
Information Technology and Control 2020/4/49530

Fractals Analysis and 
Control for a Kind of 
Three-Species Ecosystem 
with Symmetrical Coupled 
Predatory Behavior 

ITC 4/49
Information Technology  
and Control
Vol. 49 / No. 4 / 2020
pp. 530-540
DOI 10.5755/j01.itc.49.4.25128

Fractals Analysis and Control for a Kind of Three-Species Ecosystem with 
Symmetrical Coupled Predatory Behavior 

Received 2020/01/20 Accepted after revision 2020/09/25

    http://dx.doi.org/10.5755/j01.itc.49.4.25128 

HOW TO CITE: Wang, D., Zhao, S., Sun, T., Zhang, Y. (2020). Fractals Analysis and Control for a Kind of Three-Species Ecosystem with 
Symmetrical Coupled Predatory Behavior. Information Technology and Control, 49(4), 530-540. https://doi.org/10.5755/j01.itc.49.4.25128

Corresponding author: wangda@sdnu.edu.cn

Da Wang, Shicun Zhao, Tianwen Sun, Yi Zhang
Business School of Shandong Normal University; Shandong Normal University;  
Str. 88# East Wenhua, Jinan, P. R. China; phone: +133 6105 9592; e-mails: wangda@sdnu.edu.cn

The Lotka-Volterra model plays an important role in the research area of population biology. This work pres-
ents the analysis of dynamical behaviours of a kind of three-species Gause-Lotka-Volterra (GLV for short) sys-
tem from the viewpoint of fractals. First, the definition of Julia set which describes the initial distribution rule 
of the three species’ densities is introduced. Second, the gradient control method which contains both giant pa-
rameter and state feedback is applied to realize the boundary control of the initial fractals area of three coexist-
ing species. Third, we consider the upper bound of the controlled Julia set from a kind of weakly-coupled GLV 
system, i.e. NPZsystem, by analysing the growth pattern of the initial species. Finally, the nonlinear coupling 
terms are designed to realize the synchronization of two Julia sets, with the result that the dynamic behaviors 
of the controlled system can be guided to an ideal one. Numerical examples are included to verify the conclu-
sions of the theoretical investigations.
KEYWORDS: Fractals, Ecosystem, Control, Julia set.



531Information Technology and Control 2020/4/49

1. Introduction
In the mid-1920s, Lotka and Volterra [15, 28] pro-
posed a pair of differential equations describing the 
competition between two species, which are now re-
garded as the theoretical foundation of modern ecolo-
gy theory. Since proposed, the variants of Lotka-Volt-
erra system and their applications can be founded in 
diverse areas of biology and even economics [9, 10, 12, 
17, 18, 24, 26, 37]. The system were involved in several 
types from the early ordinary differential equations 
[10] to the later partial differential equations [9, 12, 
31, 32]. In recent years,time-delay [17, 18] was consid-
ered in the research of  ecosystem aiming to describe 
the populations growth more effectively. As a kind of 
nonlinear equations, the research contents of Lot-
ka-Volterra system involved in some classical nonlin-
ear phenomena such as stability of fixed points [1, 3, 
5], chaos [1] and bifurcations [4, 14, 38]. Detailed anal-
ysis about the chaotic and bifurcation behavior were 
illustrated via both analytic and numerical methods 
in [17, 18]. The Hopf bifurcations about a kind of pred-
atorprey model with Michaelis-Menten functional 
response were systemically investigated in [4, 14, 38]. 
By applying linear stability analysis method, the au-
thors investigated the conditions of Hopf bifurcation 
and Turing instability for a kind of diffusive preda-
tor-prey model [31] and a spatial plankton model [32]. 
Among these research processes, the multi-species 
models have attracted the scholars’ attention. One 
of the multi-species models is GLV equation [20, 22] 
which consists of n differential equations describing 
the dynamics of n  competing populations. GLV mod-
el is denoted as competing populations. GLV model is 
denoted as

1
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where Ni(t) is the number of individuals in the ith 
population at time t, ri is growth rate of the ith pop-
ulation, and aij is competition coefficient  measuring 
how the j th species affects the growth rate of the ith 
species. Robert et al. [20] proposed that the simplest 
JLV equations with even the ideal symmetry predato-
ry behavior could exhibit some complex and nonlin-
ear features.

In view of the discrete feature of population evolution 
that passes from one generation to the next, the dis-
crete systems in some sense are more accurate than 
the continuous system in describing the real biologi-
cal process [6, 23, 39].
In [7], the corresponding discrete version of system 
(1) was given by making the symmetrical assump-
tions about the predatory behavior as follows:
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where 𝑁𝑁��𝑡𝑡� is the number of individuals in the 𝑖𝑖th pop-
ulation at time , 𝑟𝑟�is growth rate of the ith population, 
and  α��  is competition coefficient  measuring how the 

th species affects the growth rate of the th species. 
Robert et al. [20] proposed that the simplest  equa-
tions with even the ideal symmetry predatory behavior 
could exhibit some complex and nonlinear features. 

In view of the discrete feature of population evolu-
tion that passes from one generation to the next, the dis-
crete systems in some sense are more accurate than the 
continuous system in describing the real biological pro-
cess [6, 23, 39]. 

In [7], the corresponding discrete version of system 
(1) was given by making the symmetrical assumptions 
about the predatory behavior as follows: 

𝐹𝐹: � �
𝑥𝑥��� � 𝑥𝑥� � �𝑥𝑥��1 − 𝑥𝑥� − α𝑦𝑦� − β𝑧𝑧��,
𝑦𝑦��� � 𝑦𝑦� � �𝑦𝑦��1 − β𝑥𝑥� − 𝑦𝑦� − α𝑧𝑧��,
𝑧𝑧��� � 𝑧𝑧� � �𝑧𝑧��1 − α𝑥𝑥� − β𝑦𝑦� − 𝑧𝑧��

     

�2� 
where x�, y�, z� are the densities of the three species in 
the n th generation and R  represents the linear growth 
rates.α�,� � α�,� � α�,� � � and α�,� � α�,� � α�,� � β  
represent the symmetrical predatory behavior. The sta-
bility and bifurcations of fixed points in system were an-
alytically and numerically proposed in [7]. The extension 
of system (2) to 4D and its applications research can be 
seen in [2, 16]. 

Note that for both continuous and discrete version 
of Lotka-Volterra models, the researches mainly focused 
on the dynamical behavior of the equilibrium points. In 
other words, these researches emphatically studied how 
the system runs when the initial point is given. It is clear 
that the attractive domain, which shows some fractal 
characteristics [13, 41, 42], is a set of the initial points of 
the system which ensures that the trajectories from this 
set converge to some attractor. Thus the fractals attrac-
tive domain is the key to influence the persistence and 
extinction of the population. Actually, some works have 
been done by researchers to addressed the problem about 
the fractals analysis and control for discrete Lotka-
Volterra models. In [27], Sun and Zhang gave the defi-
nition of Julia set for a kind of discrete Lotka-Volterra 
system, and realized its control via feedback control and 
synchronization methods. Some follow-up studies about 
SIRS model [21] and fractional case [35, 36] were suc-
cessively given. Nevertheless, there are still some defi-
ciencies about the boundedness analysis of the Julia set 

of ecosystems. Besides, to our best knowledge, 
overall previous work on fractals analysis of eco-
systems both have not explicitly addressed the is-
sue about the multi-species like system (2). 

Motivated by the significative results above, 
this work focuses on the fractals analysis and con-
trol of system (2). The main novelties of this work 
are summarized as follows: (i). Extend the fractals 
research on ecosystems to three species case. (ii). 
A preliminary frame to estimate the boundedness 
of the Julia sets of multi-species system with chain 
coupled predatory behavior is given. 

The outline of this paper is given as below. In 
Section 2, the definition and control of the Julia 
sets of system (2) are proposed. A preliminary 
study on the boundedness estimation is also given 
in Section 2. Section 3 illustrates the synchroniza-
tion process of two Julia sets with different param-
eters. The summary of this present work and pro-
spect of the future investigations are given in Sec-
tion 4. 

2. Definition and Control of the 
Julia Sets from Three-Species 
GLV System 
As one of the important branches of fractals, 

Julia set has attracted the scholars’ attentions with 
respect to the planar case [19, 25, 33] and the spa-
tial case [29, 30, 34]. Julia sets J�f� is defined as the 
closure of repelling periodic points of a complex 
function. That is, the trajectories of points in Julia 
set remain bounded under iterations of f. Particu-
larly, if f has attractive point w, the Julia set can be 
defined as J�f� � �A�w�, where A�w� is the attrac-
tive domain of the attractive fixed point w. In [27], 
Sun and Zhang has introduced the definition of 
Julia set for a 2D discrete Lotka-Volterra system. 
Then the definition of Julia set 𝐽𝐽�𝑓𝑓� of system (2) 
is given as follows: 

Definition 2.1. Set ψ� � �x�, y�, z�� as the initial 
densities of the three species. The filled Julia set of 
system (2) is defined as K�F� such that  

��𝐹𝐹� � ���|𝑓𝑓������� 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟 ���𝑟𝑟�𝑟𝑟��. 
While Julia set of system (2) is the boundary of 
K�F�, i. e. J�F� � �K�F�. 
According to the definition 2.1, the trajectories of 
initial points and the stability of the fixed points [8] 
play the key roles for the region of Julia set J�F�. 
Thus the control strategy of Julia set aims to 
change the trajectories by adding some control 
items, with result in making the unstable fixed 
points become local stable and making the points 
in controlled systems come into its filled Julia set. 
For system (2), its fixed points �x∗, y∗, z∗� can be 
summarized into the following eight cases at most:

,
(2)

where xn, yn, zn are the densities of the three species in 
the nth generation and R represents the linear growth 
rates. α1,2 = α2,3 = α3,1 = β and α2,1 = α3,2 = α1,3 = β   represent 
the symmetrical predatory behavior. The stability and 
bifurcations of fixed points in system were analytical-
ly and numerically proposed in [7]. The extension of 
system (2) to 4D and its applications research can be 
seen in [2, 16].
Note that for both continuous and discrete version 
of Lotka-Volterra models, the researches mainly fo-
cused on the dynamical behavior of the equilibrium 
points. In other words, these researches emphatical-
ly studied how the system runs when the initial point 
is given. It is clear that the attractive domain, which 
shows some fractal characteristics [13, 41, 42], is a 
set of the initial points of the system which ensures 
that the trajectories from this set converge to some 
attractor. Thus the fractals attractive domain is the 
key to influence the persistence and extinction of the 
population. Actually, some works have been done by 
researchers to addressed the problem about the frac-
tals analysis and control for discrete Lotka-Volterra 
models. In [27], Sun and Zhang gave the definition 
of Julia set for a kind of discrete Lotka-Volterra sys-
tem, and realized its control via feedback control and 
synchronization methods. Some follow-up studies 
about SIRS model [21] and fractional case [35, 36] 
were successively given. Nevertheless, there are still 
some deficiencies about the boundedness analysis 
of the Julia set of ecosystems. Besides, to our best 
knowledge, overall previous work on fractals analysis 
of ecosystems both have not explicitly addressed the 
issue about the multi-species like system (2).
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Motivated by the significative results above, this work 
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rized as follows: (i). Extend the fractals research on 
ecosystems to three species case. (ii). A preliminary 
frame to estimate the boundedness of the Julia sets of 
multi-species system with chain coupled predatory 
behavior is given.
The outline of this paper is given as below. In Section 
2, the definition and control of the Julia sets of system 
(2) are proposed. A preliminary study on the bound-
edness estimation is also given in Section 2. Section 
3 illustrates the synchronization process of two Julia 
sets with different parameters. The summary of this 
present work and prospect of the future investiga-
tions are given in Section 4.

2. Definition and Control of the 
Julia Sets from Three-Species GLV 
System
As one of the important branches of fractals, Julia set 
has attracted the scholars’ attentions with respect to 
the planar case [19, 25, 33] and the spatial case [29, 30, 
34]. Julia sets J(f ) is defined as the closure of repel-
ling periodic points of a complex function. That is, the 
trajectories of points in Julia set remain bounded un-
der iterations of f. Particularly, if f has attractive point 
w, the Julia set can be defined as J(f ) = ∂A(w), where  
A(w) is the attractive domain of the attractive fixed 
point w. In [27], Sun and Zhang has introduced the 

Figure 1
(a).The spacial Julia set J(F) with parameters R = 1,  α = 0.4745,  β = 3. (b). The 2D filled slice K(F) with z0= 0. (c). The  2D 
filled slice  K(F) with x0 = 0.01. (d). the local enlarge of (c) in which we select point  A = (0.22, 0.19) ∈ K(F) and point B = (0.23, 
0.195) ∉ K(F)

(a) (b)

(c) (d)
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Figure 2 
The trajectories of point A of Figure 1 in: (a). 20 steps.  
(b). 40 steps. (c). 100 steps

Figure 3 
The trajectories of point B of Figure 1 in: (a). 20 steps.  
(b). 40 steps. (c). 91 steps

(b) (b)

(c) (c)
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Obviously, we hope that the three groups can coex-
ist sustainedly in the actual biological process. Thus, the 
control process of the J�F� focuses on the stability of 
“coexistence point'' � �
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(4) 
Based on the analysis above, J�F� is the at-

tractive domain of the attractive fixed point. Thus 
by adding the control items, the Julia set, from 
which the densities of three species remain stable, 
can be controlled via affecting the iterative trajec-
tories of initial points in system (4),meanwhile re-
alizing the stability of the fixed point. Consider 
the Jacobian matrix of system (4) at the fixed 
point 
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definition of Julia set for a  2D discrete Lotka-Volterra 
system. Then the definition of Julia set J(f ) of system 
(2) is given as follows:
Definition 2.1. Set ψ0 = (x0, y0, z0) as the initial densi-
ties of the three species. The filled Julia set of system 
(2) is defined as K(F) such that 

  

scholars’ attention. One of the multi-species models is 
GLVequation [20, 22] which consists of  differential 
equations describing the dynamics of  competing pop-
ulations. 𝐺𝐺𝐺𝐺𝐺𝐺  model is denoted as competing popula-
tions. 𝐺𝐺𝐺𝐺𝐺𝐺 model is denoted as 

1

( ) ( )[1 ( )],
n

i
i i ij j

j

dN t r N t a N t
dt 

           (1) 

where 𝑁𝑁��𝑡𝑡� is the number of individuals in the 𝑖𝑖th pop-
ulation at time , 𝑟𝑟�is growth rate of the ith population, 
and  α��  is competition coefficient  measuring how the 

th species affects the growth rate of the th species. 
Robert et al. [20] proposed that the simplest  equa-
tions with even the ideal symmetry predatory behavior 
could exhibit some complex and nonlinear features. 

In view of the discrete feature of population evolu-
tion that passes from one generation to the next, the dis-
crete systems in some sense are more accurate than the 
continuous system in describing the real biological pro-
cess [6, 23, 39]. 

In [7], the corresponding discrete version of system 
(1) was given by making the symmetrical assumptions 
about the predatory behavior as follows: 

𝐹𝐹: � �
𝑥𝑥��� � 𝑥𝑥� � �𝑥𝑥��1 − 𝑥𝑥� − α𝑦𝑦� − β𝑧𝑧��,
𝑦𝑦��� � 𝑦𝑦� � �𝑦𝑦��1 − β𝑥𝑥� − 𝑦𝑦� − α𝑧𝑧��,
𝑧𝑧��� � 𝑧𝑧� � �𝑧𝑧��1 − α𝑥𝑥� − β𝑦𝑦� − 𝑧𝑧��.

     

�2� 
where x�, y�, z� are the densities of the three species in 
the n th generation and R  represents the linear growth 
rates.α�,� � α�,� � α�,� � � and α�,� � α�,� � α�,� � β  
represent the symmetrical predatory behavior. The sta-
bility and bifurcations of fixed points in system were an-
alytically and numerically proposed in [7]. The extension 
of system (2) to 4D and its applications research can be 
seen in [2, 16]. 

Note that for both continuous and discrete version 
of Lotka-Volterra models, the researches mainly focused 
on the dynamical behavior of the equilibrium points. In 
other words, these researches emphatically studied how 
the system runs when the initial point is given. It is clear 
that the attractive domain, which shows some fractal 
characteristics [13, 41, 42], is a set of the initial points of 
the system which ensures that the trajectories from this 
set converge to some attractor. Thus the fractals attrac-
tive domain is the key to influence the persistence and 
extinction of the population. Actually, some works have 
been done by researchers to addressed the problem about 
the fractals analysis and control for discrete Lotka-
Volterra models. In [27], Sun and Zhang gave the defi-
nition of Julia set for a kind of discrete Lotka-Volterra 
system, and realized its control via feedback control and 
synchronization methods. Some follow-up studies about 
SIRS model [21] and fractional case [35, 36] were suc-
cessively given. Nevertheless, there are still some defi-
ciencies about the boundedness analysis of the Julia set 

of ecosystems. Besides, to our best knowledge, 
overall previous work on fractals analysis of eco-
systems both have not explicitly addressed the is-
sue about the multi-species like system (2). 

Motivated by the significative results above, 
this work focuses on the fractals analysis and con-
trol of system (2). The main novelties of this work 
are summarized as follows: (i). Extend the fractals 
research on ecosystems to three species case. (ii). 
A preliminary frame to estimate the boundedness 
of the Julia sets of multi-species system with chain 
coupled predatory behavior is given. 

The outline of this paper is given as below. In 
Section 2, the definition and control of the Julia 
sets of system (2) are proposed. A preliminary 
study on the boundedness estimation is also given 
in Section 2. Section 3 illustrates the synchroniza-
tion process of two Julia sets with different param-
eters. The summary of this present work and pro-
spect of the future investigations are given in Sec-
tion 4. 

2. Definition and Control of the 
Julia Sets from Three-Species 
GLV System 
As one of the important branches of fractals, 

Julia set has attracted the scholars’ attentions with 
respect to the planar case [19, 25, 33] and the spa-
tial case [29, 30, 34]. Julia sets J�f� is defined as the 
closure of repelling periodic points of a complex 
function. That is, the trajectories of points in Julia 
set remain bounded under iterations of f. Particu-
larly, if f has attractive point w, the Julia set can be 
defined as J�f� � �A�w�, where A�w� is the attrac-
tive domain of the attractive fixed point w. In [27], 
Sun and Zhang has introduced the definition of 
Julia set for a 2D discrete Lotka-Volterra system. 
Then the definition of Julia set 𝐽𝐽�𝑓𝑓� of system (2) 
is given as follows: 

Definition 2.1. Set ψ� � �x�, y�, z�� as the initial 
densities of the three species. The filled Julia set of 
system (2) is defined as K�F� such that  

��𝐹𝐹� � ���|𝑓𝑓������� 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟 ���𝑟𝑟�𝑟𝑟��. 
While Julia set of system (2) is the boundary of 
K�F�, i. e. J�F� � �K�F�. 
According to the definition 2.1, the trajectories of 
initial points and the stability of the fixed points [8] 
play the key roles for the region of Julia set J�F�. 
Thus the control strategy of Julia set aims to 
change the trajectories by adding some control 
items, with result in making the unstable fixed 
points become local stable and making the points 
in controlled systems come into its filled Julia set. 
For system (2), its fixed points �x∗, y∗, z∗� can be 
summarized into the following eight cases at most:

While Julia set of system (2) is the boundary of K(F), 
i. e. J(F) = ∂ K(F).
According to the definition 2.1, the trajectories of ini-
tial points and the stability of the fixed points [8] play 
the key roles for the region of Julia set J(F). Thus the 
control strategy of Julia set aims to change the tra-
jectories by adding some control items, with result in 
making the unstable fixed points become local stable 
and making the points in controlled systems come 
into its filled Julia set. For system (2), its fixed points 
(x*, y*, z*) can be summarized into the following eight 
cases at most:
1 In the case of (x*, y*, z*) = (0, 0, 0), the three species 

x, y, z are all extinct.
2 When xi = 0 and yi, zi ≠ 0, we can get a fixed point 

 

 

 

Figure 1.  (a).The spacial Julia set 𝐽𝐽�𝐹𝐹� with parameters R = 1,α = 0.4745,β = 3. (b). The 2D filled slice K�F� 
with z� = 0. (c). The 2𝐷𝐷 filled slice 𝐾𝐾�𝐹𝐹� with x� = 0.01. (d). the local enlarge of (c) in which we select point 
A = �0.22,0.19� ∈ K�F� and point B = �0.23,0.195� ∉ K�F�. 

 

(i) In the case of �x∗, y∗, z∗� = �0,0,0� , the three 
species x, y, z are all extinct. 

(ii) When x = 0 and y�, z� ≠ 0, we can get a fixed 
point �0, ������� , ��������. In this case, species x goes 
extinct and species y, z lives. Similarly, system (2) 
has the other two fixed points� ���

���� , 0, �������� and 

� ���
���� , ������� , 0�. 

(iii) When x� = y� = 0  and z� ≠ 0 , we can get a 
fixed point �0,0,1�. In this case, species x, y are ex-
tinct and z is independent survival. Similarly, sys-
tem (2) has the other two fixed points �0,1,0� and 
�1,0,0�. 
(iv) When x�, y�, z� ≠ 0, we can get the fixed point  

� �
����� , �

����� , �
������ that makes three species co-

exist.
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3 When xi = yi =0 and zi ≠ 0, we can get a fixed point 
(0,0,1). In this case, species x,y are extinct and z is 
independent survival. Similarly, system (2) has the 
other two fixed points (0,1,0) and (1,0,0).

4 When xi, yi, zi ≠ 0, we can get the fixed point  

 

 

 

Figure 1.  (a).The spacial Julia set 𝐽𝐽�𝐹𝐹� with parameters R = 1,α = 0.4745,β = 3. (b). The 2D filled slice K�F� 
with z� = 0. (c). The 2𝐷𝐷 filled slice 𝐾𝐾�𝐹𝐹� with x� = 0.01. (d). the local enlarge of (c) in which we select point 
A = �0.22,0.19� ∈ K�F� and point B = �0.23,0.195� ∉ K�F�. 

 

(i) In the case of �x∗, y∗, z∗� = �0,0,0� , the three 
species x, y, z are all extinct. 

(ii) When x� = 0 and y�, z� ≠ 0, we can get a fixed 
point �0, ������� , ��������. In this case, species x goes 
extinct and species y, z lives. Similarly, system (2) 
has the other two fixed points� ���

���� , 0, �������� and 

� ���
���� , ������� , 0�. 

(iii) When x� = y� = 0  and z� ≠ 0 , we can get a 
fixed point �0,0,1�. In this case, species x, y are ex-
tinct and z is independent survival. Similarly, sys-
tem (2) has the other two fixed points �0,1,0� and 
�1,0,0�. 
(iv) When x�, y�, z� ≠ 0, we can get the fixed point  

� �
����� , �

����� , �
������ that makes three species co-

exist.

  
  

 that makes three species co-

exist. 

Obviously, we hope that the three groups can coexist 
sustainedly in the actual biological process. Thus, the 
control process of the  J(F) focuses on the stability of 
“coexistence point’’ 

  

Figure 2. The trajectories of point A of Figure 1 in: (a). 20 steps. (b). 40 steps. (c). 100 steps 

 
Figure 3. The trajectories of point B of Figure 1 in: (a). 20 steps. (b). 40 steps. (c). 91 steps. 

 
 

Obviously, we hope that the three groups can coex-
ist sustainedly in the actual biological process. Thus, the 
control process of the J�F� focuses on the stability of 
“coexistence point'' � �

����� , �
����� , �

������.  In order to 
keep the fixed points unchanged, we apply the following 
giant control items [29]: 

⎩
⎪⎪
⎨
⎪⎪
⎧𝑢𝑢�� = − 𝑘𝑘

1 + 𝑘𝑘 �𝑓𝑓�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑥𝑥∗�,

𝑢𝑢�� = − 𝑘𝑘
1 + 𝑘𝑘 �𝑔𝑔�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑦𝑦∗�,

𝑢𝑢�� = − 𝑘𝑘
1 + 𝑘𝑘 �𝑞𝑞�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑧𝑧∗�.

 

             �3� 

Because thatx∗ = y∗ = z∗ = �
�����, by adding the con-

trol item (3) into system (2), one can get the following 
controlled system 

𝑃𝑃:

⎩
⎪⎪
⎨
⎪⎪
⎧𝑥𝑥��� = 1

1 + 𝑘𝑘 �𝑓𝑓�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘
1 + 𝑘𝑘 𝑥𝑥

∗� ,

𝑦𝑦��� = 1
1 + 𝑘𝑘 �𝑔𝑔�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘

1 + 𝑘𝑘 𝑥𝑥
∗� ,

𝑧𝑧��� = 1
1 + 𝑘𝑘 �𝑞𝑞�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘

1 + 𝑘𝑘 𝑥𝑥
∗� .

 

     

(4) 
Based on the analysis above, J�F� is the at-

tractive domain of the attractive fixed point. Thus 
by adding the control items, the Julia set, from 
which the densities of three species remain stable, 
can be controlled via affecting the iterative trajec-
tories of initial points in system (4),meanwhile re-
alizing the stability of the fixed point. Consider 
the Jacobian matrix of system (4) at the fixed 
point 

 �x∗, y∗, z∗� = � �
����� , �

����� , �
������: 

J=

⎣
⎢
⎢
⎢
⎡
���
��� −

��
��� 𝑥𝑥∗ −

��
��� 𝑦𝑦∗ −

��
��� 𝑧𝑧∗   − ��

����∗& − ��
��� 𝑥𝑥∗

− ��
��� 𝑦𝑦∗

���
��� −

��
��� 𝑦𝑦∗ −

��
��� 𝑧𝑧∗ −

��
��� 𝑥𝑥∗ − ��

��� 𝑦𝑦∗

− ��
��� 𝑧𝑧∗ − ��

��� 𝑧𝑧∗
���
��� −

��
��� 𝑧𝑧∗ −

��
��� 𝑥𝑥∗ −

��
��� 𝑦𝑦∗   ⎦

⎥
⎥
⎥
⎤
 

 

 In order to 

keep the fixed points unchanged, we apply the follow-
ing giant control items [29]:

  

Figure 2. The trajectories of point A of Figure 1 in: (a). 20 steps. (b). 40 steps. (c). 100 steps 

 
Figure 3. The trajectories of point B of Figure 1 in: (a). 20 steps. (b). 40 steps. (c). 91 steps. 

 
 

Obviously, we hope that the three groups can coex-
ist sustainedly in the actual biological process. Thus, the 
control process of the J�F� focuses on the stability of 
“coexistence point'' � �

����� , �
����� , �

������.  In order to 
keep the fixed points unchanged, we apply the following 
giant control items [29]: 

⎩
⎪⎪
⎨
⎪⎪
⎧𝑢𝑢�� = − 𝑘𝑘

1 + 𝑘𝑘 �𝑓𝑓�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑥𝑥∗�,

𝑢𝑢�� = − 𝑘𝑘
1 + 𝑘𝑘 �𝑔𝑔�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑦𝑦∗�,

𝑢𝑢�� = − 𝑘𝑘
1 + 𝑘𝑘 �𝑞𝑞�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑧𝑧∗�.

 

             �3� 

Because thatx∗ = y∗ = z∗ = �
�����, by adding the con-

trol item (3) into system (2), one can get the following 
controlled system 

𝑃𝑃:

⎩
⎪⎪
⎨
⎪⎪
⎧𝑥𝑥��� = 1

1 + 𝑘𝑘 �𝑓𝑓�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘
1 + 𝑘𝑘 𝑥𝑥

∗� ,

𝑦𝑦��� = 1
1 + 𝑘𝑘 �𝑔𝑔�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘

1 + 𝑘𝑘 𝑥𝑥
∗� ,

𝑧𝑧��� = 1
1 + 𝑘𝑘 �𝑞𝑞�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘

1 + 𝑘𝑘 𝑥𝑥
∗� .

 

     

(4) 
Based on the analysis above, J�F� is the at-

tractive domain of the attractive fixed point. Thus 
by adding the control items, the Julia set, from 
which the densities of three species remain stable, 
can be controlled via affecting the iterative trajec-
tories of initial points in system (4),meanwhile re-
alizing the stability of the fixed point. Consider 
the Jacobian matrix of system (4) at the fixed 
point 

 �x∗, y∗, z∗� = � �
����� , �

����� , �
������: 

J=

⎣
⎢
⎢
⎢
⎡
���
��� −

��
��� 𝑥𝑥∗ −

��
��� 𝑦𝑦∗ −

��
��� 𝑧𝑧∗   − ��

����∗& − ��
��� 𝑥𝑥∗

− ��
��� 𝑦𝑦∗

���
��� −

��
��� 𝑦𝑦∗ −

��
��� 𝑧𝑧∗ −

��
��� 𝑥𝑥∗ − ��

��� 𝑦𝑦∗

− ��
��� 𝑧𝑧∗ − ��

��� 𝑧𝑧∗
���
��� −

��
��� 𝑧𝑧∗ −

��
��� 𝑥𝑥∗ −

��
��� 𝑦𝑦∗   ⎦

⎥
⎥
⎥
⎤
 

 

(3)

Because that 

  

Figure 2. The trajectories of point A of Figure 1 in: (a). 20 steps. (b). 40 steps. (c). 100 steps 

 
Figure 3. The trajectories of point B of Figure 1 in: (a). 20 steps. (b). 40 steps. (c). 91 steps. 

 
 

Obviously, we hope that the three groups can coex-
ist sustainedly in the actual biological process. Thus, the 
control process of the J�F� focuses on the stability of 
“coexistence point'' � �

����� , �
����� , �

������.  In order to 
keep the fixed points unchanged, we apply the following 
giant control items [29]: 

⎩
⎪⎪
⎨
⎪⎪
⎧𝑢𝑢�� = − 𝑘𝑘

1 + 𝑘𝑘 �𝑓𝑓�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑥𝑥∗�,

𝑢𝑢�� = − 𝑘𝑘
1 + 𝑘𝑘 �𝑔𝑔�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑦𝑦∗�,

𝑢𝑢�� = − 𝑘𝑘
1 + 𝑘𝑘 �𝑞𝑞�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑧𝑧∗�.

 

             �3� 

Because thatx∗ = y∗ = z∗ = �
�����, by adding the con-

trol item (3) into system (2), one can get the following 
controlled system 

𝑃𝑃:

⎩
⎪⎪
⎨
⎪⎪
⎧𝑥𝑥��� = 1

1 + 𝑘𝑘 �𝑓𝑓�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘
1 + 𝑘𝑘 𝑥𝑥

∗� ,

𝑦𝑦��� = 1
1 + 𝑘𝑘 �𝑔𝑔�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘

1 + 𝑘𝑘 𝑥𝑥
∗� ,

𝑧𝑧��� = 1
1 + 𝑘𝑘 �𝑞𝑞�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘

1 + 𝑘𝑘 𝑥𝑥
∗� .

 

     

(4) 
Based on the analysis above, J�F� is the at-

tractive domain of the attractive fixed point. Thus 
by adding the control items, the Julia set, from 
which the densities of three species remain stable, 
can be controlled via affecting the iterative trajec-
tories of initial points in system (4),meanwhile re-
alizing the stability of the fixed point. Consider 
the Jacobian matrix of system (4) at the fixed 
point 

 �x∗, y∗, z∗� = � �
����� , �

����� , �
������: 

J=

⎣
⎢
⎢
⎢
⎡
���
��� −

��
��� 𝑥𝑥∗ −

��
��� 𝑦𝑦∗ −

��
��� 𝑧𝑧∗   − ��

����∗& − ��
��� 𝑥𝑥∗

− ��
��� 𝑦𝑦∗

���
��� −

��
��� 𝑦𝑦∗ −

��
��� 𝑧𝑧∗ −

��
��� 𝑥𝑥∗ − ��

��� 𝑦𝑦∗

− ��
��� 𝑧𝑧∗ − ��

��� 𝑧𝑧∗
���
��� −

��
��� 𝑧𝑧∗ −

��
��� 𝑥𝑥∗ −

��
��� 𝑦𝑦∗   ⎦

⎥
⎥
⎥
⎤
 

 

, by adding the con-

trol item (3) into system (2), one can get the following 
controlled system

  

Figure 2. The trajectories of point A of Figure 1 in: (a). 20 steps. (b). 40 steps. (c). 100 steps 

 
Figure 3. The trajectories of point B of Figure 1 in: (a). 20 steps. (b). 40 steps. (c). 91 steps. 

 
 

Obviously, we hope that the three groups can coex-
ist sustainedly in the actual biological process. Thus, the 
control process of the J�F� focuses on the stability of 
“coexistence point'' � �

����� , �
����� , �

������.  In order to 
keep the fixed points unchanged, we apply the following 
giant control items [29]: 

⎩
⎪⎪
⎨
⎪⎪
⎧𝑢𝑢�� = − 𝑘𝑘

1 + 𝑘𝑘 �𝑓𝑓�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑥𝑥∗�,

𝑢𝑢�� = − 𝑘𝑘
1 + 𝑘𝑘 �𝑔𝑔�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑦𝑦∗�,

𝑢𝑢�� = − 𝑘𝑘
1 + 𝑘𝑘 �𝑞𝑞�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑧𝑧∗�.

 

             �3� 

Because thatx∗ = y∗ = z∗ = �
�����, by adding the con-

trol item (3) into system (2), one can get the following 
controlled system 

𝑃𝑃:

⎩
⎪⎪
⎨
⎪⎪
⎧𝑥𝑥��� = 1

1 + 𝑘𝑘 �𝑓𝑓�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘
1 + 𝑘𝑘 𝑥𝑥

∗� ,

𝑦𝑦��� = 1
1 + 𝑘𝑘 �𝑔𝑔�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘

1 + 𝑘𝑘 𝑥𝑥
∗� ,

𝑧𝑧��� = 1
1 + 𝑘𝑘 �𝑞𝑞�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘

1 + 𝑘𝑘 𝑥𝑥
∗� .

 

     

(4) 
Based on the analysis above, J�F� is the at-

tractive domain of the attractive fixed point. Thus 
by adding the control items, the Julia set, from 
which the densities of three species remain stable, 
can be controlled via affecting the iterative trajec-
tories of initial points in system (4),meanwhile re-
alizing the stability of the fixed point. Consider 
the Jacobian matrix of system (4) at the fixed 
point 

 �x∗, y∗, z∗� = � �
����� , �

����� , �
������: 

J=

⎣
⎢
⎢
⎢
⎡
���
��� −

��
��� 𝑥𝑥∗ −

��
��� 𝑦𝑦∗ −

��
��� 𝑧𝑧∗   − ��

����∗& − ��
��� 𝑥𝑥∗

− ��
��� 𝑦𝑦∗

���
��� −

��
��� 𝑦𝑦∗ −

��
��� 𝑧𝑧∗ −

��
��� 𝑥𝑥∗ − ��

��� 𝑦𝑦∗

− ��
��� 𝑧𝑧∗ − ��

��� 𝑧𝑧∗
���
��� −

��
��� 𝑧𝑧∗ −

��
��� 𝑥𝑥∗ −

��
��� 𝑦𝑦∗   ⎦

⎥
⎥
⎥
⎤
 

 

(4)

Based on the analysis above, J(F) is the attractive do-
main of the attractive fixed point. Thus by adding the 
control items, the Julia set, from which the densities 
of three species remain stable, can be controlled via 
affecting the iterative trajectories of initial points in 
system (4),meanwhile realizing the stability of the 
fixed point. Consider the Jacobian matrix of system 
(4) at the fixed point

  

Figure 2. The trajectories of point A of Figure 1 in: (a). 20 steps. (b). 40 steps. (c). 100 steps 

 
Figure 3. The trajectories of point B of Figure 1 in: (a). 20 steps. (b). 40 steps. (c). 91 steps. 

 
 

Obviously, we hope that the three groups can coex-
ist sustainedly in the actual biological process. Thus, the 
control process of the J�F� focuses on the stability of 
“coexistence point'' � �

����� , �
����� , �

������.  In order to 
keep the fixed points unchanged, we apply the following 
giant control items [29]: 

⎩
⎪⎪
⎨
⎪⎪
⎧𝑢𝑢�� = − 𝑘𝑘

1 + 𝑘𝑘 �𝑓𝑓�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑥𝑥∗�,

𝑢𝑢�� = − 𝑘𝑘
1 + 𝑘𝑘 �𝑔𝑔�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑦𝑦∗�,

𝑢𝑢�� = − 𝑘𝑘
1 + 𝑘𝑘 �𝑞𝑞�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑧𝑧∗�.

 

             �3� 

Because thatx∗ = y∗ = z∗ = �
�����, by adding the con-

trol item (3) into system (2), one can get the following 
controlled system 

𝑃𝑃:

⎩
⎪⎪
⎨
⎪⎪
⎧𝑥𝑥��� = 1

1 + 𝑘𝑘 �𝑓𝑓�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘
1 + 𝑘𝑘 𝑥𝑥

∗� ,

𝑦𝑦��� = 1
1 + 𝑘𝑘 �𝑔𝑔�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘

1 + 𝑘𝑘 𝑥𝑥
∗� ,

𝑧𝑧��� = 1
1 + 𝑘𝑘 �𝑞𝑞�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘

1 + 𝑘𝑘 𝑥𝑥
∗� .

 

     

(4) 
Based on the analysis above, J�F� is the at-

tractive domain of the attractive fixed point. Thus 
by adding the control items, the Julia set, from 
which the densities of three species remain stable, 
can be controlled via affecting the iterative trajec-
tories of initial points in system (4),meanwhile re-
alizing the stability of the fixed point. Consider 
the Jacobian matrix of system (4) at the fixed 
point 

 �x∗, y∗, z∗� = � �
����� , �

����� , �
������: 

J=

⎣
⎢
⎢
⎢
⎡
���
��� −

��
��� 𝑥𝑥∗ −

��
��� 𝑦𝑦∗ −

��
��� 𝑧𝑧∗   − ��

����∗& − ��
��� 𝑥𝑥∗

− ��
��� 𝑦𝑦∗

���
��� −

��
��� 𝑦𝑦∗ −

��
��� 𝑧𝑧∗ −

��
��� 𝑥𝑥∗ − ��

��� 𝑦𝑦∗

− ��
��� 𝑧𝑧∗ − ��

��� 𝑧𝑧∗
���
��� −

��
��� 𝑧𝑧∗ −

��
��� 𝑥𝑥∗ −

��
��� 𝑦𝑦∗   ⎦

⎥
⎥
⎥
⎤
 

 
J= 

  

Figure 2. The trajectories of point A of Figure 1 in: (a). 20 steps. (b). 40 steps. (c). 100 steps 

 
Figure 3. The trajectories of point B of Figure 1 in: (a). 20 steps. (b). 40 steps. (c). 91 steps. 

 
 

Obviously, we hope that the three groups can coex-
ist sustainedly in the actual biological process. Thus, the 
control process of the J�F� focuses on the stability of 
“coexistence point'' � �

����� , �
����� , �

������.  In order to 
keep the fixed points unchanged, we apply the following 
giant control items [29]: 

⎩
⎪⎪
⎨
⎪⎪
⎧𝑢𝑢�� = − 𝑘𝑘

1 + 𝑘𝑘 �𝑓𝑓�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑥𝑥∗�,

𝑢𝑢�� = − 𝑘𝑘
1 + 𝑘𝑘 �𝑔𝑔�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑦𝑦∗�,

𝑢𝑢�� = − 𝑘𝑘
1 + 𝑘𝑘 �𝑞𝑞�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� − 𝑧𝑧∗�.

 

             �3� 

Because thatx∗ = y∗ = z∗ = �
�����, by adding the con-

trol item (3) into system (2), one can get the following 
controlled system 

𝑃𝑃:

⎩
⎪⎪
⎨
⎪⎪
⎧𝑥𝑥��� = 1

1 + 𝑘𝑘 �𝑓𝑓�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘
1 + 𝑘𝑘 𝑥𝑥

∗� ,

𝑦𝑦��� = 1
1 + 𝑘𝑘 �𝑔𝑔�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘

1 + 𝑘𝑘 𝑥𝑥
∗� ,

𝑧𝑧��� = 1
1 + 𝑘𝑘 �𝑞𝑞�𝑥𝑥�,𝑦𝑦�, 𝑧𝑧�� + 𝑘𝑘

1 + 𝑘𝑘 𝑥𝑥
∗� .

 

     

(4) 
Based on the analysis above, J�F� is the at-

tractive domain of the attractive fixed point. Thus 
by adding the control items, the Julia set, from 
which the densities of three species remain stable, 
can be controlled via affecting the iterative trajec-
tories of initial points in system (4),meanwhile re-
alizing the stability of the fixed point. Consider 
the Jacobian matrix of system (4) at the fixed 
point 

 �x∗, y∗, z∗� = � �
����� , �

����� , �
������: 

J=

⎣
⎢
⎢
⎢
⎡
���
��� −

��
��� 𝑥𝑥∗ −

��
��� 𝑦𝑦∗ −

��
��� 𝑧𝑧∗   − ��

��� − ��
��� 𝑥𝑥∗

− ��
��� 𝑦𝑦∗

���
��� −

��
��� 𝑦𝑦∗ −

��
��� 𝑧𝑧∗ −

��
��� 𝑥𝑥∗ − ��

��� 𝑦𝑦∗

− ��
��� 𝑧𝑧∗ − ��

��� 𝑧𝑧∗
���
��� −

��
��� 𝑧𝑧∗ −

��
��� 𝑥𝑥∗ −

��
��� 𝑦𝑦∗   ⎦

⎥
⎥
⎥
⎤
 

 

𝑥𝑥∗



535Information Technology and Control 2020/4/49

The characteristic equation of the Jacobi matrix J is 
denoted as

The characteristic equation of the Jacobi matrix J is 
denoted as

Δ(λ) = λ3 + P�λ2 + Q�λ + S� = 0,
where
(i) T = (2 + α + β)Rx∗ − (1 + R) , 

(ii) P� = 3T
1+k

 , 

(iii) Q� = 3T2−3αβR2x∗2

(1+k)2
,

(iv) S� = T3−α3R3x∗3−β3R3x∗3−3TαβR2x∗2

(1+k)3
. 

According to the Jury criterion, the following Jury table 
is obtained.

Table 1. The Jury table of . 

  

In order to determine that the controlled system (4) 
is stable on fixed point � 1

1+α+β
, 1
1+α+β

, 1
1+α+β

�, three 
conditions need to be met as follow:

(i) Δ(1) > 0.  Δ(1) = 1 + P� + Q� + S� > 0, 

(ii) 1 − P� + Q� − S� > 0,

(iii) �𝑆𝑆𝑆𝑆�� < 1 and 
2| 1| | | >S SP Q− −    . 

Take the parameters as R = 1,α = 0.4745, β = 3. 
The original Julia set of system (2) is shown in Figure
1. In Figure 1(b), the filled K(F) with z0 = 0 is illus-
trated. Actually this can be regarded as a reduced case 
of system (2) when one of the third species is nonexist-
ence. The trajectories of the two signed points A ∈ K(F)
and B ∉ K(F) are illustrated in Figures 2-3, in which we 
can see that the trajectories remain closed before 90
steps nevertheless B's trajectory begins to diverge when 
the iteration continues.

For the controlled system (4), the control parame-
ters k should satisfy that k ∈ {k|k < −2.2631 ∪ {k} >
0.2631}. The controlled Julia sets and its slices are illus-
trated in Figures 4-5. The simulations shows that J(Fc)
expands with the values of the control parameter k in-
creases in two directions of the number axis. In other 
words, more points come into the filled Julia set around 
the stable coexistence fixed point.

Figure 4. The controlled Julia sets J(Fc) with pa-
rameters: (a).k = 0.27. (b). k = 0.4. 

(a)

(b)

Figure 5. The 2D slices of controlled Julia sets 
𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐) with different parameters: (a). k > 0.2631. 
(b). k < −2.2631. 

Rows λ0 𝜆𝜆𝜆𝜆1 𝜆𝜆𝜆𝜆2 𝜆𝜆𝜆𝜆3

1 S� 𝑄𝑄𝑄𝑄� 𝑃𝑃𝑃𝑃� 1

2 1 𝑃𝑃𝑃𝑃� 𝑄𝑄𝑄𝑄�

3 2 1S −   SQ P−   SP Q− 

0

where

1 

The characteristic equation of the Jacobi matrix J is 
denoted as

Δ(λ) = λ3 + P�λ2 + Q�λ + S� = 0,
where
(i) T = (2 + α + β)Rx∗ − (1 + R) , 

(ii) P� = 3T
1+k

 , 

(iii) Q� = 3T2−3αβR2x∗2

(1+k)2
,

(iv) S� = T3−α3R3x∗3−β3R3x∗3−3TαβR2x∗2

(1+k)3
. 

According to the Jury criterion, the following Jury table 
is obtained.

Table 1. The Jury table of . 

  

In order to determine that the controlled system (4) 
is stable on fixed point � 1

1+α+β
, 1
1+α+β

, 1
1+α+β

�, three 
conditions need to be met as follow:

(i) Δ(1) > 0.  Δ(1) = 1 + P� + Q� + S� > 0, 

(ii) 1 − P� + Q� − S� > 0,

(iii) �𝑆𝑆𝑆𝑆�� < 1 and 
2| 1| | | >S SP Q− −    . 

Take the parameters as R = 1,α = 0.4745, β = 3. 
The original Julia set of system (2) is shown in Figure
1. In Figure 1(b), the filled K(F) with z0 = 0 is illus-
trated. Actually this can be regarded as a reduced case 
of system (2) when one of the third species is nonexist-
ence. The trajectories of the two signed points A ∈ K(F)
and B ∉ K(F) are illustrated in Figures 2-3, in which we 
can see that the trajectories remain closed before 90
steps nevertheless B's trajectory begins to diverge when 
the iteration continues.

For the controlled system (4), the control parame-
ters k should satisfy that k ∈ {k|k < −2.2631 ∪ {k} >
0.2631}. The controlled Julia sets and its slices are illus-
trated in Figures 4-5. The simulations shows that J(Fc)
expands with the values of the control parameter k in-
creases in two directions of the number axis. In other 
words, more points come into the filled Julia set around 
the stable coexistence fixed point.

Figure 4. The controlled Julia sets J(Fc) with pa-
rameters: (a).k = 0.27. (b). k = 0.4. 

(a)

(b)

Figure 5. The 2D slices of controlled Julia sets 
𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐) with different parameters: (a). k > 0.2631. 
(b). k < −2.2631. 

Rows λ0 𝜆𝜆𝜆𝜆1 𝜆𝜆𝜆𝜆2 𝜆𝜆𝜆𝜆3

1 S� 𝑄𝑄𝑄𝑄� 𝑃𝑃𝑃𝑃� 1

2 1 𝑃𝑃𝑃𝑃� 𝑄𝑄𝑄𝑄�

3 2 1S −   SQ P−   SP Q− 

0

,

2 

The characteristic equation of the Jacobi matrix J is 
denoted as

Δ(λ) = λ3 + P�λ2 + Q�λ + S� = 0,
where
(i) T = (2 + α + β)Rx∗ − (1 + R) , 

(ii) P� = 3T
1+k

 , 

(iii) Q� = 3T2−3αβR2x∗2

(1+k)2
,

(iv) S� = T3−α3R3x∗3−β3R3x∗3−3TαβR2x∗2

(1+k)3
. 

According to the Jury criterion, the following Jury table 
is obtained.

Table 1. The Jury table of . 

  

In order to determine that the controlled system (4) 
is stable on fixed point � 1

1+α+β
, 1
1+α+β

, 1
1+α+β

�, three 
conditions need to be met as follow:

(i) Δ(1) > 0.  Δ(1) = 1 + P� + Q� + S� > 0, 

(ii) 1 − P� + Q� − S� > 0,

(iii) �𝑆𝑆𝑆𝑆�� < 1 and 
2| 1| | | >S SP Q− −    . 

Take the parameters as R = 1,α = 0.4745, β = 3. 
The original Julia set of system (2) is shown in Figure
1. In Figure 1(b), the filled K(F) with z0 = 0 is illus-
trated. Actually this can be regarded as a reduced case 
of system (2) when one of the third species is nonexist-
ence. The trajectories of the two signed points A ∈ K(F)
and B ∉ K(F) are illustrated in Figures 2-3, in which we 
can see that the trajectories remain closed before 90
steps nevertheless B's trajectory begins to diverge when 
the iteration continues.

For the controlled system (4), the control parame-
ters k should satisfy that k ∈ {k|k < −2.2631 ∪ {k} >
0.2631}. The controlled Julia sets and its slices are illus-
trated in Figures 4-5. The simulations shows that J(Fc)
expands with the values of the control parameter k in-
creases in two directions of the number axis. In other 
words, more points come into the filled Julia set around 
the stable coexistence fixed point.

Figure 4. The controlled Julia sets J(Fc) with pa-
rameters: (a).k = 0.27. (b). k = 0.4. 

(a)

(b)

Figure 5. The 2D slices of controlled Julia sets 
𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐) with different parameters: (a). k > 0.2631. 
(b). k < −2.2631. 

Rows λ0 𝜆𝜆𝜆𝜆1 𝜆𝜆𝜆𝜆2 𝜆𝜆𝜆𝜆3

1 S� 𝑄𝑄𝑄𝑄� 𝑃𝑃𝑃𝑃� 1

2 1 𝑃𝑃𝑃𝑃� 𝑄𝑄𝑄𝑄�

3 2 1S −   SQ P−   SP Q− 

0

 ,

3 

The characteristic equation of the Jacobi matrix J is 
denoted as

Δ(λ) = λ3 + P�λ2 + Q�λ + S� = 0,
where
(i) T = (2 + α + β)Rx∗ − (1 + R) , 

(ii) P� = 3T
1+k

 , 

(iii) Q� = 3T2−3αβR2x∗2

(1+k)2
,

(iv) S� = T3−α3R3x∗3−β3R3x∗3−3TαβR2x∗2

(1+k)3
. 

According to the Jury criterion, the following Jury table 
is obtained.

Table 1. The Jury table of . 

  

In order to determine that the controlled system (4) 
is stable on fixed point � 1

1+α+β
, 1
1+α+β

, 1
1+α+β

�, three 
conditions need to be met as follow:

(i) Δ(1) > 0.  Δ(1) = 1 + P� + Q� + S� > 0, 

(ii) 1 − P� + Q� − S� > 0,

(iii) �𝑆𝑆𝑆𝑆�� < 1 and 
2| 1| | | >S SP Q− −    . 

Take the parameters as R = 1,α = 0.4745, β = 3. 
The original Julia set of system (2) is shown in Figure
1. In Figure 1(b), the filled K(F) with z0 = 0 is illus-
trated. Actually this can be regarded as a reduced case 
of system (2) when one of the third species is nonexist-
ence. The trajectories of the two signed points A ∈ K(F)
and B ∉ K(F) are illustrated in Figures 2-3, in which we 
can see that the trajectories remain closed before 90
steps nevertheless B's trajectory begins to diverge when 
the iteration continues.

For the controlled system (4), the control parame-
ters k should satisfy that k ∈ {k|k < −2.2631 ∪ {k} >
0.2631}. The controlled Julia sets and its slices are illus-
trated in Figures 4-5. The simulations shows that J(Fc)
expands with the values of the control parameter k in-
creases in two directions of the number axis. In other 
words, more points come into the filled Julia set around 
the stable coexistence fixed point.

Figure 4. The controlled Julia sets J(Fc) with pa-
rameters: (a).k = 0.27. (b). k = 0.4. 

(a)

(b)

Figure 5. The 2D slices of controlled Julia sets 
𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐) with different parameters: (a). k > 0.2631. 
(b). k < −2.2631. 

Rows λ0 𝜆𝜆𝜆𝜆1 𝜆𝜆𝜆𝜆2 𝜆𝜆𝜆𝜆3

1 S� 𝑄𝑄𝑄𝑄� 𝑃𝑃𝑃𝑃� 1

2 1 𝑃𝑃𝑃𝑃� 𝑄𝑄𝑄𝑄�

3 2 1S −   SQ P−   SP Q− 

0

,

4 

The characteristic equation of the Jacobi matrix J is 
denoted as

Δ(λ) = λ3 + P�λ2 + Q�λ + S� = 0,
where
(i) T = (2 + α + β)Rx∗ − (1 + R) , 

(ii) P� = 3T
1+k

 , 

(iii) Q� = 3T2−3αβR2x∗2

(1+k)2
,

(iv) S� = T3−α3R3x∗3−β3R3x∗3−3TαβR2x∗2

(1+k)3
. 

According to the Jury criterion, the following Jury table 
is obtained.

Table 1. The Jury table of . 

  

In order to determine that the controlled system (4) 
is stable on fixed point � 1

1+α+β
, 1
1+α+β

, 1
1+α+β

�, three 
conditions need to be met as follow:

(i) Δ(1) > 0.  Δ(1) = 1 + P� + Q� + S� > 0, 

(ii) 1 − P� + Q� − S� > 0,

(iii) �𝑆𝑆𝑆𝑆�� < 1 and 
2| 1| | | >S SP Q− −    . 

Take the parameters as R = 1,α = 0.4745, β = 3. 
The original Julia set of system (2) is shown in Figure
1. In Figure 1(b), the filled K(F) with z0 = 0 is illus-
trated. Actually this can be regarded as a reduced case 
of system (2) when one of the third species is nonexist-
ence. The trajectories of the two signed points A ∈ K(F)
and B ∉ K(F) are illustrated in Figures 2-3, in which we 
can see that the trajectories remain closed before 90
steps nevertheless B's trajectory begins to diverge when 
the iteration continues.

For the controlled system (4), the control parame-
ters k should satisfy that k ∈ {k|k < −2.2631 ∪ {k} >
0.2631}. The controlled Julia sets and its slices are illus-
trated in Figures 4-5. The simulations shows that J(Fc)
expands with the values of the control parameter k in-
creases in two directions of the number axis. In other 
words, more points come into the filled Julia set around 
the stable coexistence fixed point.

Figure 4. The controlled Julia sets J(Fc) with pa-
rameters: (a).k = 0.27. (b). k = 0.4. 

(a)

(b)

Figure 5. The 2D slices of controlled Julia sets 
𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐) with different parameters: (a). k > 0.2631. 
(b). k < −2.2631. 

Rows λ0 𝜆𝜆𝜆𝜆1 𝜆𝜆𝜆𝜆2 𝜆𝜆𝜆𝜆3

1 S� 𝑄𝑄𝑄𝑄� 𝑃𝑃𝑃𝑃� 1

2 1 𝑃𝑃𝑃𝑃� 𝑄𝑄𝑄𝑄�

3 2 1S −   SQ P−   SP Q− 

0

.

According to the Jury criterion, the following Jury ta-
ble is obtained.

Table 1 
The Jury table of ∆(λ)

Rows λ0 λ1 λ2 λ3

1 2 1S − SQ P−   SQ P−   1

2 1 SQ P−   SP Q−  2 1S −

3 2 1S − SQ P−   SP Q−  0

In order to determine that the controlled system (4) is 
stable on fi xed point

The characteristic equation of the Jacobi matrix J is 
denoted as

Δ(λ) = λ3 + P�λ2 + Q�λ + S� = 0,
where
(i) T = (2 + α + β)Rx∗ − (1 + R) , 

(ii) P� = 3T
1+k

 , 

(iii) Q� = 3T2−3αβR2x∗2

(1+k)2
,

(iv) S� = T3−α3R3x∗3−β3R3x∗3−3TαβR2x∗2

(1+k)3
. 

According to the Jury criterion, the following Jury table 
is obtained.

Table 1. The Jury table of . 

  

In order to determine that the controlled system (4) 
is stable on fixed point � 1

1+α+β
, 1
1+α+β

, 1
1+α+β

�, three 
conditions need to be met as follow:

(i) Δ(1) > 0.  Δ(1) = 1 + P� + Q� + S� > 0, 

(ii) 1 − P� + Q� − S� > 0,

(iii) �𝑆𝑆𝑆𝑆�� < 1 and 
2| 1| | | >S SP Q− −    . 

Take the parameters as R = 1,α = 0.4745, β = 3. 
The original Julia set of system (2) is shown in Figure
1. In Figure 1(b), the filled K(F) with z0 = 0 is illus-
trated. Actually this can be regarded as a reduced case 
of system (2) when one of the third species is nonexist-
ence. The trajectories of the two signed points A ∈ K(F)
and B ∉ K(F) are illustrated in Figures 2-3, in which we 
can see that the trajectories remain closed before 90
steps nevertheless B's trajectory begins to diverge when 
the iteration continues.

For the controlled system (4), the control parame-
ters k should satisfy that k ∈ {k|k < −2.2631 ∪ {k} >
0.2631}. The controlled Julia sets and its slices are illus-
trated in Figures 4-5. The simulations shows that J(Fc)
expands with the values of the control parameter k in-
creases in two directions of the number axis. In other 
words, more points come into the filled Julia set around 
the stable coexistence fixed point.

Figure 4. The controlled Julia sets J(Fc) with pa-
rameters: (a).k = 0.27. (b). k = 0.4. 

(a)

(b)

Figure 5. The 2D slices of controlled Julia sets 
𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐) with different parameters: (a). k > 0.2631. 
(b). k < −2.2631. 

Rows λ0 𝜆𝜆𝜆𝜆1 𝜆𝜆𝜆𝜆2 𝜆𝜆𝜆𝜆3

1 S� 𝑄𝑄𝑄𝑄� 𝑃𝑃𝑃𝑃� 1

2 1 𝑃𝑃𝑃𝑃� 𝑄𝑄𝑄𝑄�

3 2 1S −   SQ P−   SP Q− 

0

, three con-

ditions need to be met as follow:
1 

The characteristic equation of the Jacobi matrix J is 
denoted as

Δ(λ) = λ3 + P�λ2 + Q�λ + S� = 0,
where
(i) T = (2 + α + β)Rx∗ − (1 + R) , 

(ii) P� = 3T
1+k

 , 

(iii) Q� = 3T2−3αβR2x∗2

(1+k)2
,

(iv) S� = T3−α3R3x∗3−β3R3x∗3−3TαβR2x∗2

(1+k)3
. 

According to the Jury criterion, the following Jury table 
is obtained.

Table 1. The Jury table of . 

  

In order to determine that the controlled system (4) 
is stable on fixed point � 1

1+α+β
, 1
1+α+β

, 1
1+α+β

�, three 
conditions need to be met as follow:

(i) Δ(1) > 0.  Δ(1) = 1 + P� + Q� + S� > 0, 

(ii) 1 − P� + Q� − S� > 0,

(iii) �𝑆𝑆𝑆𝑆�� < 1 and 
2| 1| | | >S SP Q− −    . 

Take the parameters as R = 1,α = 0.4745, β = 3. 
The original Julia set of system (2) is shown in Figure
1. In Figure 1(b), the filled K(F) with z0 = 0 is illus-
trated. Actually this can be regarded as a reduced case 
of system (2) when one of the third species is nonexist-
ence. The trajectories of the two signed points A ∈ K(F)
and B ∉ K(F) are illustrated in Figures 2-3, in which we 
can see that the trajectories remain closed before 90
steps nevertheless B's trajectory begins to diverge when 
the iteration continues.

For the controlled system (4), the control parame-
ters k should satisfy that k ∈ {k|k < −2.2631 ∪ {k} >
0.2631}. The controlled Julia sets and its slices are illus-
trated in Figures 4-5. The simulations shows that J(Fc)
expands with the values of the control parameter k in-
creases in two directions of the number axis. In other 
words, more points come into the filled Julia set around 
the stable coexistence fixed point.

Figure 4. The controlled Julia sets J(Fc) with pa-
rameters: (a).k = 0.27. (b). k = 0.4. 

(a)

(b)

Figure 5. The 2D slices of controlled Julia sets 
𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐) with different parameters: (a). k > 0.2631. 
(b). k < −2.2631. 

Rows λ0 𝜆𝜆𝜆𝜆1 𝜆𝜆𝜆𝜆2 𝜆𝜆𝜆𝜆3

1 S� 𝑄𝑄𝑄𝑄� 𝑃𝑃𝑃𝑃� 1

2 1 𝑃𝑃𝑃𝑃� 𝑄𝑄𝑄𝑄�

3 2 1S −   SQ P−   SP Q− 

0

,

2 

The characteristic equation of the Jacobi matrix J is 
denoted as

Δ(λ) = λ3 + P�λ2 + Q�λ + S� = 0,
where
(i) T = (2 + α + β)Rx∗ − (1 + R) , 

(ii) P� = 3T
1+k

 , 

(iii) Q� = 3T2−3αβR2x∗2

(1+k)2
,

(iv) S� = T3−α3R3x∗3−β3R3x∗3−3TαβR2x∗2

(1+k)3
. 

According to the Jury criterion, the following Jury table 
is obtained.

Table 1. The Jury table of . 

  

In order to determine that the controlled system (4) 
is stable on fixed point � 1

1+α+β
, 1
1+α+β

, 1
1+α+β

�, three 
conditions need to be met as follow:

(i) Δ(1) > 0.  Δ(1) = 1 + P� + Q� + S� > 0, 

(ii) 1 − P� + Q� − S� > 0,

(iii) �𝑆𝑆𝑆𝑆�� < 1 and 2| 1| | |>S SP Q− −    . 

Take the parameters as R = 1,α = 0.4745, β = 3. 
The original Julia set of system (2) is shown in Figure
1. In Figure 1(b), the filled K(F) with z0 = 0 is illus-
trated. Actually this can be regarded as a reduced case 
of system (2) when one of the third species is nonexist-
ence. The trajectories of the two signed points A ∈ K(F)
and B ∉ K(F) are illustrated in Figures 2-3, in which we 
can see that the trajectories remain closed before 90
steps nevertheless B's trajectory begins to diverge when 
the iteration continues.

For the controlled system (4), the control parame-
ters k should satisfy that k ∈ {k|k < −2.2631 ∪ {k} >
0.2631}. The controlled Julia sets and its slices are illus-
trated in Figures 4-5. The simulations shows that J(Fc)
expands with the values of the control parameter k in-
creases in two directions of the number axis. In other 
words, more points come into the filled Julia set around 
the stable coexistence fixed point.

Figure 4. The controlled Julia sets J(Fc) with pa-
rameters: (a).k = 0.27. (b). k = 0.4. 

(a)

(b)

Figure 5. The 2D slices of controlled Julia sets 
𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐) with different parameters: (a). k > 0.2631. 
(b). k < −2.2631. 

Rows λ0 𝜆𝜆𝜆𝜆1 𝜆𝜆𝜆𝜆2 𝜆𝜆𝜆𝜆3

1 S� 𝑄𝑄𝑄𝑄� 𝑃𝑃𝑃𝑃� 1

2 1 𝑃𝑃𝑃𝑃� 𝑄𝑄𝑄𝑄�

3 2 1S −   SQ P−   SP Q− 

0

3 
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For both two species and multi species ecosystems, 
the complex coupling behavior among species are 
both complicated. For the previous works [21, 27, 35, 
36], the range of control parameter k is obtained by 
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analyzing the stability of fi xed point. There are still 
some defi ciencies about the boundedness analysis 
of the original Julia set, and the boundedness change 
with diff erent parameters k.
Note that in recent work [30], the authors proposed a 
preliminary frame to address the boundedness analy-
sis problems for a kind of weakly chain coupled Logis-
tic type map. Figure 6 [7] illustrates the complex sym-
metrical coupled predatory behavior of system (4). 
What we want is to apply the ideas in reference [30] 
to provide a preliminary study on the boundedness 
analysis of Julia sets in system (4). Now we reduce 
system (4) into a nutrient-phytoplankton-zooplank-
ton version which contains a chain coupled predatory 
behavior:
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preliminary study on the boundedness analysis of 
Julia sets in system (4). Now we reduce system (4) 
into a nutrient-phytoplankton-zooplankton version 
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(5) 

where R,α, β have the same meaning with system 
(4), N, P, Z represent the nutrient, phytoplankton 
and zooplankton respectively, which means that Z 
is a self-organizing species without predator. The 
chain coupled predatory behavior of system (5) is 
shown in Figure 7. 

The upper bound of J(FNPZ) system is given by 
the following theorem: 

Theorem 1.  

𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) ⊂{(𝑁𝑁𝑁𝑁0,𝑃𝑃𝑃𝑃0,𝑍𝑍𝑍𝑍0) ︱|𝑖𝑖𝑖𝑖0| < 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = 𝑁𝑁𝑁𝑁,𝑃𝑃𝑃𝑃,𝑍𝑍𝑍𝑍} 

in whichBZ = |R+1|
|R|

, BP = |R+1|+|RαBZ|
|R|

,  and 

 BN = |R+1|+|RαBP|+|RβBZ|
|R|

.  

proof.  For the zooplankton without predator, if 
|Z0| > |R+1|

|R|
,one can get: 

|Z1| ≥ |Z0|2 − R − |Z0|(|1 + R|). 

Then ∃ϵ such that

1 0lim | | lim(1 ) | |n
nn n

Z Z+→∞ →∞
= + →∞

.So |Z0| <
|R+1|

|R|
 is a necessary condition to make J(FNPZ) 

bounded. If |P0| ≥ BP, then one can get: 

|P1| = |(1 + R)P0 − RP02 − RαZ0P0|      

     ≥ |R||P0|2 − (|1 + R|P0 + |Rα||Z0||P0|) 

     ≥ |R||P0|2 − (|1 + R| + |RαBZ|)P0 

Then ∃𝜖𝜖𝜖𝜖 such that
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nn n

P P+→∞ →∞
= + →∞

 .So it is 
clear that |P0| < BP is a necessary condition to 
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nn n

N N+→∞ →∞
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. So it is 
clear that |N0| < BN is also a necessary condition 
to make J(FNPZ) bounded. 

The boundedness analysis of weakly coupled 
system (5) can be treated as an attempt to explore 
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2.Synchronization of Julia Sets
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tem same to the ideal one. The synchronization of 
Julia sets can be realized by adding some coupling 
item to associate the controlled system with an ideal 
one. Consider the following system (5) with the same 
structure but different parameters as system (4):
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In order to associate system (6) with the ideal system 
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⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
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−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
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 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 

Lemma 1 [40].The synchronization between J�FO�� and 
J(F) is realized if there exit some L0 such that 
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Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 

 

 

 

 

 

Figure 8. The synchronization of J�FO�� with  

different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

(6)

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
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𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.
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𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :
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noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
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Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 
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The Julia sets of system (7) and system (4) are respec-
tively denoted as 

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛�1 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − α�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − β�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺3��𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑧𝑧2 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2�

 

 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 

Lemma 1 [40].The synchronization between J�FO�� and 
J(F) is realized if there exit some L0 such that 

0

lim ( ) ( ) ( ) ( ) .( )O O

L L
J F J F J F J F

→
∪ − ∩ =∅ 

  

Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 

 

 

 

 

 

Figure 8. The synchronization of J�FO�� with  

different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

and J(F). Give the coupling pa-

rameter Lj  and 

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛�1 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − α�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − β�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺3��𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑧𝑧2 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2�

 

 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 
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J(F) is realized if there exit some L0 such that 
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Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 

 

 

 

 

 

Figure 8. The synchronization of J�FO�� with  

different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

 ( j = 1, 2, 3) a uniform expression L 
and then we have the following lemma and theorem.
Lemma  1. [40].The synchronization between 

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛�1 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − α�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − β�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺3��𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑧𝑧2 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2�

 

 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 

Lemma 1 [40].The synchronization between J�FO�� and 
J(F) is realized if there exit some L0 such that 

0

lim ( ) ( ) ( ) ( ) .( )O O

L L
J F J F J F J F

→
∪ − ∩ =∅ 

  

Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 

 

 

 

 

 

Figure 8. The synchronization of J�FO�� with  

different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

  
and J(F) is realized if there exit some L0  such that 

0

lim ( ) ( ) ( ) ( ) .( )O O

L L
J F J F J F J F

→
∪ − ∩ =∅   

Lemma  2. 

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛�1 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − α�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − β�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺3��𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑧𝑧2 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2�

 

 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 

Lemma 1 [40].The synchronization between J�FO�� and 
J(F) is realized if there exit some L0 such that 

0

lim ( ) ( ) ( ) ( ) .( )O O

L L
J F J F J F J F

→
∪ − ∩ =∅ 

  

Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
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Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
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+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 
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+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 
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≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 
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Li®1, Li®2.
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2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
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𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.
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In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 
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⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
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−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
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side Ω are needed to be considered. Therefore, ∃N1 
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Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
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The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

 if there exists n0  
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the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
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𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :
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⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺3��𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑧𝑧2 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2�

 

 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 

Lemma 1 [40].The synchronization between J�FO�� and 
J(F) is realized if there exit some L0 such that 
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Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 
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different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

 escape from region Ω. So in the 
synchronization process, only the points whose tra-
jectories are inside  Ω are needed to be considered. 
Therefore, 

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛�1 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − α�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − β�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺3��𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑧𝑧2 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2�

 

 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 

Lemma 1 [40].The synchronization between J�FO�� and 
J(F) is realized if there exit some L0 such that 
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Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 

 

 

 

 

 

Figure 8. The synchronization of J�FO�� with  

different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

 such that 

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛�1 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − α�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − β�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
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noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
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The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
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Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
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havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
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𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :
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⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
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tively denoted as J�FO�� and J(F). Give the coupling pa-
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proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
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Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 
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≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
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𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :
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⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
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 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 

Lemma 1 [40].The synchronization between J�FO�� and 
J(F) is realized if there exit some L0 such that 
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Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 
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different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

  and 

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛�1 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − α�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − β�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺3��𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑧𝑧2 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2�

 

 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 
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J(F) is realized if there exit some L0 such that 
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Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 

 

 

 

 

 

Figure 8. The synchronization of J�FO�� with  

different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

 
Then, we have

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛�1 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − α�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − β�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
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proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
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|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 
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≤ |2 − L1|n|u1 − x | 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 
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the system with more strongly coupled predatory be-
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2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
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𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
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proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 
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Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 
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the system with more strongly coupled predatory be-
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2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
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(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :
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−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺3��𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑧𝑧2 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2�

 

 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 

Lemma 1 [40].The synchronization between J�FO�� and 
J(F) is realized if there exit some L0 such that 
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Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 

 

 

 

 

 

Figure 8. The synchronization of J�FO�� with  

different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

 with different L

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛�1 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − α�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − β�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺3��𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑧𝑧2 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2�

 

 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 

Lemma 1 [40].The synchronization between J�FO�� and 
J(F) is realized if there exit some L0 such that 
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Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 

 

 

 

 

 

Figure 8. The synchronization of J�FO�� with  

different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

The limitation of the right side satisfies that 

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛�1 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − α�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − β�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺3��𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑧𝑧2 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2�

 

 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 

Lemma 1 [40].The synchronization between J�FO�� and 
J(F) is realized if there exit some L0 such that 
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Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 

 

 

 

 

 

Figure 8. The synchronization of J�FO�� with  

different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

, 

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛�1 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − α�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − β�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺3��𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑧𝑧2 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2�

 

 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 
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1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 

 

 

 

 

 

Figure 8. The synchronization of J�FO�� with  

different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

, the trajectories of un and xn is synchronized.
Similarly, when 

 
 

 

the system with more strongly coupled predatory be-
havior. 

 
2.Synchronization of Julia Sets 

In the nonlinear science area, synchronization [11] 
is regarded as another control method which aims to 
make the dynamical behavior of controlled system 
same to the ideal one. The synchronization of Julia sets 
can be realized by adding some coupling item to associ-
ate the controlled system with an ideal one. Consider 
the following system (5) with the same structure but 
different parameters as system (4): 

                   F�:�
𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛�1 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − α�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − β�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛�1 − β�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − α�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�,
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑅𝑅�𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�1 − α�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − β�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛�.

 

(6) 

In order to associate system (6) with the ideal system 
(4), we introduce two coupling items into it to get 

 

𝐹𝐹𝐹𝐹𝑂𝑂𝑂𝑂� :

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛+1 = 2𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺1(𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺1��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛2�
𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛+1 = 2𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺2(𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺2��𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑦𝑦𝑦𝑦2 − 𝛽𝛽𝛽𝛽�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛2�
𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛+1 = 2𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺3(𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)
−𝐺𝐺𝐺𝐺3��𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 + 𝑧𝑧𝑧𝑧2 − 𝛽𝛽𝛽𝛽�𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝛼𝛼𝛼𝛼�𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 − 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛2�

 

 (7) 

The Julia sets of system (7) and system (4) are respec-
tively denoted as J�FO�� and J(F). Give the coupling pa-
rameter  𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝐺𝐺𝚥𝚥𝚥𝚥�   (j = 1,2,3) a uniform expression L 
and then we have the following lemma and theorem. 

Lemma 1 [40].The synchronization between J�FO�� and 
J(F) is realized if there exit some L0 such that 

0

lim ( ) ( ) ( ) ( ) .( )O O

L L
J F J F J F J F

→
∪ − ∩ =∅ 

  

Lemma 2. 𝐽𝐽𝐽𝐽�𝐹𝐹𝐹𝐹 ��and 𝐽𝐽𝐽𝐽(𝐹𝐹𝐹𝐹) are synchronized when Li →
1,Li → 2. 

proof.  It is clear that Julia set is obtained according to 
iteration of points within a bounded region which is de-
noted as Ω. Since ψ0 ∉ J(F) if there exists n0 such that 
Fn0(ψ0) escape from region Ω. So in the synchroniza-
tion process, only the points whose trajectories are in-
side Ω are needed to be considered. Therefore, ∃N1 
such that |β||xnzn| + �β��|unwn| < N1, |α||xnyn| +
|α||unvn| < N1,and |xn2| + |un2| < N1. 

 

 

 

 

 

Figure 8. The synchronization of J�FO�� with  

different L. 

 
 

Then, we have 

|un+1 − xn+1| ≤ |Z − L1||un − xn| 

+�1 − L1��|αxnyn − α�xnyn| 

+�1 − L1���βxnyn − β�unwn� 

+�1 − L1��|xn2 − un2| 

≤ |2 − L1||un − xn| 

+�1 − L1���|β||xnzn| + �β��|unwn|� 

+�1 − L1��(|α||xnyn| + |α�||unvn|) 

+�1 − L1��(xn2 + un2) 

≤ |2 − L1||un − xn| + 3�1 − L1��N1 

≤ |2 − L_1|(|2 − L_1||u_{n − 1} − x_{n − 1}| 

+3�1 − L1��N1) + 3�1 − L1��N1 

≤ |2 − L1|2|un−1 − xn−1| 

+3�1 − L1��N1(1 + |2 − L1|) 

≤ ⋯  … 

≤ |2 − L1|n|u1 − x1| 

+3�1 − L1��N1(1 + |2 − L1| 

+|2 − L1|2 + ⋯+ |2 − L1|n) 

= |2 − L1|n|u1 − x1| 

+3�1 − L1��N1
1−|2−L1|n

1−|2−L1|
. 

The limitation of the right side satisfies that L1 →
2, L1� → 1, the trajectories of un and xn is syn-
chronized. 

Similarly, when L2,3 → 2, L2,3� → 1, the tra-
jectories of vn and yn, wn and zn are synchro-
nized. 

, the trajectories of 
vn  and yn,  wn and zn are synchronized.
Fig. 8 presents the ideal Julia set J(F) and the chang-
ing process of Julia sets from the coupling system (7) 
with different parameters L.

3. Conclusion and Further Discussions
The Lotka-Volterra system is considered as the most 
basic theoretical model in the research area of pop-
ulation biology. Chaos and bifurcations are the main 
contents in the nonlinear dynamical analysis about 
Lotka-Volterra system. Note that fractals is one of the 
main frontiers of nonlinear sciences. Several recent 
studies have extended the dynamical analysis of Lot-
ka-Volterra system into the category of fractals. Nev-
ertheless, these fractals investigations of ecosystems 
mainly focused on 2D systems, and not sufficient-
ly studied the topological boundedness properties. 
Considering that multi species systems have better 

explanation to the actual biological processes, this 
paper extends these ecosystem fractals researches 
into three-species case by considering a kind of GLV  
model. The definition of Julia sets for the GLV model 
is given which helps us to explore the initial species 
states. Then we apply the giant control method which 
contains both giant parameter and the state feedback 
to achieve the Julia sets’ control. A preliminary study 
on the boundedness analysis of Julia sets on a kind of 
weakly coupled nutrient-phytoplankton-zooplank-
ton model is also proposed. At last, the synchroniza-
tion of Julia sets is considered to realize the coupling 
of two different systems. Some further discussions of 
this work can be summarized as follows:
1 Note that for some GLV systems with more general 

structure, such as the system whose predatory be-
havior lose the symmetrical coupled structure [2], 
or system with more species [16], the complicated 
coupled behavior increase the difficulty in analyz-
ing the topological properties of Julia set.

2  Moreover, it seems that there exist some stripe and 
spot patterns [31, 32] in the fractals structure of 
GLV system (see Figure 1). Thus in the future work, 
the relationship between fractals and patterns in 
ecosystems can be investigated.

3 At last, further study combining fractals and eco-
systems should pay much more attentions on its 
practical application. For example, could the evo-
lutionary process of the actual species provide 
effective data support to identify a corresponding 
fractals system? If so, which actual generation with 
stable evolution is proper to be taken as the escape 
times of the Julia set?

Thus the idea and study enclosed in this paper could 
be further expanded and deepened in the cases of sys-
tems with more general form and potential applica-
tions. Based on the analysis above, there is still plenty 
of work that needs further investigation.
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