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Some researches have investigated that a Bézier curve can be treated as circular arcs. This work is to propose 
a new scheme for approximating an arbitrary degree Bézier curve by a sequence of circular arcs. The sequence 
of circular arcs represents the shape of the given Bézier curve which cannot be expressed using any other al-
gebraic approximation schemes. The technique used for segmentation is to simply investigate the inner angles 
and the tangent vectors along the corresponding circles. It is obvious that a Bézier curve can be subdivided into 
the form of subcurves. Hence, a given Bézier curve can be expressed by a sequence of calculated points on the 
curve corresponding to a parametric variable t. Although the resulting points can be used in the circular arc 
construction, some duplicate and irrelevant vertices should be removed. Then, the sequence of inner angles are 
calculated and clustered from a sequence of consecutive pixels. As a result, the output dots are now appropriate 
to determine the optimal circular path. Finally, a sequence of circular segments of a Bézier curve can be approx-
imated with the pre-defined resolution satisfaction. Furthermore, the result of the circular arc representation 
is not exceeding a user-specified tolerance. Examples of approximated nth-degree Bézier curves by circular arcs 
are shown to illustrate efficiency of the new method.
KEYWORDS: Bézier Curves, Circular arc Approximation, Analytic geometric of circle, Arbitrary degree.

1. Introduction
In geometric modeling, there are different kinds of 
file formats used in design and production processes. 
In the design process, models are usually designed by 
Bézier curves and B-spline but such models cannot be 
directly used in the production process. Besides the 

vector graphics format used in design applications, 
the raster graphics format is another format applied 
in the production process. Exchanging data between 
processes, shapes must be converted into arcs or lines 
for each supported format because arcs and lines can 
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be used as media for both data form ats: vector and 
raster. Using only line segments, the machine will re-
ceive numerous lines of code in production. Reducing 
lines of code, circular arcs must be used.
In CAD/CAM applications Bézier curves are com-
monly used because it can model complex curves 
with shape preservation during control point reloca-
tion [4]. In the past, only quadratic and cubic Bézier 
curves were used to design because of some limita-
tions. However, some technologies are developed to 
accept arbitrary degree Bézier curves for drawing 
models e.g. the style spline feature in SolidWorks ap-
plication [19]. Thus, investigation in the arbitrary de-
gree of Bézier curves is appropriate to represent the 
model of data exchange between design and produc-
tion process with modern technologies.
In manufacturing industries, Computerized Numeri-
cal Control (CNC) can only support arc and line seg-
ments to cut the workpieces. Typically, a nonlinear 
shape can only be subdivided into a sequence of line 
segments. The method can be called a linearization 
process. Linearizing with the high precision of inter-
polation, it will be dramatically increased by a large 
number of the line segments. To improve the efficien-
cy of the production of CNC machine, a quadratic 
Bézier curve can be approximated by a sequence of 
arc segments [1, 10-12, 14, 20]. The curve fitting using 
linear and circular-arc interpolation was first pre-
sented by L. Piegl [14] in 1986. However, this method 
could only create a continuous path and errors always 
occured at the joints of subcurves. Later, this approx-
imation algorithm was applied to the cases of qua-
dratic Bézier curves [20]. Although convexity and C1 
properties were improved by approximating methods 
[1, 10-12], these methods are only appropriate for the 
quadratic Bézier curve. Therefore, the approximation 
quadratic Bézier curves were used instead of the lin-
earization method.
As regards the cubic Bézier curves representation, 
subdivision method [15] was invented to improve the 
efficiency of approximation and to reduce the num-
ber of arc segments. The subdivision strategies were 
applied by bisection method, developed by J. H. Yong 
et al. [21]. Later, the subdivision algorithm was im-
proved to reduce the number of arcs by A. Riskus [16] 
in 2013. Besides, a Bézier curve could be described as 
arc splines by using Hough transform [8]. Neverthe-
less, the previous circular arc approximation methods 

employ recursive methods with a number of factors 
which cause a high computational time and the tech-
niques to cubic Bézier curves were only restricted.
In curve comparison or image matching, for example 
pattern recognition, curvature [17] is generally used 
as a feature for characterizing shapes. The curvature 
at any point of curve can be defined by the inverse of 
the radius of its osculating circle. Using curvature as 
a shape description, different primitives are identi-
fied with rotation, scaling, and translation invariance. 
Comparing a raster image (bit-mapped image) to a 
vector image by extracting curvature as features [7], 
the vector-to-raster conversion (rasterization) can be 
discarded. Avoiding rasterization, vector images can 
keep various merits such as scalability, smoothness 
and continuity. Nonetheless, there are few methods 
used to extract curvatures suitably for simple, fast 
and robust implementation.
Besides vector graphics formats used in applications, a 
sequence of points or raster images can be used as an 
input in industries for example trajectory robot arm. 
A sequence of points is approximated by arcs for sup-
porting machines in production and movement of ro-
botic automation. An optimal arc spline approximation 
was presented by G. Maier [9] in 2014. This method 
computes a SMAP (smooth minimum arc path) to con-
struct the path of given point sequences with user-de-
fined tolerance. Approximating path of robot move-
ment, algorithm for planar movement was proposed in 
[2]. The path of robot movement was approximated by 
using three points to define a circle technique. Later in 
2017, this technique was improved to apply in spatial 
movement [3]. Moreover, the velocity of the movement 
is increased while the size of code can be reduced.
This paper focuses on circular arc approximation 
of nth-degree Bézier curves. The key parameter used 
in this study is linear interpolation of the equal-arc 
length portions (inscribed regular polygon) on the 
curve segments. Regarding the merit of polygon, cir-
cular arcs can be approximated that proved in [22]. 
Thus, the inscribed regular polygons are treated as 
circular arcs on Bézier curve segments. The method 
to approximate Bézier curves by a sequence of arc 
splines with inscribed regular polygon was proposed 
in [13]. The cubic and quintic monotonic Bézier 
curves were approximated. In this research, the algo-
rithm is improved for approximating arbitrary degree 
Bézier curves.



215Information Technology and Control 2021/2/50

Section 2 proposes a method of circular arcs approx-
imation of an arbitrary degree Bézier curve by using 
geometric analysis of a circle. As a result, a set of cir-
cular arcs for a Bézier curve approximation can be 
obtained. Some examples of circular arc approxima-
tion of arbitrary degree Bézier curves are shown in 
Section 3.

2. Circular Arc Approximation for a 
Bézier Curve
This section presents an approximation method for 
a Bézier curve construction by circular arcs. Em-
ploying geometric analysis, a sequence of points on 
a circle has been calculated with the same arc length. 
However, a Bézier curve can be represented in Bern-
stein basis function by 

0
( ) ( ),

n
n

i i
i

t B t
=

= ∑B b

where 0{ }n
i ib = , are the Bézier control points, and ( )n

iB t
is the Bernstein polynomial of degree n defined by
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Definition 1. (Sampled points on a Bézier curve). 
Given a Bézier curve of degree n, a sequence of control 
points ip , 0 i N≤ ≤ , consists of the points on the curve 
by substituting each parameter it  into Bézier curve 

( )tB . Then,

( )i ip t= B (1)

where / .it i N=
For any arc lengths of ( )tB  from a to b, point-based 
methods applied by Simpson's rule [5] is used to esti-
mate the arc length of a Bézier curve as follows:

[ , ] 0 1 2

2 0 0 1 2

1( ( ) | ) (| 3 4 |
6
4 | | | 4 3 |),

a bL B t p p p

p p p p p

≈ − + −

+ − + − +
(2)

where 0 2( ), t , ,i ip t a b t= = =B and (( ) / 2).ip a b= +B
Let is , 0 i N≤ ≤ , be the arc length from 0p to ip  satis-
fying 0 1 2 Ns s s s< < < < , where 0 0s = and Ns  is the 
length of Bézier curve. For a large number of N , the 

value of is is gradually increased. Accordingly, is can 
be used as the domain for sampling curves by uniform 
arc length. As a result, the domain of Bézier curves is 
changed from parameter t  to space .s
Definition 2. (Equal-length sampled points). Given a 
sequence of Bézier sampled points, denoted by 0{ }N

i ip = , 
a vertex sequence on such a Bézier curve, denoted by 

0 1 2{ , , , , }MV v v v v=  , can be computed from sampling 
Bézier curve into M equal-length arc portions.
By Equation (2), the arc length of each curve segment 
from 0v  to jv  is defined by

0
| jv

j vL L= ,

where 0 j M≤ ≤ . Then, the equal-arc length portions 
must satisfy

1 1 .j j j jL L L L− +− = −

Any uniform arc vertices jv can be directly calculat-
ed by assigning parametric variables, denoted by it . 
Then,

( )j iv t= B ,

where i  is the index of arc length is at point ( )itB and 
it is satisfied by the condition | | 0.j iL s− →
In this paper, uniform arc length vertices are used to 
detect circular arcs. Such a sequence of vertices will 
be linearly interpolated to construct an inscribed 
polygon in a curve. If the sides of a polygon are abun-
dant, the polygon is approaching a curve. It can be 
implied that the error of linear interpolation depends 
on a number of sampled points. The more sampled 
points, the less error of linear interpolation.
Lemma 1. A Bézier curve ( )tB  has an appropriate 
number of uniform arc length sampled points, denoted 
by M , that is satisfied the given error of linear inter-
polation, called tolerance (τ ) if

| ( ) | , 0 1
8

B tM t
τ
′′

= ≤ ≤ , (3)

where t  is a parameter.
Proof. A linear interpolating curve ( )tC  in an interval 
[ , ]a b  of ( )tB  is given by

( ) ( )( ) ( ) ( ).b at a t a
b a
−

= + −
−

B BC B (4)
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It has an error of interpolation, denoted by 
| ( ) ( ) | .t tε = −B C By Rolle's theorem, it is obtained:

( )( ) | ( ) |, .
2

t a t b B t a t bε − − ′′= ≤ ≤  (5)

In calculus, an error ε  can be maximized and sim-
plified in terms of interval width, .h b a= −  The max-
imum ε  can be considered by τ  and defined as fol-
lows:

2

| ( ) | .
8
h B tτ ′′=  (6)

The relationship between width of each segment, de-
noted by h , and number of sampling points, denot-
ed by M , inversely varies to each other as 1/ .M h=  
Then, it can be concluded that

2

1 | ( ) | .
8

B t
M

τ ′′=  (7)

Therefore,
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B tM
τ
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

By Lemma 1, the number of sampled points can be 
evaluated adaptively due to the user defined toler-
ance. Beside tolerance, shape and curve resolutions 
are also affected by interpolation error. However, 
shape and curve resolution depend on a set of control 
points that can be expressed in term of ( )tB . Hence, 
Lemma 1 can be applied on any shapes and resolu-
tions of Bézier curves.
Definition 3. (Representation of Bézier subcurves). 
A Bézier curve defined by a sequence of vertices, 

0 1 2{ , , , , }MV v v v v=  , can be subdivided into a se-
quence of subcurves, denoted by 0 1 2 1{ , , , , }M −q q q q . 
Then, jq , where 0 1j M≤ ≤ − , is a Bézier subcurve 
represented by vertices, jv  and 1jv + , and edge, denoted 
by je .
By Definition 2, a vertex sequence has equal arc-
length portions. Considering a set of edges, denoted 
by 0 1 2 1{ , , , , }ME e e e e −=  , an edge je , connecting be-
tween two vertices jv  and 1jv + , can be acted as Bézier 
subcurves. Therefore, all edges are equal arc length. 
After choosing points on a Bézier curve, the sam-
pled points, denoted by 0{ }M

i iv = , divide the curve into 

M  subcurves. Let subcurve iq  be a part of the Bézi-
er curve ( )tB  with vertices iv  and 1iv + . The inner 
angle, ka , between subcurves, 1kv − , and kv , where 

1,2, , 1k M= −  is the cosine of this angle formed by 
the vectors 1k kv v−


and 1.k kv v +


 Consequently, the inner 

angle ka  can be calculated

1 1 1

1 1

cos .k k k k
k

k k k k

v v v v
a

v v v v
− − +

− +

 ⋅ =
 
 

 

  (8)

Definition 4. (Regular polygon inscribed in Bézier 
subcurves). By linear interpolation, a sequence of sub-
curves, denoted by 1 2{ , , , }i i i jq q q q+ +  , has a sequence 
of edges 1 2 1{ , , , , }i i i je e e e+ + − , where 1 .i j M≤ < ≤ Such 
sequence of subcurves has an inscribed regular polygon 
if 1 2 1.i i ja a a+ + −= = =

Definition 5. (Bézier incidence matrix). Suppose that 
0 1 2, , , , Mv v v v are the vertices and 0 1 2 1, , , , Me e e e −  

are the edges of curve. Then, the incidence matrix with 
respect to this ordering of E  and V  is the ( 1)M M× +
matrix [q ]ijQ = , where 

1, when  is incident with 
0. otherwise

i j
ij

e v
q = (9)

Given a sequence of vertices 0 1 2{ , , , , }Mv v v v and a 
sequence of edges 0 1 2 1{ , , , , }Me e e e −  are correspond-
ing to the Bézier curve portions, an incidence matrix 
of Bézier curve can be represented by

Considering the incidence matrix, the adjacent edges 
share a joint point joining two subcurves. Using the 
incidence matrix to detect circular arcs, a given se-
quence of edges will be classified as a circular arc if a 
regular polygon can be inscribed in a given sequence 
-- satisfied Definition 4.
Definition 6. (Interior vertices on circular path). Let 

1ie − , ie , and 1ie +  be a sequence of edges on a Bézier 
curve portion. A pair of edges, 1ie −  and ie , is connected 
by vertex iv . Another pair of edges, ie and 1ie +  is con-
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nected by vertex 1iv + . Both vertices iv  and 1iv +  are the 
interior vertices on a circular path if inner angles ia  
and 1ia +  are equal.
Definition 7. (Incidence matrix Transformation). Let 

ia  and 1ia +  be inner angles at vertices iv  and 1iv + , re-
spectively. Edges ie  and 1ie + will be a circular path if 
inner angles ia  and 1ia +  are equal. Then, the incidence 
matrix will be transformed by combining rows of edges 

ie and 1ie +  to circular path kc  defined by

( 1)kj ij i je e += ∨c ,

where 0 .i M≤ ≤

Definition 8. (Circular path matrix). The m circular 
paths of an incidence matrix with 1M +  vertices can 
be defined as the ( 1)m M× +  boolean matrix { }ijC c= , in 
which the element in the ith row and the jth column is 1 if 
the ith circular path contains jth vertex; otherwise, ijc  is 0.
Demonstrating incidence matrix with interior verti-
ces, let 0 1 2 3 4 5{ , , , , , }v v v v v v  be a sequence of vertices 
and 0 1 2 3 4{ , , , , }e e e e e  be a sequence of edges in Bézier 
curve portion. The incidence matrix of such a Bézier 
curve can be illustrated by

Assumes a sequence of inner angles to be a set 
1 2 3 4{ , , , }a a a a  where 1 2a a=  and 3 4a a= . First, two 

edges 0e  and 1e  are combined into a circular path 0 .c  
Then, incidence matrix is transformed as follows:

Considering inner angle 1a  and 2a  at vertices 1v and 2v  
respectively, the edge 2e  will be merged with circular 
path 0c  and incidence matrix is transformed as follows:

The next step of transforming the incidence matrix, 
inner angles 2a and 3a are considered. An incidence 
matrix will not be changed because inner angles 2a  
and 3a  are not equal. The last pair of inner angles 3a
and 4a  are equal so the incidence matrix will be com-
bined 3e  and 4e  to a new circular path as follows:

As a result of incidence matrix transformation in this 
demonstration, two circular paths are generated by 
merging edges with the same inner angles. Therefore, 
there are two circular arcs in such a Bézier curve por-
tion. The first circular arc contains a sequence of ver-
tices 0 1 2 3{ , , , }.v v v v  Other circular arcs contain only a 
sequence of vertices 3 4 5{ , , }.v v v  
Theorem 1. A Bézier curve can be expressed by a se-
quence of circular arcs, denoted by 1 2{ , , , c }mc c  , 
where kc  can be constructed by a sequence of edge kE  
and .m M<  Then, each circular arc, the following con-
ditions hold true.
 _

kc  consists of edges kie  that are incident with the 
same set of vertices .kjv

 _ A circular arc kc  is a representative for a 
sequence of edges kE  if and only if ( 1)ki k ia a +≈  and 

( 1) ( 1) ( 2) .ki k i k i k iv v v v ε+ + +− →

Proof. Suppose 1i−q , iq , and 1i+q  are consecutive sub-
curves with equal arc length. The line segment 1ie − , ie , 
and 1ie +  are linearly interpolated in each subcurves. If 
all line segments have equal length and inner angle are 
the same, then 1 1{ , , }i i i− +q q q  can be represented as cir-
cular arc with radius R  as demonstrated in Figure 1.
For evaluating 1 1{ , , }i i i− +q q q  as a circular arc, all points 
on these subcurves must be points on a circle with ra-
dius .R  Considering maximum error ε  between ie  
and iq , it can be determined that

q cos .
2i ie R R θε  = − = −  

 

The maximum error can be reduced by bisection 
subcurves as shown in Figure 2. By bisection of sub-
curves, new subcurves, (1)

iq , are subdivided and new 
line segments, ie , are interpolated. Furthermore, the 
maximum error is reduced into
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(1) (1) (1) cos .
4i iq e R R θε  = − = −  

 

After bisectioning subcurves times, the maximum er-
ror can be defined as follows:

( ) ( ) ( )
1cos .

2
n n n

i i nq e R R θε +

 = − = −  
 

(10)

Thus,

( )
1lim lim cos 0.

2
n

nn n
R R θε +→∞ →∞

 = − = 
 

Figure 1 
A sequence of edges as circular arc and its inscribed 
polygon segment

3. Algorithm and Examples
1. Algorithm for Circular Arcs Approximation
The algorithm uniformly chooses the points on an 
nth-degree Bézier curve by two techniques by time 
parameter t  and space .s  For the first calculation, 
a great number of generated points, denoted by N , 
is used to compute an arc length array, 0{ } .N

i is =  On 
the other hand, the input curve is reformed into sub-
curves 1{ }M

i iq = , where M N< , with equally uniform 
arc length. These subcurves are represented in form 
of vertices, 0{ }M

i iv = , and edges, 1
0{ }M

i ie −
= , where iv  is an 

endpoint of each subcurve and ie  connects two verti-
ces. Then, an nth-degree Bézier curve can be expressed 
by the incidence matrix .Q  Furthermore, inner an-
gles, 1

1{ }M
i ia −

= , of each subcurve are calculated and 
rounded into an integer. Considering each pair of in-
ner angles 1ia −  and ia  incidence matrix will be trans-
formed if both inner angles 1ia −  and ia  are equal. 
After transforming the incidence matrix for 1M −  
times, a sequence of circular arcs is represented as a 
row of the incidence matrix. The algorithm is shown 
in Algorithm 1.

Figure 2 
The new sequence of edges with subcurve bisection

2. Examples
For the convenience of estimation, the algorithm can 
be implemented with screen coordinate. Consider-
ing an initial number of segments N , all distances 
among adjacent points must be less than a point pixel 
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to generate the continuous arc length parameter .is  
The maximum distance between two adjacent points 
is actually the endpoints of the curve so we must ap-
proximate 1p  which is next to 0p  (when 0p  is the first 
control point 0b ).
Suppose that 1t  is the corresponding parameter 1p , 
satisfied 1 1( ).p t≈ B  Then, it is obtained that

1

1 .N
t

=

By Newton Raphson's method [18], the parameter 1t  
can be approximated by

0 1 0
1 0

0 1 0

( ( ) ) ( )
,

[( ( ) ) ( )]
t p t

t t
t p t

′−
= −

′ ′−
B B
B B

(11)

where 0t  is an initial condition given by the user.
Evaluating the similarity between the given original 
curve and the calculated curve, both curves are scan 
converted into two sets of points. After performing 
scan conversion of a given Bézier curve, such a curve 
is represented by a sequence of points. The maximum 
distance between two adjacent points must be less 
than or equal to one pixel on the screen coordinate. 
Then, all points are rounded and combined all du-
plicate points. Employing the scan conversion for an 
approximated curve, Bresenham's circle algorithm 
[6] is adopted to render points on each circular arc on 
the Bézier path. The distance error determination of 
a point on the given curve and a corresponding point 
on the calculated curve is considered and compared 
in Table 1.
Example  1. Given a 5th-degree Bézier curve ( )tB  
with control points 0 (0,600)=b , 1 (300,600)=b , 

2 (300,900)=b , 3 (600,900)=b , 4 (600,0)=b , and 
5 (900,0)=b (see Figure 3). A sequence of circular arcs 

approximates ( )tB  with the given tolerance 1.τ =  
The curve of ( )tB  can be approximated by 25 circular 
arcs (as shown in Figure 4). The maximum error dis-
tance is 1.41421 pixels, and the average error distance 
is 0.26925 pixels.
Example  2. An 8th-degree Bézier curve ( )tB  with the 
control points 0 (0, 200)=b , 1 (50,0)=b , 2 (450,250)=b , 

3 (475,400)=b , 4 (250,450)=b , 5 (25,400)=b , 
6 (50,250)=b , 7 (450,0)=b , and 8 (500,200)=b  (see 

Figure 5) is considered. Circular arcs approximate 
( )tB  with the given tolerance 1.τ =  The curve of ( )tB  

Figure 3 
A 5th-degree Bézier curve

Figure 4 
A circular arcs approximation curve
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is approximated by 43 circular arcs (see Figure 6). 
The maximum error distance is 1.41421 pixels, and 
the average error distance is 0.170438 pixels.

Figure 5 
An 8th-degree Bézier curve

Figure 6 
A circular arcs approximation curve

6 (205,252)=b , 7 (84,168)=b , 8 (43,226)=b , and 
9 (58,261)=b  (see Figure 7). Circular arcs approxi-

mate ( )tB  with a given tolerance 1.τ =  The curve of 
( )tB  is generated by 33 circular arcs (see Figure 8). 

The maximum error distance is 1.0 pixel, in other 
words, the average error distance is 0.235443 pixels.

Figure 7 
A 5th-degree Bézier curve

Figure 8 
A circular arcs approximation curve

Example  3. A 9th-degree Bézier curve ( )tB  with 
the control points 0 (175,107)=b , 1 (220,35)=b , 

2 (114,0)=b , 3 (27,18)=b , 4 (33,126)=b , 5 (146,142)=b , 
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Example 4. When considering an 14th-degree Bézier 
curve, ( )tB  with random control points 0 (0,0)=b , 

1 (100,100)=b , 2 (300,100)=b , 3 (310,200)=b , 
4 (110,250)=b , 5 (60,450)=b , 6 (160,500)=b , 
7 (400,500)=b , 8 (640,500)=b , 9 (740,450)=b , 
10 (690,250)=b , 11 (490,200)=b , 12 (500,100)=b , 
13 (700,100)=b , and 14 (800,0)=b  (see Figure 9), this 

example will compute circular arcs that approxi-
mates ( )tB  with the given tolerance 1.τ =  The curve 
of ( )tB  is approximated by 47 circular arcs (see Fig-
ure 10). The maximum error distance is 1.41421 pix-
els, and the average error distance is 0.302386 pixels.
When considering the circular arc approximation 
for Bézier curve with screen coordinate, a major er-
ror is found after the rounding process. For the con-
venience of clustering subcurves, all inner angles ia  
are rounded to the nearest multiple of a given value. 
In addition, the scan conversion process can also in-
crease the error from rounding.
If Bézier curve is approximated by circular arcs, then 
there may be some unpredicted constraints, for ex-
ample, the degree of the Bézier curve, the inflection 
point investigation, and the resolution of the curve. 
To improve the approximation, the analytic geometry 
of a circle is applied by classifying the regular polygon 
segment on each set of subcurves.

Figure 9 
An 14th-degree Bézier curve

Table 1 shows the maximum and mean errors of the 
circular arcs approximation using the proposed 
method. Accordingly, Bézier curves can be approxi-
mated with in a user-specified tolerance band.

Figure 10 
A circular arcs approximation curve

Table 1
The maximum and mean errors of the circular arc 
approximation via our proposed algorithm

Type of 
Curve

Number of 
Segments 

Maximum
Error

Average
Error

Degree-5 25 1.41421 0.269250 

Degree-8 43 1.41421 0.170438

Degree-9 33 1.00000 0.235443

Degree-14 47 1.41421 0.302386

The determination of a Bézier curve can be rep-
resented by a sequence of circular arcs on a raster 
graphic display. Applying analytic geometry of a 
circle, a sequence of Bézier subcurves, which can be 
inscribed by a regular polygon, can be classified as 
a circular arc. The relationship among vertices and 
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edges can be shown as an incidence matrix. It can be 
transformed into a simpler form by row elimination 
with the condition that the inner angles are equal. 
Hence, a sequence of circular arcs is simplified. As 
a result, each row of the final transformation matrix 
represents a circular arc of a given Bézier curve. Ul-
timately, a given Bézier curve can be expressed in 
terms of these circular arcs.

4. Conclusions
This paper presents a simple and elegant algorithm 
used for converting an arbitrary degree of Bézier 
curve into a collection of consecutive circular arcs. 

Moreover, this algorithm can also be applied to 
the input cases of hand-drawn curves. This is very 
useful for contemporary input devices, e.g., touch-
screen or pen-based devices. This approximate algo-
rithm is not only novel and easy to implement in any 
programming language but also adaptively generates 
the various results according to the user-defined 
resolutions. If the given input is very detailed, the 
result will be more accurate. Nonetheless, the com-
putational complexity of the operation is quadratic 

2( ( )).O n  The soundproof for the correctness of our 
algorithm is also provided in this paper. Since the 
matrix formulation is adopted to use in this approx-
imation process, the formal and clear proof for each 
step of the transformation is explicitly well-defined.
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