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1. Introduction
Anaerobic digestion (AD) gets more and more atten-
tion nowadays because it is a relatively cheap, sus-
tainable and efficient method to treat organic wastes. 
AD makes possible to realize depollution of organic 
wastes for environment protection, production of 
energy in the form of biogas (including hydrogen and 
methane) and creation of biofuels 16. 
The anaerobic digestion of organic wastes is a very 
complex multi-stage biochemical process which in-
volves the interaction between the metabolic pro-
cesses of many different microorganisms and com-
plex organic matter transformations affected by a 
variety of environmental factors. Microbial activity 
during AD is a crucial feature for process stability and 
biogas yield, and thus requires further investigation 
1. The AD process mathematical models are charac-
terized by nonlinearities and parametric and/or mod-
el uncertainties. Most mathematical models of AD 
processes are based on mass-balance equations or on 
a zonal description of the bioprocess variables (mod-
el with variable structure) 8. At present, AD models 
are mainly divided into two categories. The first one 
consists of complex models, such as ADM1 (Anaer-
obic Digestion Model 1) 6 using 35 state equations 
to describe the AD process in detail. The other one 
includes simplified or reduced-order models which 
mainly describe some special chemical and biochem-
ical phenomena. From control point of view, these 
simplified models are convenient for control applica-
tions. The most representative ones are Droop model 
11, Andrews model 3 and Bernard model 7.
In order to obtain good performances and high quality 
production, various control and observer algorithms 
have been developed and used for AD process con-
trol: sliding mode observer based optimal control 3, 
non-parametric adaptive control 25, and robust non-
linear observer 17. Moreover, artificial intelligence 
control strategies such as neural networks 4, fuzzy 
control 12 and multi-model observe based estimator 
22, have been applied to AD processes. In the past ten 
years, model free controllers 29 have also been devel-
oped for AD processes. Because prior information for 
the AD process is usually unknown or limited, differ-
ent estimators and/or observers are used for plant 
coefficients estimation and/or state observation in 
these controllers. 

The extremum seeking control (ESC) is a classic meth-
od for system performance optimization requiring 
generally only input and output system information 
[19, 28]. Recently, a number of important ESC devel-
opment results have been published, such as multi-in-
put ESC 5, sliding mode ESC 24, time-varying ESC 15, 
Newton based ESC 21, fractional order ESC 2, etc. 
In this paper, a KF based NESC is proposed to opti-
mize an AD system for hydrogen and methane pro-
duction in order to obtain maximum gas production 
rates. The AD system consists of a cascade of two 
continuously stirred anaerobic bioreactors which can 
produce hydrogen and methane separately. In this AD 
system, hydrogen can’t be detected as it is consumed 
immediately by hydrogenotrophic methanogens to 
produce methane (CH4) and carbon dioxide (CO2) 14. 
By dividing the AD process into two stages of hydro-
gen production and methanogenesis, the considered 
AD system can completely utilize the organic acids 
produced during dark fermentation and improve the 
overall energy conversion efficiency [9, 23].
The proposed KF based NESC algorithm do not re-
quire any process model information and uses only 
input and output measurements – dilution rate and 
the biogas outflow rate. The gradient and Hessian of 
the static input-output map are estimated using Kal-
man filter, which makes it possible to speed up the 
convergence to the extremum. Moreover, there are no 
steady-state oscillations because the amplitude of the 
perturbation signal converges to zero during steady 
state regime. This ensures the smoothness of the di-
lution rate and the gas production rate.
The paper is organized as follows. In Section 2, the 
anaerobic digestion process model and the optimiza-
tion criterions are described. The KF based NESC is 
presented in Section 3. Numerical simulation results 
are presented and discussed in Section 4, and some 
concluding remarks are given in Section 5.

2. Model of Anaerobic Digestion Process
The AD process can be divided in four main phases of 
hydrolysis, acidogenesis, acetogenesis and methano-
genesis. In the hydrolysis phase, undissolved complex 
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organic compounds are hydrolyzed into small mol-
ecule compounds. In the acidogenesis stage, small 
molecule compounds are converted to volatile fatty 
acids (VFAs), hydrogen and carbon dioxide. In the 
acetogenesis phase, some VFAs (propionate and buti-
rate) are decomposed into acetate, hydrogen and car-
bon dioxide. In the methanogenesis phase, the aceto-
clastic methanogenic bacteria transform the acetate 
into methane and carbon dioxide.
In the two-stage AD system illustrated in Figure 1, 
relatively fast growing acidogens and H2 producing 
microorganisms are developed in the fi rst-stage hy-
drogenic bioreactor (BR1) which encompasses the 
fi rst two phases of AD process:
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let organic wastes, macromolecular organics and sol-
uble small molecule organics, and 1X is the acidogen-
ic bacteria concentration.
On the other hand, the slow growing acetogens and 
methanogens are developed in the second-stage 
methanogenic bioreactor (BR2), which contains the 
last three phases:
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where 2Pr , 2But  and 2AC are propionate, butirate 
and acetate concentrations, and XPr, XBut and AcX de-
note, respectively, propionic acid-degrading bacteria, 
butyric acid-degrading bacteria and methanogenic 
bacteria concentrations.  
As we can see three intermediate products: acetate, 
propionate and butyrate produced in the BR1 will fl ow 
into BR2, where propionate and butyrate are further 
converted to acetate and after that to CH4 and CO2.
These biochemical reactions lead to a mathematical 
model of a cascade of two continuously stirred anaer-
obic bioreactors. The model of BR1 and BR2 is estab-
lished by the principle of mass balance. The models 
can be expressed by the following Equation (Equation 
(3.a) is the model of BR1, Equation (3.b) is the model 
of BR2) 9 :
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where 1 , Pr , But , Ac denote, respectively, 
the Mono-type growth rate of acidogenic 
bacteria, propionic acid-degrading bacteria, 
butyric acid-degrading bacteria and 
methanogenic bacteria; pY , 1ButY , 

2HY , 1Y are 
yield coefficients; 

2HQ , 
4CHQ represent the 

hydrogen and methane production rate, and 
 is a constant parameter.  The dilution 
ratios 1D and 2D of BR1 and BR2 have the 
following relationship:
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where the coefficient K is related with the 
ratio of the working volumes of both 
bioreactors 9. The anaerobic digestion model 
parameters values are given in Table 1.
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where 1µ , Prµ , Butµ , Acµ denote, respectively, the 
Mono-type growth rate of acidogenic bacteria, propi-
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onic acid-degrading bacteria, butyric acid-degrading 
bacteria and methanogenic bacteria; pY , 1ButY , 

2HY , 1Y  
are yield coefficients; 

2HQ , 
4CHQ represent the hydro-

gen and methane production rate, and β  is a constant 
parameter.  The dilution ratios 1D  and 2D  of BR1 and 
BR2 have the following relationship:

1

2

D K
D

= , (4)

where the coefficient K is related with the ratio of the 
working volumes of both bioreactors 9. The anaerobic 
digestion model parameters values are given in Table 1.

Table 1
The model parameters

1maxµ 0.568 maximum specific growth rate of 
acidogenic bacteria (h-1)

Prmaxµ 0.05 maximum specific growth rate of 
propionate degrading bacteria (h-1)

maxButµ 0.05 maximum specific growth rate of butyrate 
degrading bacteria (h-1)

maxAcµ 0.025 maximum specific growth rate of 
methanogenic bacteria (h-1)

1s
K 3.914 saturation coefficient for acidogenic 

bacteria (g/dm3)

PrK 0.22 saturation coefficient for propionate  
(g/dm3)

ButK 0.22 saturation coefficient for butyrate (g/dm3)

AcK 0.8 saturation coefficient for acetate (g/dm3)

β 1 coefficient of biodegradability (g.h)

pY 1 coefficient (-)

1Y 0.08 yield coefficient for acidogenic bacteria (-)

Pr1Y 4.2 yield coefficient for propionate (-)

1ButY 2.1 yield coefficient for butyrate (-)

1AcY 1.1 yield coefficient for acetate (-)

Pr 2Y 1.5 yield coefficient for propionate (-)

2ButY 1.5 yield coefficient for butyrate (-)

2AcY 0.5 yield coefficient for acetate (-)

2HY 0.22 yield coefficient for hydrogen (dm3/g)

4CHY 142 yield coefficient for methane (dm3/g)

The objective of controlling the anaerobic digestion 
process is to maximize the hydrogen production rate 

2HQ  and total gas production rate 
2 4

= +H CHQ Q Q . The 
AD system presented above has a distinct optimum in 
the input-output static characteristic maps ( 1D  and 

2HQ , 1D  and Q ), see Figures 2-3. It is obvious that 
the more the concentration of waste organics in

0S  is 
added, the more the concentration of the correspond-
ing substrate which can be used by bacteria (in the ad-
missible range without inhibition), and eventually the 
gases outflow rates are increased. 

Figure 2 
Static characteristic 

21- HD Q  for different 0
inS

Figure 3 
Static characteristic 1-D Q  for different 0
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proposed method can regulate the input θ  as close as 
possible to *θ  when only the output and optimization 
target of the system are available and no or partly sys-
tem information is known. 
The AD system input θ  is obtained by superimpos-
ing the perturbation signal p to the estimate θ


 of θ ,

produced by the Newton optimizer. The KF based es-
timator uses the output and input of the AD system to 
estimate in real time the gradient b̂  and Hessian Ĥ  of 
the input-output static map ( )y f θ= . The estimates 
b̂  and Ĥ are then used by the Newton optimizer in 
order to obtain θ


 which moves toward *θ . 

Figure 4 
Structure of the Kalman filter based Newton extremum 
seeking control

Newton optimizer. The KF based estimator uses 
the output and input of the AD system to estimate 
in real time the gradient b̂ and Hessian Ĥ of the 
input-output static map ( )y f  . The estimates b̂
and Ĥ are then used by the Newton optimizer in 
order to obtain  which moves toward * . 

Figure 4

Structure of the Kalman filter based Newton 
extremum seeking control
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3.1 AD System

The considered AD system (3) can be written in the 
standard state-space form 

( , )
,

( )
x x u
y x





 

                                                   (5)

where nx R is the system state (the concentration 
of various organic acids and bacteria), u R is the 
input, y R is the output (

2HQ , 
4CHQ or Q ), and 

: n nR R R   and : nR R  are smooth 
functions. 

Suppose that there exists a smooth control law 

( , )u x                                                        (6)

parameterized by a scalar parameter  , for which 
the closed-loop system has a unique equilibrium. 
In particular, we can select the dilution rate 1D as 
the input u , and u can be considered as  in the 
AD system. 

The input-output static function of the AD system 
( )y f  has an extremum point ( * , *y ), where 

*y is the maximum value of the system output.

3.2 Newton Optimizer

In this paper, the estimate ̂ is computed by the 
Newton-based optimization algorithm 20

ˆ ˆd k b
dt

                                                          (7)

2d h h H
dt

                                                (8)

until reaching the extremum point. Here k, h
>0 are design parameters, b̂ and Ĥ are the 
estimates of the gradient and the second 
derivative (the Hessian) of the AD input-
output static function ( )y f  , and  is the 
estimate of the inverse of the Hessian H.  The 
Riccati Equation (8) has two equilibrium 
points: * 0  and * 1H   . Because 0h  , 
the equilibrium point * 0  is unstable and 
the equilibrium point * 1H   is 
exponentially stable. Thus  converges to the 
actual value of 1H  if Ĥ is a good estimate of 
the Hessian H. In addition, by adjusting the 
value of parameter h , the convergence speed 
of the control algorithm can be adjusted to a 
certain extent.

3.3 KF Based Estimator

The estimation of the gradient and Hessian of 
the unknown static input-output function 

( )y f  is a key element of NESC 18. In the 
proposed ESC, a Kalman filter [13, 30] is 
used to replace the linear filter based 
estimator used in the classical ESC scheme
[21, 28]. The use of KF makes possible to 
obtain faster and more accurate gradient and 
Hessian estimation, which can speed up the 
convergence of the algorithm. More details on 
the real-time state estimation by KF can be 
found in [26, 30]. 

The function ( )y f  can be approximated 
as follows:

2

2

( ) ( ) ( ) ( ) ( )
2

1 ,
2

Hf f b o

f b H

       

 

      

     

   (9)

where ( ) ( )f f f    ,      . The 
unknown gradient b and Hessian H define 
the states of the Kalman filter: 1x b and 

2x H . It is assumed that these states are 
constant. Discrete Kalman filter is 
implemented using the state and 
measurement equations

3.1. AD System
The considered AD system (3) can be written in the 
standard state-space form 

( , )
,

( )
x x u
y x

ϕ
ψ

=
 =


(5)

where nx R∈  is the system state (the concentra-
tion of various organic acids and bacteria), u R∈  is 
the input, y R∈  is the output (

2HQ , 
4CHQ or Q ), and 

: n nR R Rϕ × →  and : nR Rψ →  are smooth functions. 
Suppose that there exists a smooth control law 

( , )u xα θ= (6)

parameterized by a scalar parameter θ , for which the 
closed-loop system has a unique equilibrium. In par-
ticular, we can select the dilution rate 1D  as the input 
u , and u  can be considered as θ  in the AD system. 

The input-output static function of the AD system 
( )y f θ=  has an extremum point ( *θ , *y ), where *y  is 

the maximum value of the system output.

3.2. Newton Optimizer
In this paper, the estimate θ̂  is computed by the New-
ton-based optimization algorithm 20

ˆ ˆd k b
dt
θ
= − Γ (7)

2d h h H
dt
Γ
= Γ − Γ


(8)

until reaching the extremum point. Here k, h >0 are 
design parameters, b̂  and Ĥ  are the estimates of 
the gradient and the second derivative (the Hessian) 
of the AD input-output static function ( )y f θ= , and 
Γ  is the estimate of the inverse of the Hessian H.  
The Riccati Equation (8) has two equilibrium points: 

* 0Γ =  and * 1H −Γ =


. Because 0h > , the equilibrium 
point * 0Γ =  is unstable and the equilibrium point 

* 1H −Γ =


 is exponentially stable. Thus Γ  converges 
to the actual value of 1H −  if Ĥ  is a good estimate of 
the Hessian H. In addition, by adjusting the value of 
parameter h , the convergence speed of the control al-
gorithm can be adjusted to a certain extent.

3.3. KF Based Estimator
The estimation of the gradient and Hessian of the 
unknown static input-output function ( )y f θ=  is a 
key element of NESC 18. In the proposed ESC, a Kal-
man fi lter [13, 30] is used to replace the linear fi lter 
based estimator used in the classical ESC scheme 
[21, 28]. The use of KF makes possible to obtain faster 
and more accurate gradient and Hessian estimation, 
which can speed up the convergence of the algorithm. 
More details on the real-time state estimation by KF 
can be found in [26, 30]. 
The function ( )y f θ=  can be approximated as fol-
lows:

2

2

( ) ( ) ( ) ( ) ( )
2

1 ,
2

Hf f b o

f b H

θ θ θ θ θ θ θ θ

θ θ

= + − + − + −

⇒ ∆ = ∆ + ∆
(9)

where ( ) ( )f f fθ θ∆ = − , θ θ θ∆ = − . The unknown 
gradient b and Hessian H defi ne the states of the Kal-
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man filter: 1x b=  and 2x H= . It is assumed that these 
states are constant. Discrete Kalman filter is imple-
mented using the state and measurement equations

1 1
1

2 1
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1( ) ( )
2 ( ) ,

1( ) ( )
2
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k
k k k
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k
k

k n

k k

k k

k n k n

M

x t
x t x t

x t

y t
z t

y t

t t
x t

t t

ω

θ θ
υ

θ θ

+
+

+

−

− −

   
= = +  

  

∆ 
=  ∆ 
 ∆ ∆ 

= + 
 ∆ ∆  





(10)

where 1( ) ( ) ( )k k ky t y t y t    , 1( ) ( ) ( )k n k n k ny t y t y t     , 1( ) ( ) ( )k k ky t y t y t    , 1( ) ( ) ( )k n k n k ny t y t y t      , 
1( ) ( ) ( )k k kt t tθ θ θ −∆ = − , 1( ) ( ) ( )k n k n k nt t tθ θ θ− − − −∆ = − , and 

kω , kυ  are independent normally distributed white 
noises with covariance matrices Q and R, respec-
tively. The time-shifted input-output pair ( ( )k ntθ −∆ ,

( )k ny t −∆ ) is used to ensure the system observability.
The estimates b̂  and Ĥ  of b  and H  are calculated 
by the following Kalman filter algorithm27:

1

1
1

1 1 1

ˆ̂

ˆ̂̂ ( )

( ) ,

k k
T

k k
T

k k k

k k k k k k
T

k k k k

x Fx

P FP F Q

K P M R

x x K z M x

P P M R M

−
−

−
−

− −

− −

−− − −

=

= +

=

= + −

= +

(11)

where ˆkx−  is the prior state estimate at the k-th step 
when the state 1kx −  is known, 1ˆkx −  and ˆkx  are the state 
estimates at the k-th and k-1 steps, kP−  and kP  are the 
prior error covariance matrix and covariance matrix 
at step k, and kK  is the Kalman gain at step k.

3.4. Perturbation Signal
To ensure the feasibility of the gradient and Hessian 
estimation in real time, a perturbation signal is super-
imposed on the Newton optimizer output θ


. In this 

paper the perturbation signal ( )aS t  is used, where 

( ),l

l h

w sa r y y
s w s w

ζ ζ= − =
+ + (12)

( ) sin( ( )), ( ) (1 sin ( )),S t t t w W tη η π= = + (13)

Here lw  and hw  are the cutoff frequencies of the cor-

responding low-pass high-pass filters, 0r >  is a con-
stant gain for adjusting the convergence speed, ( )W t  
is the standard Brownian motion process, and w  is a 
positive constant. 
When the system output y  converges to its maximum 
value *y , the amplitude of the perturbation signal ap-
proaches to zero, which makes possible to eliminate 
the steady-state oscillations.

4. Simulation Results
We can see that the input-output static characteristics 

2 2 1= ( )H HQ Q D  of BR1 and 1= )Q Q D（  of the AD system 
from Figure 2 - 3. With hydrogen production rate 

2HQ  
and total gases production rate Q  as optimization tar-
gets, KF based NESC is applied to the AD system to 
demonstrate its effectiveness. It is supposed that:
1 Only the dilution rate 1D  and the production rate 

of hydrogen 
2HQ  or total gas Q  are available for on-

line measurement.
2 The inlet organics concentration in

0S  is constant 
(load disturbance), and the simulation exper-
iments are carried out under the condition of  

in
0S = 25g/L.

4.1. Maximizing Hydrogen Production Rate
The AD process optimization is achieved by con-
trolling the dilution rate of BR1 in order to maximize 
the hydrogen production rate. To demonstrate the 
performances of the proposed KF based NESC, they 
are compared with the performances of the sliding 
mode ESC (SMESC) 24 and Newton ESC (NESC) 
21. In order to ensure that KF based NESC has bet-
ter control performance, the parameters in the con-
trol algorithm are set as: k = 0.0045, 0.1r = , 0.02lw = , 

0.08hw = , 0.1w = rad/s, (0)Γ =–0.06. The SMESC de-
sign parameters are k =0.004 and =0.0007β . In turn, 
the NESC design parameters are k =2, 0.02lw = , 

0.08hw = , 0.1w = rad/s and (0)Γ  = –0.06. 
The comparison between the three controllers for 
initial dilution rate 1(0)D =0.01 1h−  is shown in Figure 
5. Furthermore, the trajectories of the operating point 
for different initial values of the dilution rate ( 1(0)D = 
0.01, 0.15, 0.25, 0.35 1h− ) are given in Figure 6.
It can be seen that for the three ESC, the hydrogen 
production rate converges to a maximum value of 
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about 0.083 L/h, and the methane production rate is 
also the same (about 0.58 L/h). However, in terms of 
convergence time, the proposed KF based NESC is 
the fastest, followed by SMESC, and the Newton ESC 
is the slowest. Compared with the other two ESCs, 
the biggest advantage of the ESC scheme proposed in 
this paper is the smoothness of the dilution rate and 
the gas production rate, which is advantageous for the 
actuators that control the dilution rate and gas collec-
tors. As it is illustrated in Figure 6, the robustness of 
the control with respect to different initial values of 

1(0)D  is satisfactory for the KF based NESC.

Figure 5 
AD processes for hydrogen production rate as optimization 
target 

Figure 6
The trajectories of the operating point in the plan for 
different initial values of the dilution rate under KF based 
NESC

(a) Input dilution rate 1D

(b) Optimization target: hydrogen production rate

(c) Methane production rate
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(b) Optimization target: total gas production 
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It can be seen that the proposed KF based NESC en-
sures faster convergence to the maximum of the total 
gas production rate (about 0.67 L/h) than the NESC, 
while the closed-loop system with SMESC can not 
find the optimal dilution rate (about 0.29 1/h). 

5. Conclusion
This paper deals with the extremum seeking control 
of cascade of two continuously stirred anaerobic bio-
reactors which can produce simultaneously both bio-
hydrogen and biomethane. The mixed gas produced 
from both bioreactors, known as hythane, provides 
a higher heating value as compared to that obtained 
from a single-stage anaerobic process.
In order to achieve maximum gases production rates 
(maximum energy), a new extremum seeking con-
trol - Kalman filter based Newton extremum seeking 

control - is proposed making possible to optimize the 
system performances by measuring only the process 
input and output. The Kalman filter is used to obtain 
more accurate gradient and Hessian estimates, which 
makes it possible to speed up the convergence to the 
extremum, and to avoid steady-state oscillations. The 
performances of the proposed extremum seeking con-
trol are studied by numerical simulations and com-
pared with those of standard Newton ESC and sliding 
mode ESC. The obtained results show the higher per-
formances of the new extremum seeking control. 

Acknowledgement 

This work is partially supported by the National Nat-
ural Science Foundation of China under grant num-
ber 61773212, by the International Science & Tech-
nology Foundation of Jiangsu Province under grant 
number BK20170094 and by the Bulgarian Science 
Fund under contract No DFNI–E02/13. 

Rererences
1. Ahring, B. K., Ahring, B. K., Angelidaki, I, Dolfing, J., 

Stamatelatou, K. Biomethanation II. Advances in Bio-
chemical Engineering biotechnology, 2003, 82. http://
dx.doi.org/10. 1007/3-540-45838-7

2. Ammar, N., Ladaci, S., Charef, A., Loiseau, J. Fractional 
Order Extremum Seeking Approach for Maximum Po-
wer Point Tracking of Photovoltaic Panels. Frontiers 
in Energy, 2015, 9(1), 43-53. https://doi.org/10.1007/
s11708-014-0343-5

3. Andrews, J. F., Pearson, E. A. Kinetics and Characteris-
tics of Volatile Acid Production in Anaerobic Fermen-
tation Processes. Air & Water Pollution, 1965, 9, 439-
461. http://dx.doi.org /10. 1080/01944 366608978498

4. Antwi, P., Li, J., Boadi, P. O., Meng, J., Shi, E., Deng, K., 
Bondinuba, F. K. Estimation of Biogas and Methane 
Yields in an UASB Treating Potato Starch Processing 
Wastewater with Backpropagation Artificial Neural 
Network. Bioresource Technology, 2017, 228, 106-115. 
https://doi.org/10.1016/j.biortech.2016.12.045

5. Ariyur, K. B., Krstić, M. Analysis and Design of Multiva-
riable Extremum Seeking. Proceedings of the American 
Control Conference, 2002, 4, 2903-2908. https://doi.
org/10.1109/ACC.2002.1025231

6. Batstone, D. J., Keller, J., Angelidaki I, Kalyuzhnyi, S. V., 
Pavlostathis, S. G., Rozzi, A., Sanders, W. T. M, Siegrist, 

H., Vavilin, V. A. The IWA Anaerobic Digestion Model 
No 1 (ADM1). Water Science and Technology, 2002, 
45(10), 65-73. https://doi.org/10.2166/wst.2002.0292

7. Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., 
Steyer, J. P. Dynamical Model Development and Pa-
rameter Identification for an Anaerobic Wastewater 
Treatment Process. Biotechnology & Bioengineering, 
75(4), 424-438. https://doi.org/10.1002/bit.10036

8. Caraman, S., Ifrim, G., Ceangă, E., Barbu, M., Titica, M., 
Precup, R. E. Extremum Seeking Control for an Ana-
erobic Digestion Process. In 2015 19th International 
Conference on System Theory, Control and Compu-
ting (ICSTCC), 2015, 243-248. https://doi.org/10.1109/
ICSTCC.2015.7321300

9. Chorukova, E., Simeonov, I. Mathematical Modeling 
of the Anaerobic Digestion in Two-Stage System with 
Production of Hydrogen and Methane Including Three 
Intermediate Products. International Journal of Hy-
drogen Energy, 2019. https://doi.org/10.1016/j. ijhyde-
ne.2019.01.228

10. Daaou, B., Dochain, D. Sliding Mode Observer Based 
Real-Time Optimization of Production Rate in a Biore-
actor. 2017 IEEE 56th Annual Conference on Decision 
and Control, CDC 2017, 2018, 2108-2113. https://doi.
org/10.1109/CDC.2017.8263958



463Information Technology and Control 2020/4/49

11. Droop, M. R. The Kinetics of Uptake Growth and In-
hibition in Monochrysis Lutheri. Journal of Marine 
Biology, 1968, 48, 680-733. https://doi.org/10.1017/
S0025315400019238

12. Estaben, M., Polit, M., Steyer, J. P. Fuzzy Control for 
an Anaerobic Digester. Control Engineering Practice, 
1997, 5(9), 1303-1310. https://doi.org/10.1016/S0967-
0661(97)84369-9

13. Gelbert, G., Moeck, J. P., Paschereit, C. O., King, R. 
Advanced Algorithms for Gradient Estimation in 
One- and Two-Parameter Extremum Seeking Control-
lers. Journal of Process Control, 2012, 22(4), 700-709. 
https://doi.org/10.1016/j.jprocont.2012.01.022

14. Gerardi, M. H. The Microbiology of Anaerobic Di-
gesters. John Wiley & Sons, 2003. https://doi.
org/10.1002/0471468967.ch7

15. Guay, M., Dochain, D. A Time-Varying Extremum-See-
king Control Approach. Automatica, 2015, 51, 356-363. 
https://doi.org/10.1016/j.automatica.2014.10.078

16. Lakov, V., Simeonov, I. Comparative Study of Algori-
thms for Extremum Seeking Control for Extremum 
Seeking Control of Organic Waste Anaerobic Digestion 
Process. International Conference Automatics and In-
formation, 2017.

17. Lara-Cisneros, G., Aguilar-López, R., Dochain, D., Femat, 
R. On-line Estimation of VFA Concentration in Anaero-
bic Digestion via Methane Outflow Rate Measurements. 
Computers and Chemical Engineering, 2016, 94, 250-256. 
https://doi.org/10.1016/j.compchemeng.2016.07.005

18. Kebir, A., Woodward, L., Akhrif, O. Extremum-See-
king Control With Adaptive Excitation: Application to 
a Photovoltaic System. IEEE Transactions on Indus-
trial Electronics, 2018, 65(3), 2507-2517.https://doi.
org/10.1109/TIE.2017.2745448

19. Krstić, M., Wang, H. H. Stability of Extremum Seeking 
Feedback for General Nonlinear Dynamic Systems. Au-
tomatica, 2000, 36(4), 595-601. https://doi.org/10.1016/
S0005-1098(99)00183-1

20. Liu, S. J., Krstic, M. Newton-Based Stochastic Extre-
mum Seeking. Automatica, 2014, 50(3), 952-961. 
https://doi.org/10.1016/j.automatica.2013.12.023

21. Moase, W. H., Manzie, C., Brear, M. J. Newton-Like 
Extremum-Seeking for the Control of Thermoacoustic 

Instability. IEEE Transactions on Automatic Con-
trol, 2010, 55(9), 2094-2105. https://doi.org/10.1109/
TAC.2010.2042981

22. Morel, E., Tartakovsky, B., Guiot, S. R., Perrier, M. De-
sign of a Multi-Model Observer-Based Estimator for 
Anaerobic Reactor Monitoring. Computers and Che-
mical Engineering, 2006, 1(2), 78-85. https://doi.or-
g/10.1016/j.compchemeng.2006.05.003

23. Pakarinen, O. M., Kaparaju, P. L. N., Rintala, J. A. Hydro-
gen and Methane Yields of Untreated, Water-Extracted 
and Acid (HCl) Treated Maize in One- and Two-Stage 
Batch Assays. International Journal of Hydrogen Ener-
gy, 2011, 36(22), 14401-14407. https://doi.org/10.1016/j.
ijhydene.2011.08.028

24. Pan, Y., Özgüner, Ü., Acarman, T. Stability and Per-
formance Improvement of Extremum Seeking 
Control with Sliding Mode. International Jour-
nal of Control, 2003, 6(9-10), 968-985. https://doi.
org/10.1080/0020717031000099100

25. Petre, E., Selişteanu, D., Şendrescu, D. Adaptive and Ro-
bust-Adaptive Control Strategies for Anaerobic Waste-
water Treatment Bioprocesses. Chemical Engineering 
Journal, 2013, 17, 363-378. https://doi.org/10.1016/j.
cej.2012.11.129

26. Simon, D. Optimal State Estimation - Kalman, H∞, and 
Nonlinear Approaches. John Wiley & Sons, Inc. 2006. 
https://doi.org/10.1002/0470045345.ch7

27. Speyer, J. L., Chung, W. H. Stochastic Processes, Estimation, 
and Control. Advances in Design and Control. SIAM, first 
edition, 2008. https://doi.org/10.1137/1.9780898718591

28. Wang, H. H., Krstić, M. Extremum Seeking for Limit 
Cycle Minimization. IEEE Transactions on Auto-
matic Control, 2000, 5(12), 2432-2436. https://doi.
org/10.1109/9.895589

29. Wang, H. P., Tian, Y., Kalchev, B., Simeonov, I., Christov, 
N. Pilot-scale Biogas Plant: Description, Modelling and 
Composed Recursive Control. Control Engineering and 
Applied Informatics, 2013, 15(2), 38-45. https://doi.
org/10.1109/ MCS. 2013.2249411

30. Ye, M., Hu, G. A Robust Extremum Seeking Scheme 
for Dynamic Systems with Uncertainties and Distur-
bances. Automatica, 2016, 66, 172-178. https://doi.or-
g/10.1016/j.automatica.2015.12.034

This article is an Open Access article distributed under the terms and conditions of the Creative 
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).


