
Information Technology and Control 2021/1/5028

Packet Analysis: A Model
Implementation of a Special
Communication Protocol
Using Micro Programming

ITC 1/50
Information Technology
and Control
Vol. 50 / No. 1 / 2021
pp. 28-44
DOI 10.5755/j01.itc.50.1.25321

Packet Analysis: A Model Implementation of a Special Communication
Protocol Using Micro Programming

Received 2020/02/17 Accepted after revision 2021/01/20

 http://dx.doi.org/10.5755/j01.itc.50.1.25321

HOW TO CITE: Chaaban, Y. (2021). Packet Analysis: A Model Implementation of a Special Communication Protocol Using Micro
Programming. Information Technology and Control, 50(1), 28-44. https://doi.org/10.5755/j01.itc.50.1.25321

Corresponding author: yshaaban@taibahu.edu.sa

Yaser Chaaban
Assistant Professor; Department of Computer & Information Sciences; Faculty of Science and Arts - AlUla
Branch; Taibah University; Saudi Arabia; e-mail: yshaaban@taibahu.edu.sa

Communication protocols are used in telecommunication systems. These protocols are defined as rules, which
enable the entities of communicating systems to transfer information usually as packages. Additionally, each
standard communication protocol has a uniquely-defined structure and consequently, a special pattern of net-
work packets. It is worth mentioning that communication protocols are implemented in different ways, in the
system software layer or the hardware layer (i.e., silicon chipsets). This paper presents the implementation of
a special communication protocol called "Packet Analysis", which is used in the Hardware project "Minimax
machine". This implementation is a software that can be written using a special simulator, "Minimax simu-
lator", which is the target execution environment. That simulator was successfully developed for micro-pro-
gramming and hardware simulations. In this regard, this study develops an algorithm that represents a step
toward simulating communication protocols using micro-programming. The flow chart designed here gives an
overview of how the "Packet Analysis" algorithm works (designed protocol), which in turn describes all steps
in detail. As a result, the entire system of this research paper was implemented and tested with various input
values. Additionally, the implemented proposed solution (implemented protocol) was evaluated by two metrics
(quantitative measures) using test-benches so that its statistics will be trustworthy for research. Other results

mailto:obodovskiy58@gmail.com

29Information Technology and Control 2021/1/50

of this study showed that there is a lot of scope for optimization in the solution presented in this research pa-
per. This leads in turn to optimization of the proposed implementation and to consideration of implementing
alternatives.
KEYWORDS: Communication, protocol, communication protocols implementation, simulation, micro-pro-
gramming.

1. Introduction
The implementation stage of protocols gets less at-
tention in "Protocol Engineering" research than oth-
er phases of the protocol development process [14].
Based on that, this section introduces a survey of the
most closely related work, which was published in
the domain of communication protocols implemen-
tation. This overview of existing related work intends
to highlight the need for developing a novel methodol-
ogy to cover the gap recognized in this field (research
problem).
Chaaban introduced a computer hardware project
that designs a special simulator for micro-program-
ming and hardware simulation [2]. Furthermore, he
presented two formal measures and metrics to eval-
uate the implemented programs. Based on that work,
this paper presents a model implementation of a spe-
cial communication protocol called "Packet Analy-
sis". The implementation will be conducted on the
micro-programming level utilizing the programming
environment (simulation tool) designed by Chaaban.
This means that in this research paper, the design and
implementation of special hardware architectures
will be developed. In this regard, the implemented
solution/system performance/designed algorithm has
to be measured, aiming to ensure a robust solution.
Therefore, different given test benches, which are
test-files as input for the simulator, will be carried
out. To achieve this purpose, this paper introduces
a practically applicable methodology that integrates
various concepts from different research areas, as de-
scribed later in this research paper.

1.1. Related Work
Protocol Engineering is an important discipline. It
covers the design, validation, and implementation of
communication protocols [14]. Accordingly, differ-
ent communication protocols are defined for various
systems and components. These protocols are usually
rules or steps in to achieve the goal of communicat-

ing between system entities. Here, communication
devices (entities) should perform those rules (steps)
automatically so that a connection can be made and
data can be exchanged between them. Additionally,
communication protocols are usually implemented
differently on both a hardware and/or software level.
When considering sensor communication proto-
cols, some protocols define both levels, hardware and
software, i.e., SDI-12. Other protocols specify only
the hardware level, i.e., RS-485. Finally, some sensor
communication protocols define only the software
level, i.e., Modbus RTU [19]. Here it is worth mention-
ing that communication protocols are implemented,
in practice, for the most part in software [14]. In this
context, a protocol development has main stages, in
which the development phases start from design to
integration or installation. These phases are equiva-
lent to those of software development [24].
In database systems, MySQL provides connections
between clients and the server using several network-
ing protocols. MySQL communication protocols are
needed to create a connection aiming at the informa-
tion exchange of clients and the server. The main pro-
tocols used by clients to connect with MySQL serv-
er are TCP/IP, Unix socket file, Named pipe, Shared
memory [13]. These protocols are usually implement-
ed by various libraries and program drivers [20]. In
this regard, all client programs included in various
MySQL distributions (MySQL, mysqladmin, etc) can
establish connections to the server using the native C
client library [20].
In the industrial field, there are many popular com-
munication protocols and networks. The most fa-
mous and widely used industrial communication pro-
tocols are standards, such as Profi-Bus, Profi-Bus DP,
Profi-Net-IO, Mod-Bus, Mod-Bus/RTU, Mod-Bus/
TCP, Can-Bus, CAN-OPEN, Field- Bus, Ethernet,
EtherNet/IP [21]. Details of some of these communi-
cation protocols and networks are:

Information Technology and Control 2021/1/5030

 _ Modbus RTU and Modbus published by Modicon
company in 1979 [17]. Modbus RTU is an open
serial protocol which is widely used in today's
industrial equipment of monitoring and control.
This protocol uses the serial interface RS-232
or RS-485 for communications [5]. On the other
side, Modbus is a communication protocol used
for transmitting information between electronic
devices via the Ethernet or over serial lines [18].

 _ Profibus DP used by Siemens. Profibus DP is the
second type of PROFIBUS that is for Decentralized
Periphery. It is a much simpler and faster protocol
used in most of PROFIBUS application profiles
today [22]. The hardware structure of the Profibus-
DP and its application in DP slave development are
presented in [12].

In this context, an interesting research field, called the
Industrial Internet of Things (IIoT), was identified.
Here, [11] presented a comparative study of communi-
cation protocols for industrial internet of things envi-
ronment (IIoT). Accordingly, polling-based and event-
based protocols were investigated so that an open and
interoperable IIoT environment can be realized. The
author compared various Internet of Things (IoT) pro-
tocols and consequently chose the message queuing
telemetry transport (MQTT) as the event-based, pub-
lish–subscribe protocol. Additionally, the study found
that the MODBUS protocol has an optimized message
structure in the application layer that concentrates on
industrial applications. As a result, an event-oriented
IoT protocol will not replace the MODBUS TCP, but
completes it. Based on that, the study introduced two
different scenarios to build the IIoT environment.
Firstly, building the environment using the MODBUS
TCP alone so that the MODBUS TCP can be consid-
ered as an IoT protocol. Secondly, using MQTT simul-
taneously with the MODBUS TCP [11].
Other work related to the Protocol Engineering [14]
proposed in order to deal with authentication proto-
cols were presented in literature [15, 10]. These proto-
cols are communication or cryptographic protocols,
which take into account the transferring of authenti-
cation data between communicating entities. An im-
proved delegation-based authentication protocol for
Portable Communication Systems (PCSs) was pre-
sented in [15]. The authors demonstrated that Lee-
Yeh’s protocol has an instinctive design flaw. Based

on that, they proposed a modification to overcome
the protocol weaknesses and provided the anonymity
service.
On the other side, the work in [10] consentrat-
ed on multi-server authentication. It presented an
improved biometric multi-server authentication
scheme, which is designed for Chang et al.'s protocol.
Here, the authors investigated a few multi-server au-
thentication schemes in the literature, although secu-
rity with loopholes. They reviewed the protocol thor-
oughly, and consequently proposed their improved
model. It is resistant to all known and identified at-
tacks. Furthermore, they presented the formal and
informal security analysis, performance, and evalua-
tion analysis.
Although there are various works made towards im-
plementing communication protocols, such as [1, 16,
9, 8, 25, 3, 6, 23], a study of developing a novel meth-
odology to develop an algorithm, which simulates
communication protocols using micro-programming,
does not exist yet (at least it is extremely rare pub-
lished as a study).
To the best of my knowledge, this paper represents
the first study towards introducing an applicable
methodology by integrating several concepts from
different research areas to define a model implemen-
tation of communication protocols using micro-pro-
gramming.

2. Concept and Goals of "Packet
Analysis"
The main contribution of this paper is the integration
of concepts from different research areas into a prac-
tically applicable methodology. Here, Figure 1 sum-
marizes the methodologies integrated within "Packet
Analysis".
The main goal of the "Packet Analysis" is to imple-
ment a special communication protocol. It integrates
many concepts from different research areas such as
computer architecture, communication protocols,
micro-programming, and hardware simulations. Ad-
ditionally, it uses a special simulator called "Minimax
simulator", which was developed for a micro-pro-
gramming project called "Minimax machine". Con-
sequently, "Packet Analysis" produces software that

31Information Technology and Control 2021/1/50

2.1. Computer Architecture
Defining Computer Architecture: Computer designers
encounter a complex task in specifying the most sig-
nificant attributes need for designing a new computer
so that a trade-off exists between high performance
and efficient energy on one hand and reasonable cost,
power, and availability on the other [7]. In this context,
instruction set design, logic design, functional orga-
nization, and implementation are important issues.
Additionally, developing a better design depends on
various technologies, such as operating systems, com-
pilers, logic design, and packaging [7]. Hennessy and
Patterson in [7] believe that the term computer ar-
chitecture referred not only to instruction set design
but also to other aspects of computer design such as
implementation. They wrote: "Several years ago, the
term computer architecture often referred only to in-
struction set design. Other aspects of computer design
were called implementation, often insinuating that
implementation is uninteresting or less challenging.
We believe this view is incorrect. The architect’s or
designer’s job is much more than instruction set de-
sign, and the technical hurdles in the other aspects of
the project are likely more challenging than those en-
countered in instruction set design."

2.2. Communication Protocols
Defining Communication protocols: Communica-
tion protocols used in telecommunication systems
are norms or rules. The role of these rules is to allow
units of the designed system to communicate and ex-
changing information (structured messages called
packages) over a network. In this regard, communi-
cation protocols may be implemented in software
or hardware chipsets or both. Internet Protocol (IP)
and Transmission Control Protocol (TCP) is the most
widely used protocols on the Internet and Intranet
networks so that data between two computers (ma-
chines) can be transmitted, and consequently com-
munication between them is realized. In this con-
text, Request For Comments (RFCs) of the Internet
Engineering Task Force (IETF) is supported by the
Internet Society (ISOC) to describe (define) the most
widely used communication protocols of the Internet.
Moreover, network protocols consist of many layers
called protocol stack. Here, a reference model (OSI),
which is a software architecture, plays the role to

Figure 1
The methodologies integrated within "Packet Analysis"

is the second type of PROFIBUS that is for
Decentralized Periphery. It is a much simpler
and faster protocol used in most of PROFIBUS
application profiles today [22]. The hardware
structure of the Profibus-DP and its application
in DP slave development are presented in [12].

In this context, an interesting research field, called
the Industrial Internet of Things (IIoT), was
identified. Here, [11] presented a comparative
study of communication protocols for industrial
internet of things environment (IIoT).
Accordingly, polling-based and event-based
protocols were investigated so that an open and
interoperable IIoT environment can be realized.
The author compared various Internet of Things
(IoT) protocols and consequently chose the
message queuing telemetry transport (MQTT) as
the event-based, publish–subscribe protocol.
Additionally, the study found that the MODBUS
protocol has an optimized message structure in
the application layer that concentrates on
industrial applications. As a result, an event-
oriented IoT protocol will not replace the
MODBUS TCP, but completes it. Based on that,
the study introduced two different scenarios to
build the IIoT environment. Firstly, building the
environment using the MODBUS TCP alone so
that the MODBUS TCP can be considered as an
IoT protocol. Secondly, using MQTT
simultaneously with the MODBUS TCP [11].

Other work related to the Protocol Engineering
[14] proposed in order to deal with authentication
protocols were presented in literature [15, 10].
These protocols are communication or
cryptographic protocols, which take into account
the transferring of authentication data between
communicating entities. An improved delegation-
based authentication protocol for Portable
Communication Systems (PCSs) was presented in
[15]. The authors demonstrated that Lee-Yeh’s
protocol has an instinctive design flaw. Based on
that, they proposed a modification to overcome
the protocol weaknesses and provided the
anonymity service.

On the other side, the work in [10] consentrated on
multi-server authentication. It presented an
improved biometric multi-server authentication
scheme, which is designed for Chang et al.'s
protocol. Here, the authors investigated a few
multi-server authentication schemes in the
literature, although security with loopholes. They
reviewed the protocol thoroughly, and
consequently proposed their improved model. It is
resistant to all known and identified attacks.
Furthermore, they presented the formal and

informal security analysis, performance, and
evaluation analysis.

Although there are various works made
towards implementing communication
protocols, such as [1, 16, 9, 8, 25, 3, 6, 23], a
study of developing a novel methodology to
develop an algorithm, which simulates
communication protocols using micro-
programming, does not exist yet (at least it is
extremely rare published as a study).

To the best of my knowledge, this paper
represents the first study towards
introducing an applicable methodology by
integrating several concepts from different
research areas to define a model
implementation of communication protocols
using micro-programming.

2. Concept and Goals of

"Packet Analysis"
The main contribution of this paper is the
integration of concepts from different
research areas into a practically applicable
methodology. Here, Figure 1 summarizes the
methodologies integrated within "Packet
Analysis".

Figure 1

The methodologies integrated within "Packet
Analysis"

The main goal of the "Packet Analysis" is to
implement a special communication protocol.
It integrates many concepts from different
research areas such as computer architecture,
communication protocols, micro-

implements a special communication protocol fol-
lowing the concepts mentioned above.
To emphasize this concept, it is worth mentioning
some examples of the practical utilization of the pro-
posed protocol. Data transmission/transport systems
could utilize packet analysis protocol, especially in
embedded systems, where limited resources and time
are considered. Here, the exact size of packet fields
can be re-adjusted (re-configured) to allow for an op-
timal implementation to be utilized in practice. That
means, the "packet analysis" protocol allows differ-
ent data lengths in communication protocols used in
embedded systems. One of the practical application
of this protocol could be wireless sensor networks,
more precisely, communication protocols used in
embedded sensor networks. Moreover, the proto-
col proposed in this research paper concentrates on
software implementations of communication proto-
cols used in hardware architectures. In this context,
"packet analysis" demonstrates an example scenario
of common communication protocols designed es-
pecially for simplified/ abstracted hardware archi-
tectures. Therefore, this concept developed an algo-
rithm, which could be utilized in practice, to simulate
communication protocols using micro-programming.
The next section will summarize the concepts, men-
tioned above, from different research areas that form
"Packet Analysis".

Information Technology and Control 2021/1/5032

specify each layer with its provided services. This OSI
model has the classic seven layers (protocol stack).

2.3. Micro-Programming and Hardware
Simulations
Recently, micro-programming of machines have be-
come more common, because it is used in several
fields, e.g., as Computer Engineering. Additionally, mi-
cro-programming is employed throughout the design
process. It is an important technique to understand
how a compiler construction and computer works.
In this regard, Computer Simulation Tool (CST) was
introduced to develop a suitable tool helping in simu-
lating machines (hardware) and micro-programming
so that programmers can test their program execu-
tion in a user-friendly way. CSTs use simulators (soft-
ware packages) to emulate the behavior of machines
and hardware systems (hardware simulation). One of
the most important tools is VHDL (VHSIC Hardware
Description Language). It is a hardware description
language used in electronic design automation and
parallel programming languages.
The next section presents the "Minimax simulator",
which is used in the "Minimax project". This sim-
ulator was developed for micro-programming and
hardware simulation. It facilitates the process of mi-
cro-programming, significantly enabling program-
mers to understand easily how their programs work.
Chaaban in his work in [2] presents a survey of relat-
ed work that was published in the domain of micro
programming or hardware simulation. It can be con-
sidered as an overview of some architectures or ap-
proaches introduced concerning the micro program-
ming and hardware simulation.

2.4. Minimax Machine
Project Computer Engineering (mini-project: Mini-
max machine) was created and carried out at Depart-
ment of Systems and Computer Architecture [4] at
Leibniz University Hannover (LLH), Germany. Here,
the general task is to solve group-based programming
tasks based on the Minimax machine known from the
lecture "Introduction to Computer Engineering". To
solve the tasks, it is necessary to suitably expand the
given basic structure of the machine (new ALU com-
mands, additional registers). Programming for prob-
lem-solving will be done later on the micro program
as well as the assembler level.

To solve the tasks, a Minimax simulator (as a Java
program) is available, with which the project partici-
pants can also test their architectural extensions, mi-
cro- and assembler programming at home.

2.4.1. Minimax Architecture
As part of the lecture "Fundamentals of Computer
Engineering", basic knowledge of computer architec-
ture is taught using the example of the Minimax ma-
chine (see Figure 2).

Figure 2
The basic Minimax machine

can test their program execution in a user-friendly
way. CSTs use simulators (software packages) to
emulate the behavior of machines and hardware
systems (hardware simulation). One of the most
important tools is VHDL (VHSIC Hardware
Description Language). It is a hardware
description language used in electronic design
automation and parallel programming languages.

The next section presents the "Minimax
simulator", which is used in the "Minimax project".
This simulator was developed for micro-
programming and hardware simulation. It
facilitates the process of micro-programming,
significantly enabling programmers to understand
easily how their programs work.

Chaaban in his work in [2] presents a survey of
related work that was published in the domain of
micro programming or hardware simulation. It
can be considered as an overview of some
architectures or approaches introduced concerning
the micro programming and hardware simulation.

2.4 Minimax Machine

Project Computer Engineering (mini-project:
Minimax machine) was created and carried out at
Department of Systems and Computer
Architecture [4] at Leibniz University Hannover
(LLH), Germany. Here, the general task is to solve
group-based programming tasks based on the
Minimax machine known from the lecture
"Introduction to Computer Engineering". To solve
the tasks, it is necessary to suitably expand the
given basic structure of the machine (new ALU
commands, additional registers). Programming for
problem-solving will be done later on the micro
program as well as the assembler level.

To solve the tasks, a Minimax simulator (as a Java
program) is available, with which the project
participants can also test their architectural
extensions, micro- and assembler programming at
home.

2.4.1 Minimax Architecture

As part of the lecture "Fundamentals of Computer
Engineering", basic knowledge of computer
architecture is taught using the example of the
Minimax machine (see Figure 2).

Figure 2

The basic Minimax machine.

This machine consists essentially of some
registers, an ALU and a memory in which
code and data are stored together. The
command sequence (instruction cycle) is
determined by a micro-program. The
architecture of the Minimax machine is
largely fixed but is extended for exam and
practice tasks by additional registers or Sign
Extension Units. Likewise, the ALU may be
supplemented with additional functionality
(e.g., DIV command). Figure 3 shows an
extended Minimax machine.

By extending the basic structure of the
Minimax machine, the specific assignment of
the Minimax machine with control signals
changes. With the Minimax simulator, it is
possible to take these changes into account
and to simulate the modified data path.

This machine consists essentially of some registers,
an ALU and a memory in which code and data are
stored together. The command sequence (instruction
cycle) is determined by a micro-program. The archi-
tecture of the Minimax machine is largely fixed but
is extended for exam and practice tasks by additional
registers or Sign Extension Units. Likewise, the ALU
may be supplemented with additional functionality
(e.g., DIV command). Figure 3 shows an extended
Minimax machine.
By extending the basic structure of the Minimax ma-
chine, the specific assignment of the Minimax ma-

33Information Technology and Control 2021/1/50

Figure 3
The Extended Minimax machine

Figure 3

The Extended Minimax machine

For the concrete solution of the design task, the
programmers can decide which parts of the
functionality should be moved into the micro-
program and how the machine program, based on
it, looks like. Assessment standards are used for
the programmers in addition to the error-free
execution and the number of required clock cycles.
The amount of resources used (additional registers
and ALU commands) is also included in the
evaluation.

2.5 The Minimax Simulator

For the Minimax machine, there is a visualization
environment for displaying the execution behavior
of micro programs (see Figure 4). The
visualization environment reads a textual
description of the specific Minimax-shaping
(Minimax characteristic) and generates there from
a clear graphical representation of the architecture
to be simulated.

Figure 4

The Minimax simulator during the execution of a
machine program

The user then has the opportunity to read
micro programs and pre-configuration
(default value(s) of registers and main
memory addresses) to simulate the execution
of machine programs then.

During this execution, which can be switched
on step by step through pressing a button
(Enter button and Return key), the occupied
(allocated) resources are colored in the
visualization. This allows a step-by-step
simulation whereby the register and memory
contents can be monitored at any time. It is
also possible to set breakpoints in the
simulator.

To ensure platform independence and use
over the Internet, the implementation has
been carried out as an application for Java 2
(Standard Edition, at least V 1.3.1).

3. Problem Description (Task)

of the "Packet Analysis"
Different data packets are stored in the
memory of the Minimax machine. Each
packet contains a header of (80) bits and a
data portion of variable length. A packet
starts with the specified pattern (template)
1110. Within the header, the channel number
is represented in two consecutive bytes from
bit number 32 onwards. A channel includes
several packets with a unique channel
number. The Figure 5 shows the special

chine with control signals changes. With the Mini-
max simulator, it is possible to take these changes into
account and to simulate the modified data path.
For the concrete solution of the design task, the pro-
grammers can decide which parts of the functionality
should be moved into the micro-program and how the
machine program, based on it, looks like. Assessment
standards are used for the programmers in addition to
the error-free execution and the number of required
clock cycles. The amount of resources used (addition-
al registers and ALU commands) is also included in
the evaluation.

2.5. The Minimax Simulator
For the Minimax machine, there is a visualization
environment for displaying the execution behavior of
micro programs (see Figure 4). The visualization en-
vironment reads a textual description of the specific
Minimax-shaping (Minimax characteristic) and gen-
erates there from a clear graphical representation of
the architecture to be simulated.

Figure 4
The Minimax simulator during the execution of a machine
program

Figure 3

The Extended Minimax machine

For the concrete solution of the design task, the
programmers can decide which parts of the
functionality should be moved into the micro-
program and how the machine program, based on
it, looks like. Assessment standards are used for
the programmers in addition to the error-free
execution and the number of required clock cycles.
The amount of resources used (additional registers
and ALU commands) is also included in the
evaluation.

2.5 The Minimax Simulator

For the Minimax machine, there is a visualization
environment for displaying the execution behavior
of micro programs (see Figure 4). The
visualization environment reads a textual
description of the specific Minimax-shaping
(Minimax characteristic) and generates there from
a clear graphical representation of the architecture
to be simulated.

Figure 4

The Minimax simulator during the execution of a
machine program

The user then has the opportunity to read
micro programs and pre-configuration
(default value(s) of registers and main
memory addresses) to simulate the execution
of machine programs then.

During this execution, which can be switched
on step by step through pressing a button
(Enter button and Return key), the occupied
(allocated) resources are colored in the
visualization. This allows a step-by-step
simulation whereby the register and memory
contents can be monitored at any time. It is
also possible to set breakpoints in the
simulator.

To ensure platform independence and use
over the Internet, the implementation has
been carried out as an application for Java 2
(Standard Edition, at least V 1.3.1).

3. Problem Description (Task)

of the "Packet Analysis"
Different data packets are stored in the
memory of the Minimax machine. Each
packet contains a header of (80) bits and a
data portion of variable length. A packet
starts with the specified pattern (template)
1110. Within the header, the channel number
is represented in two consecutive bytes from
bit number 32 onwards. A channel includes
several packets with a unique channel
number. The Figure 5 shows the special

The user then has the opportunity to read micro pro-
grams and pre-configuration (default value(s) of reg-
isters and main memory addresses) to simulate the
execution of machine programs then.
During this execution, which can be switched on step
by step through pressing a button (Enter button and
Return key), the occupied (allocated) resources are
colored in the visualization. This allows a step-by-
step simulation whereby the register and memory
contents can be monitored at any time. It is also pos-
sible to set breakpoints in the simulator.
To ensure platform independence and use over the
Internet, the implementation has been carried out as
an application for Java 2 (Standard Edition, at least
V 1.3.1).

3. Problem Description (Task) of the
"Packet Analysis"
Different data packets are stored in the memory of the
Minimax machine. Each packet contains a header of
(80) bits and a data portion of variable length. A pack-
et starts with the specified pattern (template) 1110.
Within the header, the channel number is represented
in two consecutive bytes from bit number 32 onwards.
A channel includes several packets with a unique
channel number. The Figure 5 shows the special com-
munication protocol "Packet Analysis" Format.

Information Technology and Control 2021/1/5034

Now the request (problem description) can be drafted
as follows:
Implement the "Packet Analysis" algorithm, which
creates a memory (storage) table of the channel num-
bers and the length (in bits) of the data portion (data
part) of all packets. The ACCU initially contains the
memory address X, where the packet field begins, and
the length of the field (in bits) is passed in the com-
mand (in the instruction as a parameter by calling
the program). The memory (storage) table should be
stored from any memory address outside the packet
field area.
Here, the basic Minimax machine, depicted in Fi-
gure 2, should be extended (Figure 3 is an example of an
extended Minimax machine) by the implementation of
the "Packet Analysis" algorithm. That is because the
architecture of the basic Minimax machine is largely
fixed, but is extended for big tasks (by additional regis-
ters, additional Sign Extension Units, additional func-
tionality of ALU, e.g., DIV command, etc.).

4. The Basic Minimax Machine
This basic machine is a simple one-address example
machine that is used for a more detailed understand-
ing of the data path structure and then to develop the
controller. It has the following properties:
 _ 1 ALU for arithmetic operations, also used for

address calculation.
 _ 1 bit status signal: COND = 1 if ALU == 0.
 _ Arithmetic Operations Combine ACCU and MDR

(MDR: Memory Data Register)
 _ ALU inputs A and B are occupied by MUXes

(Multiplexer); no buses.
 _ HS: address 24 bit, data 32 bit.

This predefined architecture (basic machine) of the
Minimax machine has only four arithmetic operations,

Figure 5
The special communication protocol "Packet Analysis"
Format

communication protocol "Packet Analysis"
Format.

Figure 5

The special communication protocol "Packet Analysis"
Format

Now the request (problem description) can be
drafted as follows:

Implement the "Packet Analysis" algorithm, which
creates a memory (storage) table of the channel
numbers and the length (in bits) of the data
portion (data part) of all packets. The ACCU
initially contains the memory address X, where the
packet field begins, and the length of the field (in
bits) is passed in the command (in the instruction
as a parameter by calling the program). The
memory (storage) table should be stored from any
memory address outside the packet field area.

Here, the basic Minimax machine, depicted in
Figure 2, should be extended (Figure 3 is an
example of an extended Minimax machine) by the
implementation of the "Packet Analysis"
algorithm. That is because the architecture of the
basic Minimax machine is largely fixed, but is
extended for big tasks (by additional registers,
additional Sign Extension Units, additional
functionality of ALU, e.g., DIV command, etc.).

4. The Basic Minimax Machine
This basic machine is a simple one-address
example machine that is used for a more detailed
understanding of the data path structure and then
to develop the controller. It has the following
properties:

• 1 ALU for arithmetic operations, also used
for address calculation.

• 1 bit status signal: COND = 1 if ALU == 0.

• Arithmetic Operations Combine ACCU and
MDR (MDR: Memory Data Register)

• ALU inputs A and B are occupied by
MUXes (Multiplexer); no buses.

• HS: address 24 bit, data 32 bit.

This predefined architecture (basic machine) of the
Minimax machine has only four arithmetic

operations, i.e., the operations set of
Minimax-ALU are: ADD, SUB, TRANS.A,
TRANS.B as depicted in Table 1.

Table 1

The four basic arithmetic operations
(operations set) of Minimax-ALU

Symbol ALU operation ALU Ctrl

ADD ALUresult A + B 00

SUB ALUresult -A + B 01

TRANS.A ALUresult A 10

TRANS.B ALUresult B 11

While the MINIMAX registers are shown in
Table 2.

Table 2

The basic MINIMAX registers
Register Width

(W)

ACCU 32 Accumulator

PC 32 Program Counter; PC31..24 = 0

MDR 32 Memory Data Register

IR 32 Instruction Register

MAR 24 Memory Address Register

MINIMAX selectors can be seen in Table 3.

Table 3

The basic MINIMAX selectors
ALUSel.A A ALUSel.B B

0 0 0 MDR

1 1 1 PC

2 ACCU 2 (IR23)8@IR23..0

 3 ACCU

MDR.Se
l

MDR

 0 ALUresult

1 HS.DO

Additionally, Control HS and write signals
are explained in Table 4.

i.e., the operations set of Minimax-ALU are: ADD, SUB,
TRANS.A, TRANS.B as depicted in Table 1.

Table 1
The four basic arithmetic operations (operations set) of
Minimax-ALU

Symbol ALU operation ALU Ctrl

ADD ALUresult ¬ A + B 00

SUB ALUresult ¬ -A + B 01

TRANS.A ALUresult ¬ A 10

TRANS.B ALUresult ¬ B 11

Table 2
The basic MINIMAX registers

Register Width (W)

ACCU 32 Accumulator

PC 32 Program Counter; PC31..24 = 0

MDR 32 Memory Data Register

IR 32 Instruction Register

MAR 24 Memory Address Register

Table 3
The basic MINIMAX selectors

ALUSel.A A ALUSel.B B

0 0 0 MDR

1 1 1 PC

2 ACCU 2 (IR23)8@IR23..0

3 ACCU

MDR.Sel MDR

 0 ALUresult

1 HS.DO

While the MINIMAX registers are shown in Table 2.

MINIMAX selectors can be seen in Table 3.

Additionally, Control HS and write signals are ex-
plained in Table 4.

35Information Technology and Control 2021/1/50

Table 4
The Control HS and write signals of basic MINIMAX

Write signals
A.W, PC.W, MDR.W, IR.W,

MAR.W
Operations

0 -

1 write

HS Operations

CS R/W

0 0 -

0 1 -

1 0 M(MAR) ¬ DI

1 1 DO ¬ M(MAR)

4.1. Control Unit (CU)
The task of the control unit is to activate the control
lines Cout in the correct sequence, taking into account
the signals Cin received from the execution unit (EU)
as depicted in the Figure 6.

Figure 6
The task of the CU

Table 4

The Control HS and write signals of basic
MINIMAX

Write signals

A.W, PC.W, MDR.W,
IR.W, MAR.W

Operations

0 -

1 write

HS Operations

CS R/W

0 0 -

0 1 -

1 0 M(MAR) DI

1 1 DO M(MAR)

4.1 Control Unit (CU)

The task of the control unit is to activate the
control lines Cout in the correct sequence, taking
into account the signals Cin received from the
execution unit (EU) as depicted in the Figure 6.

Figure 6

The task of the CU

Here, a typical micro processor needs about 100 to
150 control lines Ciout. Each control line is
responsible (possibly together with others) for the
execution of a basic RT operation. The next figure
shows the data path of the example machine
MINIMAX.

Controllers can be hardwired (hardwired control)
or realized by micro-programming. In both cases,
the machine instructions are to be represented in the
form of sequences of RT-operations. This means
that machine instructions should be translated into

RT-operations. For example, all commands
have the IFETCH phase as follows:

Figure 7

The data path of the example machine MINIMAX

Figure 8

The IFETCH phase

Additionally, each RT-operation is activated
by setting certain control signals. The
following table shows the control signals c0 ...
c14 for some machine instructions, where a
micro-program determines the instructions
sequence.

Figure 9

Control signals for example machine (MINIMAX
Micro-program)

Here, a typical micro processor needs about 100 to
150 control lines Ci

out. Each control line is responsible
(possibly together with others) for the execution of
a basic RT operation. The next figure shows the data
path of the example machine MINIMAX.
Controllers can be hardwired (hardwired control)
or realized by micro-programming. In both cases,
the machine instructions are to be represented in
the form of sequences of RT-operations. This means

that machine instructions should be translated into
RT-operations. For example, all commands have the
IFETCH phase as follows:

Figure 7
The data path of the example machine MINIMAX

Table 4

The Control HS and write signals of basic
MINIMAX

Write signals

A.W, PC.W, MDR.W,
IR.W, MAR.W

Operations

0 -

1 write

HS Operations

CS R/W

0 0 -

0 1 -

1 0 M(MAR) DI

1 1 DO M(MAR)

4.1 Control Unit (CU)

The task of the control unit is to activate the
control lines Cout in the correct sequence, taking
into account the signals Cin received from the
execution unit (EU) as depicted in the Figure 6.

Figure 6

The task of the CU

Here, a typical micro processor needs about 100 to
150 control lines Ciout. Each control line is
responsible (possibly together with others) for the
execution of a basic RT operation. The next figure
shows the data path of the example machine
MINIMAX.

Controllers can be hardwired (hardwired control)
or realized by micro-programming. In both cases,
the machine instructions are to be represented in the
form of sequences of RT-operations. This means
that machine instructions should be translated into

RT-operations. For example, all commands
have the IFETCH phase as follows:

Figure 7

The data path of the example machine MINIMAX

Figure 8

The IFETCH phase

Additionally, each RT-operation is activated
by setting certain control signals. The
following table shows the control signals c0 ...
c14 for some machine instructions, where a
micro-program determines the instructions
sequence.

Figure 9

Control signals for example machine (MINIMAX
Micro-program)

Figure 8
The IFETCH phase

Table 4

The Control HS and write signals of basic
MINIMAX

Write signals

A.W, PC.W, MDR.W,
IR.W, MAR.W

Operations

0 -

1 write

HS Operations

CS R/W

0 0 -

0 1 -

1 0 M(MAR) DI

1 1 DO M(MAR)

4.1 Control Unit (CU)

The task of the control unit is to activate the
control lines Cout in the correct sequence, taking
into account the signals Cin received from the
execution unit (EU) as depicted in the Figure 6.

Figure 6

The task of the CU

Here, a typical micro processor needs about 100 to
150 control lines Ciout. Each control line is
responsible (possibly together with others) for the
execution of a basic RT operation. The next figure
shows the data path of the example machine
MINIMAX.

Controllers can be hardwired (hardwired control)
or realized by micro-programming. In both cases,
the machine instructions are to be represented in the
form of sequences of RT-operations. This means
that machine instructions should be translated into

RT-operations. For example, all commands
have the IFETCH phase as follows:

Figure 7

The data path of the example machine MINIMAX

Figure 8

The IFETCH phase

Additionally, each RT-operation is activated
by setting certain control signals. The
following table shows the control signals c0 ...
c14 for some machine instructions, where a
micro-program determines the instructions
sequence.

Figure 9

Control signals for example machine (MINIMAX
Micro-program)

Additionally, each RT-operation is activated by set-
ting certain control signals. The following table shows
the control signals c0 ... c14 for some machine instruc-
tions, where a micro-program determines the in-
structions sequence.
In this context, c0 ... c14 are output signals (for the CU),
where COND (ALU == 0) is an input signal.

Information Technology and Control 2021/1/5036

Furthermore, each row of the control signal table
is referred to as a micro-instruction. It consists of
one or more micro-operations (RT-operations). The
number of micro-instructions required for a particu-
lar machine instruction is determined by the CPI (for
this instruction), where CPI (Cycles Per Instruction)
means the number of cycles per instruction in the
case of processing (processor's performance).

5. The Algorithm "Packet Analysis"
Now, the algorithm "Packet Analysis" will be ex-
plained by finding a solution for a "Packet Analysis"
problem.

5.1. Initial Situation
The Minimax basic machine consists of four 32 bit
registers, which are in detail ACCU, PC, MDR, and
IR. There is also a 24-bit address register for mem-
ory access. The memory contains both the code and
the data. There is an ALU with the operations ADD,
TRANS.A, TRANS.B, and SUB.B. A branch in the pro-
gram sequence is achieved by the ALU result ALU ==
0. A Control Unit (CU) activates the control lines.
A micro-program determines the instruction se-
quence. The architecture is largely fixed but can be

Figure 9
Control signals for example machine (MINIMAX Micro-program)

In this context, c0 ... c14 are output signals (for the
CU), where COND (ALU == 0) is an input signal.

Furthermore, each row of the control signal table
is referred to as a micro-instruction. It consists of
one or more micro-operations (RT-operations).
The number of micro-instructions required for a
particular machine instruction is determined by
the CPI (for this instruction), where CPI (Cycles
Per Instruction) means the number of cycles per
instruction in the case of processing (processor's
performance).

5. The Algorithm "Packet

Analysis"
Now, the algorithm "Packet Analysis" will be
explained by finding a solution for a "Packet
Analysis" problem.

5.1 Initial Situation

The Minimax basic machine consists of four 32 bit
registers, which are in detail ACCU, PC, MDR,
and IR. There is also a 24-bit address register for
memory access. The memory contains both the
code and the data. There is an ALU with the
operations ADD, TRANS.A, TRANS.B, and SUB.B.
A branch in the program sequence is achieved by
the ALU result ALU == 0. A Control Unit (CU)
activates the control lines.

A micro-program determines the instruction
sequence. The architecture is largely fixed but can
be extended by additional registers or sign
extension units. Moreover, the ALU can be
supplemented with additional functionality.

It is required to extend the basic machine
described by a "Packet Analysis" algorithm. This
algorithm is used to create a table of different data
packets stored in memory, containing their
channel numbers and the length (in bits) of the
data portion (data part) of all packets of a channel
number. This table should be placed at the end of
the packet field area. A packet of this packet field
area is characterized in that it starts with the

specified pattern 1110. Within the header, the
channel number is stored in two consecutive
bytes from bit number 32 onwards, as
depicted in Figure 5. Then, the data portion
of the packet follows, starting at bit number
80. This data portion ends where either a new
packet with the specified pattern 1110 begins
or the entire packet field area ends. In other
words, each data portion length (L) of every
packet is arbitrary, for example, 2, or, 5, or...
(later it should also be implemented in that
way). Therefore, the following cases are
possible:

H0 D0(L= 5 bit) H1 D1(L = 0bit) H2 D2(L =
40bit) H3 D3(L=8 bit) HN DN(L=20bit)

or

H0 D0(L= 0 bit) H1 D1(L = 80bit) H2 D2(L =
80bit) H3 D3(L=144 bit) HN
DN(L=80bit).

Here, the designed algorithm must have all
possible cases, and the implementation of the
algorithm should take into account all these
cases. Figure 5 shows the format the special
communication protocol designed in this
paper, which is called "Packet Analysis".

5.2 The Proposed Algorithm

Packet field processing begins by searching
for pattern 1110, which is at the beginning of
each packet header. From the point where
the pattern 1110 was found, 32 bits are
jumped further forward, and the 16-bit
channel number that begins there is copied
into a separate register. After another 32-bit
jump, the quasi-read header is on the first
data bit of this packet. Now the data bits are
counted under consistent pattern search. If
the pattern is found, the channel number and
the data bit number of the just read packet
are determined and can be stored. For this
purpose, the first memory address after the
packet field is jumped to. Next, the channel
number is counted down from there in 64-bit
steps (increments) to arrive at a channel-
identifying memory location, at which the
channel number is entered.

Second, the counted number of data bits is
added to the content of the following data
word (where is the data length of the
channel). Consequently, the processing of the
packet is completed. Thus, the Pseudo read
head jumps back to the place of the last
found occurrence of the pattern +32 bits.

extended by additional registers or sign extension
units. Moreover, the ALU can be supplemented with
additional functionality.
It is required to extend the basic machine described by
a "Packet Analysis" algorithm. This algorithm is used to
create a table of different data packets stored in mem-
ory, containing their channel numbers and the length
(in bits) of the data portion (data part) of all packets of
a channel number. This table should be placed at the
end of the packet field area. A packet of this packet field
area is characterized in that it starts with the specified
pattern 1110. Within the header, the channel number is
stored in two consecutive bytes from bit number 32 on-
wards, as depicted in Figure 5. Then, the data portion of
the packet follows, starting at bit number 80. This data
portion ends where either a new packet with the spec-
ified pattern 1110 begins or the entire packet field area
ends. In other words, each data portion length (L) of
every packet is arbitrary, for example, 2, or, 5, or... (later
it should also be implemented in that way). Therefore,
the following cases are possible:

H0 D0(L= 5 bit) H1 D1(L = 0bit) H2 D2(L =
40bit) H3 D3(L=8 bit) HN DN(L=20bit)

or

H0 D0(L= 0 bit) H1 D1(L = 80bit) H2 D2(L = 80bit)
H3 D3(L=144 bit) HN DN(L=80bit).

37Information Technology and Control 2021/1/50

Here, the designed algorithm must have all possible
cases, and the implementation of the algorithm should
take into account all these cases. Figure 5 shows the
format the special communication protocol designed
in this paper, which is called "Packet Analysis".

5.2. The Proposed Algorithm
Packet field processing begins by searching for pat-
tern 1110, which is at the beginning of each packet
header. From the point where the pattern 1110 was
found, 32 bits are jumped further forward, and the 16-
bit channel number that begins there is copied into a
separate register. After another 32-bit jump, the qua-
si-read header is on the first data bit of this packet.
Now the data bits are counted under consistent pat-
tern search. If the pattern is found, the channel num-
ber and the data bit number of the just read packet are
determined and can be stored. For this purpose, the
first memory address after the packet field is jumped
to. Next, the channel number is counted down from
there in 64-bit steps (increments) to arrive at a chan-
nel-identifying memory location, at which the chan-
nel number is entered.
Second, the counted number of data bits is added to
the content of the following data word (where is the
data length of the channel). Consequently, the pro-
cessing of the packet is completed. Thus, the Pseudo
read head jumps back to the place of the last found
occurrence of the pattern +32 bits. Here begins the
channel number of the next packet.
There are some notes about the processing mentioned
above. Firstly, when counting the data, the field length
must be kept in mind so that it is "not counted into the
memory or storage table". Consistent decrementing of
the length ensures that the end of the packet field is not
exceeded except for storage. Once it has been reached,
the processing of the packet field is complete. Second-
ly, in addition to the field length, the current position
in the field during processing is saved. For this, the
address of the current data word, as well as the index
of the current bit are stored in the word. Thirdly, by
storing the bit position, the 'data word change' is still
guaranteed. If all bits of a data word have been read and
used, the next data word must be loaded. This case can
occur when counting the data and copying the channel
number. Finally, the maximum space required is 2ˆ16
* 64 bits, a value smaller than the available memory of
2ˆ24 bits, which is initially empty (i.e., 0).

5.3. A Detailed Description of the Algorithm
5.3.1. Initializing Step
Firstly, the address located in the ACCU, which in-
dicates the beginning of the field, is loaded into the
IR. The length of the field is stored in the register
FLENGTH. This size is initially used to determine
the memory address for the result table, and then it
is consistently reduced to be able to determine with
their help when the field end is reached. This is fol-
lowed by writing the address of the data word after
the field end in the register ACCU. After the execution
of analysis (x), the address, at which the result table
starts, will be in the ACCU.
In the BITPOS register, a 0 value is written, in the
MEMPOS register, the address from the IR. In the
following, the position in the field is stored with these
two registers.
For the first packet, the algorithm starts directly when
storing the channel number, a data word (32 bits) is
continued. We assume that the field is not empty and
properly formatted.

5.3.2. Copying the Channel Number Step
The channel number is stored in the register
KANNUM. It is copied bit by bit by shifting the data
word 16 times to the right. If the channel number ex-
tends over two data words, this is taken into account
and treated accordingly (see remark 1). At each step,
the remaining part of the data word is connected via
AND with 2ˆ0, so that only the least significant bit is
original, the rest is 0. The result is checked for equali-
ty with 0. If there is a match, the register KANNUM is
shifted to the right and the process starts again after
increment of COUNTER and BITPOS. If the result
is not equal to 0 (that is, 1), the value is shifted first
and then KANNUM is connected to the constant 2ˆ31
via OR. This corresponds to a left-side insertion of a
one value in the register KANNUM, whereas the al-
ready stored bits of the channel number remains un-
touched.
At the end of this loop, which is terminated by simply
counting the passes, and after a subsequent 16 times
shift, the channel number will be in the 32-bit register
KANNUM.
Now, it is moved to the beginning of the data part in
order to proceed with the counting of the data bits and
the search for the pattern.

Information Technology and Control 2021/1/5038

5.3.3. Working on the Data (Counting and
Searching) Step
The counting here is very simple. Since we work bit
by bit, the register COUNTER is incremented per
loop. In this phase, by comparing the contents of
FLENGTH with 0, it is checked whether the machine
has reached the end of the field. The search is carried
out with the aid of two registers (MDR and TEMP)
and a constant 14 (binary: 1110), which are used to
process the data word. First, the data word (in MDR)
is copied to register TEMP. There the word is reduced
to its four least significant bits (0ˆ28@MDR3..0) and
then compared with the pattern. A negative compar-
ison results in the right-hand shift of the word in the
register MDR, as well as the adaptation of COUNT-
ER, FLENGTH and BITPOS. After that, the word is
copied, cut and compared again. If BITPOS reaches
the value 31, a new word must be retrieved from the
memory. A positive comparison means that the begin-
ning of the next packet has been found, and thus the
channel number and the data length of the previous
one must be stored. The next step is to jump in the
memory to the address stored in the register ACCU
(beginning of the table) and to start the search for ad-
equate storage space for the information.

5.3.4. Saving Step
The quasi-read header is above the first bit of the first
word of the memory table. After that, the channel num-
ber as a counter for 64 bit jumps in Memory is used. If
the counter (the content of TEMP) is zero, the channel
number is written at this point, and the data bit num-
ber in the following data word is added to the existing
content of the word. Thus, after processing the field,
e.g., the information for channel ten at the tenth place
(in 64-bit increments) in the memory table.

5.3.5. The "Back-to-Field-Jumping" Step
Now, BITPOS is going from the memory table direct-
ly to the starting bit of the next channel number. The
register MEMPOS contains the address of the data
word, in which the last occurrence of pattern 1110
was found. This is incremented by 1 before reading
the contents of this address into the MDR. At this
time, BITPOS will be copied to TEMP. This register
is used this time to shift the data word by the appro-
priate number of bits. After that, TEMP will be decre-
mented per step and check for equality with 0. If this
equality is given, the rest of the current memory word

is in the MDR, and the least significant bit is the first
bit of the next Channel number (step 2).
Remarks:
1 End of a data word reached: In the case that

BITPOS - 31 = 0, an address is preceded (MAR + 1,
MEMPOS + 1) and BITPOS is reset to 0. After that,
the algorithm continues in the appropriate place.

2 Unclean searching: When searching for the pat-
tern, it can be canceled when the 28 bits of a data
word is reached because then the inserted zeros
are also searched with. This will be not done be-
cause there is no danger of mistakenly finding the
pattern and eliminating the problem of looking at
the beginning of counting, which BITPOS has for
content (29 or 30 or 31). Therefore, it is 3 superflu-
ous pattern comparisons per data word.

5.4. The Personalized Registers

FLENGTH: stores one-time the passed field length X
and is counted down to determine when the field was
'expired'.
BITPOS: counts the bits in a data word and, together
with MEMPOS, saves the current position in the field.
MEMPOS: specifies the address of the current data
word.
KANNUM: stores the channel number of the current
packet.
TEMP: reduces the contents of MDR to the four least
significant bits.
COUNTER: adds up the data bits (pay attention that
the channel number is 16 bits long and that it is shift-
ed 16 digits in the 32-bit register).

5.5. Constants
 _ 0 to reset a register.
 _ 1 for incrementing and decrementing.
 _ 14 corresponds to the binary number 1110.
 _ 16 used in case of loop break when copying the

channel number (see COUNTER).
 _ 31 BITPOS limit for channel number memory

(when data word ends).
 _ Decimate 32 FLENGTH by scrolling one word at

the same BITPOS.
 _ 2ˆ31 in binary notation (32 bit) 10..0 and is used to

set an inserted bit.

39Information Technology and Control 2021/1/50

5.6. The Machine Instructions
The machine instructions used are the instructions of
the basic machine.
ADD ALUResult ¬ A+B
SUB.B ALUResult ¬ -A+B
TRANS.A ALUResult ¬ A
TRANS.B ALUResult ¬ B
Additionally used ALU- operations:
OR A OR B
AND A AND B

Figure 10
The used (implemented) architecture

DIV.A ALUResult ¬ B DIV A
SR.B ALUResult ¬ 0@B 31..0

Figure 10 shows the used architecture. It is an ex-
tension of the Minimax machine so that an imple-
mentation of this developed architecture presents
solutions to how the special communication proto-
col (Packet Analysis) introduced in this paper can be
implemented.

5.7. Algorithm Flowchart
The flowchart of the presented algorithm is shown
in Figure 11. It serves to give an overview of how the
"Packet Analysis" algorithm works.
Here, the diagram will show a detailed description for
each step of this algorithm (Initializing step, copying
the channel number step, working on the data step,
saving step, and "back-to-field-jumping" step).

Figure 11
The flow chart of the presented algorithm

5.7 Algorithm Flowchart

The flowchart of the presented algorithm is shown
in Figure 11. It serves to give an overview of how
the "Packet Analysis" algorithm works. Here, the
diagram will show a detailed description for each
step of this algorithm (Initializing step, copying
the channel number step, working on the data
step, saving step, and "back-to-field-jumping"
step).

Figure 11

The flow chart of the presented algorithm

Information Technology and Control 2021/1/5040

5.7 Algorithm Flowchart

The flowchart of the presented algorithm is shown
in Figure 11. It serves to give an overview of how
the "Packet Analysis" algorithm works. Here, the
diagram will show a detailed description for each
step of this algorithm (Initializing step, copying
the channel number step, working on the data
step, saving step, and "back-to-field-jumping"
step).

Figure 11

The flow chart of the presented algorithm

6. Benchmark Results
This entire program must be implemented
and tested for error-freeness (accuracy) with
suitable input values. Here, an assessment of
the implemented solution is needed. In this
paper, two metrics defined by Chaaban [2]
are used. Firstly, the execution time in clock
cycles on the Minimax machine. These times
have to be determined using given test-
benches. Secondly, the (weighted) runtime
and program length of the solution. These
values must be calculated using a given
suitable formula. In this context, two
formulas were defined for these metrics to
calculate t_evaluated (runtime) and
n_evaluated (program length).

6.1 Evaluation of the Solution

• reg: number of supplemented
Minimax registers

• se: number of supplemented sign
extension units (0 or 1)

• const: number of added constants
(one "0" and one "1" free)

• alu_add: Penalty sum for all added ALU
commands

• alu_use: Penalty sum the used ALU
commands in the program.

6.2 Runtime in Minimax-Clocks

The weighted runtime of the solution in
Minimax-clocks should be calculated using
the next formula [2]:

6. Benchmark Results
This entire program must be implemented
and tested for error-freeness (accuracy) with
suitable input values. Here, an assessment of
the implemented solution is needed. In this
paper, two metrics defined by Chaaban [2]
are used. Firstly, the execution time in clock
cycles on the Minimax machine. These times
have to be determined using given test-
benches. Secondly, the (weighted) runtime
and program length of the solution. These
values must be calculated using a given
suitable formula. In this context, two
formulas were defined for these metrics to
calculate t_evaluated (runtime) and
n_evaluated (program length).

6.1 Evaluation of the Solution

• reg: number of supplemented
Minimax registers

• se: number of supplemented sign
extension units (0 or 1)

• const: number of added constants
(one "0" and one "1" free)

• alu_add: Penalty sum for all added ALU
commands

• alu_use: Penalty sum the used ALU
commands in the program.

6.2 Runtime in Minimax-Clocks

The weighted runtime of the solution in
Minimax-clocks should be calculated using
the next formula [2]:

6. Benchmark Results
This entire program must be implemented
and tested for error-freeness (accuracy) with
suitable input values. Here, an assessment of
the implemented solution is needed. In this
paper, two metrics defined by Chaaban [2]
are used. Firstly, the execution time in clock
cycles on the Minimax machine. These times
have to be determined using given test-
benches. Secondly, the (weighted) runtime
and program length of the solution. These
values must be calculated using a given
suitable formula. In this context, two
formulas were defined for these metrics to
calculate t_evaluated (runtime) and
n_evaluated (program length).

6.1 Evaluation of the Solution

• reg: number of supplemented
Minimax registers

• se: number of supplemented sign
extension units (0 or 1)

• const: number of added constants
(one "0" and one "1" free)

• alu_add: Penalty sum for all added ALU
commands

• alu_use: Penalty sum the used ALU
commands in the program.

6.2 Runtime in Minimax-Clocks

The weighted runtime of the solution in
Minimax-clocks should be calculated using
the next formula [2]:

Figure 11 (continued)

41Information Technology and Control 2021/1/50

6. Benchmark Results
This entire program must be implemented and tested
for error-freeness (accuracy) with suitable input values.
Here, an assessment of the implemented solution is
needed. In this paper, two metrics defined by Chaaban
[2] are used. Firstly, the execution time in clock cycles
on the Minimax machine. These times have to be
determined using given test-benches. Secondly, the
(weighted) runtime and program length of the solution.
These values must be calculated using a given suitable
formula. In this context, two formulas were defined for
these metrics to calculate t_evaluated (runtime) and
n_evaluated (program length).

6.1. Evaluation of the Solution
 _ reg: number of supplemented Minimax registers
 _ se: number of supplemented sign extension units

(0 or 1)
 _ const: number of added constants (one "0" and one

"1" free)
 _ alu_add: Penalty sum for all added ALU commands
 _ alu_use: Penalty sum the used ALU commands in

the program.

6.2. Runtime in Minimax-Clocks
The weighted runtime of the solution in Mini-
max-clocks should be calculated using the next for-
mula [2]:

t_evaluated= (t_bench * (1 + 0.1*reg + 0.15*se +
0.015*alu_add + 0.05*const))

In this formula, t_bench is the execution speed, which
is the number of the Minimax-clocks that is needed to
complete the running of the solution (program).
In this paper, runtimes for the packet field size 1120
bytes are to be determined in three cases:
1- All packets have a length of (80) bits (i.e., packets
without data).
2- Average data length of (80) bits.
3- Average data length of (144) bits.

6.3. Program Length (Length of the
Algorithm)
The program length (length of the algorithm) of the

solution should be calculated using the next formula [2]:

n_evaluated = n_algorithm + 5*reg + 10*se +
3*alu_use + 5*const

In this formula, n_algorithm is the number of lines of
the algorithm (solution).

6.4. Additional ALU Operations
The penalty of all added (alu_add) and used (alu_use)
ALU commands (additional ALU operations) in the
program can be taken from Table 5.

Table 5
Penalty of additional ALU operations

A
dd

it
io

na
l

A
LU

 o
pe

r-
at

io
ns

SU
B1

IN
C

/D
E

C

S.
L,

 S
.R

A
N

D
, O

R
,

N
O

T

X
O

R

D
IV

C
us

to
m

Penalty
(1..20) 1 4 5 6 8 10 Up to 20

7. Results and Discussion
In this section, some captures of simulation results
(inputs and outputs) are presented and discussed. It
aims to explain how packets are analyzed and pro-
cessed by "packet analysis".
As mentioned early in this paper, the measurement of
the implemented system performance aims to ensure
solution robustness. Therefore, simulation outputs
are collected and reported based on the formula men-
tioned above to detect if the implemented system ro-
bust, weakly robust, or maybe even not robust.
Table 6 shows the execution speeds (runtimes)
t_bench (simulation outputs) of the implemented al-
gorithm (the micro-program) for the three cases men-
tioned above. Here, the packet field size was chosen
1120 bytes (simulation inputs) as it represents a suit-
able size to the memory size of the Minimax machine
used in this paper.
After measuring t_bench, the reg, se, alu_add, const
have to be determined to calculate the t_evaluated
according to the formula mentioned above. Table 7
shows these values.

Information Technology and Control 2021/1/5042

Based on both Tables 6 and 7, the t_evaluated can be
calculated for the three cases, as mentioned above.
Table 8 shows the results of t_evaluated.

Table 6
Runtimes (t_bench) measured for three cases

Benchmark
t_bench

 (runtime in
Minimax-clocks)

All packets have a length of (80) bits
(i.e., packets without data) 4775

Average data length of (80) bits 5760

Average data length of (144) bits 6730

Table 7
Calculating the elements of t_evaluated

Element Number Penalty

Reg: number of
supplemented
Minimax
registers.

6
(FLENGTH,

BITPOS, MEMPOS,
KANNUM, TEMP,

COUNTER)

0.1*6

Se: number of
supplemented
sign extension
units (0 or 1)

1 0.15*1

Const: number
of added
constants (one
"0" and one "1"
free).

5
(14, 16, 31, 32, 2ˆ31) 0.05*5

alu_add:
Penalty
sum for all
added ALU
commands

4
(OR, AND, DIV.A,

SR.B)
0.015*(6+6+10+5)

Table 8
Calculating t_evaluated in three cases

Benchmark t_ evaluated

Case 1: no data (0 bits) 11483

Case 2: data (80 bits) 13852

Case 2: data (144 bits) 16185

After counting n_algorithm, which is the number
of lines of the algorithm (solution), the reg, se,
alu_use, const have to be determined to calculate the
n_evaluated according to the formula mentioned
above. Table 9 shows these values.

Table 9
Calculating the elements of n_evaluated

Element Number Penalty

Reg 6 5*6

Se 1 10*1

Const 5 5*5

alu_use: Penalty
sum the used
ALU commands
in the program.

OR: 5 times
AND: 7 times

DIV.A: 2 times
SR.B: 3 times

3*(5*6+7*6+2*10+3*5)

n_algorithm:
is the number
of lines of the
algorithm
(solution).

75 75

Based on Table 9, the n_evaluated can be calculat-
ed for the three cases as mentioned above. Table 10
shows the results of n_evaluated (same value for the
three cases).

Table 10
Calculating n_evaluated in three cases

Benchmark n_ evaluated

Case 1: no data (0 bits) 461

Case 2: data (80 bits) 461

Case 2: data (144 bits) 461

A comparison with other model implementations
of this special communication protocol is useful. By
making this comparison, it could be noticed that there
is a lot of scope for optimization in the solution pre-
sented in this paper.
It is clear that the machine operations, which are
executed in a continuous loop (e.g., increment and
decrement counters), have to be minimized. Similar-
ly, the loop itself has to be avoided by using more so-

43Information Technology and Control 2021/1/50

phisticated algorithms. Furthermore, constants can
be saved by calculating the required numerical values
from a few integrated constants at runtime. This was
not to done here to avoid further registries.
A comprehensive revision of the presented solution is
to be recommended, because unfortunately, it could
not be started directly with the optimal implementa-
tion, as in most cases. Thus, this paper presents a ful-
ly functional but not optimal solution, which imple-
ments a special communication protocol.

8. Conclusion
Communication protocols can be implemented in dif-
ferent manners. That may be in the system software lay-
er or the hardware layer. In "Protocol Engineering" re-
search, it can be noticed that the implementation phase
of communication protocols is not considered as much
as other phases of the protocol development process.
In this paper, the implementation of a special communi-
cation protocol called "Packet Analysis" was introduced.
The focus was the study of designing a novel methodol-
ogy for defining a model implementation of communi-
cation protocols using micro-programming. This meth-
odology is an applicable approach, in which various
concepts from different research areas were integrated.

Based on that, an algorithm and its flow chart were in-
troduced. It explains all working phases of the "Packet
Analysis" algorithm in detail. This algorithm simu-
lates the communication protocol using micro-pro-
gramming.
Consequently, the development and the evaluation of
the entire system of this research paper were made
using different metrics of system performance. In this
regard, two formal quantitative measures and met-
rics were used to evaluate the implemented protocol/
solution. These metrics were the execution speed
and program length. Here, different given test files
(test-benches) were used as input for the simulator.
Additionally, the analysis of the results led to the con-
clusion that an optimization of the presented solution
can be achieved.
Finally, after the conclusion of this paper was drawn,
a peek at future trends for follow-up research papers
can be given.
In this paper, the idea of designing and implementing
of special hardware architectures was introduced. It
measured and reported the implemented solution/
system performance based on standards. Therefore,
the next step is to continue with the optimization pro-
cess of the presented solution/algorithm so that its
results will be more trustworthy for research.

References
1. Bochmann, G., Gerber, G., Serre, J. Semiautomatic

Implementation of Communication Protocols. IEEE
Transactions on Software Engineering, 1987, 13(9),
989-1000. https://doi.org/10.1109/TSE.1987.233521

2. Chaaban, Y. A Simulator for Micro Programming and
Hardware Simulation Integrated in a Computer Hard-
ware Project. Journal of Engineering Sciences and In-
formation Technology. Arab Journal of Sciences & Re-
search Publishing, 2020, 4(1), 107-121. DOI: 10.26389/
AJSRP.Y201019.

3. Csopaki G., Horváth G. A., Kovács G. Communication
Protocol Implementation in Java. In: International
Workshop on Interactive Distributed Multimedia Sys-
tems and Telecommunication Services (IDMS 2000).
Lecture Notes in Computer Science, (LNCS, volume
1905), Springer, Berlin, Heidelberg, 2000, 254-265.
https://doi.org/10.1007/3-540-40002-8_24

4. Department of Systems and Computer Architecture,
Leibniz University Hannover, Germany. Available from:
https://www.sra.uni-hannover.de/Lehre/WS19/L_
MMM/. Accessed on December 3, 2019.

5. DGH Corp. Modbus RTU Protocol Overview, 2015.
https://www.dghcorp.com/modbus/modbusrtuovr.asp.
Accessed on December 10, 2019.

6. George, B., Raja, T. Implementation of Communication
Protocols in FPGA for Testing of Microcontrollers.
International Journal of Advanced Research in Elec-
trical, Electronics and Instrumentation Engineering,
2015, 4(7), 6001-6009. https://doi.org/10.15662/ijaree-
ie.2015.0407026

7. Hennessy, J., Patterson, D. The 5th Edition of Computer
Architecture: A Quantitative Approach. ISBN: 978-0-
12-383872-8. Elsevier, 2012. Available from: https://
www.bau.edu.jo/UserPortal/UserProfile/PostsAt-
tach/66220_4281_1.pdf

https://doi.org/10.1109/TSE.1987.233521
https://doi.org/10.1007/3-540-40002-8_24
https://doi.org/10.15662/ijareeie.2015.0407026
https://doi.org/10.15662/ijareeie.2015.0407026

Information Technology and Control 2021/1/5044

8. Hoffmann, M. G. Hardware Implementation of Com-
munication Protocols: A Formal Approach. In Pro-
ceedings of the 7th annual symposium on Computer
Architecture (ISCA '80). Association for Computing
Machinery, New York, NY, USA, 1980, 253-263. https://
doi.org/10.1145/800053.801933

9. Ideguchi, T., Mizuno, T., Matsunaga, H. Automatic Im-
plementation of Communication Protocols. ACM SIG-
COMM Computer Communication Review, 1981, 11(1),
40-56. https://doi.org/10.1145/1040114.1040117

10. Irshad, A., Chaudhry, S. A., Shafiq, M., Usman, M., Asif, M.,
Ali, S., Kumari, S. An Improved Biometric Multi-Server
Authentication Scheme for Chang et al.'s Protocol. In-
formation Technology and Control, 2019, 48(2), 211-224.
https://doi.org/10.5755/j01.itc.48.2.17417

11. Jaloudi, S. Communication Protocols of an Industrial
Internet of Things Environment: A Comparative Study.
Future Internet 2019, 11(3), 66. DOI: 10.3390/fi11030066
https://doi.org/10.3390/fi11030066

12. Jun, X., Yan-Jun F. Profibus Automation Technology
and Its Application in DP Slave Development. Pro-
ceedings of IEEE International Conference on Infor-
mation Acquisition, Hefei, 2004, 155-159. https://doi.
org/10.1109/ICIA.2004.1373430

13. Kodinov, G. MySQL Server Blog, News from the MySQL
Server Team. Track and Optimize Server Connec-
tion Methods, 2015. https://mysqlserverteam.com/
track-and-optimize-server-connection-methods/. Ac-
cessed on December 19, 2019.

14. König, H. Protocol Engineering. Springer, Berlin-Hei-
delberg, 2012. https://doi.org/10.1007/978-3-642-
29145-6

15. Lee, C. C., Chang, R. X., Chen, T. Y., Chen, L. An Improved
Delegation-Based Authentication Protocol for PCSs.
Information Technology and Control, 2012, 41(3), 258-
267. https://doi.org/10.5755/j01.itc.41.3.857

16. Merlin, P. A Methodology for the Design and Implemen-
tation of Communication Protocols. IEEE Transac-
tions on Communications, 1976, 24(6), 614-621. https://
doi.org/10.1109/TCOM.1976.1093347

17. MODICON. Modicon Modbus Protocol Reference
Guide. MODICON, Inc., Industrial Automation Sys-
tems, June, 1996.

18. Mostia, W. Introduction to Modbus: Why the Grand-
father of Modern Fieldbus is Still on the Job After 40
Years. In Control Global, 2018, 31(12), 35-39.

19. Nexsens Technology. Sensor Communication Protocols.
https://www.nexsens.com/knowledge-base/x2-data-log-
ger/sensor-interface-x2-data-logger/sensor-communica-
tion-protocols.htm. Accessed on December 15, 2019.

20. Paul, D., Stefan, H., Carsten, P. MySQL 5.0 Certification
Study Guide (MySQL Press), MySQL Press, 2005.

21. Pereira, C., Neumann, P. Industrial Communication
Protocols. Chapter In: Springer Handbook of Auto-
mation, Springer, Berlin-Heidelberg, 2009, 981-999.
https://doi.org/10.1007/978-3-540-78831-7_56

22. PROFIBUS. Comprehensive Protocol Overview. Real
Time Automation, Inc. https://www.rtautomation.
com/technologies/profibus/. Accessed on December 1,
2019.

23. Río, T., Moreno, L., Gracia, A. Implementation of the
Communication Protocols SPI and I2C Using a FPGA
by the HDL-Verilog Language. Research in Computing
Science, 2014, 75(1), 31-41. https://doi.org/10.13053/
rcs-75-1-3

24. Sommerville, I. Software Engineering. Addison-Wes-
ley, Reading, 2000.

25. Truman, T. E., Brodersen, R. W. A Methodology for the
Design and Implementation of Communication Pro-
tocols for Embedded Wireless Systems. Ph.D. Disser-
tation. University of California, Berkeley, 1998. ISBN:
978-0-591-99366-0.

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1145/800053.801933
https://doi.org/10.1145/800053.801933
https://doi.org/10.1145/1040114.1040117
https://doi.org/10.5755/j01.itc.48.2.17417
https://doi.org/10.3390/fi11030066
https://doi.org/10.1109/ICIA.2004.1373430
https://doi.org/10.1109/ICIA.2004.1373430
https://doi.org/10.1007/978-3-642-29145-6
https://doi.org/10.1007/978-3-642-29145-6
https://doi.org/10.5755/j01.itc.41.3.857
https://doi.org/10.1109/TCOM.1976.1093347
https://doi.org/10.1109/TCOM.1976.1093347
https://doi.org/10.1007/978-3-540-78831-7_56
https://doi.org/10.13053/rcs-75-1-3
https://doi.org/10.13053/rcs-75-1-3

