝐶𝐶𝐶𝐶

→
:

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ,𝐶𝐶𝐶𝐶) = 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
→
⋅𝐶𝐶𝐶𝐶
→

∥𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
→
∥2∥𝐶𝐶𝐶𝐶

→
∥2

 (1)

Then we get a list of similarity for each sentence in
the document:

⎝

⎜
⎛

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆1,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆2,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆3,𝐶𝐶𝐶𝐶)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆4,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆5,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆6,𝐶𝐶𝐶𝐶)

… … …
… … …

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚−2,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚−1,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚,𝐶𝐶𝐶𝐶)⎠

⎟
⎞

Then we sort the sentences by their similarity
scores and identify top sentences that give the
summary size less than given τ. We call τ as a
summary threshold which defines the user choice
of the size of summary required to generate for the
given text document.

44..22.. PPrrooppoosseedd SSyysstteemm
Figure 2 shows our proposed system to index data
using text summarization and serving user queries.

The data indexing process works by
aggregating data from different data sources
like websites, social networks, server logs, and
smart devices. The data from these sources are
collected as text documents and passed to the
text summarization method which generates
summaries for all given documents. Then a
preprocessing step is performed which uses
NLP methods like stop word removal and
stemming to filter insignificant data.
Stopword removes all frequent words like a,
the, their, we, etc. Stemming reduces the
words to their roots which greatly help to
minimize the vocabulary of the given
documents. Once the pre-processing is done,
the important extracted keywords are then
passed to the indexing library (Apache
Lucene) which prepares an inverted index
using the given keywords and document IDs.
Once the inverted index is ready, then users
can invoke queries using the methods
exposed by the indexing library. For the given
queries, indexing library identifies the related
documents, sorts them with ranking scores
and returns a list of documents to the users.

generation time and size for both datasets.

55.. EExxppeerriimmeennttaall EEvvaalluuaattiioonn
In this section, we explain dataset, evaluation
criteria, and experiments performed to
evaluate the proposed method to index Big
Data for full-text search applications. We
performed all experiments using a core i7

Figure 2

Proposed Big Data index generation and query serving system using text summarization.

Then we sort the sentences by their similarity scores
and identify top sentences that give the summary size

less than given τ. We call τ as a summary threshold
which defines the user choice of the size of summary
required to generate for the given text document.

4.2. Proposed System

Figure 2 shows our proposed system to index data us-
ing text summarization and serving user queries. The
data indexing process works by aggregating data from
different data sources like websites, social networks,
server logs, and smart devices. The data from these
sources are collected as text documents and passed to
the text summarization method which generates sum-
maries for all given documents. Then a preprocessing
step is performed which uses NLP methods like stop
word removal and stemming to filter insignificant data.
Stopword removes all frequent words like a, the, their,
we, etc. Stemming reduces the words to their roots
which greatly help to minimize the vocabulary of the
given documents. Once the pre-processing is done,
the important extracted keywords are then passed to
the indexing library (Apache Lucene) which prepares
an inverted index using the given keywords and docu-
ment IDs. Once the inverted index is ready, then users
can invoke queries using the methods exposed by the
indexing library. For the given queries, indexing library

measure. A vector 𝐶𝐶𝐶𝐶
→

 represent the tf-idf vector of C.
The document di consists of a set of sentences S = {S
1,S 2,S 3,...,S m} and we have a tf-idf vector 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖

→

identified for each sentence. We use the following
formula to identify the consine similarity between
each 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖

→
 with 𝐶𝐶𝐶𝐶

→
:

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ,𝐶𝐶𝐶𝐶) = 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
→
⋅𝐶𝐶𝐶𝐶
→

∥𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖
→
∥2∥𝐶𝐶𝐶𝐶

→
∥2

 (1)

Then we get a list of similarity for each sentence in
the document:

⎝

⎜
⎛

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆1,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆2,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆3,𝐶𝐶𝐶𝐶)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆4,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆5,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆6,𝐶𝐶𝐶𝐶)

… … …
… … …

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚−2,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚−1,𝐶𝐶𝐶𝐶) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚,𝐶𝐶𝐶𝐶)⎠

⎟
⎞

Then we sort the sentences by their similarity
scores and identify top sentences that give the
summary size less than given τ. We call τ as a
summary threshold which defines the user choice
of the size of summary required to generate for the
given text document.

44..22.. PPrrooppoosseedd SSyysstteemm
Figure 2 shows our proposed system to index data
using text summarization and serving user queries.

The data indexing process works by
aggregating data from different data sources
like websites, social networks, server logs, and
smart devices. The data from these sources are
collected as text documents and passed to the
text summarization method which generates
summaries for all given documents. Then a
preprocessing step is performed which uses
NLP methods like stop word removal and
stemming to filter insignificant data.
Stopword removes all frequent words like a,
the, their, we, etc. Stemming reduces the
words to their roots which greatly help to
minimize the vocabulary of the given
documents. Once the pre-processing is done,
the important extracted keywords are then
passed to the indexing library (Apache
Lucene) which prepares an inverted index
using the given keywords and document IDs.
Once the inverted index is ready, then users
can invoke queries using the methods
exposed by the indexing library. For the given
queries, indexing library identifies the related
documents, sorts them with ranking scores
and returns a list of documents to the users.

generation time and size for both datasets.

55.. EExxppeerriimmeennttaall EEvvaalluuaattiioonn
In this section, we explain dataset, evaluation
criteria, and experiments performed to
evaluate the proposed method to index Big
Data for full-text search applications. We
performed all experiments using a core i7

381Information Technology and Control 2021/2/50

identifies the related documents, sorts them with rank-
ing scores and returns a list of documents to the users.
Generation time and size for both datasets.

5. Experimental Evaluation
In this section, we explain dataset, evaluation crite-
ria, and experiments performed to evaluate the pro-
posed method to index Big Data for full-text search
applications. We performed all experiments using a
core i7 computer system with 8GB physical memory.

5.1. Datasets and Search Queries
We used two publicly available datasets namely Wiki-
pedia and Project Gutenberg5 to generate their sum-
maries and then indexed them using the proposed sys-
tem to study the effect of index generation on time and
size. We also studied the overlapping and relevance
of search results using summarized datasets with the
actual dataset. The experimental datasets (actual and
summarized) are briefly explained in Table 1. Figure 3
shows the effect of different summary thresholds on
index generation time and size for both datasets.
The actual Wikipedia dataset we used is 77 GB in
size, consisting of 14.25 million HTML pages and its
search index size is 12 GB. We used nine different
summarized datasets of Wikipedia datasets with dif-
ferent values of the summary threshold. The Project

Figure 3
Effect of different summary thresholds on index
generation time and size for both datasets

computer system with 8GB physical memory.

55..11.. DDaattaasseettss aanndd SSeeaarrcchh QQuueerriieess
We used two publicly available datasets
namely Wikipedia and Project Gutenberg5 to
generate their summaries and then indexed
them using the proposed system to study the
effect of index generation on time and size.
We also studied the overlapping and
relevance of search results using summarized
datasets with the actual dataset. The
experimental datasets (actual and
summarized) are briefly explained in Table 1.
Figure 3 shows the effect of different
summary thresholds on index generation time
and size for both datasets.

Table 1

Datasets with different summary thresholds. The actual dataset (without summarization) is used as a baseline to compare
index size, index generation time, search results overlapping, and relevance with summarized datasets.

Data Set Summary Dataset Size
(GB)

Index Size
(GB)

Index Creation
Time

(mins)

Wikipedia

90 58.98 2.42 323.7

80 43.89 2.27 310.17

70 33.88 2.11 305.66

60 27.72 1.95 296.65

50 20.79 1.79 287.75

40 16.17 1.56 269.83

30 12.32 1.33 261.16

20 7.7 0.75 251.79

10 3.85 0.58 238.61

Project
Gutenberg

90 1.1 0.28 0.92

80 0.96 0.26 0.88

70 0.86 0.23 0.82

60 0.76 0.2 0.75

50 0.66 0.18 0.6

40 0.55 0.15 0.53

30 0.44 0.12 0.43

20 0.32 0.09 0.33

10 0.19 0.05 0.2

The actual Wikipedia dataset we used is 77 GB in
size, consisting of 14.25 million HTML pages and
its search index size is 12 GB. We used nine
different summarized datasets of Wikipedia

datasets with different values of the summary
threshold. The Project Gutenberg data is 1.2
GB in size, consisting of 3035 plain text files
and its search index size is 301.2 MB. Then we
summarized this database using nine

Figure 3

Effect of different summary thresholds on index
generation time and size for both datasets.

Table 1
Datasets with different summary thresholds. The actual
dataset (without summarization) is used as a baseline to
compare index size, index generation time, search results
overlapping, and relevance with summarized datasets

Data Set Summary Dataset
Size (GB)

Index
Size (GB)

Index Creation
Time (mins)

Wikipedia

90 58.98 2.42 323.7

80 43.89 2.27 310.17

70 33.88 2.11 305.66

60 27.72 1.95 296.65

50 20.79 1.79 287.75

40 16.17 1.56 269.83

30 12.32 1.33 261.16

20 7.7 0.75 251.79

10 3.85 0.58 238.61

Project
Gutenberg

90 1.1 0.28 0.92

80 0.96 0.26 0.88

70 0.86 0.23 0.82

60 0.76 0.2 0.75

50 0.66 0.18 0.6

40 0.55 0.15 0.53

30 0.44 0.12 0.43

20 0.32 0.09 0.33

10 0.19 0.05 0.2

Gutenberg data is 1.2 GB in size, consisting of 3035
plain text files and its search index size is 301.2 MB.
Then we summarized this database using nine differ-
ent summary thresholds to study the impact on index
size, time, overlapping, and relevance.To consider the
effect of different search queries for both actual and
summarized datasets, we used 200 different queries.
For Wikipedia actual and summarized datasets, we
used 200 search queries randomly selected from a
set of 5000 most frequent search queries of Wiki-
pedia website. For the Project Gutenberg actual and
summarized dataset, we used 200 randomly selected
nouns from the dataset.

Information Technology and Control 2021/2/50382

5.2. Evaluation Criteria
We used different measures to compare the sum-
marized and the actual datasets for overlapping and
relevance of the results. We used simple overlap-
ping, document ranking scores, and Spearman’s rho
correlation to study the impact of the summarized
dataset on search results. In this section, we explain
the evaluation measures used in our experimental
evaluation.

5.2.1. Simple Overlapping
To compare search results of the summarized dataset
with the actual dataset, we use a simple overlapping
measure. The simple overlapping measure is a ratio of
overlapping search results (documents) for the same
queries on both datasets (actual and summarized) for
Top 1, Top 5, Top 10, Top 15, and Top 20 search results.
We calculate the simple overlapping (S0) using the
following formula:

different summary thresholds to study the impact
on index size, time, overlapping, and relevance.

To consider the effect of different search queries for
both actual and summarized datasets, we used 200
different queries. For Wikipedia actual and
summarized datasets, we used 200 search queries
randomly selected from a set of 5000 most frequent
search queries of Wikipedia website. For the Project
Gutenberg actual and summarized dataset, we
used 200 randomly selected nouns from the
dataset.

55..22.. EEvvaalluuaattiioonn CCrriitteerriiaa
We used different measures to compare the
summarized and the actual datasets for
overlapping and relevance of the results. We used
simple overlapping, document ranking scores, and
Spearman’s rho correlation to study the impact of
the summarized dataset on search results. In this
section, we explain the evaluation measures used
in our experimental evaluation.

55..22..11.. SSiimmppllee OOvveerrllaappppiinngg
To compare search results of the summarized
dataset with the actual dataset, we use a simple
overlapping measure. The simple overlapping
measure is a ratio of overlapping search results
(documents) for the same queries on both datasets
(actual and summarized) for Top 1, Top 5, Top 10,
Top 15, and Top 20 search results. We calculate the
simple overlapping (𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜) using the following
formula:

 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜= 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅

 , (2)

where R is the number of documents returned by a
query from the actual datasets and Rs is the number
of intersection documents between results returned
for the query from the actual and the summarized
dataset.

55..22..22.. RRaannkkiinngg SSccoorree
To compare the relevance of search results with the
queries for both the summarized and the actual
datasets, we use ranking score assigned by Apache
Lucene to each document in the search result. We
compute the average ranking of Top 1, Top 5, Top
10, Top 15, and Top 20 search results on both actual
and summarized datasets using same search
queries. To assign ranking scores, a combination of
Vector Space Model (VSM) and Boolean Model is
used.

The Boolean Model identifies the relevant
documents on the given queries. Assuming a given
set of n documents D = {d1,d2,...,dn}, term dictionary
of size m is is T = {t1,t2,...,tm}, and a boolean

expression consisting on k search terms Q = (q1

∨ q2 ∨ ...qk). Then Boolean Model identifies lists
of documents ∀d and ∀q using Sl = {di|qj} and
then identifies a list of identical documents S
= {S 1 ∩ S 2 ∩ S 3 ... }. The list S gives all
documents containing the search terms. In the
VSM, term frequency-inverse document
frequency (tf-idf) is used to identify the
ranking of relevant documents given by
Boolean Model. For each document di in S, a
weight vector vdi =[w1,di ,w2,di ,...,wz,di] is learned.
Where:

𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑 = (𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑)(log |𝑆𝑆𝑆𝑆|
|𝑡𝑡𝑡𝑡∈𝑆𝑆𝑆𝑆|

 (3)

and tft,d is term frequency for give term t in
document di. The remaining part of the
Equation 3 is representing inverse document
frequency. Then finally ranking score of
document di is computed using ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞for the
qiven query q using:

 ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞 =
� 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗.𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞

𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1

�� 𝑤𝑤𝑤𝑤2𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗
𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1
.�� 𝑤𝑤𝑤𝑤2𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞

𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1

 . (4)

Finally, ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞 is associated with each
document di and then return to the user in
sorted order as a response to the search
expression.

55..22..33.. SSppeeaarrmmaann’’ss rrhhoo CCoorrrreellaattiioonn
We used Spearman’s rho [49] to find the
correlation between summarized and actual
datasets for Top 1, Top 5, Top 10, Top 15, and
Top 20 search results. The Spearman’s rho
works by finding overlapping between two
given sets. It ignores non-overlapping
members of the set and gives a higher score to
higher ranked overlapped results to compute
a measure ranging between −1 and 1. The sign
of Spearman’s rho value shows the direction
of overlapping. Since, in our experimental
evaluation, we required to identify absolute
overlapping between two search results,
therefore, we take the absolute value of
Spearman’s rho measure. The Spearman’s rho
(Sr) is computed using the following formula:

 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 = 1 − 6∑𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖2

𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁2−1)
 , (5)

where Di represents the difference of
document ranking between two sets of
documents, returned by both actual and
summarized datasets for ith query and N is the
total number of overlapped documents in

(2)

where R is the number of documents returned by a
query from the actual datasets and Rs is the number
of intersection documents between results returned
for the query from the actual and the summarized
dataset.

5.2.2. Ranking Score
To compare the relevance of search results with the
queries for both the summarized and the actual data-
sets, we use ranking score assigned by Apache Lucene
to each document in the search result. We compute
the average ranking of Top 1, Top 5, Top 10, Top 15,
and Top 20 search results on both actual and summa-
rized datasets using same search queries. To assign
ranking scores, a combination of Vector Space Model
(VSM) and Boolean Model is used.
The Boolean Model identifies the relevant documents
on the given queries. Assuming a given set of n docu-
ments D = {d1,d2,...,dn}, term dictionary of size m is is
T = {t1,t2,...,tm}, and a boolean expression consisting on
k search terms Q = (q1 ∨ q2 ∨ ...qk). Then Boolean Mod-
el identifies lists of documents ∀d and ∀q using Sl =
{di|qj} and then identifies a list of identical documents
S = {S 1 ∩ S 2 ∩ S 3 ... }. The list S gives all documents
containing the search terms. In the VSM, term fre-

quency-inverse document frequency (tf-idf) is used
to identify the ranking of relevant documents given
by Boolean Model. For each document di in S, a weight
vector vdi =[w1,di ,w2,di ,...,wz,di] is learned. Where:

different summary thresholds to study the impact
on index size, time, overlapping, and relevance.

To consider the effect of different search queries for
both actual and summarized datasets, we used 200
different queries. For Wikipedia actual and
summarized datasets, we used 200 search queries
randomly selected from a set of 5000 most frequent
search queries of Wikipedia website. For the Project
Gutenberg actual and summarized dataset, we
used 200 randomly selected nouns from the
dataset.

55..22.. EEvvaalluuaattiioonn CCrriitteerriiaa
We used different measures to compare the
summarized and the actual datasets for
overlapping and relevance of the results. We used
simple overlapping, document ranking scores, and
Spearman’s rho correlation to study the impact of
the summarized dataset on search results. In this
section, we explain the evaluation measures used
in our experimental evaluation.

55..22..11.. SSiimmppllee OOvveerrllaappppiinngg
To compare search results of the summarized
dataset with the actual dataset, we use a simple
overlapping measure. The simple overlapping
measure is a ratio of overlapping search results
(documents) for the same queries on both datasets
(actual and summarized) for Top 1, Top 5, Top 10,
Top 15, and Top 20 search results. We calculate the
simple overlapping (𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜) using the following
formula:

 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅

 , (2)

where R is the number of documents returned by a
query from the actual datasets and Rs is the number
of intersection documents between results returned
for the query from the actual and the summarized
dataset.

55..22..22.. RRaannkkiinngg SSccoorree
To compare the relevance of search results with the
queries for both the summarized and the actual
datasets, we use ranking score assigned by Apache
Lucene to each document in the search result. We
compute the average ranking of Top 1, Top 5, Top
10, Top 15, and Top 20 search results on both actual
and summarized datasets using same search
queries. To assign ranking scores, a combination of
Vector Space Model (VSM) and Boolean Model is
used.

The Boolean Model identifies the relevant
documents on the given queries. Assuming a given
set of n documents D = {d1,d2,...,dn}, term dictionary
of size m is is T = {t1,t2,...,tm}, and a boolean

expression consisting on k search terms Q = (q1

∨ q2 ∨ ...qk). Then Boolean Model identifies lists
of documents ∀d and ∀q using Sl = {di|qj} and
then identifies a list of identical documents S
= {S 1 ∩ S 2 ∩ S 3 ... }. The list S gives all
documents containing the search terms. In the
VSM, term frequency-inverse document
frequency (tf-idf) is used to identify the
ranking of relevant documents given by
Boolean Model. For each document di in S, a
weight vector vdi =[w1,di ,w2,di ,...,wz,di] is learned.
Where:

𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑 = (𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑)(log |𝑆𝑆𝑆𝑆|
|𝑡𝑡𝑡𝑡∈𝑆𝑆𝑆𝑆|

 (3)

and tft,d is term frequency for give term t in
document di. The remaining part of the
Equation 3 is representing inverse document
frequency. Then finally ranking score of
document di is computed using ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞for the
qiven query q using:

 ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞 =
� 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗.𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞

𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1

�� 𝑤𝑤𝑤𝑤2𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗
𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1
.�� 𝑤𝑤𝑤𝑤2𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞

𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1

 . (4)

Finally, ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞 is associated with each
document di and then return to the user in
sorted order as a response to the search
expression.

55..22..33.. SSppeeaarrmmaann’’ss rrhhoo CCoorrrreellaattiioonn
We used Spearman’s rho [49] to find the
correlation between summarized and actual
datasets for Top 1, Top 5, Top 10, Top 15, and
Top 20 search results. The Spearman’s rho
works by finding overlapping between two
given sets. It ignores non-overlapping
members of the set and gives a higher score to
higher ranked overlapped results to compute
a measure ranging between −1 and 1. The sign
of Spearman’s rho value shows the direction
of overlapping. Since, in our experimental
evaluation, we required to identify absolute
overlapping between two search results,
therefore, we take the absolute value of
Spearman’s rho measure. The Spearman’s rho
(Sr) is computed using the following formula:

 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 = 1 − 6∑𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖2

𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁2−1)
 , (5)

where Di represents the difference of
document ranking between two sets of
documents, returned by both actual and
summarized datasets for ith query and N is the
total number of overlapped documents in

) (3)

and tft,d is term frequency for give term t in document
di. The remaining part of the Equation 3 is represent-
ing inverse document frequency. Then finally ranking
score of document di is computed using

different summary thresholds to study the impact
on index size, time, overlapping, and relevance.

To consider the effect of different search queries for
both actual and summarized datasets, we used 200
different queries. For Wikipedia actual and
summarized datasets, we used 200 search queries
randomly selected from a set of 5000 most frequent
search queries of Wikipedia website. For the Project
Gutenberg actual and summarized dataset, we
used 200 randomly selected nouns from the
dataset.

55..22.. EEvvaalluuaattiioonn CCrriitteerriiaa
We used different measures to compare the
summarized and the actual datasets for
overlapping and relevance of the results. We used
simple overlapping, document ranking scores, and
Spearman’s rho correlation to study the impact of
the summarized dataset on search results. In this
section, we explain the evaluation measures used
in our experimental evaluation.

55..22..11.. SSiimmppllee OOvveerrllaappppiinngg
To compare search results of the summarized
dataset with the actual dataset, we use a simple
overlapping measure. The simple overlapping
measure is a ratio of overlapping search results
(documents) for the same queries on both datasets
(actual and summarized) for Top 1, Top 5, Top 10,
Top 15, and Top 20 search results. We calculate the
simple overlapping (𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜) using the following
formula:

 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅

 , (2)

where R is the number of documents returned by a
query from the actual datasets and Rs is the number
of intersection documents between results returned
for the query from the actual and the summarized
dataset.

55..22..22.. RRaannkkiinngg SSccoorree
To compare the relevance of search results with the
queries for both the summarized and the actual
datasets, we use ranking score assigned by Apache
Lucene to each document in the search result. We
compute the average ranking of Top 1, Top 5, Top
10, Top 15, and Top 20 search results on both actual
and summarized datasets using same search
queries. To assign ranking scores, a combination of
Vector Space Model (VSM) and Boolean Model is
used.

The Boolean Model identifies the relevant
documents on the given queries. Assuming a given
set of n documents D = {d1,d2,...,dn}, term dictionary
of size m is is T = {t1,t2,...,tm}, and a boolean

expression consisting on k search terms Q = (q1

∨ q2 ∨ ...qk). Then Boolean Model identifies lists
of documents ∀d and ∀q using Sl = {di|qj} and
then identifies a list of identical documents S
= {S 1 ∩ S 2 ∩ S 3 ... }. The list S gives all
documents containing the search terms. In the
VSM, term frequency-inverse document
frequency (tf-idf) is used to identify the
ranking of relevant documents given by
Boolean Model. For each document di in S, a
weight vector vdi =[w1,di ,w2,di ,...,wz,di] is learned.
Where:

𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑 = (𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑)(log |𝑆𝑆𝑆𝑆|
|𝑡𝑡𝑡𝑡∈𝑆𝑆𝑆𝑆|

 (3)

and tft,d is term frequency for give term t in
document di. The remaining part of the
Equation 3 is representing inverse document
frequency. Then finally ranking score of
document di is computed using ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞for the
qiven query q using:

 ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞 =
� 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗.𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞

𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1

�� 𝑤𝑤𝑤𝑤2𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗
𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1
.�� 𝑤𝑤𝑤𝑤2𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞

𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1

 . (4)

Finally, ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞 is associated with each
document di and then return to the user in
sorted order as a response to the search
expression.

55..22..33.. SSppeeaarrmmaann’’ss rrhhoo CCoorrrreellaattiioonn
We used Spearman’s rho [49] to find the
correlation between summarized and actual
datasets for Top 1, Top 5, Top 10, Top 15, and
Top 20 search results. The Spearman’s rho
works by finding overlapping between two
given sets. It ignores non-overlapping
members of the set and gives a higher score to
higher ranked overlapped results to compute
a measure ranging between −1 and 1. The sign
of Spearman’s rho value shows the direction
of overlapping. Since, in our experimental
evaluation, we required to identify absolute
overlapping between two search results,
therefore, we take the absolute value of
Spearman’s rho measure. The Spearman’s rho
(Sr) is computed using the following formula:

 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 = 1 − 6∑𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖2

𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁2−1)
 , (5)

where Di represents the difference of
document ranking between two sets of
documents, returned by both actual and
summarized datasets for ith query and N is the
total number of overlapped documents in

 for the
qiven query q using:

different summary thresholds to study the impact
on index size, time, overlapping, and relevance.

To consider the effect of different search queries for
both actual and summarized datasets, we used 200
different queries. For Wikipedia actual and
summarized datasets, we used 200 search queries
randomly selected from a set of 5000 most frequent
search queries of Wikipedia website. For the Project
Gutenberg actual and summarized dataset, we
used 200 randomly selected nouns from the
dataset.

55..22.. EEvvaalluuaattiioonn CCrriitteerriiaa
We used different measures to compare the
summarized and the actual datasets for
overlapping and relevance of the results. We used
simple overlapping, document ranking scores, and
Spearman’s rho correlation to study the impact of
the summarized dataset on search results. In this
section, we explain the evaluation measures used
in our experimental evaluation.

55..22..11.. SSiimmppllee OOvveerrllaappppiinngg
To compare search results of the summarized
dataset with the actual dataset, we use a simple
overlapping measure. The simple overlapping
measure is a ratio of overlapping search results
(documents) for the same queries on both datasets
(actual and summarized) for Top 1, Top 5, Top 10,
Top 15, and Top 20 search results. We calculate the
simple overlapping (𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜) using the following
formula:

 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅

 , (2)

where R is the number of documents returned by a
query from the actual datasets and Rs is the number
of intersection documents between results returned
for the query from the actual and the summarized
dataset.

55..22..22.. RRaannkkiinngg SSccoorree
To compare the relevance of search results with the
queries for both the summarized and the actual
datasets, we use ranking score assigned by Apache
Lucene to each document in the search result. We
compute the average ranking of Top 1, Top 5, Top
10, Top 15, and Top 20 search results on both actual
and summarized datasets using same search
queries. To assign ranking scores, a combination of
Vector Space Model (VSM) and Boolean Model is
used.

The Boolean Model identifies the relevant
documents on the given queries. Assuming a given
set of n documents D = {d1,d2,...,dn}, term dictionary
of size m is is T = {t1,t2,...,tm}, and a boolean

expression consisting on k search terms Q = (q1

∨ q2 ∨ ...qk). Then Boolean Model identifies lists
of documents ∀d and ∀q using Sl = {di|qj} and
then identifies a list of identical documents S
= {S 1 ∩ S 2 ∩ S 3 ... }. The list S gives all
documents containing the search terms. In the
VSM, term frequency-inverse document
frequency (tf-idf) is used to identify the
ranking of relevant documents given by
Boolean Model. For each document di in S, a
weight vector vdi =[w1,di ,w2,di ,...,wz,di] is learned.
Where:

𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑 = (𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑)(log |𝑆𝑆𝑆𝑆|
|𝑡𝑡𝑡𝑡∈𝑆𝑆𝑆𝑆|

 (3)

and tft,d is term frequency for give term t in
document di. The remaining part of the
Equation 3 is representing inverse document
frequency. Then finally ranking score of
document di is computed using ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞for the
qiven query q using:

 ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞 =
� 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗.𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞

𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1

�� 𝑤𝑤𝑤𝑤2𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗
𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1
.�� 𝑤𝑤𝑤𝑤2𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞

𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1

 . (4)

Finally, ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞 is associated with each
document di and then return to the user in
sorted order as a response to the search
expression.

55..22..33.. SSppeeaarrmmaann’’ss rrhhoo CCoorrrreellaattiioonn
We used Spearman’s rho [49] to find the
correlation between summarized and actual
datasets for Top 1, Top 5, Top 10, Top 15, and
Top 20 search results. The Spearman’s rho
works by finding overlapping between two
given sets. It ignores non-overlapping
members of the set and gives a higher score to
higher ranked overlapped results to compute
a measure ranging between −1 and 1. The sign
of Spearman’s rho value shows the direction
of overlapping. Since, in our experimental
evaluation, we required to identify absolute
overlapping between two search results,
therefore, we take the absolute value of
Spearman’s rho measure. The Spearman’s rho
(Sr) is computed using the following formula:

 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 = 1 − 6∑𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖2

𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁2−1)
 , (5)

where Di represents the difference of
document ranking between two sets of
documents, returned by both actual and
summarized datasets for ith query and N is the
total number of overlapped documents in

(4)

Finally,

different summary thresholds to study the impact
on index size, time, overlapping, and relevance.

To consider the effect of different search queries for
both actual and summarized datasets, we used 200
different queries. For Wikipedia actual and
summarized datasets, we used 200 search queries
randomly selected from a set of 5000 most frequent
search queries of Wikipedia website. For the Project
Gutenberg actual and summarized dataset, we
used 200 randomly selected nouns from the
dataset.

55..22.. EEvvaalluuaattiioonn CCrriitteerriiaa
We used different measures to compare the
summarized and the actual datasets for
overlapping and relevance of the results. We used
simple overlapping, document ranking scores, and
Spearman’s rho correlation to study the impact of
the summarized dataset on search results. In this
section, we explain the evaluation measures used
in our experimental evaluation.

55..22..11.. SSiimmppllee OOvveerrllaappppiinngg
To compare search results of the summarized
dataset with the actual dataset, we use a simple
overlapping measure. The simple overlapping
measure is a ratio of overlapping search results
(documents) for the same queries on both datasets
(actual and summarized) for Top 1, Top 5, Top 10,
Top 15, and Top 20 search results. We calculate the
simple overlapping (𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜) using the following
formula:

 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅

 , (2)

where R is the number of documents returned by a
query from the actual datasets and Rs is the number
of intersection documents between results returned
for the query from the actual and the summarized
dataset.

55..22..22.. RRaannkkiinngg SSccoorree
To compare the relevance of search results with the
queries for both the summarized and the actual
datasets, we use ranking score assigned by Apache
Lucene to each document in the search result. We
compute the average ranking of Top 1, Top 5, Top
10, Top 15, and Top 20 search results on both actual
and summarized datasets using same search
queries. To assign ranking scores, a combination of
Vector Space Model (VSM) and Boolean Model is
used.

The Boolean Model identifies the relevant
documents on the given queries. Assuming a given
set of n documents D = {d1,d2,...,dn}, term dictionary
of size m is is T = {t1,t2,...,tm}, and a boolean

expression consisting on k search terms Q = (q1

∨ q2 ∨ ...qk). Then Boolean Model identifies lists
of documents ∀d and ∀q using Sl = {di|qj} and
then identifies a list of identical documents S
= {S 1 ∩ S 2 ∩ S 3 ... }. The list S gives all
documents containing the search terms. In the
VSM, term frequency-inverse document
frequency (tf-idf) is used to identify the
ranking of relevant documents given by
Boolean Model. For each document di in S, a
weight vector vdi =[w1,di ,w2,di ,...,wz,di] is learned.
Where:

𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑 = (𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑)(log |𝑆𝑆𝑆𝑆|
|𝑡𝑡𝑡𝑡∈𝑆𝑆𝑆𝑆|

 (3)

and tft,d is term frequency for give term t in
document di. The remaining part of the
Equation 3 is representing inverse document
frequency. Then finally ranking score of
document di is computed using ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞for the
qiven query q using:

 ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞 =
� 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗.𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞

𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1

�� 𝑤𝑤𝑤𝑤2𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗
𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1
.�� 𝑤𝑤𝑤𝑤2𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞

𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1

 . (4)

Finally, ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞 is associated with each
document di and then return to the user in
sorted order as a response to the search
expression.

55..22..33.. SSppeeaarrmmaann’’ss rrhhoo CCoorrrreellaattiioonn
We used Spearman’s rho [49] to find the
correlation between summarized and actual
datasets for Top 1, Top 5, Top 10, Top 15, and
Top 20 search results. The Spearman’s rho
works by finding overlapping between two
given sets. It ignores non-overlapping
members of the set and gives a higher score to
higher ranked overlapped results to compute
a measure ranging between −1 and 1. The sign
of Spearman’s rho value shows the direction
of overlapping. Since, in our experimental
evaluation, we required to identify absolute
overlapping between two search results,
therefore, we take the absolute value of
Spearman’s rho measure. The Spearman’s rho
(Sr) is computed using the following formula:

 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 = 1 − 6∑𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖2

𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁2−1)
 , (5)

where Di represents the difference of
document ranking between two sets of
documents, returned by both actual and
summarized datasets for ith query and N is the
total number of overlapped documents in

 is associated with each document di and
then return to the user in sorted order as a response to
the search expression.

5.2.3. Spearman’s rho Correlation
We used Spearman’s rho [49] to find the correlation
between summarized and actual datasets for Top
1, Top 5, Top 10, Top 15, and Top 20 search results.
The Spearman’s rho works by finding overlapping
between two given sets. It ignores non-overlapping
members of the set and gives a higher score to high-
er ranked overlapped results to compute a measure
ranging between −1 and 1. The sign of Spearman’s rho
value shows the direction of overlapping. Since, in our
experimental evaluation, we required to identify ab-
solute overlapping between two search results, there-
fore, we take the absolute value of Spearman’s rho
measure. The Spearman’s rho (Sr) is computed using
the following formula:

𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 = 1 − 6∑𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖2

𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁2−1)
, (5)

where Di represents the difference of document rank-
ing between two sets of documents, returned by both
actual and summarized datasets for ith query and N is
the total number of overlapped documents in both sets.

5.3. Experimental Details
We performed three experiments to evaluate the ef-
fectiveness of the summarization method for min-

383Information Technology and Control 2021/2/50

imizing index size for full-text search. In all three
experiments, we used 200 randomly selected search
queries for Wikipedia and Project Gutenberg data-
sets. In each experiment, we use the actual datasets
(without summarization) as a baseline and compare
the results with summarized datasets of 200 random-
ly selected search queries for Top 1, Top 5, Top 10, Top
15, and Top 20 search results.
In Experiment 01, we compare and evaluate average
simple overlapping, explained in Section 5.2.1, for the
search results obtained on actual and summarized
versions for both datasets. In Experiment 02 and Ex-
periment 03, we compare and evaluate the average
ranking score, explained in Section 5.2.2, and Spear-
man’s rho measures, described in Section 5.2.3, re-
spectively on the search results.

6. Experimental Results

6.1. Experiment 1: Overlapping Results
Figure 4(a) shows average overlapping results of sum-
marized datasets using different summary thresholds
with baseline Wikipedia dataset for 200 search que-
ries. The overlapping measure shows the summarized
version of the Wikipedia dataset provides minimum
18% similar documents returned using 10% summa-
ry threshold and maximum 66% similar documents
returned using 90% summary threshold. We observe
that on increasing value of summary threshold the
overlapping results also increased. However, we ob-
serve the growth of overlapping results slow down
after 40% summary threshold.
Figure 4(b) shows average overlapping results of sum-
marized datasets using different summary thresholds
with actual Project Gutenberg datasets for 200 search
queries. The overlapping measure shows the sum-
marized version of the Wikipedia dataset provides
minimum 52% similar documents returned using
10% summary threshold and maximum 89% similar
documents returned using 90% summary threshold.
We observe that on increasing value of the summa-
ry threshold, the overlapping results also increased.
However, we observe the growth of overlapping re-
sults slow down after 50% summary threshold.
This experimental result shows a correlation be-
tween summary threshold and overlapping results.

Figure 4
Experiment 1 results show average overlapping and standard
deviation for Wikipedia and Project Gutenberg datasets

both sets.

55..33.. EExxppeerriimmeennttaall DDeettaaiillss
We performed three experiments to evaluate the
effectiveness of the summarization method for
minimizing index size for full-text search. In all
three experiments, we used 200 randomly selected
search queries for Wikipedia and Project
Gutenberg datasets. In each experiment, we use the
actual datasets (without summarization) as a
baseline and compare the results with summarized
datasets of 200 randomly selected search queries
for Top 1, Top 5, Top 10, Top 15, and Top 20 search
results.

In Experiment 01, we compare and evaluate
average simple overlapping, explained in Section
5.2.1, for the search results obtained on actual and
summarized versions for both datasets. In
Experiment 02 and Experiment 03, we compare and
evaluate the average ranking score, explained in
Section 5.2.2, and Spearman’s rho measures,
described in Section 5.2.3, respectively on the
search results.

66.. EExxppeerriimmeennttaall RReessuullttss
66..11.. EExxppeerriimmeenntt 11:: OOvveerrllaappppiinngg RReessuullttss
Figure 4(a) shows average overlapping results of
summarized datasets using different summary
thresholds with baseline Wikipedia dataset for 200
search queries. The overlapping measure shows the
summarized version of the Wikipedia dataset

provides minimum 18% similar documents
returned using 10% summary threshold and
maximum 66% similar documents returned using
90% summary threshold. We observe that on
increasing value of summary threshold the
overlapping results also increased. However, we

observe the growth of overlapping results
slow down after 40% summary threshold.

Figure 4(b) shows average overlapping results
of summarized datasets using different
summary thresholds with actual Project
Gutenberg datasets for 200 search queries. The
overlapping measure shows the summarized
version of the Wikipedia dataset provides
minimum 52% similar documents returned
using 10% summary threshold and maximum
89% similar documents returned using 90%
summary threshold. We observe that on
increasing value of the summary threshold,
the overlapping results also increased.
However, we observe the growth of
overlapping results slow down after 50%
summary threshold.

This experimental result shows a correlation
between summary threshold and overlapping
results. If we use the higher value of summary
threshold, we can find more similar results as
compared to actual datasets. However, the
large value of summary threshold will not
help to decrease the index size significantly.

66..22.. EExxppeerriimmeenntt 22:: RReelleevvaannccee ooff
SSeeaarrcchh RReessuullttss
Figure 5(a) shows the average ranking score of
summarized datasets using different
summary thresholds and actual Wikipedia
dataset for 200 search queries. The ranking
score for the summarized version of the

Wikipedia datasets provides always higher
ranking score comparing to actual dataset
results. However, the non-overlapping results
which are part of actual dataset results but
missing from the summarized dataset are low.
It shows the non-overlapping results are not

Figure 4

Experiment 1 results show average overlapping and standard deviation for Wikipedia and Project Gutenberg datasets.

both sets.

55..33.. EExxppeerriimmeennttaall DDeettaaiillss
We performed three experiments to evaluate the
effectiveness of the summarization method for
minimizing index size for full-text search. In all
three experiments, we used 200 randomly selected
search queries for Wikipedia and Project
Gutenberg datasets. In each experiment, we use the
actual datasets (without summarization) as a
baseline and compare the results with summarized
datasets of 200 randomly selected search queries
for Top 1, Top 5, Top 10, Top 15, and Top 20 search
results.

In Experiment 01, we compare and evaluate
average simple overlapping, explained in Section
5.2.1, for the search results obtained on actual and
summarized versions for both datasets. In
Experiment 02 and Experiment 03, we compare and
evaluate the average ranking score, explained in
Section 5.2.2, and Spearman’s rho measures,
described in Section 5.2.3, respectively on the
search results.

66.. EExxppeerriimmeennttaall RReessuullttss
66..11.. EExxppeerriimmeenntt 11:: OOvveerrllaappppiinngg RReessuullttss
Figure 4(a) shows average overlapping results of
summarized datasets using different summary
thresholds with baseline Wikipedia dataset for 200
search queries. The overlapping measure shows the
summarized version of the Wikipedia dataset

provides minimum 18% similar documents
returned using 10% summary threshold and
maximum 66% similar documents returned using
90% summary threshold. We observe that on
increasing value of summary threshold the
overlapping results also increased. However, we

observe the growth of overlapping results
slow down after 40% summary threshold.

Figure 4(b) shows average overlapping results
of summarized datasets using different
summary thresholds with actual Project
Gutenberg datasets for 200 search queries. The
overlapping measure shows the summarized
version of the Wikipedia dataset provides
minimum 52% similar documents returned
using 10% summary threshold and maximum
89% similar documents returned using 90%
summary threshold. We observe that on
increasing value of the summary threshold,
the overlapping results also increased.
However, we observe the growth of
overlapping results slow down after 50%
summary threshold.

This experimental result shows a correlation
between summary threshold and overlapping
results. If we use the higher value of summary
threshold, we can find more similar results as
compared to actual datasets. However, the
large value of summary threshold will not
help to decrease the index size significantly.

66..22.. EExxppeerriimmeenntt 22:: RReelleevvaannccee ooff
SSeeaarrcchh RReessuullttss
Figure 5(a) shows the average ranking score of
summarized datasets using different
summary thresholds and actual Wikipedia
dataset for 200 search queries. The ranking
score for the summarized version of the

Wikipedia datasets provides always higher
ranking score comparing to actual dataset
results. However, the non-overlapping results
which are part of actual dataset results but
missing from the summarized dataset are low.
It shows the non-overlapping results are not

Figure 4

Experiment 1 results show average overlapping and standard deviation for Wikipedia and Project Gutenberg datasets.

(b) Project Gutenberg

(a) Wikipedia

If we use the higher value of summary threshold,
we can find more similar results as compared to ac-
tual datasets. However, the large value of summary
threshold will not help to decrease the index size sig-
nificantly.

6.2. Experiment 2: Relevance of Search
Results
Figure 5(a) shows the average ranking score of sum-
marized datasets using different summary thresholds
and actual Wikipedia dataset for 200 search queries.
The ranking score for the summarized version of the
Wikipedia datasets provides always higher ranking
score comparing to actual dataset results. However,
the non-overlapping results which are part of actu-
al dataset results but missing from the summarized
dataset are low. It shows the non-overlapping re-
sults are not highly relevant to the search queries.
The maximum score is obtained using 10% summary

Information Technology and Control 2021/2/50384

Figure 5
Experiment 2 results show average ranking score and standard deviation for Wikipedia and Project Gutenberg datasets

threshold. Overall, the ranking score decreases when-
ever we increase the value of the summary threshold.
Figure 5(b) shows the average ranking score of sum-
marized datasets using different summary thresholds
with actual Project Gutenberg dataset. The rank-
ing score for the summarized version of the Project
Gutenberg datasets provides always higher ranking
score comparing to actual dataset results. However,
the non-overlapping results which are part of actu-
al dataset results but missing from the summarized
dataset are low. It shows the non-overlapping re-
sults are not highly relevant to the search queries.
The maximum score is obtained using 10% summary
threshold. Overall, the ranking score decreases when-
ever we increase the value of the summary threshold.
Experiment 2 shows that summarized datasets yield
higher ranking scores compared to the actual dataset.
Moreover, nonoverlapping results always have low-
er ranking scores which show less relevance to the
search queries.

6.3. Experiment 3: Spearman’s Rho Correlation
Figure 6(a) shows average Spearman’s rho correla-
tion of ranking scores using summarized and actual
datasets for 200 search queries on Wikipedia data-
set. The Spearman’s rho measure varies between 0.5
and 0.7 for most of the summary thresholds. However,
we observed minimum Spearman’s rho for Top 1 re-
sults obtained using actual dataset and 10% summa-
ry threshold. We observed the best results for Top 5

(b) Project Gutenberg(a) Wikipedia

(b) Project Gutenberg

(a) Wikipedia

where R is the number of documents returned by a
query on the actual dataset, Ra is the total number
of documents returned by a query from the
summarized dataset, and Rs is a number of similar
documents between results returned by a query
from the actual and the summarized datasets.
Figure 7 shows recall, precision, and the precision-
recall graph of all 200 search queries executed on
actual Project Gutenberg and summarized datasets.
The recall is increasing as number % of summary
threshold increases. However, average precision
remains very high and close to 1. The high
precision results are justified as we are using
extractive-based summarization method which
selects the sentences rather building new sentences.
Therefore, summarized datasets are a subset of the
actual dataset and yielding results, which is also a
subset of the ground truth. Due to this behavior, we

also observe higher precision and recall
behavior similar to Figure 7 for the Wikipedia
dataset.

66..55.. EExxppeerriimmeennttaall SSuummmmaarryy
We summarize our experimental evaluation
in Table 2. It shows index size & time
decreased, ranking improved, overlapping,
and Spearman’s rho correlation using
different summary thresholds for both
datasets in comparison with the baseline
datasets (without summarization). The
proposed text summarization method yields
higher ranks for the search documents
returned using both datasets compared to the
baseline using a smaller value of the summary
threshold. The index size and time decrease
significantly using a smaller value of
summary thresholds. However, overlapped

Figure 6

Experiment 3 results show average Spearman's rho correlation and standard deviation for ranking scores of 200
search results.

Figure 7

Average precision and recall for the different summary threshold for Project Gutenberg dataset. We consider
results obtained using actual dataset as ground truth. using actual dataset as ground truth.

where R is the number of documents returned by a
query on the actual dataset, Ra is the total number
of documents returned by a query from the
summarized dataset, and Rs is a number of similar
documents between results returned by a query
from the actual and the summarized datasets.
Figure 7 shows recall, precision, and the precision-
recall graph of all 200 search queries executed on
actual Project Gutenberg and summarized datasets.
The recall is increasing as number % of summary
threshold increases. However, average precision
remains very high and close to 1. The high
precision results are justified as we are using
extractive-based summarization method which
selects the sentences rather building new sentences.
Therefore, summarized datasets are a subset of the
actual dataset and yielding results, which is also a
subset of the ground truth. Due to this behavior, we

also observe higher precision and recall
behavior similar to Figure 7 for the Wikipedia
dataset.

66..55.. EExxppeerriimmeennttaall SSuummmmaarryy
We summarize our experimental evaluation
in Table 2. It shows index size & time
decreased, ranking improved, overlapping,
and Spearman’s rho correlation using
different summary thresholds for both
datasets in comparison with the baseline
datasets (without summarization). The
proposed text summarization method yields
higher ranks for the search documents
returned using both datasets compared to the
baseline using a smaller value of the summary
threshold. The index size and time decrease
significantly using a smaller value of
summary thresholds. However, overlapped

Figure 6

Experiment 3 results show average Spearman's rho correlation and standard deviation for ranking scores of 200
search results.

Figure 7

Average precision and recall for the different summary threshold for Project Gutenberg dataset. We consider
results obtained using actual dataset as ground truth. using actual dataset as ground truth.

Figure 6
Experiment 3 results show average Spearman's rho
correlation and standard deviation for ranking scores of
200 search results

385Information Technology and Control 2021/2/50

documents using Spearman’s rho measure. There is
no specific relationship with increasing summary
threshold with Spearman’s rho measure, however, the
maximum results are observed using 90% summary
threshold.
Figure 6(b) shows average Spearman’s rho correla-
tion of ranking scores using summarized and actual
datasets for 200 search queries on Project Gutenberg.
The Spearman’s rho measure varies between 0.45 and
0.92. However, we observed minimum Spearman’s
rho for Top 15 results obtained using actual dataset
and 10% summary threshold. We observed the best
results for Top 20 documents using Spearman’s rho
measure on 90% summary threshold. An increasing
Spearman’s rho trend is observed on increasing sum-
mary threshold.
This experiment shows that good correlation, higher
than 0.5, exists between search results obtained using
actual dataset and summarized results using different
summary thresholds.

6.4. Precision and Recall Using Actual and
Summarized Dataset

We consider the search results obtained from the
actual dataset as ground truth to compute precision
and recall of search results obtained using summa-
rization datasets of different summary thresholds.

We compute precision and recall using the following
formulas:

highly relevant to the search queries. The
maximum score is obtained using 10% summary
threshold. Overall, the ranking score decreases
whenever we increase the value of the summary
threshold.

Figure 5(b) shows the average ranking score of
summarized datasets using different summary
thresholds with actual Project Gutenberg dataset.
The ranking score for the summarized version of
the Project Gutenberg datasets provides always
higher ranking score comparing to actual dataset
results. However, the non-overlapping results
which are part of actual dataset results but missing
from the summarized dataset are low. It shows the
non-overlapping results are not highly relevant to
the search queries. The maximum score is obtained
using 10% summary threshold. Overall, the
ranking score decreases whenever we increase the
value of the summary threshold.

Experiment 2 shows that summarized datasets
yield higher ranking scores compared to the actual
dataset. Moreover, nonoverlapping results always
have lower ranking scores which show less
relevance to the search queries.

66..33.. EExxppeerriimmeenntt 33:: SSppeeaarrmmaann’’ss RRhhoo
CCoorrrreellaattiioonn
Figure 6(a) shows average Spearman’s rho
correlation of ranking scores using summarized
and actual datasets for 200 search queries on
Wikipedia dataset. The Spearman’s rho measure
varies between 0.5 and 0.7 for most of the summary
thresholds. However, we observed minimum
Spearman’s rho for Top 1 results obtained using
actual dataset and 10% summary threshold. We
observed the best results for Top 5 documents
using Spearman’s rho measure. There is no specific
relationship with increasing summary threshold

with Spearman’s rho measure, however, the
maximum results are observed using 90%
summary threshold.

Figure 6(b) shows average Spearman’s rho
correlation of ranking scores using
summarized and actual datasets for 200
search queries on Project Gutenberg. The
Spearman’s rho measure varies between 0.45
and 0.92. However, we observed minimum
Spearman’s rho for Top 15 results obtained
using actual dataset and 10% summary
threshold. We observed the best results for
Top 20 documents using Spearman’s rho
measure on 90% summary threshold. An
increasing Spearman’s rho trend is observed
on increasing summary threshold.

This experiment shows that good correlation,
higher than 0.5, exists between search results
obtained using actual dataset and
summarized results using different summary
thresholds.

66..44.. PPrreecciissiioonn aanndd RReeccaallll UUssiinngg
AAccttuuaall aanndd SSuummmmaarriizzeedd DDaattaasseett
We consider the search results obtained from
the actual dataset as ground truth to compute
precision and recall of search results obtained
using summarization datasets of different
summary thresholds. We compute precision
and recall using the following formulas:

 Recall = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠

𝑅𝑅𝑅𝑅
 (6)

 Precision = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎

 , (7)

Figure 5

Experiment 2 results show average ranking score and standard deviation for Wikipedia and Project Gutenberg datasets.

(6)

highly relevant to the search queries. The
maximum score is obtained using 10% summary
threshold. Overall, the ranking score decreases
whenever we increase the value of the summary
threshold.

Figure 5(b) shows the average ranking score of
summarized datasets using different summary
thresholds with actual Project Gutenberg dataset.
The ranking score for the summarized version of
the Project Gutenberg datasets provides always
higher ranking score comparing to actual dataset
results. However, the non-overlapping results
which are part of actual dataset results but missing
from the summarized dataset are low. It shows the
non-overlapping results are not highly relevant to
the search queries. The maximum score is obtained
using 10% summary threshold. Overall, the
ranking score decreases whenever we increase the
value of the summary threshold.

Experiment 2 shows that summarized datasets
yield higher ranking scores compared to the actual
dataset. Moreover, nonoverlapping results always
have lower ranking scores which show less
relevance to the search queries.

66..33.. EExxppeerriimmeenntt 33:: SSppeeaarrmmaann’’ss RRhhoo
CCoorrrreellaattiioonn
Figure 6(a) shows average Spearman’s rho
correlation of ranking scores using summarized
and actual datasets for 200 search queries on
Wikipedia dataset. The Spearman’s rho measure
varies between 0.5 and 0.7 for most of the summary
thresholds. However, we observed minimum
Spearman’s rho for Top 1 results obtained using
actual dataset and 10% summary threshold. We
observed the best results for Top 5 documents
using Spearman’s rho measure. There is no specific
relationship with increasing summary threshold

with Spearman’s rho measure, however, the
maximum results are observed using 90%
summary threshold.

Figure 6(b) shows average Spearman’s rho
correlation of ranking scores using
summarized and actual datasets for 200
search queries on Project Gutenberg. The
Spearman’s rho measure varies between 0.45
and 0.92. However, we observed minimum
Spearman’s rho for Top 15 results obtained
using actual dataset and 10% summary
threshold. We observed the best results for
Top 20 documents using Spearman’s rho
measure on 90% summary threshold. An
increasing Spearman’s rho trend is observed
on increasing summary threshold.

This experiment shows that good correlation,
higher than 0.5, exists between search results
obtained using actual dataset and
summarized results using different summary
thresholds.

66..44.. PPrreecciissiioonn aanndd RReeccaallll UUssiinngg
AAccttuuaall aanndd SSuummmmaarriizzeedd DDaattaasseett
We consider the search results obtained from
the actual dataset as ground truth to compute
precision and recall of search results obtained
using summarization datasets of different
summary thresholds. We compute precision
and recall using the following formulas:

 Recall = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠

𝑅𝑅𝑅𝑅
 (6)

 Precision = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎

 , (7)

Figure 5

Experiment 2 results show average ranking score and standard deviation for Wikipedia and Project Gutenberg datasets.

, (7)

where R is the number of documents returned by a
query on the actual dataset, Ra is the total number
of documents returned by a query from the summa-
rized dataset, and Rs is a number of similar docu-
ments between results returned by a query from the
actual and the summarized datasets. Figure 7 shows
recall, precision, and the precision-recall graph of
all 200 search queries executed on actual Project
Gutenberg and summarized datasets. The recall is
increasing as number % of summary threshold in-
creases. However, average precision remains very
high and close to 1. The high precision results are
justified as we are using extractive-based summa-
rization method which selects the sentences rath-
er building new sentences. Therefore, summarized
datasets are a subset of the actual dataset and yield-
ing results, which is also a subset of the ground truth.
Due to this behavior, we also observe higher preci-
sion and recall behavior similar to Figure 7 for the
Wikipedia dataset.

where R is the number of documents returned by a
query on the actual dataset, Ra is the total number
of documents returned by a query from the
summarized dataset, and Rs is a number of similar
documents between results returned by a query
from the actual and the summarized datasets.
Figure 7 shows recall, precision, and the precision-
recall graph of all 200 search queries executed on
actual Project Gutenberg and summarized datasets.
The recall is increasing as number % of summary
threshold increases. However, average precision
remains very high and close to 1. The high
precision results are justified as we are using
extractive-based summarization method which
selects the sentences rather building new sentences.
Therefore, summarized datasets are a subset of the
actual dataset and yielding results, which is also a
subset of the ground truth. Due to this behavior, we

also observe higher precision and recall
behavior similar to Figure 7 for the Wikipedia
dataset.

66..55.. EExxppeerriimmeennttaall SSuummmmaarryy
We summarize our experimental evaluation
in Table 2. It shows index size & time
decreased, ranking improved, overlapping,
and Spearman’s rho correlation using
different summary thresholds for both
datasets in comparison with the baseline
datasets (without summarization). The
proposed text summarization method yields
higher ranks for the search documents
returned using both datasets compared to the
baseline using a smaller value of the summary
threshold. The index size and time decrease
significantly using a smaller value of
summary thresholds. However, overlapped

Figure 6

Experiment 3 results show average Spearman's rho correlation and standard deviation for ranking scores of 200
search results.

Figure 7

Average precision and recall for the different summary threshold for Project Gutenberg dataset. We consider
results obtained using actual dataset as ground truth. using actual dataset as ground truth.

where R is the number of documents returned by a
query on the actual dataset, Ra is the total number
of documents returned by a query from the
summarized dataset, and Rs is a number of similar
documents between results returned by a query
from the actual and the summarized datasets.
Figure 7 shows recall, precision, and the precision-
recall graph of all 200 search queries executed on
actual Project Gutenberg and summarized datasets.
The recall is increasing as number % of summary
threshold increases. However, average precision
remains very high and close to 1. The high
precision results are justified as we are using
extractive-based summarization method which
selects the sentences rather building new sentences.
Therefore, summarized datasets are a subset of the
actual dataset and yielding results, which is also a
subset of the ground truth. Due to this behavior, we

also observe higher precision and recall
behavior similar to Figure 7 for the Wikipedia
dataset.

66..55.. EExxppeerriimmeennttaall SSuummmmaarryy
We summarize our experimental evaluation
in Table 2. It shows index size & time
decreased, ranking improved, overlapping,
and Spearman’s rho correlation using
different summary thresholds for both
datasets in comparison with the baseline
datasets (without summarization). The
proposed text summarization method yields
higher ranks for the search documents
returned using both datasets compared to the
baseline using a smaller value of the summary
threshold. The index size and time decrease
significantly using a smaller value of
summary thresholds. However, overlapped

Figure 6

Experiment 3 results show average Spearman's rho correlation and standard deviation for ranking scores of 200
search results.

Figure 7

Average precision and recall for the different summary threshold for Project Gutenberg dataset. We consider
results obtained using actual dataset as ground truth. using actual dataset as ground truth.

where R is the number of documents returned by a
query on the actual dataset, Ra is the total number
of documents returned by a query from the
summarized dataset, and Rs is a number of similar
documents between results returned by a query
from the actual and the summarized datasets.
Figure 7 shows recall, precision, and the precision-
recall graph of all 200 search queries executed on
actual Project Gutenberg and summarized datasets.
The recall is increasing as number % of summary
threshold increases. However, average precision
remains very high and close to 1. The high
precision results are justified as we are using
extractive-based summarization method which
selects the sentences rather building new sentences.
Therefore, summarized datasets are a subset of the
actual dataset and yielding results, which is also a
subset of the ground truth. Due to this behavior, we

also observe higher precision and recall
behavior similar to Figure 7 for the Wikipedia
dataset.

66..55.. EExxppeerriimmeennttaall SSuummmmaarryy
We summarize our experimental evaluation
in Table 2. It shows index size & time
decreased, ranking improved, overlapping,
and Spearman’s rho correlation using
different summary thresholds for both
datasets in comparison with the baseline
datasets (without summarization). The
proposed text summarization method yields
higher ranks for the search documents
returned using both datasets compared to the
baseline using a smaller value of the summary
threshold. The index size and time decrease
significantly using a smaller value of
summary thresholds. However, overlapped

Figure 6

Experiment 3 results show average Spearman's rho correlation and standard deviation for ranking scores of 200
search results.

Figure 7

Average precision and recall for the different summary threshold for Project Gutenberg dataset. We consider
results obtained using actual dataset as ground truth. using actual dataset as ground truth.

Figure 7
Average precision and recall for the different summary threshold for Project Gutenberg dataset. We consider results
obtained using actual dataset as ground truth. using actual dataset as ground truth

Information Technology and Control 2021/2/50386

Table 2
Experimental summary showing index size and time decreased, average ranking improved, average overlapping results,
and average Spearman's rho for different summary threshold for both datasets

Dataset Summary
Threshold %)

Index Size De-
creased (%)

Index Time
Decreased (%)

Avg Rank
Improved (%)

Avg Overlapping
(%)

Avg Spearman’s
Rho

Wikipedia

10 75 47 35.77 18.55 0.52

20 69 44 24.79 23.38 0.51

30 47 42 14.86 32.72 0.51

40 38 40 8.82 42.46 0.53

50 29 36 5.61 47.89 0.56

60 23 34 3.41 50.00 0.57

70 17 32 0.99 52.42 0.60

80 11 31 -0.98 55.43 0.62

90 05 28 -0.38 62.73 0.68

Project
Guetenberg

10 82 80 47.92 54.92 0.49

20 69 66 37.33 62.05 0.58

30 60 56 29.47 67.51 0.64

40 50 46 22.95 69.45 0.68

50 38 39 17.82 73.80 0.73

60 32 24 12.41 78.02 0.78

70 22 17 8.75 79.69 0.81

80 13 10 5.67 82.23 0.85

90 05 07 1.94 88.58 0.92

6.5. Experimental Summary
We summarize our experimental evaluation in Table 2.
It shows index size & time decreased, ranking im-
proved, overlapping, and Spearman’s rho correlation
using different summary thresholds for both datasets
in comparison with the baseline datasets (without
summarization). The proposed text summarization
method yields higher ranks for the search documents
returned using both datasets compared to the base-
line using a smaller value of the summary threshold.
The index size and time decrease significantly using a
smaller value of summary thresholds. However, over-
lapped results with baseline decrease on the smaller

values of the summary threshold. We observed a good
correlation of search results using all summarized
datasets with the baseline.
We recommend using 10% summary threshold to use
centroidbased text summarization method to signifi-
cantly reduce the index size and time. It also improves
the search results relevance and provides good rank-
ing correlation with the actual dataset.
In the proposed system, the process of creating sum-
maries for each document introduces CPU time over-
head. Due to the linear time execution time complex-
ity of the extractive text summarization algorithm
introduce only minimal overhead [36].

387Information Technology and Control 2021/2/50

An online system, which creates a summary for new
text documents instantly, will not introduce any nota-
ble performance issue. However, for a batch process-
ing system, in which a large dataset required to gen-
erate the summaries, we recommend using Hadoop
and Spark [21] to parallel process the large datasets
for reducing the overhead of creating the summaries.

7. Conclusion and Future Work
 Providing an efficient text search services for a large
dataset is an interesting research topic. In this paper,
we used an automatic text summarization method
based on an extractive approach to reducing the index
size of large datasets. Our experimental evaluation
shows a maximum of 82% reduction in the index size
and 80% in index generation time when using text
summarization method with 10% summary thresh-

old. The relevance of search results obtained from
summarized datasets is higher than baseline datasets.
Moreover, the correlation between search results is
good. However, the best overlapping results are 54%
using the Project Gutenberg dataset. Automatic text
summarization is an effective method to help to re-
duce the index size significantly with the better rele-
vance of the search results.
We are currently identifying the best threshold in
extractive-based text summarization method to im-
prove the overlapping results with the actual data-
set. Moreover, we are planning to build a cloud-based
application using Apache Lucene to provide full-text
search index minimization services.

Acknowledgment
The authors would like to acknowledge the support of
Prince Sultan University for paying the Article Pro-
cessing Charges (APC) of this publication.

References
1. Abe, H., Shima, K., Sekiya, Y., Miyamoto, D., Ishihara, T.,

Okada, K. Hayabusa: Simple and Fast Full-Text Search
Engine for Massive System Log Data. Proceedings of
the 12th International Conference on Future Internet
Technologies. ACM, 2017, 2.

2. Alguliyev, R. M., Aliguliyev, R. M., Isazade, N. R., Abdi,
A., Idris, N. Cosum: Text Summarization Based on Clus-
tering and Optimization. Expert Systems, 2019, 36(1),
e12340.

3. Amalina, F., Hashem, I. A. T., Azizul, Z. H., Fong, A. T.,
Firdaus, A., Imran, M., Anuar, N. B. Blending Big Data
Analytics: Review on Challenges and a Recent Study.
IEEE Access, 2019.

4. Bar-Ilan, J., Mat-Hassan, M., Levene, M. Methods for
Comparing Rankings of Search Engine Results. Com-
puter Networks, 2006, 50(10), 1448-1463.

5. Buttcher, S., Clarke, C. L., Cormack, G. V., 2016. Infor-
mation Retrieval: Implementing and Evaluating Search
Engines. MIT Press.

6. Christopher, D. Manning, P. R., Schutze, H. Introduc-
tion to Information Retrieval. Cambridge University
Press, Ch. 4,5, 2008.

7. Claude, F., Farina, A., Martınez-Prieto, M. A., Navarro,
G. Universal Indexes for Highly Repetitive Document
Collections. Information Systems, 2016, 61, 1-23.

8. Cohen, J. D. Highlights: Language-and Domain-Inde-
pendent Automatic Indexing Terms for Abstracting.
Journal of the American Society for Information Sci-
ence, 1995, 46(3), 162.

9. Cuggia, M., Bayat, S., Garcelon, N., Sanders, L., Rouget,
F., Coursin, A., Pladys, P. A Full-Text Information Re-
trieval System for an Epidemiological Registry. Studies
in health technology and informatics, 2010, 160 (Pt 1),
491-495.

10. Cutting, D. Apache Lucene - Apache Lucene core. URL
https://lucene.apache.org/core

11. Dahale, M. Text Summarization for Compressed Invert-
ed Indexes and Snippets. SJSU ScholarWorks, 2014.

12. Gambhir, M., Gupta, V. Recent Automatic Text Summa-
rization Techniques: A Survey. Artificial Intelligence
Review, 2017, 47 (1), 1-66.

13. Gani, A., Siddiqa, A., Shamshirband, S., Hanum, F. A
Survey on Indexing Techniques for Big Data: Taxonomy
and Performance Evaluation. Knowledge and Informa-
tion Systems, 2016, 46(2), 241-284.

14. Gao, S., Chen, X., Li, P., Ren, Z., Bing, L., Zhao, D., Yan,
R. Abstractive Text Summarization by Incorporating
Reader Comments. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 2019, 33, 6399-6406.

Information Technology and Control 2021/2/50388

15. Garcelon, N., Neuraz, A., Benoit, V., Salomon, R., Bur-
gun, A. Improving a Full-Text Search Engine: The Im-
portance of Negation Detection and Family History
Context to Identify Cases in a Biomedical Data Ware-
house. Journal of the American Medical Informatics
Association, 2016, 24(3), 607-613.

16. Ghose, A., Ipeirotis, P. G., Li, B. Examining the Impact
of Ranking on Consumer Behavior and Search Engine
Revenue. Management Science, 2014, 60(7), 1632-
1654. https://doi.org/10.1287/mnsc.2013.1828

17. Goncalo Oliveira, H., Filipe, R., Rodrigues, R., Alves, A.
Using Lucene for Developing a Question-Answering
Agent in Portuguese. 8th Symposium on Languages,
Applications and Technologies (SLATE 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

18. Grainger, T., Potter, T. Solr in Action, 1st Edition. Man-
ning Publications Co., Greenwich, CT, USA, 2014.

19. Hanauer, D. A., Wu, D. T., Yang, L., Mei, Q., Murkow-
ski-Steffy, K. B., Vydiswaran, V. V., Zheng, K. Devel-
opment and Empirical Usercentered Evaluation of
Semantically-Based Query Recommendation for an
Electronic Health Record Search Engine. Journal of
Biomedical Informatics, 2017, 67, 1-10. https://doi.
org/10.1016/j.jbi.2017.01.013

20. He, Y., Xiang, S., Kang, C., Wang, J., Pan, C. Cross-Mod-
al Retrieval via Deep and Bidirectional Represen-
tation Learning. IEEE Transactions on Multime-
dia, 2016, 18(7), 1363-1377. https://doi.org/10.1109/
TMM.2016.2558463

21. Iqbal, B., Iqbal, W., Khan, N., Mahmood, A., Erradi, A.
Canny Edge Detection and Hough Transform for High
Resolution Video Streams Using Hadoop and Spark.
Cluster Computing, 2020, 23 (1), 397-408. https://doi.
org/10.1007/s10586-019-02929-x

22. Jansen, B. J., Spink, A. An Analysis of Web Searching by
European Alltheweb.com Users. Information Process-
ing and Management, 2005, 41 (2), 361-381. https://doi.
org/10.1016/S0306-4573(03)00067-0

23. Jansen, B. J., Spink, A., Pedersen, J. A Temporal Com-
parison of Altavista Web Searching: Research Articles.
Journal of the Association for Information Science
and Technology, 2005, 56(6), 559-570. https://doi.
org/10.1002/asi.20145

24. Jing, Y., Zhang, C., Wang, X. An Empirical Study on
Performance Comparison of Lucene and Relational
Database. International Conference on Communica-
tion Software and Networks, ICCSN'09, 2009, 336-340.
https://doi.org/10.1109/ICCSN.2009.96

25. Knight, K., Marcu, D. Summarization Beyond Sentence
Extraction: A Probabilistic Approach to Sentence Com-
pression. Artificial Intelligence, 2002, 139(1), 91-107.
https://doi.org/10.1016/S0004-3702(02)00222-9

26. Kononenko, O., Baysal, O., Holmes, R., Godfrey,
M. W. Mining Modern Repositories with Elastic-
search. Proceedings of the 11th Working Confer-
ence on Mining Software Repositories, MSR 2014,
ACM, New York, NY, USA, 2014, 328-331. https://doi.
org/10.1145/2597073.2597091

27. Labrinidis, A., Jagadish, H. V. Challenges and Op-
portunities with Big Data. Proceedings of the VLDB
Endowment, 2012, 5(12), 2032-2033. https://doi.
org/10.14778/2367502.2367572

28. Ledeneva, Y., Gelbukh, A., Garcıa-Hernandez, R. Terms
Derived from Frequent Sequences for Extractive Text
Summarization. Computational Linguistics and In-
telligent Text Processing, 2008, 593-604. https://doi.
org/10.1007/978-3-540-78135-6_51

29. McCandless, M., Hatcher, E., Gospodnetic, O. Lucene in
Action, Second Edition: Covers Apache Lucene 3.0. Man-
ning Publications Co., Greenwich, CT, USA, 2010.

30. Mihalcea, R., Tarau, P. Textrank: Bringing Order Into
Texts. In: Lin, D., Wu, D. (Eds.), Proceedings of EMNLP
2004. Association for Computational Linguistics, Bar-
celona, Spain, 2004, 404-411.

31. Oweis, N. E., Owais, S. S., George, W., Suliman, M. G.,
Snasel, V. A Survey on Big Data, Mining: (Tools, Tech-
niques, Applications and Notable Uses). In: Abra-
ham, A., Jiang, X. H., Snasel, V., Pan, J.-S. (Eds.), In-
telligent Data Analysis and Applications. Springer
International Publishing, Cham, 2015, 109-119. https://
doi.org/10.1007/978-3-319-21206-7_10

32. Prasad, A., Patel, D. Lucene Search Engine: An Over-
view. DRTCHP International, 2005, 10.

33. Radev, D. R., Jing, H., Stys, M., Tam, D. Centroid-Based
Summarization of Multiple Documents. Information
Processing and Management, 2004, 40(6), 919-938.
https://doi.org/10.1016/j.ipm.2003.10.006

34. Ramos, J. Using Tf-Idf to Determine Word Relevance
in Document Queries. Proceedings of the First Instruc-
tional Conference on Machine Learning, 2003, 242,
133-142.

35. Salton, G., Singhal, A., Mitra, M., Buckley, C. Automatic
Text Structuring and Summarization. Information Pro-
cessing and Management, Methods and Tools for the
Automatic Construction of Hypertext, 1997, 33(2), 193-
207. https://doi.org/10.1016/S0306-4573(96)00062-3

https://doi.org/10.1287/mnsc.2013.1828
https://doi.org/10.1016/j.jbi.2017.01.013
https://doi.org/10.1016/j.jbi.2017.01.013
https://doi.org/10.1109/TMM.2016.2558463
https://doi.org/10.1109/TMM.2016.2558463
https://doi.org/10.1007/s10586-019-02929-x
https://doi.org/10.1007/s10586-019-02929-x
https://doi.org/10.1016/S0306-4573(03)00067-0
https://doi.org/10.1016/S0306-4573(03)00067-0
https://doi.org/10.1002/asi.20145
https://doi.org/10.1002/asi.20145
https://doi.org/10.1109/ICCSN.2009.96
https://doi.org/10.1016/S0004-3702(02)00222-9
https://doi.org/10.1145/2597073.2597091
https://doi.org/10.1145/2597073.2597091
https://doi.org/10.14778/2367502.2367572
https://doi.org/10.14778/2367502.2367572
https://doi.org/10.1007/978-3-540-78135-6_51
https://doi.org/10.1007/978-3-540-78135-6_51
https://doi.org/10.1007/978-3-319-21206-7_10
https://doi.org/10.1007/978-3-319-21206-7_10
https://doi.org/10.1016/j.ipm.2003.10.006
https://doi.org/10.1016/S0306-4573(96)00062-3

389Information Technology and Control 2021/2/50

36. Shao, L., Zhang, H., Jia, M., Wang, J. Efficient and
Effective Single Document Summarizations and a
Word-Embedding Measurement of Quality, 2017. arX-
iv preprint arXiv:1710.00284. https://doi.org/10.5220/
0006581301140122

37. Silverstein, C., Marais, H., Henzinger, M., Moricz, M.
Analysis of a Very Large Web Search Engine Que-
ry Log. SIGIR Forum, 1999, 33(1), 6-12. https://doi.
org/10.1145/331403.331405

38. Spink, A., Ozmutlu, S., Ozmutlu, H. C., Jansen, B. J. US
Versus European Web Searching Trends, 2002, 36(2),
32-38. https://doi.org/10.1145/792550.792555

39. Steinbach, M., Karypis, G., Kumar, V. A Comparison of
Document Clustering Techniques. In KDD Workshop
on Text Mining, 2000.

40. Totaro, G., Bernaschi, M., Carbone, G., Cianfriglia, M.,
Di Marco, A. Isodac: A High Performance Solution for
Indexing and Searching Heterogeneous Data. Journal
of Systems and Software, 2016, 118, 115-133. https://doi.
org/10.1016/j.jss.2015.11.043

41. Tsai, C.-W., Lai, C.-F., Chao, H.-C., Vasilakos, A. V. Big
Data Analytics: A Survey. Journal of Big Data, 2015,
2(1), 21. https://doi.org/10.1186/s40537-015-0030-3

42. Wang, J., Lin, C., He, R., Chae, M., Papakonstantinou, Y.,
Swanson, S. Milc: Inverted List Compression in Mem-
ory. Proceedings of VLDB Endow, 2017, 10(8), 853-864.
https://doi.org/10.14778/3090163.3090164

43. Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H. T. A Sur-
vey on Learning to Hash. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2018, 40(4), 769-
790. https://doi.org/10.1109/TPAMI.2017.2699960

44. Wang, M., Holub, V., Murphy, J., OSullivan, P. High
Volumes of Event Stream Indexing and Efficient
Multi-Keyword Searching for Cloud Monitoring. Fu-

ture Generation Computer Systems, 2013, 29(8), 1943-
1962. https://doi.org/10.1016/j.future.2013.04.028

45. Williams, K., Giles, C. L. Improving Similar Docu-
ment Retrieval Using a Recursive Pseudo Relevance
Feedback Strategy. 2016 IEEE/ACM Joint Confer-
ence on Digital Libraries (JCDL), 2016, 275-276.
https://doi.org/10.1145/2910896.2925468

46. Wu, T., Shyng, H., Chou, J., Dong, B., Wu, K. Indexing
Blocks to Reduce Space and Time Requirements for
Searching Large Data Files. 2016 16th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid
Computing (CCGrid), 2016, 398-402. https://doi.
org/10.1109/CCGrid.2016.18

47. Yan, H., Ding, S., Suel, T. Inverted Index Compres-
sion and Query Processing with Optimized Docu-
ment Ordering. Proceedings of the 18th Interna-
tional Conference on World Wide Web. WWW'09,
ACM, New York, NY, USA, 2009, 401-410. https://doi.
org/10.1145/1526709.1526764

48. Yousefi-Azar, M., Hamey, L. Text Summarization Using
Unsupervised Deep Learning. Expert Systems with Ap-
plications, 2017, 68, 93-105. https://doi.org/10.1016/j.
eswa.2016.10.017

49. Zar, J. H. Spearman Rank Correlation. Encyclopedia of
Biostatistics, 1998.

50. Zhang, J., Long, X., Suel, T. Performance of Compressed
Inverted List Caching in Search Engines. Proceedings
of the 17th International Conference on World Wide
Web. WWW '08. ACM, New York, NY, USA, 2008, 387-
396. https://doi.org/10.1145/1367497.1367550

51. Zhu, X., Huang, Z., Cheng, H., Cui, J., Shen, H. T. Sparse
Hashing for Fast Multimedia Search. ACM Transac-
tions on Information Systems (TOIS), 2013, 31(2), 9.
https://doi.org/10.1145/2457465.2457469

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.5220/0006581301140122
https://doi.org/10.5220/0006581301140122
https://doi.org/10.1145/331403.331405
https://doi.org/10.1145/331403.331405
https://doi.org/10.1145/792550.792555
https://doi.org/10.1016/j.jss.2015.11.043
https://doi.org/10.1016/j.jss.2015.11.043
https://doi.org/10.1186/s40537-015-0030-3
https://doi.org/10.14778/3090163.3090164
https://doi.org/10.1109/TPAMI.2017.2699960
https://doi.org/10.1016/j.future.2013.04.028
https://doi.org/10.1145/2910896.2925468
https://doi.org/10.1109/CCGrid.2016.18
https://doi.org/10.1109/CCGrid.2016.18
https://doi.org/10.1145/1526709.1526764
https://doi.org/10.1145/1526709.1526764
https://doi.org/10.1016/j.eswa.2016.10.017
https://doi.org/10.1016/j.eswa.2016.10.017
https://doi.org/10.1145/1367497.1367550
https://doi.org/10.1145/2457465.2457469

