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An efficient full-text search is achieved by indexing the raw data with an additional 20 to 30 percent storage 
cost. In the context of Big Data, this additional storage space is huge and introduces challenges to entertain 
full-text search queries with good performance. It also incurs overhead to store, manage, and update the large 
size index. In this paper, we propose and evaluate a method to minimize the index size to offer full-text search 
over Big Data using an automatic extractive-based text summarization method. To evaluate the effectiveness 
of the proposed approach, we used two real-world datasets. We indexed actual and summarized datasets us-
ing Apache Lucene and studied average simple overlapping, Spearman’s rho correlation, and average ranking 
score measures of search results obtained using different search queries. Our experimental evaluation shows 
that automatic text summarization is an effective method to reduce the index size significantly. We obtained a 
maximum of 82% reduction in index size with 42% higher relevance of the search results using the proposed 
solution to minimize the full-text index size.
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1. Introduction
Recent advancements and adaptation of technology 
are contributing to growing digital data exponential-
ly. For example, nowadays inexpensive and readily 
available network-enabled electronic devices (smart-
phones, laptops, personal computers, and tablets), the 
adaptation of social networks, and electronic health-
care gadgets are widely used and generate enormous 
data. This increasing growth of data poses special 
challenges to process, store, and analyze it [27]. To 
overcome this challenge, recently a new research area 
namely Big Data has emerged. One of the important 
research problems in Big Data is to provide efficient 
full-text search services on a large dataset. A com-
mon technique to provide text search is through data 
indexing [5, 6]. There are many data structures in 
practice to provide data indexing. One of the widely 
used data structure is inverted index [6]. This data 
structure is based on the hash table. Each entry in 
the inverted index is a key-value pair, where the key 
is a term and the value is a list of document identifiers 
containing the term. All of the terms from the specif-
ic dataset are also known as term dictionary and the 
corresponding list of document identifiers are known 
as posting list. An inverted index after compression is 
roughly 20-30% of the actual size of the dataset.
Apache Lucene is the most used library to index data 
[24, 29, 32] for providing full-text search. It uses in-
verted index data structure to provide efficient data 
search capabilities. Furthermore, Lucene uses com-
pression techniques to reduce the size of the index. 
However, still, the index size remains around 20% to 
30% of the actual size of the data. To entertain search 
queries, Lucene loads the inverted index into a phys-
ical memory as a hash table containing term dictio-
nary and posting lists. For each query consisting of 
multiple words, Lucene identifies the corresponding 
posting lists, merge them, and rank the documents to 
return as a search query result.
Lucene index generation is a time-consuming task 
specifically for large datasets [17, 40]. Figure 1 shows 
profiling of index time for different sizes of datasets 
using Lucene. The figure shows actual and expected 
index time for the datasets. The actual line is plotted 
after profiling index time for different dataset sizes 
varying from 1 GB to 200 GB. Whereas, the expect-
ed line is plotted by fitting the line using small size 

datasets varying from 1 GB to 10 GB. This shows that 
on increasing size of datasets, the performance of 
Lucene decreases significantly. We advocate that a 
large dataset can be reduced to a smaller representa-
tive dataset for indexing to offer full-text search with 
better performance.
Traditionally data index is minimized using posting 
list compression techniques [50, 51]. Compression 
algorithms provide an effective reduction in space 
but introduce overhead on decompression as it re-
quires to serve the queries which reduce the speed of 
search queries drastically for a large index size. We 
advocate to reduce the actual dataset using text au-
tomatic summarization method and then posting list 
compression methods can further be used to reduce 
the index size. Automatic text summarization [35] is 
a process to create a summary of a text document by 
significantly reducing its size. However, it ensures to 
retain important points of the document. In this pa-
per, we investigate to minimize the index size of Big 
Data using an automatic text summarization method. 
To evaluate the effectiveness of this approach, we per-
formed four different experiments using two datasets 
to study average overlapping, average ranking score, 
and Spearman’s rho correlation measures of search 
results using different search queries in comparison 
with actual datasets.

Figure 1
Apache Lucene index generation time profiling using 
different sizes of datasets
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Traditionally data index is minimized using 
posting list compression techniques [50, 51]. 
Compression algorithms provide an effective 
reduction in space but introduce overhead on 
decompression as it requires to serve the 
queries which reduce the speed of search 
queries drastically for a large index size. We 
advocate to reduce the actual dataset using 
text automatic summarization method and 
then posting list compression methods can 
further be used to reduce the index size. 
Automatic text summarization [35] is a 
process to create a summary of a text 
document by significantly reducing its size. 
However, it ensures to retain important points 
of the document. In this paper, we investigate 
to minimize the index size of Big Data using 
an automatic text summarization method. To 
evaluate the effectiveness of this approach, we 
performed four different experiments using 
two datasets to study average overlapping, 
average ranking score, and Spearman’s rho 
correlation measures of search results using 
different search queries in comparison with 
actual datasets. 

The main contributions of this paper includes: 

• We propose an automatic extractive-
based text summarization for Big Data index 
minimization for the full-text search problem. 

• We evaluate the effectiveness of the 
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The main contributions of this paper includes:
 _ We propose an automatic extractive-based text 

summarization for Big Data index minimization 
for the full-text search problem.

 _ We evaluate the effectiveness of the proposed 
method by studying relevance and overlapping of 
the search query results with baseline datasets.

 _ Study the effect of different text summarization 
threshold levels on data index minimization and 
search results.

The rest of this paper is organized as follow. Related 
work is discussed in Section 2. Commonly used Big 
Data tools for fulltext search are discussed in Sec-
tion 3. The proposed solution for index generation 
using automatic text summarization is presented 
in Section 4. Experimental evaluation setup is dis-
cussed in Section 5. Experimental results are pre-
sented in Section 6. Finally, the conclusion is drawn 
and future work is discussed in Section 7.

2. Related Work
There have been excellent efforts to develop tools, 
methods, and programming models to store, process, 
and analyze Big Data [3, 31, 41]. The full-text search on 
the Big Data is a challenging and interesting problem 
which recently gained attention. Many applications 
and domains are using full-text search. For example, 
Cuggia et al. [9] developed a full-text search engine 
to use clinical notes for identifying different diseas-
es. Garcelon et al. [15] use full-text search to detect 
the family history of patients from a biomedical data 
warehouse. Hanauer et al. [19] develop a search query 
recommendations system which exploits the query 
semantics using synonym variants of the query text 
and obtain most relevant data from electronic health 
record system. Abe et al. [1] present a high-speed full-
text search engine for system log files. The solution 
automatically converts system log files into an effi-
cient searchable index and provide good performance 
to facilitate full-text search for end-users. Wang et 
al. [44] use full-text search for large-scale cloud data 
center monitoring. Their proposed solution is based 
on tree index structure and correlation methods to in-
dex the data and obtain relevant results.
Full-text search on Big Data is commonly achieved us-
ing data indexing and hashing methods. A comprehen-

sive survey on Big Data indexing methods is reported by 
Gani et al. [13]. Zhu et al. [51] introduced sparse hash-
ing for effectively searching high-dimensional data by 
reducing the dimensionality of data dynamically. He et 
al. [20] proposed and evaluated deep learning solution 
to image-text retrieval using two convolution-based 
networks to offer efficient image-text retrieval. Wang 
et al. [43] present a survey on learning to hash algo-
rithms and categorize them. The learning to the hash 
method is used to find data elements from the database 
on given query so the distance of the selected data ele-
ments is minimum with the query text.
There have been several efforts to minimize search 
index using posting list compression techniques. 
For example, Zhang et al. [50] discussed inverted in-
dex compression for high-performance information 
retrieval systems by compressing posting list. This 
work explained various posting list compression algo-
rithms and then proposed a solution to select method 
to use disk speed, cache size, and memory effectively 
to improve performance for search engines. Yan et al. 
[47] proposed to reorder document IDs in the posting 
list for higher data index compression. They proposed 
a method to optimize compression for posting list and 
query processing by optimally reordering the docu-
ments. Wang et al. [42] proposes a new inverted list 
compression method based on multiple techniques 
including fixed-bit encoding, inblock compression, 
dynamic data partitioning, and cache-aware optimi-
zation to improve the query performance. Another 
work by Claude et al. [7] introduced a new method to 
compress inverted indexes for applications required 
full-text facility on a large repository of repetitive 
documents like version control systems. Wu et al. [46] 
reduce the indexing space and time by using indexing 
blocks instead of individual records for minimizing 
the query processing time.
The relevance of the full-text search results is import-
ant and many studies have been performed to observe 
user’s behavior towards the ranking of the full-text 
search results. Most of these studies show that only a 
few tops ranked results are important from user’s per-
spective [22, 23, 37, 38]. Bar-Ilan et al. [4] discussed 
different techniques used to correlate the rankings 
of search engine results. This work applied different 
methods of comparison of top 10 results using a specif-
ic set of queries and compared ranked results returned 
by major search engines. Ghose et al. [16] present a 
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study of ranking results obtained from a search engine 
based on consumer behavior and revenue of search en-
gine using hierarchical Bayesian model. Williams et al. 
[45] use pseudo-relevance feedback recursively to im-
prove search results for given text query.
Automatic text summarization is a well-established 
research area [2, 12] which reduces the size of the 
text significantly. However, it ensures to retain im-
portant sentences and central idea of the given text 
while reducing its size. Two different methods exist 
for automatic text summarization namely Extractive 
and Abstractive. In Extractive method [28], import-
ant sentences are picked up from the given text to 
generate a compact summary. It first ranks sentences 
according to their importance and then assigns them 
relevance score and finally selects the sentences with 
the higher score as a summary of the document. In 
Abstractive method [14, 25], Natural Language Pro-
cessing (NLP) methods are used to generate the sum-
mary of given text document. This method generates 
the summary with possibly new vocabulary and sen-
tences similar to a human generated summary of the 
documents. Recently, advanced techniques are used 
to improve automatic text summary generation. For 
example, [48] introduced deep learning for automatic 
text summarization.
To our knowledge, no work has investigated the use of 
text summarization methods for Big Data search in-
dex minimization. We take the first step to introduce 
text summarization for reducing search index size 
significantly while providing higher relevance of the 
search results.

3. Big Data Indexing Tools
3.1. Apache Lucene
Apache Lucene [32] is a high-performance open-
source information retrieval library written in Java 
programming language. It is primarily used for index-
ing and searching of text data. Lucene provides fast 
indexing and fast searching capabilities for very large 
datasets. It can process roughly 150 GB/hour of data 
on latest hardware [10] with heap consumption of only 
1 MB. The index size generated by Lucene is 20-30% 
of actual dataset size. Besides simple indexing and 
searching functionality, Lucene also ranks the search 
results to show the most relevant results in descending 

order of relevance. These features make it appealing to 
use and build Big Data solutions on top of Lucene.

3.2. Apache Solr
Apache Solr [18] is a highly scalable enterprise search 
engine that uses Lucene for indexing and searching 
functionality. Solr extends Lucene and provides func-
tionality like rich documents processing (including 
PDF, XML, HTML etc.), integration with the data-
base, index replication and load balancing for fault 
tolerance. Solr also provides Distributed Searching 
by introducing the concept of Shards. Solr provides 
REST-based XML/JSON APIs that make it integra-
ble with most of the programming languages. Solr 
exploits the fast-searching capability of Lucene and 
make sure the availability of documents for searching 
immediately after they are added for indexing.

3.3. Elasticsearch
Elasticsearch [26] is also an enterprise search engine. 
Like Solr, it also uses Lucene for indexing and search-
ing. Elasticsearch is much similar to Solr in terms 
of its functionality. Elasticsearch, like Solr also pro-
vides distribution of index by dividing it into different 
Shards. It maintains replicas of every Shard. Elastic-
search also provides a feature of Gateway that allows 
recovery in case of any server crash. Elasticsearch 
supports NoSQL solutions which makes it attractive 
to use as a database with Big Data applications. How-
ever, it doesn’t support distributed transactions.

3.4. Cloudera Search
Cloudera Search uses Hadoop Distributed File Sys-
tem (HDFS) for storing data indices to provide near 
to real-time full-text search facility. It is based on 
Apache Solr and provides fast individual and batch 
indexing of text data. It works by indexing events 
(streamed by Flume) while they are being stored in 
HDFS. It first maps all events to Solr schema and then 
uses Lucene for indexing of events. Cloudera Search 
offers fault tolerance by leveraging the benefits of 
HDFS. Cloudera Search is easy to integrate with 
HBase to provide full-text search.

3.5. Sphinx
Sphinx is an open-source search engine written in 
C++ which uses native protocols to communicate 
with any Data Base Management System (DBMS). 
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This allows Sphinx to directly index data of any 
DBMS. It also works with NoSQL-based database 
and allows the user to use it with raw text data to in-
dex and use it in their applications. Sphinx also allows 
RDBMS like query style (use of WHERE, GROUP BY 
etc. clauses). It offers aggregate functions for sum, 
average, minimum, maximum etc. It also allows the 
distributed searching and very easy to integrate with 
any application.

3.6. Xapian
Xapian is an open-source search engine library writ-
ten in C++. It is fast and highly scalable for searching 
text documents and can scale up to hundreds of mil-
lions of documents. Xapian has a built-in support for 
Probabilistic IR models for the ranking of results. It 
also allows the use of Boolean operators like AND, 
OR etc. Xapian allows transactions with a guarantee 
of data consistency in case of any failure. Some of the 
important features available in Xapian are data up-
dates, automatic spell correction, probabilistic rank-
ing algorithms, and intuitive usage of synonyms for 
the given text query.
Among all of these Apache Lucene is the most pow-
erful, mature, and famous among Big Data applica-
tion developers to use for offering the full-text search 
facility. Moreover, the flexibility of Apache Lucene 
to use its APIs and easy customization of the source 
code helps greatly to integrate and implement our 
proposed index minimization method.

4. Proposed Index Minimization 
Using Text Summarization
Our proposed solution is based on automatic text 
summarization for Big Data index minimization to 
offer efficient fulltext search. We explained automatic 
text summarization method and the proposed system 
in the following subsections in turn.

4.1. Automatic Text Summarization Methods
Automatic text summarization is a process to cre-
ate a summary of a text document by significantly 
reducing its size. However, it ensures to retain im-
portant points of the document. Mainly, two differ-
ent methods exist for automatic text summarization 

[35] namely Extractive and Abstractive. In Extractive 
method, important keywords, and sentences from the 
original text are selected to create the summary. How-
ever, in Abstractive method, natural language pro-
cessing techniques are used to create the summary. 
This method generates a summary which looks clos-
er to a human generated summary of the document. 
But this method may not use sentences and keywords 
from the original document to prepare the summary.
Searching text documents heavily rely on the key-
words present in the documents, therefore, in our 
context Extractive method is appropriate to prepare 
the summary of the document. Then, we index the 
summary to significantly reduce the index size. Most 
of the Extractive methods generate a summary by 
finding the similarity between sentences and then as-
signing a similarity score to them. Finally, our method 
selects sentences having the higher similarity scores 
to prepare the summary. There are two common-
ly used approaches to prepare extractive-based text 
summary known as Textrank-based [30] and cen-
troid-based [33]. Textrank-based algorithm prepares 
a complete graph of sentences. Where each sentence 
represents a vertex in the graph and edges represent 
intersection score between two sentences. In this 
paper, we chosen centroid-based [33] algorithm to 
prepare the summary of text documents as this meth-
od is better than textrank-based text summarization 
algorithm [11]. We explained the centroid-based text 
summarization method in the following subsection.

4.1.1. Centroid-based Text Summarization
The centroid-based algorithm identifies a set of key-
words, labels them as centroid and then identify co-
sine similarity [33, 39] among other keywords to the 
centroid. To identify set of centroid keywords for a 
document, many techniques exist. For example, Co-
hen [8] proposed to use n-gram statistics to identify 
the set of keywords. Ramos [34] proposes to use term 
frequency-inverse document frequency (tf-idf ) of 
keywords to prepare a set of important keywords of a 
document. Once the list of keywords is prepared then 
cosine similarity score for each sentence is computed 
with the centroid set of keywords. Finally, sentences 
with higher cosine similarity are picked. However, 
the number of selected sentences is defined by the 
user as a percentage of the text (summary threshold) 
required to be part of the summary.
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Figure 2
Proposed Big Data index generation and query serving system using text summarization
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⎟
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Then we sort the sentences by their similarity 
scores and identify top sentences that give the 
summary size less than given τ. We call τ as a 
summary threshold which defines the user choice 
of the size of summary required to generate for the 
given text document. 

44..22..  PPrrooppoosseedd  SSyysstteemm  
Figure 2 shows our proposed system to index data 
using text summarization and serving user queries. 

The data indexing process works by 
aggregating data from different data sources 
like websites, social networks, server logs, and 
smart devices. The data from these sources are 
collected as text documents and passed to the 
text summarization method which generates 
summaries for all given documents. Then a 
preprocessing step is performed which uses 
NLP methods like stop word removal and 
stemming to filter insignificant data. 
Stopword removes all frequent words like a, 
the, their, we, etc. Stemming reduces the 
words to their roots which greatly help to 
minimize the vocabulary of the given 
documents. Once the pre-processing is done, 
the important extracted keywords are then 
passed to the indexing library (Apache 
Lucene) which prepares an inverted index 
using the given keywords and document IDs. 
Once the inverted index is ready, then users 
can invoke queries using the methods 
exposed by the indexing library. For the given 
queries, indexing library identifies the related 
documents, sorts them with ranking scores 
and returns a list of documents to the users. 

generation time and size for both datasets. 
 

55..  EExxppeerriimmeennttaall  EEvvaalluuaattiioonn  
In this section, we explain dataset, evaluation 
criteria, and experiments performed to 
evaluate the proposed method to index Big 
Data for full-text search applications. We 
performed all experiments using a core i7 
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given text document. 

44..22..  PPrrooppoosseedd  SSyysstteemm  
Figure 2 shows our proposed system to index data 
using text summarization and serving user queries. 

The data indexing process works by 
aggregating data from different data sources 
like websites, social networks, server logs, and 
smart devices. The data from these sources are 
collected as text documents and passed to the 
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preprocessing step is performed which uses 
NLP methods like stop word removal and 
stemming to filter insignificant data. 
Stopword removes all frequent words like a, 
the, their, we, etc. Stemming reduces the 
words to their roots which greatly help to 
minimize the vocabulary of the given 
documents. Once the pre-processing is done, 
the important extracted keywords are then 
passed to the indexing library (Apache 
Lucene) which prepares an inverted index 
using the given keywords and document IDs. 
Once the inverted index is ready, then users 
can invoke queries using the methods 
exposed by the indexing library. For the given 
queries, indexing library identifies the related 
documents, sorts them with ranking scores 
and returns a list of documents to the users. 
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identifies the related documents, sorts them with rank-
ing scores and returns a list of documents to the users.
Generation time and size for both datasets.

5. Experimental Evaluation
In this section, we explain dataset, evaluation crite-
ria, and experiments performed to evaluate the pro-
posed method to index Big Data for full-text search 
applications. We performed all experiments using a 
core i7 computer system with 8GB physical memory.

5.1. Datasets and Search Queries
We used two publicly available datasets namely Wiki-
pedia and Project Gutenberg5 to generate their sum-
maries and then indexed them using the proposed sys-
tem to study the effect of index generation on time and 
size. We also studied the overlapping and relevance 
of search results using summarized datasets with the 
actual dataset. The experimental datasets (actual and 
summarized) are briefly explained in Table 1. Figure 3 
shows the effect of different summary thresholds on 
index generation time and size for both datasets.
The actual Wikipedia dataset we used is 77 GB in 
size, consisting of 14.25 million HTML pages and its 
search index size is 12 GB. We used nine different 
summarized datasets of Wikipedia datasets with dif-
ferent values of the summary threshold. The Project 

Figure 3
Effect of different summary thresholds on index 
generation time and size for both datasets

  

computer system with 8GB physical memory. 

  

55..11..  DDaattaasseettss  aanndd  SSeeaarrcchh  QQuueerriieess  
We used two publicly available datasets 
namely Wikipedia and Project Gutenberg5 to 
generate their summaries and then indexed 
them using the proposed system to study the 
effect of index generation on time and size. 
We also studied the overlapping and 
relevance of search results using summarized 
datasets with the actual dataset. The 
experimental datasets (actual and 
summarized) are briefly explained in Table 1. 
Figure 3 shows the effect of different 
summary thresholds on index generation time 
and size for both datasets. 

Table 1 

Datasets with different summary thresholds. The actual dataset (without summarization) is used as a baseline to compare 
index size, index generation time, search results overlapping, and relevance with summarized datasets. 

Data Set Summary Dataset Size 
(GB) 

Index Size 
(GB) 

Index Creation 
Time  

(mins) 

Wikipedia 

90 58.98 2.42 323.7 

80 43.89 2.27 310.17 

70 33.88 2.11 305.66 

60 27.72 1.95 296.65 

50 20.79 1.79 287.75 

40 16.17 1.56 269.83 

30 12.32 1.33 261.16 

20 7.7 0.75 251.79 

10 3.85 0.58 238.61 

Project 
Gutenberg 

90 1.1 0.28 0.92 

80 0.96 0.26 0.88 

70 0.86 0.23 0.82 

60 0.76 0.2 0.75 

50 0.66 0.18 0.6 

40 0.55 0.15 0.53 

30 0.44 0.12 0.43 

20 0.32 0.09 0.33 

10 0.19 0.05 0.2 

The actual Wikipedia dataset we used is 77 GB in 
size, consisting of 14.25 million HTML pages and 
its search index size is 12 GB. We used nine 
different summarized datasets of Wikipedia 

datasets with different values of the summary 
threshold. The Project Gutenberg data is 1.2 
GB in size, consisting of 3035 plain text files 
and its search index size is 301.2 MB. Then we 
summarized this database using nine 

Figure 3 

Effect of different summary thresholds on index 
generation time and size for both datasets. 

Table 1
Datasets with different summary thresholds. The actual 
dataset (without summarization) is used as a baseline to 
compare index size, index generation time, search results 
overlapping, and relevance with summarized datasets

Data Set Summary Dataset 
Size (GB)

Index 
Size (GB)

Index Creation 
Time  (mins)

Wikipedia

90 58.98 2.42 323.7

80 43.89 2.27 310.17

70 33.88 2.11 305.66

60 27.72 1.95 296.65

50 20.79 1.79 287.75

40 16.17 1.56 269.83

30 12.32 1.33 261.16

20 7.7 0.75 251.79

10 3.85 0.58 238.61

Project 
Gutenberg

90 1.1 0.28 0.92

80 0.96 0.26 0.88

70 0.86 0.23 0.82

60 0.76 0.2 0.75

50 0.66 0.18 0.6

40 0.55 0.15 0.53

30 0.44 0.12 0.43

20 0.32 0.09 0.33

10 0.19 0.05 0.2

Gutenberg data is 1.2 GB in size, consisting of 3035 
plain text files and its search index size is 301.2 MB. 
Then we summarized this database using nine differ-
ent summary thresholds to study the impact on index 
size, time, overlapping, and relevance.To consider the 
effect of different search queries for both actual and 
summarized datasets, we used 200 different queries. 
For Wikipedia actual and summarized datasets, we 
used 200 search queries randomly selected from a 
set of 5000 most frequent search queries of Wiki-
pedia website. For the Project Gutenberg actual and 
summarized dataset, we used 200 randomly selected 
nouns from the dataset.
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5.2. Evaluation Criteria
We used different measures to compare the sum-
marized and the actual datasets for overlapping and 
relevance of the results. We used simple overlap-
ping, document ranking scores, and Spearman’s rho 
correlation to study the impact of the summarized 
dataset on search results. In this section, we explain 
the evaluation measures used in our experimental 
evaluation.

5.2.1. Simple Overlapping
To compare search results of the summarized dataset 
with the actual dataset, we use a simple overlapping 
measure. The simple overlapping measure is a ratio of 
overlapping search results (documents) for the same 
queries on both datasets (actual and summarized) for 
Top 1, Top 5, Top 10, Top 15, and Top 20 search results. 
We calculate the simple overlapping (S0) using the 
following formula:

  

different summary thresholds to study the impact 
on index size, time, overlapping, and relevance. 

To consider the effect of different search queries for 
both actual and summarized datasets, we used 200 
different queries. For Wikipedia actual and 
summarized datasets, we used 200 search queries 
randomly selected from a set of 5000 most frequent 
search queries of Wikipedia website. For the Project 
Gutenberg actual and summarized dataset, we 
used 200 randomly selected nouns from the 
dataset. 

55..22..  EEvvaalluuaattiioonn  CCrriitteerriiaa  
We used different measures to compare the 
summarized and the actual datasets for 
overlapping and relevance of the results. We used 
simple overlapping, document ranking scores, and 
Spearman’s rho correlation to study the impact of 
the summarized dataset on search results. In this 
section, we explain the evaluation measures used 
in our experimental evaluation. 

55..22..11..  SSiimmppllee  OOvveerrllaappppiinngg  
To compare search results of the summarized 
dataset with the actual dataset, we use a simple 
overlapping measure. The simple overlapping 
measure is a ratio of overlapping search results 
(documents) for the same queries on both datasets 
(actual and summarized) for Top 1, Top 5, Top 10, 
Top 15, and Top 20 search results. We calculate the 
simple overlapping (𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜) using the following 
formula: 

 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜= 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅

  ,                    (2) 

where R is the number of documents returned by a 
query from the actual datasets and Rs is the number 
of intersection documents between results returned 
for the query from the actual and the summarized 
dataset. 

55..22..22..  RRaannkkiinngg  SSccoorree  
To compare the relevance of search results with the 
queries for both the summarized and the actual 
datasets, we use ranking score assigned by Apache 
Lucene to each document in the search result. We 
compute the average ranking of Top 1, Top 5, Top 
10, Top 15, and Top 20 search results on both actual 
and summarized datasets using same search 
queries. To assign ranking scores, a combination of 
Vector Space Model (VSM) and Boolean Model is 
used. 

The Boolean Model identifies the relevant 
documents on the given queries. Assuming a given 
set of n documents D = {d1,d2,...,dn}, term dictionary 
of size m is is T = {t1,t2,...,tm}, and a boolean 

expression consisting on k search terms Q = (q1 

∨ q2 ∨ ...qk). Then Boolean Model identifies lists 
of documents ∀d and ∀q using Sl = {di|qj} and 
then identifies a list of identical documents S 
= {S 1 ∩ S 2 ∩ S 3 ... }. The list S gives all 
documents containing the search terms. In the 
VSM, term frequency-inverse document 
frequency (tf-idf) is used to identify the 
ranking of relevant documents given by 
Boolean Model. For each document di in S, a 
weight vector vdi =[w1,di ,w2,di ,...,wz,di ] is learned. 
Where:   

𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑 = (𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑)(log |𝑆𝑆𝑆𝑆|
|𝑡𝑡𝑡𝑡∈𝑆𝑆𝑆𝑆|

                      (3) 

 

and tft,d is term frequency for give term t in 
document di. The remaining part of the 
Equation 3 is representing inverse document 
frequency. Then finally ranking score of 
document di is computed using ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞for the 
qiven query q using: 

                              ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞 =
� 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗.𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞

𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1
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𝑧𝑧𝑧𝑧

𝑖𝑖𝑖𝑖=1
.�� 𝑤𝑤𝑤𝑤2𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞
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Finally, ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞  is associated with each 
document di and then return to the user in 
sorted order as a response to the search 
expression. 

55..22..33..  SSppeeaarrmmaann’’ss  rrhhoo  CCoorrrreellaattiioonn  
We used Spearman’s rho [49] to find the 
correlation between summarized and actual 
datasets for Top 1, Top 5, Top 10, Top 15, and 
Top 20 search results. The Spearman’s rho 
works by finding overlapping between two 
given sets. It ignores non-overlapping 
members of the set and gives a higher score to 
higher ranked overlapped results to compute 
a measure ranging between −1 and 1. The sign 
of Spearman’s rho value shows the direction 
of overlapping. Since, in our experimental 
evaluation, we required to identify absolute 
overlapping between two search results, 
therefore, we take the absolute value of 
Spearman’s rho measure. The Spearman’s rho 
(Sr) is computed using the following formula: 

                                  𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 = 1 − 6∑𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖2

𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁2−1)
  ,                      (5) 

where Di represents the difference of 
document ranking between two sets of 
documents, returned by both actual and 
summarized datasets for ith query and N is the 
total number of overlapped documents in 

(2)

where R is the number of documents returned by a 
query from the actual datasets and Rs is the number 
of intersection documents between results returned 
for the query from the actual and the summarized 
dataset.

5.2.2. Ranking Score
To compare the relevance of search results with the 
queries for both the summarized and the actual data-
sets, we use ranking score assigned by Apache Lucene 
to each document in the search result. We compute 
the average ranking of Top 1, Top 5, Top 10, Top 15, 
and Top 20 search results on both actual and summa-
rized datasets using same search queries. To assign 
ranking scores, a combination of Vector Space Model 
(VSM) and Boolean Model is used.
The Boolean Model identifies the relevant documents 
on the given queries. Assuming a given set of n docu-
ments D = {d1,d2,...,dn}, term dictionary of size m is is 
T = {t1,t2,...,tm}, and a boolean expression consisting on 
k search terms Q = (q1 ∨ q2 ∨ ...qk). Then Boolean Mod-
el identifies lists of documents ∀d and ∀q using Sl = 
{di|qj} and then identifies a list of identical documents 
S = {S 1 ∩ S 2 ∩ S 3 ... }. The list S gives all documents 
containing the search terms. In the VSM, term fre-

quency-inverse document frequency (tf-idf ) is used 
to identify the ranking of relevant documents given 
by Boolean Model. For each document di in S, a weight 
vector vdi =[w1,di ,w2,di ,...,wz,di ] is learned. Where:  
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on index size, time, overlapping, and relevance. 

To consider the effect of different search queries for 
both actual and summarized datasets, we used 200 
different queries. For Wikipedia actual and 
summarized datasets, we used 200 search queries 
randomly selected from a set of 5000 most frequent 
search queries of Wikipedia website. For the Project 
Gutenberg actual and summarized dataset, we 
used 200 randomly selected nouns from the 
dataset. 
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We used different measures to compare the 
summarized and the actual datasets for 
overlapping and relevance of the results. We used 
simple overlapping, document ranking scores, and 
Spearman’s rho correlation to study the impact of 
the summarized dataset on search results. In this 
section, we explain the evaluation measures used 
in our experimental evaluation. 

55..22..11..  SSiimmppllee  OOvveerrllaappppiinngg  
To compare search results of the summarized 
dataset with the actual dataset, we use a simple 
overlapping measure. The simple overlapping 
measure is a ratio of overlapping search results 
(documents) for the same queries on both datasets 
(actual and summarized) for Top 1, Top 5, Top 10, 
Top 15, and Top 20 search results. We calculate the 
simple overlapping (𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜) using the following 
formula: 

 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅
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where R is the number of documents returned by a 
query from the actual datasets and Rs is the number 
of intersection documents between results returned 
for the query from the actual and the summarized 
dataset. 

55..22..22..  RRaannkkiinngg  SSccoorree  
To compare the relevance of search results with the 
queries for both the summarized and the actual 
datasets, we use ranking score assigned by Apache 
Lucene to each document in the search result. We 
compute the average ranking of Top 1, Top 5, Top 
10, Top 15, and Top 20 search results on both actual 
and summarized datasets using same search 
queries. To assign ranking scores, a combination of 
Vector Space Model (VSM) and Boolean Model is 
used. 

The Boolean Model identifies the relevant 
documents on the given queries. Assuming a given 
set of n documents D = {d1,d2,...,dn}, term dictionary 
of size m is is T = {t1,t2,...,tm}, and a boolean 

expression consisting on k search terms Q = (q1 

∨ q2 ∨ ...qk). Then Boolean Model identifies lists 
of documents ∀d and ∀q using Sl = {di|qj} and 
then identifies a list of identical documents S 
= {S 1 ∩ S 2 ∩ S 3 ... }. The list S gives all 
documents containing the search terms. In the 
VSM, term frequency-inverse document 
frequency (tf-idf) is used to identify the 
ranking of relevant documents given by 
Boolean Model. For each document di in S, a 
weight vector vdi =[w1,di ,w2,di ,...,wz,di ] is learned. 
Where:   

𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑 = (𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑)(log |𝑆𝑆𝑆𝑆|
|𝑡𝑡𝑡𝑡∈𝑆𝑆𝑆𝑆|

                      (3) 

 

and tft,d is term frequency for give term t in 
document di. The remaining part of the 
Equation 3 is representing inverse document 
frequency. Then finally ranking score of 
document di is computed using ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞for the 
qiven query q using: 

                              ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞 =
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Finally, ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞  is associated with each 
document di and then return to the user in 
sorted order as a response to the search 
expression. 

55..22..33..  SSppeeaarrmmaann’’ss  rrhhoo  CCoorrrreellaattiioonn  
We used Spearman’s rho [49] to find the 
correlation between summarized and actual 
datasets for Top 1, Top 5, Top 10, Top 15, and 
Top 20 search results. The Spearman’s rho 
works by finding overlapping between two 
given sets. It ignores non-overlapping 
members of the set and gives a higher score to 
higher ranked overlapped results to compute 
a measure ranging between −1 and 1. The sign 
of Spearman’s rho value shows the direction 
of overlapping. Since, in our experimental 
evaluation, we required to identify absolute 
overlapping between two search results, 
therefore, we take the absolute value of 
Spearman’s rho measure. The Spearman’s rho 
(Sr) is computed using the following formula: 

                                  𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 = 1 − 6∑𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖2
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where Di represents the difference of 
document ranking between two sets of 
documents, returned by both actual and 
summarized datasets for ith query and N is the 
total number of overlapped documents in 
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and tft,d is term frequency for give term t in document 
di. The remaining part of the Equation 3 is represent-
ing inverse document frequency. Then finally ranking 
score of document di is computed using 

  

different summary thresholds to study the impact 
on index size, time, overlapping, and relevance. 

To consider the effect of different search queries for 
both actual and summarized datasets, we used 200 
different queries. For Wikipedia actual and 
summarized datasets, we used 200 search queries 
randomly selected from a set of 5000 most frequent 
search queries of Wikipedia website. For the Project 
Gutenberg actual and summarized dataset, we 
used 200 randomly selected nouns from the 
dataset. 

55..22..  EEvvaalluuaattiioonn  CCrriitteerriiaa  
We used different measures to compare the 
summarized and the actual datasets for 
overlapping and relevance of the results. We used 
simple overlapping, document ranking scores, and 
Spearman’s rho correlation to study the impact of 
the summarized dataset on search results. In this 
section, we explain the evaluation measures used 
in our experimental evaluation. 

55..22..11..  SSiimmppllee  OOvveerrllaappppiinngg  
To compare search results of the summarized 
dataset with the actual dataset, we use a simple 
overlapping measure. The simple overlapping 
measure is a ratio of overlapping search results 
(documents) for the same queries on both datasets 
(actual and summarized) for Top 1, Top 5, Top 10, 
Top 15, and Top 20 search results. We calculate the 
simple overlapping (𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜) using the following 
formula: 
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𝑅𝑅𝑅𝑅
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where R is the number of documents returned by a 
query from the actual datasets and Rs is the number 
of intersection documents between results returned 
for the query from the actual and the summarized 
dataset. 

55..22..22..  RRaannkkiinngg  SSccoorree  
To compare the relevance of search results with the 
queries for both the summarized and the actual 
datasets, we use ranking score assigned by Apache 
Lucene to each document in the search result. We 
compute the average ranking of Top 1, Top 5, Top 
10, Top 15, and Top 20 search results on both actual 
and summarized datasets using same search 
queries. To assign ranking scores, a combination of 
Vector Space Model (VSM) and Boolean Model is 
used. 

The Boolean Model identifies the relevant 
documents on the given queries. Assuming a given 
set of n documents D = {d1,d2,...,dn}, term dictionary 
of size m is is T = {t1,t2,...,tm}, and a boolean 

expression consisting on k search terms Q = (q1 

∨ q2 ∨ ...qk). Then Boolean Model identifies lists 
of documents ∀d and ∀q using Sl = {di|qj} and 
then identifies a list of identical documents S 
= {S 1 ∩ S 2 ∩ S 3 ... }. The list S gives all 
documents containing the search terms. In the 
VSM, term frequency-inverse document 
frequency (tf-idf) is used to identify the 
ranking of relevant documents given by 
Boolean Model. For each document di in S, a 
weight vector vdi =[w1,di ,w2,di ,...,wz,di ] is learned. 
Where:   
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and tft,d is term frequency for give term t in 
document di. The remaining part of the 
Equation 3 is representing inverse document 
frequency. Then finally ranking score of 
document di is computed using ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞for the 
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Finally, ℜ𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑞𝑞𝑞𝑞  is associated with each 
document di and then return to the user in 
sorted order as a response to the search 
expression. 
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We used Spearman’s rho [49] to find the 
correlation between summarized and actual 
datasets for Top 1, Top 5, Top 10, Top 15, and 
Top 20 search results. The Spearman’s rho 
works by finding overlapping between two 
given sets. It ignores non-overlapping 
members of the set and gives a higher score to 
higher ranked overlapped results to compute 
a measure ranging between −1 and 1. The sign 
of Spearman’s rho value shows the direction 
of overlapping. Since, in our experimental 
evaluation, we required to identify absolute 
overlapping between two search results, 
therefore, we take the absolute value of 
Spearman’s rho measure. The Spearman’s rho 
(Sr) is computed using the following formula: 
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query from the actual datasets and Rs is the number 
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To compare the relevance of search results with the 
queries for both the summarized and the actual 
datasets, we use ranking score assigned by Apache 
Lucene to each document in the search result. We 
compute the average ranking of Top 1, Top 5, Top 
10, Top 15, and Top 20 search results on both actual 
and summarized datasets using same search 
queries. To assign ranking scores, a combination of 
Vector Space Model (VSM) and Boolean Model is 
used. 

The Boolean Model identifies the relevant 
documents on the given queries. Assuming a given 
set of n documents D = {d1,d2,...,dn}, term dictionary 
of size m is is T = {t1,t2,...,tm}, and a boolean 

expression consisting on k search terms Q = (q1 

∨ q2 ∨ ...qk). Then Boolean Model identifies lists 
of documents ∀d and ∀q using Sl = {di|qj} and 
then identifies a list of identical documents S 
= {S 1 ∩ S 2 ∩ S 3 ... }. The list S gives all 
documents containing the search terms. In the 
VSM, term frequency-inverse document 
frequency (tf-idf) is used to identify the 
ranking of relevant documents given by 
Boolean Model. For each document di in S, a 
weight vector vdi =[w1,di ,w2,di ,...,wz,di ] is learned. 
Where:   
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then return to the user in sorted order as a response to 
the search expression.

5.2.3. Spearman’s rho Correlation
We used Spearman’s rho [49] to find the correlation 
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1, Top 5, Top 10, Top 15, and Top 20 search results. 
The Spearman’s rho works by finding overlapping 
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er ranked overlapped results to compute a measure 
ranging between −1 and 1. The sign of Spearman’s rho 
value shows the direction of overlapping. Since, in our 
experimental evaluation, we required to identify ab-
solute overlapping between two search results, there-
fore, we take the absolute value of Spearman’s rho 
measure. The Spearman’s rho (Sr) is computed using 
the following formula:

𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 = 1 − 6∑𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖2

𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁2−1)
, (5)

where Di represents the difference of document rank-
ing between two sets of documents, returned by both 
actual and summarized datasets for ith query and N is 
the total number of overlapped documents in both sets.

5.3. Experimental Details
We performed three experiments to evaluate the ef-
fectiveness of the summarization method for min-
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imizing index size for full-text search. In all three 
experiments, we used 200 randomly selected search 
queries for Wikipedia and Project Gutenberg data-
sets. In each experiment, we use the actual datasets 
(without summarization) as a baseline and compare 
the results with summarized datasets of 200 random-
ly selected search queries for Top 1, Top 5, Top 10, Top 
15, and Top 20 search results.
In Experiment 01, we compare and evaluate average 
simple overlapping, explained in Section 5.2.1, for the 
search results obtained on actual and summarized 
versions for both datasets. In Experiment 02 and Ex-
periment 03, we compare and evaluate the average 
ranking score, explained in Section 5.2.2, and Spear-
man’s rho measures, described in Section 5.2.3, re-
spectively on the search results.

6. Experimental Results

6.1. Experiment 1: Overlapping Results
Figure 4(a) shows average overlapping results of sum-
marized datasets using different summary thresholds 
with baseline Wikipedia dataset for 200 search que-
ries. The overlapping measure shows the summarized 
version of the Wikipedia dataset provides minimum 
18% similar documents returned using 10% summa-
ry threshold and maximum 66% similar documents 
returned using 90% summary threshold. We observe 
that on increasing value of summary threshold the 
overlapping results also increased. However, we ob-
serve the growth of overlapping results slow down 
after 40% summary threshold.
Figure 4(b) shows average overlapping results of sum-
marized datasets using different summary thresholds 
with actual Project Gutenberg datasets for 200 search 
queries. The overlapping measure shows the sum-
marized version of the Wikipedia dataset provides 
minimum 52% similar documents returned using 
10% summary threshold and maximum 89% similar 
documents returned using 90% summary threshold. 
We observe that on increasing value of the summa-
ry threshold, the overlapping results also increased. 
However, we observe the growth of overlapping re-
sults slow down after 50% summary threshold.
This experimental result shows a correlation be-
tween summary threshold and overlapping results. 

Figure 4
Experiment 1 results show average overlapping and standard 
deviation for Wikipedia and Project Gutenberg datasets
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This experimental result shows a correlation 
between summary threshold and overlapping 
results. If we use the higher value of summary 
threshold, we can find more similar results as 
compared to actual datasets. However, the 
large value of summary threshold will not 
help to decrease the index size significantly. 
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Figure 5(a) shows the average ranking score of 
summarized datasets using different 
summary thresholds and actual Wikipedia 
dataset for 200 search queries. The ranking 
score for the summarized version of the 

Wikipedia datasets provides always higher 
ranking score comparing to actual dataset 
results. However, the non-overlapping results 
which are part of actual dataset results but 
missing from the summarized dataset are low. 
It shows the non-overlapping results are not 
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If we use the higher value of summary threshold, 
we can find more similar results as compared to ac-
tual datasets. However, the large value of summary 
threshold will not help to decrease the index size sig-
nificantly.

6.2. Experiment 2: Relevance of Search 
Results
Figure 5(a) shows the average ranking score of sum-
marized datasets using different summary thresholds 
and actual Wikipedia dataset for 200 search queries. 
The ranking score for the summarized version of the 
Wikipedia datasets provides always higher ranking 
score comparing to actual dataset results. However, 
the non-overlapping results which are part of actu-
al dataset results but missing from the summarized 
dataset are low. It shows the non-overlapping re-
sults are not highly relevant to the search queries. 
The maximum score is obtained using 10% summary 
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Figure 5
Experiment 2 results show average ranking score and standard deviation for Wikipedia and Project Gutenberg datasets

threshold. Overall, the ranking score decreases when-
ever we increase the value of the summary threshold.
Figure 5(b) shows the average ranking score of sum-
marized datasets using different summary thresholds 
with actual Project Gutenberg dataset. The rank-
ing score for the summarized version of the Project 
Gutenberg datasets provides always higher ranking 
score comparing to actual dataset results. However, 
the non-overlapping results which are part of actu-
al dataset results but missing from the summarized 
dataset are low. It shows the non-overlapping re-
sults are not highly relevant to the search queries. 
The maximum score is obtained using 10% summary 
threshold. Overall, the ranking score decreases when-
ever we increase the value of the summary threshold.
Experiment 2 shows that summarized datasets yield 
higher ranking scores compared to the actual dataset. 
Moreover, nonoverlapping results always have low-
er ranking scores which show less relevance to the 
search queries.

6.3. Experiment 3: Spearman’s Rho Correlation
Figure 6(a) shows average Spearman’s rho correla-
tion of ranking scores using summarized and actual 
datasets for 200 search queries on Wikipedia data-
set. The Spearman’s rho measure varies between 0.5 
and 0.7 for most of the summary thresholds. However, 
we observed minimum Spearman’s rho for Top 1 re-
sults obtained using actual dataset and 10% summa-
ry threshold. We observed the best results for Top 5 
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where R is the number of documents returned by a 
query on the actual dataset, Ra is the total number 
of documents returned by a query from the 
summarized dataset, and Rs is a number of similar 
documents between results returned by a query 
from the actual and the summarized datasets. 
Figure 7 shows recall, precision, and the precision-
recall graph of all 200 search queries executed on 
actual Project Gutenberg and summarized datasets. 
The recall is increasing as number % of summary 
threshold increases. However, average precision 
remains very high and close to 1. The high 
precision results are justified as we are using 
extractive-based summarization method which 
selects the sentences rather building new sentences. 
Therefore, summarized datasets are a subset of the 
actual dataset and yielding results, which is also a 
subset of the ground truth. Due to this behavior, we 

also observe higher precision and recall 
behavior similar to Figure 7 for the Wikipedia 
dataset. 

66..55..  EExxppeerriimmeennttaall  SSuummmmaarryy  
We summarize our experimental evaluation 
in Table 2. It shows index size & time 
decreased, ranking improved, overlapping, 
and Spearman’s rho correlation using 
different summary thresholds for both 
datasets in comparison with the baseline 
datasets (without summarization). The 
proposed text summarization method yields 
higher ranks for the search documents 
returned using both datasets compared to the 
baseline using a smaller value of the summary 
threshold. The index size and time decrease 
significantly using a smaller value of 
summary thresholds. However, overlapped 
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Average precision and recall for the different summary threshold for Project Gutenberg dataset. We consider 
results obtained using actual dataset as ground truth. using actual dataset as ground truth. 
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documents using Spearman’s rho measure. There is 
no specific relationship with increasing summary 
threshold with Spearman’s rho measure, however, the 
maximum results are observed using 90% summary 
threshold.
Figure 6(b) shows average Spearman’s rho correla-
tion of ranking scores using summarized and actual 
datasets for 200 search queries on Project Gutenberg. 
The Spearman’s rho measure varies between 0.45 and 
0.92. However, we observed minimum Spearman’s 
rho for Top 15 results obtained using actual dataset 
and 10% summary threshold. We observed the best 
results for Top 20 documents using Spearman’s rho 
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where R is the number of documents returned by a 
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ments between results returned by a query from the 
actual and the summarized datasets. Figure 7 shows 
recall, precision, and the precision-recall graph of 
all 200 search queries executed on actual Project 
Gutenberg and summarized datasets. The recall is 
increasing as number % of summary threshold in-
creases. However, average precision remains very 
high and close to 1. The high precision results are 
justified as we are using extractive-based summa-
rization method which selects the sentences rath-
er building new sentences. Therefore, summarized 
datasets are a subset of the actual dataset and yield-
ing results, which is also a subset of the ground truth. 
Due to this behavior, we also observe higher preci-
sion and recall behavior similar to Figure 7 for the 
Wikipedia dataset.
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Table 2
Experimental summary showing index size and time decreased, average ranking improved, average overlapping results, 
and average Spearman's rho for different summary threshold for both datasets

Dataset Summary 
Threshold %)

Index Size De-
creased (%)

Index Time 
Decreased (%)

Avg Rank 
Improved (%)

Avg Overlapping 
(%)

Avg Spearman’s 
Rho

Wikipedia

10 75 47 35.77 18.55 0.52

20 69 44 24.79 23.38 0.51

30 47 42 14.86 32.72 0.51

40 38 40 8.82 42.46 0.53

50 29 36 5.61 47.89 0.56

60 23 34 3.41 50.00 0.57

70 17 32 0.99 52.42 0.60

80 11 31 -0.98 55.43 0.62

90 05 28 -0.38 62.73 0.68

Project 
Guetenberg

10 82 80 47.92 54.92 0.49

20 69 66 37.33 62.05 0.58

30 60 56 29.47 67.51 0.64

40 50 46 22.95 69.45 0.68

50 38 39 17.82 73.80 0.73

60 32 24 12.41 78.02 0.78

70 22 17 8.75 79.69 0.81

80 13 10 5.67 82.23 0.85

90 05 07 1.94 88.58 0.92

6.5. Experimental Summary
We summarize our experimental evaluation in Table 2. 
It shows index size & time decreased, ranking im-
proved, overlapping, and Spearman’s rho correlation 
using different summary thresholds for both datasets 
in comparison with the baseline datasets (without 
summarization). The proposed text summarization 
method yields higher ranks for the search documents 
returned using both datasets compared to the base-
line using a smaller value of the summary threshold. 
The index size and time decrease significantly using a 
smaller value of summary thresholds. However, over-
lapped results with baseline decrease on the smaller 

values of the summary threshold. We observed a good 
correlation of search results using all summarized 
datasets with the baseline.
We recommend using 10% summary threshold to use 
centroidbased text summarization method to signifi-
cantly reduce the index size and time. It also improves 
the search results relevance and provides good rank-
ing correlation with the actual dataset.
In the proposed system, the process of creating sum-
maries for each document introduces CPU time over-
head. Due to the linear time execution time complex-
ity of the extractive text summarization algorithm 
introduce only minimal overhead [36].
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An online system, which creates a summary for new 
text documents instantly, will not introduce any nota-
ble performance issue. However, for a batch process-
ing system, in which a large dataset required to gen-
erate the summaries, we recommend using Hadoop 
and Spark [21] to parallel process the large datasets 
for reducing the overhead of creating the summaries.

7. Conclusion and Future Work
 Providing an efficient text search services for a large 
dataset is an interesting research topic. In this paper, 
we used an automatic text summarization method 
based on an extractive approach to reducing the index 
size of large datasets. Our experimental evaluation 
shows a maximum of 82% reduction in the index size 
and 80% in index generation time when using text 
summarization method with 10% summary thresh-

old. The relevance of search results obtained from 
summarized datasets is higher than baseline datasets. 
Moreover, the correlation between search results is 
good. However, the best overlapping results are 54% 
using the Project Gutenberg dataset. Automatic text 
summarization is an effective method to help to re-
duce the index size significantly with the better rele-
vance of the search results.
We are currently identifying the best threshold in 
extractive-based text summarization method to im-
prove the overlapping results with the actual data-
set. Moreover, we are planning to build a cloud-based 
application using Apache Lucene to provide full-text 
search index minimization services.
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