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Communication protocols are used in telecommunication systems. These protocols are defined as rules, which 
enable the entities of communicating systems to transfer information usually as packages. Additionally, each 
standard communication protocol has a uniquely-defined structure and consequently, a special pattern of net-
work packets. It is worth mentioning that communication protocols are implemented in different ways, in the 
system software layer or the hardware layer (i.e., silicon chipsets). This paper presents the implementation of 
a special communication protocol called "Packet Analysis", which is used in the Hardware project "Minimax 
machine". This implementation is a software that can be written using a special simulator, "Minimax simu-
lator", which is the target execution environment. That simulator was successfully developed for micro-pro-
gramming and hardware simulations. In this regard, this study develops an algorithm that represents a step 
toward simulating communication protocols using micro-programming. The flow chart designed here gives an 
overview of how the "Packet Analysis" algorithm works (designed protocol), which in turn describes all steps 
in detail. As a result, the entire system of this research paper was implemented and tested with various input 
values. Additionally, the implemented proposed solution (implemented protocol) was evaluated by two metrics 
(quantitative measures) using test-benches so that its statistics will be trustworthy for research. Other results 
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of this study showed that there is a lot of scope for optimization in the solution presented in this research pa-
per. This leads in turn to optimization of the proposed implementation and to consideration of implementing 
alternatives.
KEYWORDS: Communication, protocol, communication protocols implementation, simulation, micro-pro-
gramming.

1. Introduction
The implementation stage of protocols gets less at-
tention in "Protocol Engineering" research than oth-
er phases of the protocol development process [14]. 
Based on that, this section introduces a survey of the 
most closely related work, which was published in 
the domain of communication protocols implemen-
tation. This overview of existing related work intends 
to highlight the need for developing a novel methodol-
ogy to cover the gap recognized in this field (research 
problem).
Chaaban introduced a computer hardware project 
that designs a special simulator for micro-program-
ming and hardware simulation [2]. Furthermore, he 
presented two formal measures and metrics to eval-
uate the implemented programs. Based on that work, 
this paper presents a model implementation of a spe-
cial communication protocol called "Packet Analy-
sis". The implementation will be conducted on the 
micro-programming level utilizing the programming 
environment (simulation tool) designed by Chaaban. 
This means that in this research paper, the design and 
implementation of special hardware architectures 
will be developed. In this regard, the implemented 
solution/system performance/designed algorithm has 
to be measured, aiming to ensure a robust solution.
Therefore, different given test benches, which are 
test-files as input for the simulator, will be carried 
out. To achieve this purpose, this paper introduces 
a practically applicable methodology that integrates 
various concepts from different research areas, as de-
scribed later in this research paper.

1.1. Related Work
Protocol Engineering is an important discipline. It 
covers the design, validation, and implementation of 
communication protocols [14]. Accordingly, differ-
ent communication protocols are defined for various 
systems and components. These protocols are usually 
rules or steps in to achieve the goal of communicat-

ing between system entities. Here, communication 
devices (entities) should perform those rules (steps) 
automatically so that a connection can be made and 
data can be exchanged between them. Additionally, 
communication protocols are usually implemented 
differently on both a hardware and/or software level.
When considering sensor communication proto-
cols, some protocols define both levels, hardware and 
software, i.e., SDI-12. Other protocols specify only 
the hardware level, i.e., RS-485. Finally, some sensor 
communication protocols define only the software 
level, i.e., Modbus RTU [19]. Here it is worth mention-
ing that communication protocols are implemented, 
in practice, for the most part in software [14]. In this 
context, a protocol development has main stages, in 
which the development phases start from design to 
integration or installation. These phases are equiva-
lent to those of software development [24].
In database systems, MySQL provides connections 
between clients and the server using several network-
ing protocols. MySQL communication protocols are 
needed to create a connection aiming at the informa-
tion exchange of clients and the server. The main pro-
tocols used by clients to connect with MySQL serv-
er are TCP/IP, Unix socket file, Named pipe, Shared 
memory [13]. These protocols are usually implement-
ed by various libraries and program drivers [20]. In 
this regard, all client programs included in various 
MySQL distributions (MySQL, mysqladmin, etc) can 
establish connections to the server using the native C 
client library [20].
In the industrial field, there are many popular com-
munication protocols and networks. The most fa-
mous and widely used industrial communication pro-
tocols are standards, such as Profi-Bus, Profi-Bus DP, 
Profi-Net-IO, Mod-Bus, Mod-Bus/RTU, Mod-Bus/
TCP, Can-Bus, CAN-OPEN, Field- Bus, Ethernet, 
EtherNet/IP [21]. Details of some of these communi-
cation protocols and networks are:
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 _ Modbus RTU and Modbus published by Modicon 
company in 1979 [17]. Modbus RTU is an open 
serial protocol which is widely used in today's 
industrial equipment of monitoring and control. 
This protocol uses the serial interface RS-232 
or RS-485 for communications [5]. On the other 
side, Modbus is a communication protocol used 
for transmitting information between electronic 
devices via the Ethernet or over serial lines [18].

 _ Profibus DP used by Siemens. Profibus DP is the 
second type of PROFIBUS that is for Decentralized 
Periphery. It is a much simpler and faster protocol 
used in most of PROFIBUS application profiles 
today [22]. The hardware structure of the Profibus-
DP and its application in DP slave development are 
presented in [12].

In this context, an interesting research field, called the 
Industrial Internet of Things (IIoT), was identified. 
Here, [11] presented a comparative study of communi-
cation protocols for industrial internet of things envi-
ronment (IIoT). Accordingly, polling-based and event-
based protocols were investigated so that an open and 
interoperable IIoT environment can be realized. The 
author compared various Internet of Things (IoT) pro-
tocols and consequently chose the message queuing 
telemetry transport (MQTT) as the event-based, pub-
lish–subscribe protocol. Additionally, the study found 
that the MODBUS protocol has an optimized message 
structure in the application layer that concentrates on 
industrial applications. As a result, an event-oriented 
IoT protocol will not replace the MODBUS TCP, but 
completes it. Based on that, the study introduced two 
different scenarios to build the IIoT environment. 
Firstly, building the environment using the MODBUS 
TCP alone so that the MODBUS TCP can be consid-
ered as an IoT protocol. Secondly, using MQTT simul-
taneously with the MODBUS TCP [11].
Other work related to the Protocol Engineering [14] 
proposed in order to deal with authentication proto-
cols were presented in literature [15, 10]. These proto-
cols are communication or cryptographic protocols, 
which take into account the transferring of authenti-
cation data between  communicating entities. An im-
proved delegation-based authentication protocol for 
Portable Communication Systems (PCSs) was pre-
sented in [15]. The authors demonstrated that Lee-
Yeh’s protocol has an instinctive design flaw. Based 

on that, they proposed a modification to overcome 
the protocol weaknesses and provided the anonymity 
service.
On the other side, the work in [10] consentrat-
ed on multi-server authentication. It presented an 
improved biometric multi-server authentication 
scheme, which is designed for Chang et al.'s protocol. 
Here, the authors investigated a few multi-server au-
thentication schemes in the literature, although secu-
rity with loopholes. They reviewed the protocol thor-
oughly, and consequently proposed their improved 
model. It is resistant to all known and identified at-
tacks. Furthermore, they presented the formal and 
informal security analysis, performance, and evalua-
tion analysis.
Although there are various works made towards im-
plementing communication protocols, such as [1, 16, 
9, 8, 25, 3, 6, 23], a study of developing a novel meth-
odology to develop an algorithm, which simulates 
communication protocols using micro-programming, 
does not exist yet (at least it is extremely rare pub-
lished as a study).
To the best of my knowledge, this paper represents 
the first study towards introducing an applicable 
methodology by integrating several concepts from 
different research areas to define a model implemen-
tation of communication protocols using micro-pro-
gramming.

2. Concept and Goals of "Packet 
Analysis"
The main contribution of this paper is the integration 
of concepts from different research areas into a prac-
tically applicable methodology. Here, Figure 1 sum-
marizes the methodologies integrated within "Packet 
Analysis".
The main goal of the "Packet Analysis" is to imple-
ment a special communication protocol. It integrates 
many concepts from different research areas such as 
computer architecture, communication protocols, 
micro-programming, and hardware simulations. Ad-
ditionally, it uses a special simulator called "Minimax 
simulator", which was developed for a micro-pro-
gramming project called "Minimax machine". Con-
sequently, "Packet Analysis" produces software that 
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2.1. Computer Architecture
Defining Computer Architecture: Computer designers 
encounter a complex task in specifying the most sig-
nificant attributes need for designing a new computer 
so that a trade-off exists between high performance 
and efficient energy on one hand and reasonable cost, 
power, and availability on the other [7]. In this context, 
instruction set design, logic design, functional orga-
nization, and implementation are important issues. 
Additionally, developing a better design depends on 
various technologies, such as operating systems, com-
pilers, logic design, and packaging [7]. Hennessy and 
Patterson in [7] believe that the term computer ar-
chitecture referred not only to instruction set design 
but also to other aspects of computer design such as 
implementation. They wrote: "Several years ago, the 
term computer architecture often referred only to in-
struction set design. Other aspects of computer design 
were called implementation, often insinuating that 
implementation is uninteresting or less challenging. 
We believe this view is incorrect. The architect’s or 
designer’s job is much more than instruction set de-
sign, and the technical hurdles in the other aspects of 
the project are likely more challenging than those en-
countered in instruction set design."

2.2. Communication Protocols
Defining Communication protocols: Communica-
tion protocols used in telecommunication systems 
are norms or rules. The role of these rules is to allow 
units of the designed system to communicate and ex-
changing information (structured messages called 
packages) over a network. In this regard, communi-
cation protocols may be implemented in software 
or hardware chipsets or both. Internet Protocol (IP) 
and Transmission Control Protocol (TCP) is the most 
widely used protocols on the Internet and Intranet 
networks so that data between two computers (ma-
chines) can be transmitted, and consequently com-
munication between them is realized. In this con-
text, Request For Comments (RFCs) of the Internet 
Engineering Task Force (IETF) is supported by the 
Internet Society (ISOC) to describe (define) the most 
widely used communication protocols of the Internet. 
Moreover, network protocols consist of many layers 
called protocol stack. Here, a reference model (OSI), 
which is a software architecture, plays the role to 
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The main goal of the "Packet Analysis" is to 
implement a special communication protocol. 
It integrates many concepts from different 
research areas such as computer architecture, 
communication protocols, micro-

implements a special communication protocol fol-
lowing the concepts mentioned above.
To emphasize this concept, it is worth mentioning 
some examples of the practical utilization of the pro-
posed protocol. Data transmission/transport systems 
could utilize packet analysis protocol, especially in 
embedded systems, where limited resources and time 
are considered. Here, the exact size of packet fields 
can be re-adjusted (re-configured) to allow for an op-
timal implementation to be utilized in practice. That 
means, the "packet analysis" protocol allows differ-
ent data lengths in communication protocols used in 
embedded systems. One of the practical application 
of this protocol could be wireless  sensor networks, 
more precisely, communication protocols used in 
embedded sensor networks. Moreover, the proto-
col proposed in this research paper concentrates on 
software implementations of communication proto-
cols used in hardware architectures. In this context, 
"packet analysis" demonstrates an example scenario 
of common communication protocols designed es-
pecially for simplified/ abstracted hardware archi-
tectures. Therefore, this concept developed an algo-
rithm, which could be utilized in practice, to simulate 
communication protocols using micro-programming.
The next section will summarize the concepts, men-
tioned above, from different research areas that form 
"Packet Analysis".
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specify each layer with its provided services. This OSI 
model has the classic seven layers (protocol stack).

2.3. Micro-Programming and Hardware 
Simulations
Recently, micro-programming of machines have be-
come more common, because it is used in several 
fields, e.g., as Computer Engineering. Additionally, mi-
cro-programming is employed throughout the design 
process. It is an important technique to understand 
how a compiler construction and computer works. 
In this regard, Computer Simulation Tool (CST) was 
introduced to develop a suitable tool helping in simu-
lating machines (hardware) and micro-programming 
so that programmers can test their program execu-
tion in a user-friendly way. CSTs use simulators (soft-
ware packages) to emulate the behavior of machines 
and hardware systems (hardware simulation). One of 
the most important tools is VHDL (VHSIC Hardware 
Description Language). It is a hardware description 
language used in electronic design automation and 
parallel programming languages. 
The next section presents the "Minimax simulator", 
which is used in the "Minimax project". This sim-
ulator was developed for micro-programming and 
hardware simulation. It facilitates the process of mi-
cro-programming, significantly enabling program-
mers to understand easily how their programs work.
Chaaban in his work in [2] presents a survey of relat-
ed work that was published in the domain of micro 
programming or hardware simulation. It can be con-
sidered as an overview of some architectures or ap-
proaches introduced concerning the micro program-
ming and hardware simulation.

2.4. Minimax Machine
Project Computer Engineering (mini-project: Mini-
max machine) was created and carried out at Depart-
ment of Systems and Computer Architecture [4] at 
Leibniz University Hannover (LLH), Germany. Here, 
the general task is to solve group-based programming 
tasks based on the Minimax machine known from the 
lecture "Introduction to Computer Engineering". To 
solve the tasks, it is necessary to suitably expand the 
given basic structure of the machine (new ALU com-
mands, additional registers). Programming for prob-
lem-solving will be done later on the micro program 
as well as the assembler level.

To solve the tasks, a Minimax simulator (as a Java 
program) is available, with which the project partici-
pants can also test their architectural extensions, mi-
cro- and assembler programming at home.

2.4.1. Minimax Architecture
As part of the lecture "Fundamentals of Computer 
Engineering", basic knowledge of computer architec-
ture is taught using the example of the Minimax ma-
chine (see Figure 2).
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Figure 3 
The Extended Minimax machine

  

Figure 3  

The Extended Minimax machine 

 

 
For the concrete solution of the design task, the 
programmers can decide which parts of the 
functionality should be moved into the micro-
program and how the machine program, based on 
it, looks like. Assessment standards are used for 
the programmers in addition to the error-free 
execution and the number of required clock cycles. 
The amount of resources used (additional registers 
and ALU commands) is also included in the 
evaluation. 

2.5 The Minimax Simulator 

For the Minimax machine, there is a visualization 
environment for displaying the execution behavior 
of micro programs (see Figure 4). The 
visualization environment reads a textual 
description of the specific Minimax-shaping 
(Minimax characteristic) and generates there from 
a clear graphical representation of the architecture 
to be simulated. 

 

 

 

 

 

 

 

 
Figure 4  

The Minimax simulator during the execution of a 
machine program 

 

 
 

The user then has the opportunity to read 
micro programs and pre-configuration 
(default value(s) of registers and main 
memory addresses) to simulate the execution 
of machine programs then. 

During this execution, which can be switched 
on step by step through pressing a button 
(Enter button and Return key), the occupied 
(allocated) resources are colored in the 
visualization. This allows a step-by-step 
simulation whereby the register and memory 
contents can be monitored at any time. It is 
also possible to set breakpoints in the 
simulator. 

To ensure platform independence and use 
over the Internet, the implementation has 
been carried out as an application for Java 2 
(Standard Edition, at least V 1.3.1). 

 
3. Problem Description (Task) 

of the "Packet Analysis" 
Different data packets are stored in the 
memory of the Minimax machine. Each 
packet contains a header of (80) bits and a 
data portion of variable length. A packet 
starts with the specified pattern (template) 
1110. Within the header, the channel number 
is represented in two consecutive bytes from 
bit number 32 onwards. A channel includes 
several packets with a unique channel 
number. The Figure 5 shows the special 

chine with control signals changes. With the Mini-
max simulator, it is possible to take these changes into 
account and to simulate the modified data path.
For the concrete solution of the design task, the pro-
grammers can decide which parts of the functionality 
should be moved into the micro-program and how the 
machine program, based on it, looks like. Assessment 
standards are used for the programmers in addition to 
the error-free execution and the number of required 
clock cycles. The amount of resources used (addition-
al registers and ALU commands) is also included in 
the evaluation.

2.5. The Minimax Simulator
For the Minimax machine, there is a visualization 
environment for displaying the execution behavior of 
micro programs (see Figure 4). The visualization en-
vironment reads a textual description of the specific 
Minimax-shaping (Minimax characteristic) and gen-
erates there from a clear graphical representation of 
the architecture to be simulated.

Figure 4 
The Minimax simulator during the execution of a machine 
program

  

Figure 3  

The Extended Minimax machine 

 

 
For the concrete solution of the design task, the 
programmers can decide which parts of the 
functionality should be moved into the micro-
program and how the machine program, based on 
it, looks like. Assessment standards are used for 
the programmers in addition to the error-free 
execution and the number of required clock cycles. 
The amount of resources used (additional registers 
and ALU commands) is also included in the 
evaluation. 

2.5 The Minimax Simulator 

For the Minimax machine, there is a visualization 
environment for displaying the execution behavior 
of micro programs (see Figure 4). The 
visualization environment reads a textual 
description of the specific Minimax-shaping 
(Minimax characteristic) and generates there from 
a clear graphical representation of the architecture 
to be simulated. 

 

 

 

 

 

 

 

 
Figure 4  

The Minimax simulator during the execution of a 
machine program 

 

 
 

The user then has the opportunity to read 
micro programs and pre-configuration 
(default value(s) of registers and main 
memory addresses) to simulate the execution 
of machine programs then. 

During this execution, which can be switched 
on step by step through pressing a button 
(Enter button and Return key), the occupied 
(allocated) resources are colored in the 
visualization. This allows a step-by-step 
simulation whereby the register and memory 
contents can be monitored at any time. It is 
also possible to set breakpoints in the 
simulator. 

To ensure platform independence and use 
over the Internet, the implementation has 
been carried out as an application for Java 2 
(Standard Edition, at least V 1.3.1). 

 
3. Problem Description (Task) 

of the "Packet Analysis" 
Different data packets are stored in the 
memory of the Minimax machine. Each 
packet contains a header of (80) bits and a 
data portion of variable length. A packet 
starts with the specified pattern (template) 
1110. Within the header, the channel number 
is represented in two consecutive bytes from 
bit number 32 onwards. A channel includes 
several packets with a unique channel 
number. The Figure 5 shows the special 

The user then has the opportunity to read micro pro-
grams and pre-configuration (default value(s) of reg-
isters and main memory addresses) to simulate the 
execution of machine programs then.
During this execution, which can be switched on step 
by step through pressing a button (Enter button and 
Return key), the occupied (allocated) resources are 
colored in the visualization. This allows a step-by-
step simulation whereby the register and memory 
contents can be monitored at any time. It is also pos-
sible to set breakpoints in the simulator.
To ensure platform independence and use over the 
Internet, the implementation has been carried out as 
an application for Java 2 (Standard Edition, at least 
V 1.3.1).

3. Problem Description (Task) of the 
"Packet Analysis"
Different data packets are stored in the memory of the 
Minimax machine. Each packet contains a header of 
(80) bits and a data portion of variable length. A pack-
et starts with the specified pattern (template) 1110. 
Within the header, the channel number is represented 
in two consecutive bytes from bit number 32 onwards. 
A channel includes several packets with a unique 
channel number. The Figure 5 shows the special com-
munication protocol "Packet Analysis" Format.
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Now the request (problem description) can be drafted 
as follows:
Implement the "Packet Analysis" algorithm, which 
creates a memory (storage) table of the channel num-
bers and the length (in bits) of the data portion (data 
part) of all packets. The ACCU initially contains the 
memory address X, where the packet field begins, and 
the length of the field (in bits) is passed in the com-
mand (in the instruction as a parameter by calling 
the program). The memory (storage) table should be 
stored from any memory address outside the packet 
field area.
Here, the basic Minimax machine, depicted in Fi- 
gure 2, should be extended (Figure 3 is an example of an 
extended Minimax machine) by the implementation of 
the "Packet Analysis" algorithm. That is because the 
architecture of the basic Minimax machine is largely 
fixed, but is extended for big tasks (by additional regis-
ters, additional Sign Extension Units, additional func-
tionality of ALU, e.g., DIV command, etc.).

4. The Basic Minimax Machine
This basic machine is a simple one-address example 
machine that is used for a more detailed understand-
ing of the data path structure and then to develop the 
controller. It has the following properties:
 _ 1 ALU for arithmetic operations, also used for 

address calculation.
 _ 1 bit status signal: COND = 1 if ALU == 0.
 _ Arithmetic Operations Combine ACCU and MDR 

(MDR: Memory Data Register)
 _ ALU inputs A and B are occupied by MUXes 

(Multiplexer); no buses.
 _ HS: address 24 bit, data 32 bit.

This predefined architecture (basic machine) of the 
Minimax machine has only four arithmetic operations, 
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operations, i.e., the operations set of 
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Table 1
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Symbol ALU operation ALU Ctrl
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TRANS.A ALUresult  ¬ A 10
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MDR 32 Memory Data Register
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While the MINIMAX registers are shown in Table 2.

MINIMAX selectors can be seen in Table 3.

Additionally, Control HS and write signals are ex-
plained in Table 4.
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Table 4
The Control HS and write signals of basic MINIMAX

Write signals
A.W, PC.W, MDR.W, IR.W, 

MAR.W
Operations

0 -

1 write

HS Operations

CS R/W

0 0 -

0 1 -

1 0 M(MAR)  ¬ DI

1 1 DO  ¬ M(MAR)  

4.1. Control Unit (CU)
The task of the control unit is to activate the control 
lines Cout in the correct sequence, taking into account 
the signals Cin received from the execution unit (EU) 
as depicted in the Figure 6.

Figure 6 
The task of the CU
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Additionally, each RT-operation is activated by set-
ting certain control signals. The following table shows 
the control signals c0 ... c14 for some machine instruc-
tions, where a micro-program determines the in-
structions sequence.
In this context, c0 ... c14 are output signals (for the CU), 
where COND (ALU == 0) is an input signal. 
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Furthermore, each row of the control signal table 
is referred to as a micro-instruction. It consists of 
one or more micro-operations (RT-operations). The 
number of micro-instructions required for a particu-
lar machine instruction is determined by the CPI (for 
this instruction), where CPI (Cycles Per Instruction) 
means the number of cycles per instruction in the 
case of processing (processor's performance).

5. The Algorithm "Packet Analysis"
Now, the algorithm "Packet Analysis" will be ex-
plained by finding a solution for a "Packet Analysis" 
problem.

5.1. Initial Situation
The Minimax basic machine consists of four 32 bit 
registers, which are in detail ACCU, PC, MDR, and 
IR. There is also a 24-bit address register for mem-
ory access. The memory contains both the code and 
the data. There is an ALU with the operations ADD, 
TRANS.A, TRANS.B, and SUB.B. A branch in the pro-
gram sequence is achieved by the ALU result ALU == 
0. A Control Unit (CU) activates the control lines.
A micro-program determines the instruction se-
quence. The architecture is largely fixed but can be 
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channel number is stored in two consecutive 
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depicted in Figure 5. Then, the data portion 
of the packet follows, starting at bit number 
80. This data portion ends where either a new 
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or the entire packet field area ends. In other 
words, each data portion length (L) of every 
packet is arbitrary, for example, 2, or, 5, or... 
(later it should also be implemented in that 
way). Therefore, the following cases are 
possible: 
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are determined and can be stored. For this 
purpose, the first memory address after the 
packet field is jumped to. Next, the channel 
number is counted down from there in 64-bit 
steps (increments) to arrive at a channel-
identifying memory location, at which the 
channel number is entered. 

Second, the counted number of data bits is 
added to the content of the following data 
word (where is the data length of the 
channel). Consequently, the processing of the 
packet is completed. Thus, the Pseudo read 
head jumps back to the place of the last 
found occurrence of the pattern +32 bits. 
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ends. In other words, each data portion length (L) of 
every packet is arbitrary, for example, 2, or, 5, or... (later 
it should also be implemented in that way). Therefore, 
the following cases are possible:
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Here, the designed algorithm must have all possible 
cases, and the implementation of the algorithm should 
take into account all these cases. Figure 5 shows the 
format the special communication protocol designed 
in this paper, which is called "Packet Analysis".

5.2. The Proposed Algorithm
Packet field processing begins by searching for pat-
tern 1110, which is at the beginning of each packet 
header. From the point where the pattern 1110 was 
found, 32 bits are jumped further forward, and the 16-
bit channel number that begins there is copied into a 
separate register. After another 32-bit jump, the qua-
si-read header is on the first data bit of this packet. 
Now the data bits are counted under consistent pat-
tern search. If the pattern is found, the channel num-
ber and the data bit number of the just read packet are 
determined and can be stored. For this purpose, the 
first memory address after the packet field is jumped 
to. Next, the channel number is counted down from 
there in 64-bit steps (increments) to arrive at a chan-
nel-identifying memory location, at which the chan-
nel number is entered.
Second, the counted number of data bits is added to 
the content of the following data word (where is the 
data length of the channel). Consequently, the pro-
cessing of the packet is completed. Thus, the Pseudo 
read head jumps back to the place of the last found 
occurrence of the pattern +32 bits. Here begins the 
channel number of the next packet.
There are some notes about the processing mentioned 
above. Firstly, when counting the data, the field length 
must be kept in mind so that it is "not counted into the 
memory or storage table".  Consistent decrementing of 
the length ensures that the end of the packet field is not 
exceeded except for storage. Once it has been reached, 
the processing of the packet field is complete. Second-
ly, in addition to the field length, the current position 
in the field during processing is saved. For this, the 
address of the current data word, as well as the index 
of the current bit are stored in the word. Thirdly, by 
storing the bit position, the 'data word change' is still 
guaranteed. If all bits of a data word have been read and 
used, the next data word must be loaded. This case can 
occur when counting the data and copying the channel 
number. Finally, the maximum space required is 2ˆ16 
* 64 bits, a value smaller than the available memory of 
2ˆ24 bits, which is initially empty (i.e., 0).

5.3. A Detailed Description of the Algorithm
5.3.1. Initializing Step
Firstly, the address located in the ACCU, which in-
dicates the beginning of the field, is loaded into the 
IR. The length of the field is stored in the register 
FLENGTH. This size is initially used to determine 
the memory address for the result table, and then it 
is consistently reduced to be able to determine with 
their help when the field end is reached. This is fol-
lowed by writing the address of the data word after 
the field end in the register ACCU. After the execution 
of analysis (x), the address, at which the result table 
starts, will be in the ACCU.
In the BITPOS register, a 0 value is written, in the 
MEMPOS register, the address from the IR. In the 
following, the position in the field is stored with these 
two registers.
For the first packet, the algorithm starts directly when 
storing the channel number, a data word (32 bits) is 
continued. We assume that the field is not empty and 
properly formatted.

5.3.2. Copying the Channel Number Step
The channel number is stored in the register  
KANNUM. It is copied bit by bit by shifting the data 
word 16 times to the right. If the channel number ex-
tends over two data words, this is taken into account 
and treated accordingly (see remark 1). At each step, 
the remaining part of the data word is connected via 
AND with 2ˆ0, so that only the least significant bit is 
original, the rest is 0. The result is checked for equali-
ty with 0. If there is a match, the register KANNUM is 
shifted to the right and the process starts again after 
increment of COUNTER and BITPOS. If the result 
is not equal to 0 (that is, 1), the value is shifted first 
and then KANNUM is connected to the constant 2ˆ31 
via OR. This corresponds to a left-side insertion of a 
one value in the register KANNUM, whereas the al-
ready stored bits of the channel number remains un-
touched.
At the end of this loop, which is terminated by simply 
counting the passes, and after a subsequent 16 times 
shift, the channel number will be in the 32-bit register 
KANNUM.
Now, it is moved to the beginning of the data part in 
order to proceed with the counting of the data bits and 
the search for the pattern.
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5.3.3. Working on the Data (Counting and 
Searching) Step
The counting here is very simple. Since we work bit 
by bit, the register COUNTER is incremented per 
loop. In this phase, by comparing the contents of 
FLENGTH with 0, it is checked whether the machine 
has reached the end of the field. The search is carried 
out with the aid of two registers (MDR and TEMP) 
and a constant 14 (binary: 1110), which are used to 
process the data word. First, the data word (in MDR) 
is copied to register TEMP. There the word is reduced 
to its four least significant bits (0ˆ28@MDR3..0) and 
then compared with the pattern. A negative compar-
ison results in the right-hand shift of the word in the 
register MDR, as well as the adaptation of COUNT-
ER, FLENGTH and BITPOS. After that, the word is 
copied, cut and compared again. If BITPOS reaches 
the value 31, a new word must be retrieved from the 
memory. A positive comparison means that the begin-
ning of the next packet has been found, and thus the 
channel number and the data length of the previous 
one must be stored. The next step is to jump in the 
memory to the address stored in the register ACCU 
(beginning of the table) and to start the search for ad-
equate storage space for the information.

5.3.4. Saving Step
The quasi-read header is above the first bit of the first 
word of the memory table. After that, the channel num-
ber as a counter for 64 bit jumps in Memory is used. If 
the counter (the content of TEMP) is zero, the channel 
number is written at this point, and the data bit num-
ber in the following data word is added to the existing 
content of the word. Thus, after processing the field, 
e.g., the information for channel ten at the tenth place 
(in 64-bit increments) in the memory table.

5.3.5. The "Back-to-Field-Jumping" Step
Now, BITPOS is going from the memory table direct-
ly to the starting bit of the next channel number. The 
register MEMPOS contains the address of the data 
word, in which the last occurrence of pattern 1110 
was found. This is incremented by 1 before reading 
the contents of this address into the MDR. At this 
time, BITPOS will be copied to TEMP. This register 
is used this time to shift the data word by the appro-
priate number of bits. After that, TEMP will be decre-
mented per step and check for equality with 0. If this 
equality is given, the rest of the current memory word 

is in the MDR, and the least significant bit is the first 
bit of the next Channel number (step 2).
Remarks:
1 End of a data word reached: In the case that  

BITPOS - 31 = 0, an address is preceded (MAR + 1, 
MEMPOS + 1) and BITPOS is reset to 0. After that, 
the algorithm continues in the appropriate place. 

2 Unclean searching: When searching for the pat-
tern, it can be canceled when the 28 bits of a data 
word is reached because then the inserted zeros 
are also searched with. This will be not done be-
cause there is no danger of mistakenly finding the 
pattern and eliminating the problem of looking at 
the beginning of counting, which BITPOS has for 
content (29 or 30 or 31). Therefore, it is 3 superflu-
ous pattern comparisons per data word.

5.4. The Personalized Registers

FLENGTH: stores one-time the passed field length X 
and is counted down to determine when the field was 
'expired'.
BITPOS: counts the bits in a data word and, together 
with MEMPOS, saves the current position in the field.
MEMPOS: specifies the address of the current data 
word.
KANNUM: stores the channel number of the current 
packet.
TEMP: reduces the contents of MDR to the four least 
significant bits.
COUNTER: adds up the data bits (pay attention that 
the channel number is 16 bits long and that it is shift-
ed 16 digits in the 32-bit register).

5.5. Constants
 _ 0 to reset a register.
 _ 1 for incrementing and decrementing.
 _ 14 corresponds to the binary number 1110.
 _ 16 used in case of loop break when copying the 

channel number (see COUNTER).
 _ 31 BITPOS limit for channel number memory 

(when data word ends).
 _ Decimate 32 FLENGTH by scrolling one word at 

the same BITPOS.
 _ 2ˆ31 in binary notation (32 bit) 10..0 and is used to 

set an inserted bit.
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5.6. The Machine Instructions
The machine instructions used are the instructions of 
the basic machine. 
ADD           ALUResult   ¬ A+B
SUB.B         ALUResult   ¬ -A+B
TRANS.A   ALUResult  ¬  A
TRANS.B   ALUResult   ¬ B
Additionally used ALU- operations:
OR          A OR B
AND       A AND B

Figure 10 
The used (implemented) architecture

DIV.A    ALUResult   ¬  B DIV A
SR.B       ALUResult   ¬  0@B 31..0

Figure 10 shows the used architecture. It is an ex-
tension of the Minimax machine so that an imple-
mentation  of this  developed architecture presents 
solutions to how the special communication proto-
col (Packet Analysis) introduced in this paper can be 
implemented.

5.7. Algorithm Flowchart
The flowchart of the presented algorithm is shown 
in Figure 11. It serves to give an overview of how the 
"Packet Analysis" algorithm works. 
Here, the diagram will show a detailed description for 
each step of this algorithm (Initializing step, copying 
the channel number step, working on the data step, 
saving step, and "back-to-field-jumping" step).

Figure 11 
The flow chart of the presented algorithm
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6. Benchmark Results 
This entire program must be implemented 
and tested for error-freeness (accuracy) with 
suitable input values. Here, an assessment of 
the implemented solution is needed. In this 
paper, two metrics defined by Chaaban [2] 
are used. Firstly, the execution time in clock 
cycles on the Minimax machine. These times 
have to be determined using given test-
benches. Secondly, the (weighted) runtime 
and program length of the solution. These 
values must be calculated using a given 
suitable formula. In this context, two 
formulas were defined for these metrics to 
calculate t_evaluated (runtime) and 
n_evaluated (program length). 

6.1 Evaluation of the Solution 

• reg:  number of supplemented 
Minimax registers 

• se:  number of supplemented sign 
extension units (0 or 1) 

• const:  number of added constants 
(one "0" and one "1" free) 

• alu_add: Penalty sum for all added ALU 
commands 

• alu_use: Penalty sum the used ALU 
commands in the program. 

6.2 Runtime in Minimax-Clocks 

The weighted runtime of the solution in 
Minimax-clocks should be calculated using 
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6. Benchmark Results
This entire program must be implemented and tested 
for error-freeness (accuracy) with suitable input values. 
Here, an assessment of the implemented solution is 
needed. In this paper, two metrics defined by Chaaban 
[2] are used. Firstly, the execution time in clock cycles 
on the Minimax machine. These times have to be 
determined using given test-benches. Secondly, the 
(weighted) runtime and program length of the solution. 
These values must be calculated using a given suitable 
formula. In this context, two formulas were defined for 
these metrics to calculate t_evaluated (runtime) and 
n_evaluated (program length).

6.1. Evaluation of the Solution
 _ reg:   number of supplemented Minimax registers
 _ se:   number of supplemented sign extension units 

(0 or 1)
 _ const:   number of added constants (one "0" and one 

"1" free)
 _ alu_add:   Penalty sum for all added ALU commands
 _ alu_use:   Penalty sum the used ALU commands in 

the program.

6.2. Runtime in Minimax-Clocks
The weighted runtime of the solution in Mini-
max-clocks should be calculated using the next for-
mula [2]:

t_evaluated= (t_bench * (1 + 0.1*reg + 0.15*se + 
0.015*alu_add + 0.05*const)) 

In this formula, t_bench is the execution speed, which 
is the number of the Minimax-clocks that is needed to 
complete the running of the solution (program).
In this paper, runtimes for the packet field size 1120 
bytes are to be determined in three cases:
1- All packets have a length of (80) bits (i.e., packets 
without data).
2- Average data length of (80) bits.
3- Average data length of (144) bits.

6.3. Program Length (Length of the 
Algorithm)
The program length (length of the algorithm) of the 

solution should be calculated using the next formula [2]:

n_evaluated = n_algorithm + 5*reg + 10*se +  
3*alu_use + 5*const 

In this formula,  n_algorithm is the number of lines of 
the algorithm (solution).

6.4. Additional ALU Operations
The penalty of all added (alu_add) and used (alu_use) 
ALU commands (additional ALU operations) in the 
program can be taken from Table 5.

Table 5
Penalty of additional ALU operations
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7. Results and Discussion
In this section, some captures of simulation results 
(inputs and outputs) are presented and discussed. It 
aims to explain how packets are analyzed and pro-
cessed by "packet analysis". 
As mentioned early in this paper, the measurement of 
the implemented system performance aims to ensure 
solution robustness. Therefore, simulation outputs 
are collected and reported based on the formula men-
tioned above to detect if the implemented system ro-
bust, weakly robust, or maybe even not robust.
Table 6 shows the execution speeds (runtimes)  
t_bench (simulation outputs) of the implemented al-
gorithm (the micro-program) for the three cases men-
tioned above. Here, the packet field size was chosen 
1120 bytes (simulation inputs) as it represents a suit-
able size to the memory size of the Minimax machine 
used in this paper.
After measuring t_bench, the reg, se, alu_add, const 
have to be determined to calculate the t_evaluated 
according to the formula mentioned above. Table 7 
shows these values.
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Based on both Tables 6 and 7, the t_evaluated can be 
calculated for the three cases, as mentioned above. 
Table 8 shows the results of t_evaluated.

Table 6
Runtimes (t_bench) measured for three cases

Benchmark
t_bench

 (runtime in 
Minimax-clocks)

All packets have a length of (80) bits 
(i.e., packets without data) 4775

Average data length of (80) bits 5760

Average data length of (144) bits 6730

Table 7
Calculating the elements of t_evaluated

Element Number Penalty

Reg: number of 
supplemented 
Minimax 
registers.

6
(FLENGTH, 

BITPOS, MEMPOS, 
KANNUM, TEMP, 

COUNTER)

0.1*6

Se: number of 
supplemented 
sign extension 
units (0 or 1)

1 0.15*1

Const: number 
of added 
constants (one 
"0" and one "1" 
free).

5
(14, 16, 31, 32, 2ˆ31) 0.05*5

alu_add: 
Penalty 
sum for all 
added ALU 
commands

4
(OR, AND, DIV.A, 

SR.B)      
0.015*(6+6+10+5)

Table 8
Calculating t_evaluated in three cases

Benchmark t_ evaluated

Case 1: no data (0 bits) 11483

Case 2: data (80 bits) 13852

Case 2: data (144 bits) 16185

After counting n_algorithm, which is the number 
of lines of the algorithm (solution), the reg, se,  
alu_use, const have to be determined to calculate the  
n_evaluated according to the formula mentioned 
above. Table 9 shows these values.

Table 9
Calculating the elements of n_evaluated

Element Number Penalty

Reg 6 5*6

Se 1 10*1

Const 5 5*5

alu_use: Penalty 
sum the used 
ALU commands 
in the program.

OR: 5 times
AND: 7 times

DIV.A: 2 times
SR.B: 3 times

3*(5*6+7*6+2*10+3*5)

n_algorithm: 
is the number 
of lines of the 
algorithm 
(solution).

75 75

Based on Table 9, the n_evaluated can be calculat-
ed for the three cases as mentioned above. Table 10 
shows the results of n_evaluated (same value for the 
three cases).

Table 10
Calculating n_evaluated in three cases

Benchmark n_ evaluated

Case 1: no data (0 bits) 461

Case 2: data (80 bits) 461

Case 2: data (144 bits) 461

A comparison with other model implementations 
of this special communication protocol is useful. By 
making this comparison, it could be noticed that there 
is a lot of scope for optimization in the solution pre-
sented in this paper.    
It is clear that the machine operations, which are 
executed in a continuous loop (e.g., increment and 
decrement counters), have to be minimized. Similar-
ly, the loop itself has to be avoided by using more so-
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phisticated algorithms. Furthermore, constants can 
be saved by calculating the required numerical values 
from a few integrated constants at runtime. This was 
not to done here to avoid further registries. 
A comprehensive revision of the presented solution is 
to be recommended, because unfortunately, it could 
not be started directly with the optimal implementa-
tion, as in most cases. Thus, this paper presents a ful-
ly functional but not optimal solution, which imple-
ments a special communication protocol.

8. Conclusion
Communication protocols can be implemented in dif-
ferent manners. That may be in the system software lay-
er or the hardware layer. In "Protocol Engineering" re-
search, it can be noticed that the implementation phase 
of communication protocols is not considered as much 
as other phases of the protocol development process.
In this paper, the implementation of a special communi-
cation protocol called "Packet Analysis" was introduced. 
The focus was the study of designing a novel methodol-
ogy for defining a model implementation of communi-
cation protocols using micro-programming. This meth-
odology is an applicable approach, in which various 
concepts from different research areas were integrated.

Based on that, an algorithm and its flow chart were in-
troduced. It explains all working phases of the "Packet 
Analysis" algorithm in detail. This algorithm simu-
lates the communication protocol using micro-pro-
gramming.
Consequently, the development and the evaluation of 
the entire system of this research paper were made 
using different metrics of system performance. In this 
regard, two formal quantitative measures and met-
rics were used to evaluate the implemented protocol/
solution. These metrics were the execution speed 
and program length. Here, different given test files 
(test-benches) were used as input for the simulator. 
Additionally, the analysis of the results led to the con-
clusion that an optimization of the presented solution 
can be achieved. 
Finally, after the conclusion of this paper was drawn, 
a peek at future trends for follow-up research papers 
can be given.
In this paper, the idea of designing and implementing 
of special hardware architectures was introduced. It 
measured and reported the implemented solution/
system performance based on standards. Therefore, 
the next step is to continue with the optimization pro-
cess of the presented solution/algorithm so that its 
results will be more trustworthy for research.
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