
Information Technology and Control 2020/4/49608

A Two-stage Strategy to
Optimize Energy Consumption
for Latency-critical Workload
Under QoS Constraint

ITC 4/49
Information Technology
and Control
Vol. 49 / No. 4 / 2020
pp. 608-621
DOI 10.5755/j01.itc.49.4.25029

A Two-stage Strategy to Optimize Energy Consumption for Latency-critical
Workload Under QoS Constraint

Received 2020/01/07 Accepted after revision 2020/10/30

 http://dx.doi.org/10.5755/j01.itc.49.4.25029

HOW TO CITE: Li, J., Teng, D., Lin, J. (2020). A Two-stage Strategy to Optimize Energy Consumption for Latency-critical Workload
Under QoS Constraint. Information Technology and Control, 49(4), 608-621. https://doi.org/10.5755/j01.itc.49.4.25029

Corresponding author: lijw66@163.com

Jingwei Li, Duanyu Teng, Jinwei Lin
Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China;
e-mails: lijw66@163.com, dyteng.xjtu@gmail.com, ljw7325@stu.xjtu.edu.cn

Reducing energy consumption can bring various benefits, such as saving power, reducing operating costs and
improving system reliability. Data centers afford huge energy costs. Reducing energy consumption and pro-
viding efficient quality of service (QoS) are the goals pursued by data centers. This paper aims to develop the
scheduling strategy to reduce the energy consumption for latency-critical workload with the Dynamic Voltage
Frequency Scaling technique. In this paper, we propose a two-stage strategy that dynamically schedules the
CPU to run at the optimal frequency level and provides satisfactory QoS during the latency-critical workload
execution. The two-stage strategy includes a static stage and a dynamic stage. In the static stage, a heuristic
algorithm is developed to determine an optimal frequency level for different loads, at which the CPU consumes
lower energy. However, due to the dynamic characteristics of the load, the determined frequency in the static
stage may not guarantee QoS. Therefore, in the dynamic stage, a threshold method is proposed to fine-tune
the frequency to ensure the QoS. The two stages are worked together to reduce energy consumption for la-
tency-critical workload which has QoS constraint. A case study on the Web search application shows that our
scheduling strategy is effective for energy-saving, with a reduction of more than 13% compared with the base-
line strategy.
KEYWORDS: High energy cost, latency-critical workload, two-stage strategy, energy-saving, QoS constraint.

609Information Technology and Control 2020/4/49

1. Introduction
Cloud computing technology and big data technol-
ogy have promoted the vigorous development of the
Internet. These technologies have been applied to all
aspects of our modern life, such as social networking
[6], media streaming [21], e-commerce [1], mobile
Internet [14] and so on. With the popularity of these
technologies, data centers need to process a large
amount of data every day, which makes enterprises
and governments have to invest in building more data
centers. However, building a data center costs mil-
lions of dollars, of which the energy cost accounting
for a significant proportion of total investment [9],
[22]. According to 2017 statistics, about 8 million
data centers around the world are processing Internet
data. The power consumption of these data centers is
416.2 terawatt hours, accounting for 2% of the global
total power consumption [30]. In addition, these data
centers produce more than 43 million carbon diox-
ide annually [2]. Huge power consumption not only
brings high energy costs but also damages the envi-
ronment. Therefore, reduction of power consumption
is significant and urgent.
Power saving is a challenging issue in data centers
because of the contradiction between low power con-
sumption and high performance. Latency-critical ap-
plications such as Web search, media streaming, etc.
must meet their service-level agreement (SLA) for
performance [15], [32]. To guarantee the quality of
service (QoS) of these applications, data centers have
to force the CPU to run at a higher frequency, which
results in high power consumption. The trade-off be-
tween power consumption and performance is a hot
issue of common concern in industry and academia
[13][19].
The CPU is the most energy consuming component
in the server, so studying the CPU power efficiency
is a significant direction for energy-saving [3][27].
Dynamic Voltage and Frequency Scaling (DVFS)
is a well-known technique for reducing processor
power and energy. Many researchers have proposed
their strategies or techniques based on DVFS for en-
ergy-saving from different perspectives. Ibrahim et
al. [12] investigated the DVFS technology in the Ha-
doop cluster. Their work provides a useful insight
into designing power-aware techniques for Hadoop
systems. The work in [23] uses the DVFS technique

to minimize energy consumption in parallel applica-
tions. Choi et al. [7] proposed an intra-process DVFS
technique to save energy for the non-real-time ap-
plications running on an embedded system. Wang et
al. [26] focus on power reduction in heterogeneous
multi-tier clusters and apply Generalized Benders
Decomposition (GBD) to solve the optimization prob-
lem.
Ondemand [4] is a typical DVFS based CPU frequency
governor in the Linux system. It is a default strategy in
Linux system and is often used as a baseline for com-
parison with other DVFS based strategies. Ondemand
strategy scheduling the CPU frequency based on the
workload running on the server. It uses the CPU utili-
zation as an indicator of frequency scheduling. When
it detects that the CPU utilization exceeds a specific
threshold, it quickly schedules the processor to run
at the highest frequency to ensure the performance
of the load. Ondemand strategy can automatically
scale the frequency according to the load while incur-
ring almost negligible overhead. However, for laten-
cy-critical workloads, Ondemand strategy exposes
two limitations. First, Ondemand aggressively sched-
ules the frequency between almost the highest and
lowest frequencies, so it cannot make full use of other
intermediate frequencies to save power. Second, On-
demand only uses CPU utilization as the scheduling
indicator. Sometimes a single CPU utilization does
not accurately reflect the real work of the processor.
To address these limitations, we propose a two-stage
strategy to dynamically schedule the CPU frequency
during latency-critical workload execution to min-
imize energy consumption and meet the QoS con-
straint. The two-stage strategy includes a static fre-
quency determination stage and a dynamic frequency
adjustment stage. The static stage uses a heuristic
algorithm to model the frequency-load relationship
and generate a quantitative relation table. This table
determines the optimal CPU frequency for a running
workload, at that frequency the energy consumption
is minimum when performance constraint is met.
To avoid transient load surge that may damage QoS,
the dynamic stage uses a threshold method to fine-
grained adjust the CPU frequency. The threshold
method adjusts the frequency based on the calculated
Instruction per cycle (IPC) of the processor. Once the

Information Technology and Control 2020/4/49610

IPC value exceeds the threshold, the CPU frequency
is quickly adjusted to the highest frequency. Or else,
if the IPC value does not exceed the threshold, the
optimal frequency of the static stage is maintained.
During the workload operation, the static stage de-
tects the load every 1 second (abbreviated as s and lat-
er s is used) and determines the optimal frequency for
it, while the dynamic stage calculates the IPC value
every 1 millisecond (abbreviated as ms and later ms is
used) and determines whether to adjust the frequen-
cy. The two stages worked together to minimize the
energy cost and ensuring the QoS.
In summary, our paper makes the following contribu-
tions:
 _ A two-stage scheduling strategy is proposed to

reduce the energy consumption and provide
satisfactory QoS for the latency-critical workload.

 _ A heuristic algorithm is developed to determine
an optimal CPU frequency for a running workload
which is under the QoS constraint. At the optimal
frequency, the CPU consumes lower energy.

 _ A comprehensive evaluation is conducted to
demonstrate the effectiveness of the two-stage
strategy for energy-saving and QoS-protection.

Paper organization: In Section 2, we briefly de-
scribe the background and clarify the motivation of
this work. Section 3 elaborates on the two-stage strat-
egy, including the heuristic algorithm and the thresh-
old method. Section 4 describes the implementation
of the two-stage strategy and Section 5 presents the
case study. Section 6 reviews the related work, and
Section 7 concludes the whole work.

2. Background and Motivation
In this section, we briefly introduce the frequency
scheduling strategy in the Linux system and discuss
its limitations through an experiment. Then we give a
motivation example to clarify the insight of this work.

2.1. Ondemand Strategy and Its Limitation
Cpufreq is a kernel subsystem in the Linux power man-
agement system, and the governor in cpufreq controls
the frequency scaling strategy of the processor. Cpu-
freq provides several frequency scaling strategies such
as, performance, powersave, ondemand, and userspace

etc. The governor schedules the strategy according to
the user’s demand. For instance, performance strategy
highlights performance and keeps the CPU running
at the highest frequency, while powersave emphasiz-
es energy-saving and fix the CPU running at the low-
est frequency. Ondemand strategy is the default one
in the Linux system. It schedules the CPU frequency
between the highest and lowest according to the CPU
utilization. Once the detected CPU utilization exceeds
a certain threshold, Ondemand schedules the CPU to
run at the highest frequency, else it keeps the CPU to
run at the lowest frequency. Usersapce provides a pro-
gram interface that allows users to customize their
frequency scaling strategy. Ondemand automatically
scheduling the CPU frequency according to the system
load. However, it is not flexible because it does not use
other frequency levels and therefore limits the more
space to save energy.
We evaluate the power saving effect of the Ondemand
strategy on the Web search application. Web search
is a typical latency-critical workload in data cen-
ters, which has a SLA requirement. To let users feel
a good search experience, it is generally believed that
the response time of Web search should be less than
300ms, otherwise the users rather choose to drop or
leave [20][25]. Therefore, for latency-critical work-
loads, the scheduling strategy should reduce power
consumption as well as meet their performance re-
quirements. This paper uses the Web search appli-
cation as an example of latency-critical workload to
carry out the research. Our strategy is also applicable
to other latency-critical workloads. We deploy the
Web search benchmark on two servers, of which one
works as server end, and the other works as client end.
In the experiment, we set the server end works in On-
demand strategy and set the client to send different
numbers of requests to the server end continuously
within a period of 696s. During the workload opera-
tion, we measure the response time of the Web search
and the energy consumption of the CPU of the server
end. The details of how to measure the response time
and CPU energy are presented in Section 4.1. In this
experiment, the measured average response time is
108ms, and the total energy consumption in the whole
process is 14549J. We can see that Ondemand strat-
egy can better meet the QoS requirement (less than
300ms) but consume a lot of energy. To improve ener-
gy-saving, this paper proposes a two-stage strategy to
tradeoff energy consumption and performance.

611Information Technology and Control 2020/4/49

2.2. Motivation
According to the characteristic of CMOS circuit, the
dynamic power of the processor is proportional to the
square of the processor frequency and voltage [28]
[31]. Therefore, the higher the frequency, the more
of the power consumption. DVFS is a dynamic CPU
voltage and frequency scaling technology enables the
operating system to scale the CPU frequency up or
down according to the system load. At present, most
processor microarchitectures equipped with DVFS
technique and it has been widely used for CPU power
optimization in industry and academia. We propose a
two-stage strategy based on DVFS technique, which
aims to reduce energy consumption and guarantee
performance for the latency-critical workload. The
objective of the two-stage strategy is to determine
the optimal frequency level for the given workload, at
which the CPU consumes lower energy. We analyze
the relationship between frequency, performance,
and power through a case study on Web search. In the
case study, the server is equipped with the Intel Has-
well architecture processor. Table 1 lists the detail
parameters of the processor and Table 2 lists the fre-
quency levels that the processor supported.
We configure the client generates three different siz-
es of load (light, medium, and heavy) and set the pro-

Table 1
Information of the processor

Item Parameter

Processor Intel(R) Core(TM) i5-4460
CPU @ 3.20GHz

Microarchitecture Haswell

CPU cores 4

Operating system Ubuntu 14.04.5 LTS

Kernel version Linux version
3.16.0-77-generic

Table 2
Frequency levels of the processor supported

Frequency
(GHz)

0.8 1.0 1.1 1.3 1.5 1.7 1.8 2.0

2.2 2.3 2.5 2.7 2.9 3.0 3.2 3.201

cessor to run on each of the 16 frequency levels. Each
load runs for 300s on the 16 frequencies of the proces-
sor, and the response time and power consumption
are measured during the load operation. It is worth
noting that the response time at each frequency is the
average response time of the load running for 300s,
and the energy at each frequency is the total energy
of 300s. Figure 1 illustrates the performance varia-
tions of the three loads at different CPU frequencies.
Figure 2 shows the power consumption variations of
the three loads at different CPU frequencies. It can be
seen from the two figures that, the higher the frequen-
cy, the smaller the response time and the greater the
energy consumption. However, the change rates are
different. It can be seen from Figure 1 and Figure 2
that for the medium load, the performance improve-
ment is very little after the frequency above 2.5, but
the energy consumption is still increasing greatly.
This observation hints that for different loads, choos-
ing the appropriate frequency can both reduce the
power and provide satisfactory performance.

Figure 1
Performance variations of the three loads at different
CPU frequencies. The horizontal axis shows different
CPU frequencies, and the vertical axis represents the
performance of the load at that frequency. Light Medium
and Heavy refers to three different size of loads

Therefore, our work needs to model the relationship
between load and frequency in order to determine the
optimal frequency level for the load which is under the
QoS constraint. As can be seen from Figure 2, the re-
lationship between power consumption and frequen-
cy approximately presents a linear trend. At a specific
frequency, energy consumption is related to the load

Information Technology and Control 2020/4/49612

being processed. Thus, we empirically assume that
there is also an approximately linear relation between
load and frequency. The two-stage strategy is devel-
oped under this assumption. The evaluation results
show that the proposed strategy has achieved good
effect for energy-saving and QoS-protection, which
indirectly illustrates the rationality of the linear as-
sumption.

3. The Two-stage Strategy
This section elaborates on the two-stage strategy. The
two stages are static stage and dynamic stage. The
static stage generates a frequency-load relation table
through a well-designed heuristic algorithm. To avoid
transient load surge to damage the QoS, the dynamic
stage adjusts the previously planned frequency by us-
ing the threshold method.

3.1. Static Stage
In Section 2.2, we assume that load and frequency
are approximately linear relationship. Based on this
assumption, a heuristic algorithm is designed to de-
termine a corresponding frequency for a load, and
finally generates a [,]frequency load matching pairs.
The response time of Web search is required less than
300ms. Thus, the Qos constraint is 300ms. The heu-
ristic algorithm calculates the optimal frequency for
the load that is under this QoS constraint. The follow-
ing part will describe the heuristic algorithm and its
pseudo-code.

Figure 2
Power consumption variations of the three loads at
different CPU frequencies. The horizontal axis shows
different CPU frequencies, and the vertical axis represents
the power consumption of the CPU at that frequency. Light
Medium and Heavy refers to three different size of loads

Description of the heuristic algorithm:
Step  1: Determine the frequency of the lower limit
load under QoS constraint. Specifically, for the lower
limit load lowload , measure its actual response time
res at the lower limit frequency lowfreq . If the actual
response time is less than the QoS constraint con, i.e.,
res con< , then the matching pair [,]frequency load
is determined, else the frequency level is increased
step by step until meeting the QoS constraint, i.e.,
meet res con< , this frequency level is determined as
a match to lowload .
Step  2: Determine the frequency of the upper limit
load under QoS constraint. Similar to step 1, for the
upper limit load uppload , measure its actual response
time res at the upper limit frequency uppfreq . If the ac-
tual response time is greater than the QoS constraint,
i.e., res con> , then the matching pair[,]frequency load
is determined, else the frequency level is decreased by
one level and measure the response time at this level.
If the actual response time is less than the QoS con-
straint, i.e., res con< , this frequency level is deter-
mined as a match to uppload .

Algorithm 1: The heuristic algorithm

processed. Thus, we empirically assume that there
is also an approximately linear relation between
load and frequency. The two-stage strategy is
developed under this assumption. The evaluation
results show that the proposed strategy has
achieved good effect for energy-saving and QoS-
protection, which indirectly illustrates the
rationality of the linear assumption.

3. The Two-stage Strategy
This section elaborates on the two-stage strategy.
The two stages are static stage and dynamic stage.
The static stage generates a frequency-load relation
table through a well-designed heuristic algorithm.
To avoid transient load surge to damage the QoS,
the dynamic stage adjusts the previously planned
frequency by using the threshold method.

3.1 Static Stage

In Section 2.2, we assume that load and frequency
are approximately linear relationship. Based on this
assumption, a heuristic algorithm is designed to
determine a corresponding frequency for a load,
and finally generates a [,]frequency load
matching pairs. The response time of Web search is
required less than 300ms. Thus, the Qos constraint
is 300ms. The heuristic algorithm calculates the
optimal frequency for the load that is under this
QoS constraint. The following part will describe the
heuristic algorithm and its pseudo-code.

Description of the heuristic algorithm:

Step 1: Determine the frequency of the lower limit
load under QoS constraint. Specifically, for the
lower limit load lowload , measure its actual
response time res at the lower limit frequency

lowfreq . If the actual response time is less than the
QoS constraint con , i.e., res con< , then the
matching pair [,]frequency load is determined,
else the frequency level is increased step by step
until meeting the QoS constraint, i.e., meet
res con< , this frequency level is determined as a
match to lowload .

Step 2: Determine the frequency of the upper limit
load under QoS constraint. Similar to step 1, for the
upper limit load uppload , measure its actual
response time res at the upper limit frequency

uppfreq . If the actual response time is greater than
the QoS constraint, i.e., res con> , then the
matching pair [,]frequency load is determined,
else the frequency level is decreased by one level
and measure the response time at this level. If the
actual response time is less than the QoS constraint,

i.e., res con< , this frequency level is
determined
Algorithm 1: The heuristic algorithm
1：Input: , [], , , ,low uppcon freq N low upper load load

2：Output: [,]frequency load
3： _ (, [])lowres measure response load freq low←

4：If res con> Then
5： For res con> Do
6： 1low low← +
7： _ (, [])lowres measure response load freq low←

8： End For
9：End If
10：[, []] lowfrequency load low load←

11： _ (, [])uppres measure response load freq upp←

12：If res con> Then
13： [, []] uppfrequency load upp load←

14：Else
15： 1high high← −
16： _ (, [])uppres measure response load freq upp←

17： If res con< Then
18： [, []] uppfrequency load upp load←

19： End If
20：End If

21： _ (, [], , ,
, ,[,])low med

generate med con freq N low med
load load frequency load

…

22：
_ (, [], , ,

, ,[,])med upp

generate med con freq N med upp
load load frequency load

…

23：return [,]frequency load

as a match to uppload .

Step 3: Determine the frequency of the
median load under QoS constraint. Since the
linear relationship between load and
frequency, when the load takes the median
value of the upper limit load and lower limit
load, the corresponding frequency value
should also be near the median of the upper
limit frequency and lower limit frequency.
Specifically, calculate the median load

medload and median frequency medfreq .
Measure the actual response time res of

medload at medfreq . If the actual response
time is less than the constraint, i.e.,
res con< , then the matching pair
[,]frequency load is determined, else the
frequency level is increased step by step
from median frequency medfreq until
meeting the QoS constraint, i.e., res con< ,
this frequency level is determined as a match
to medload .

613Information Technology and Control 2020/4/49

Step 3: Determine the frequency of the median load
under QoS constraint. Since the linear relationship
between load and frequency, when the load takes the
median value of the upper limit load and lower lim-
it load, the corresponding frequency value should
also be near the median of the upper limit frequency
and lower limit frequency. Specifically, calculate the
median load medload and median frequency medfreq .
Measure the actual response time res of medload at

medfreq . If the actual response time is less than the
constraint, i.e., res con< then the matching pair
[,]frequency load is determined, else the frequency
level is increased step by step from median frequen-
cy

medfreq until meeting the QoS constraint, i.e.,
res con< , this frequency level is determined as a
match to medload .

Algorithm 2: The function of generate_med

Step 4: Iteratively determine the new median load
and the new median frequency. Repeat
Algorithm 2: The function of generate_med

1：Input: , [], , , , ,
[,]

low uppcon freq N low upp load load
frequency load

…

2：Output: [,]frequency load
3： , ,

2 2
low upp

med

load load low uppload med
+ +

← ← …

_ (, [])medres measure response load freq med←

4：If res con> Then
5： For res con> Do
6： 1med med← +
7： _ (, [])medres measure response load freq med←

8： End For
9： End If
10：[, []] medfrequency load med load←

11： _ (, [], , ,
, ,[,])low med

generate med con freq N low med
load load frequency load

…

12： _ (, [], , ,
, ,[,])med upp

generate med con freq N med upp
load load frequency load

…

Table 3

Descriptions of the variables in the pseudo-codes

Variable Meaning

[]freq N The Array of frequency levels
that the processor supported

N Number of frequency levels
con QoS constraint
res Actual response time
low Lower limit index

upper Upper limit index

lowload Lower limit load

uppload Upper limit load

medload Median load

step 3 by dichotomy method until no median
frequency need be calculated.

Algorithm 1 and Algorithm 2 are pseudo-codes of
the heuristic algorithm. Table 3 describes the
variables in the pseudo-codes.

We apply the heuristic algorithm to the Web search
application and the Haswell architecture processor
(described in Tables 1-2) to calculate the
[frequency,load] matches. We set the lower limit
load is 10, the upper limit load is 440, the lower limit
index is 1, the upper limit index is 16 and the QoS
constraint to 300ms. The heuristic algorithm
calculates the optimal frequency levels for loads
that ranging from 10 to 440. Table 4 lists the relation
table, where the first column is the range of the
load, and the second column is the corresponding
frequency level. During the workload operation,

the relation table is used as the frequency
scheduling rule to set the CPU run at a
matching

Table 4

Application of the heuristic algorithm

Range of load Frequency
0-5 0.8GHz
5-32 1.0GHz

32-45 1.1GHz
45-59 1.3GHz
59-65 1.5GHz
65-72 1.7GHz
72-86 1.8GHz
86-92 2.0GHz
92-99 2.2GHz

99-112 2.3GHz
112-119 2.5GHz
119-139 2.7GHz
139-153 2.9GHz
153-159 3.0GHz
159-166 3.2GHz

166- 3.201GHz

frequency. For instance, when the detection
load is 80, the processor will be set to run at
1.8GHz.

To illustrate the stability and applicability of
the algorithm, we discuss the effect of
variation of parameters on the system
behavior. As shown in Table 3, there are nine
parameters in the algorithm, of which
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑁𝑁𝑁𝑁] and 𝑁𝑁𝑁𝑁 are parameters related to
processor, and the others related to the
running workload. 1) For a certain processor,
if the processor supports more frequency
levels (𝑁𝑁𝑁𝑁 becomes larger), the algorithm
needs calculate more median frequencies.
However, the output will be not affected by
this parameter. Since the dichotomy method
is applied to calculate the median frequency,
the computational complexity is O (1). 2) For
a workload, if the QoS constraint (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
changes, the output of the frequency may
change. For example, the looser the
constraint, the lower the matched frequency,
because lower frequency can meet the QoS
constraint; If the size of the load changes, the
output of the frequency may also change. For
example, the larger size of the load, the
higher the matched frequency is. Since the
larger load needs a more powerful CPU
frequency.

3.2 Dynamic Stage

The static stage determines the frequency of

Step 4: Iteratively determine the new median load
and the new median frequency. Repeat step 3 by di-
chotomy method until no median frequency need be
calculated.
Algorithm 1 and Algorithm 2 are pseudo-codes of the
heuristic algorithm. Table 3 describes the variables in
the pseudo-codes.
We apply the heuristic algorithm to the Web search
application and the Haswell architecture processor
(described in Table 1) to calculate the [frequency,-
load] matches. We set the lower limit load is 10, the

Table 3
Descriptions of the variables in the pseudo-codes

Variable Meaning

[]freq N The Array of frequency levels that
the processor supported

N Number of frequency levels

con QoS constraint

res Actual response time

low Lower limit index

upper Upper limit index

lowload Lower limit load

uppload Upper limit load

medload Median load

upper limit load is 440, the lower limit index is 1,
the upper limit index is 16 and the QoS constraint to
300ms. The heuristic algorithm calculates the op-
timal frequency levels for loads that ranging from
10 to 440. Table 4 lists the relation table, where the
first column is the range of the load, and the second
column is the corresponding frequency level. During
the workload operation, the relation table is used as
the frequency scheduling rule to set the CPU run at a
matching frequency. For instance, when the detection
load is 80, the processor will be set to run at 1.8GHz.

To illustrate the stability and applicability of the al-
gorithm, we discuss the effect of variation of param-
eters on the system behavior. As shown in Table 3,
there are nine parameters in the algorithm, of which
freq[N] and N are parameters related to processor,
and the others related to the running workload.
1 For a certain processor, if the processor supports
more frequency levels (N becomes larger), the al-
gorithm needs calculate more median frequencies.
However, the output will be not affected by this pa-
rameter. Since the dichotomy method is applied to
calculate the median frequency, the computational
complexity is O (1).
2 For a workload, if the QoS constraint (con) chang-
es, the output of the frequency may change. For exam-
ple, the looser the constraint, the lower the matched

Information Technology and Control 2020/4/49614

Range of load Frequency

0-5 0.8GHz

5-32 1.0GHz

32-45 1.1GHz

45-59 1.3GHz

59-65 1.5GHz

65-72 1.7GHz

72-86 1.8GHz

86-92 2.0GHz

92-99 2.2GHz

99-112 2.3GHz

112-119 2.5GHz

119-139 2.7GHz

139-153 2.9GHz

153-159 3.0GHz

159-166 3.2GHz

166- 3.201GHz

frequency, because lower frequency can meet the QoS
constraint; If the size of the load changes, the output
of the frequency may also change. For example, the
larger size of the load, the higher the matched fre-
quency is. Since the larger load needs a more powerful
CPU frequency.

3.2. Dynamic Stage
The static stage determines the frequency of the run-
ning load every 1s, but the sudden load surges and
processor delays may damage the QoS. The dynamic
stage uses a threshold method to fine-grained adjust
the CPU frequency to protect QoS.
In the dynamic stage, we monitor the Instructions per
Cycle (IPC) value every 1ms and scheduling the CPU
frequency according to this value. Unlike Ondemand
strategy, we use IPC value as the indicator rather than
CPU utilization. CPU utilization sometimes does not
accurately reflect the actual work of the processor.
For instance, 90% of the CPU utilization is not nec-
essarily 90% of the time is busy, it may be 20% of the
time is busy and 70% of the time is stalled [10]. Stall-
ing means the processor was not making forward

Table 4
Application of the heuristic algorithm

progress with instructions, and usually happens be-
cause it is waiting on memory I/O. IPC shows on aver-
age how many instructions were completed for each
CPU clock cycle, which is more accurately reflects the
effective work of the CPU. In this paper, IPC is more
suitable as an indicator for frequency scheduling than
the CPU utilization. The dynamic stage determines
the frequency of the running load every 1ms. This de-
cision is based on a threshold method. The threshold
is the IPC value of the load at full load operation. If the
monitored IPC value is greater than the threshold, the
CPU frequency is quickly scheduled to the highest
one, otherwise, keep the CPU frequency unchanged.

4. Frequency Scheduling with the
Two-stage Strategy
Based upon the two-stage strategy, we implement a
prototype for dynamic frequency scheduling. This sec-
tion describes the implementation of the prototype.

4.1. Implementation of the Prototype
Figure 3 shows the architecture of the prototype that
contains three parts: the evaluation part, the decision
part and the implementation part. In evaluation part,
QoS acquisition module responsible for evaluating
the QoS of the running workload, and the power mea-
surement module evaluates the power consumption
of the CPU. The decision part and the implementa-
tion part complete the frequency scheduling through
two interactions. The relation table generating mod-
ule generates [frequency, load] matches according
to the heuristic algorithm described in Section 3.1.
This work is done offline. The load detection module
detects the load of the running system every 1s, and
the decision module queries the relation table to de-
termine the matching frequency for the detected load.
Then the [frequency, load] information is transmitted
to the frequency scheduling module to implement the
first-stage frequency scheduling. In the implemen-
tation part, the initialization module sets the gover-
nor mode, driver, and counter in the cpufreq system
to prepare for frequency scheduling. The frequency
scheduling module receives the information from the
decision module and sets the CPU runs at the cor-
responding frequency. Meanwhile, IPC monitoring
module continuously monitors the IPC of the proces-

615Information Technology and Control 2020/4/49

Figure 3
Architecture of the prototype

sor every 1ms and judges whether IPC greater than
the preset threshold, if so, the decision module deter-
mines the highest frequency for the load and trans-
mits the information to frequency scheduling module
to implement the second-stage frequency scheduling.
Otherwise, the decision module determines to keep
the first-stage frequency scheduling decision. In the
following, we describe the implementation details of
each module in Figure 3.

Evaluation part:
QoS acquisition module: We obtain the QoS met-
ric through parsing the Solr log file. Specifically, we
use curl_get_req interface to send a request to the
Solr server every 1s and parse out the ‘QTime’ metric
from the log file. This metric is the response time of
the server to the client requests. We take the average
response time of all requests processed by the server
per second as the QoS value and recorded it in the QoS
log file for subsequent evaluation.
Power measurement module: We leverage the RAPL
tool [8] and a power meter (Watts Up Pro Power Me-
ter) [29] to measure the power consumption every 1s
during the workload operation and recorded it in the
power log file for subsequent evaluation.

Decision part:
Relation table generating module: The relation ta-
ble is generated in offline mode by using the historical
data. We use the heuristic algorithm to generate the

static frequency-load relation table, like the form de-
scribed in Table 3. Details of the heuristic algorithm
are described in Section 3.1.
Load detection module: For Web search, the load we
get is the number of requests sent by the client. We
use the interface provided by libcurl to query the Solr
log file to obtain the number of requests.
IPC monitoring module: We leverage Intel PCM
(Performance Counter Monitor) tool [19] to monitor
the IPC parameter every 1ms.
Decision module: This module determines optimal
frequencies for the running workload in two stages.
In the first stage: query the relation table to determine
the matching frequency for the load and transmit the
information to the frequency scheduling module.
In the second stage: query IPC monitoring module
and check whether the IPC value is greater than the
threshold (set to 3 in this paper), if so, determines the
highest frequency for the load, else, keep the first-
stage decision. The first decision is performed every
1s, and the second decision is performed every 1ms.

Implementation part:
Initialization module: This module initializes the
cpufreq kernel to support the user-defined frequency
scaling. The initialization includes set the driver to
apci-driver and set the governor to userspace.
Frequency scheduling module: This module re-
ceives the decision information from the decision
module and sets the frequency to the corresponding
value through the interface provided by Sys.

4.2. Flow Chart of the Two-stage Strategy
We present a flowchart to illustrate how to use the
two-stage strategy to accomplish optimal frequency
scheduling. Figure 4 shows the flowchart. First, the
initialization module sets the driver to acpi-driver and
set cpufreq governor to userspace mode. Then, if the
load detection module detects that there is workload
running, it will continue to carry out subsequent oper-
ations, otherwise, it will end. The initialization mod-
ule set a counter to determine whether the frequency
scheduling is based on load or IPC. Since the load is de-
tected every 1s and the IPC is detected every 1ms, thus
if the value of the counter is a multiple of 100, the fre-
quency scheduling strategy is determined according to
the load, otherwise, it is according to IPC. The counter
is initialized to 100 and increments in steps of 1 after

Information Technology and Control 2020/4/49616

Figure 4
Flowchart of how to use the two-stage strategy to
accomplish optimal frequency scaling

each loop. If the judgment is Yes, load detection mod-
ule detects load every 1s. The decision module queries
the relation table to determine the frequency for the
load. Frequency scheduling module receives the deci-
sion information and conducts the corresponding fre-
quency scheduling operation. If the judgement is No,
IPC monitoring module monitors the IPC value every
1ms, and judges whether the IPC value is greater than
the threshold, if so, the decision module determines to
scale the frequency to the highest, and if not, keep the
current frequency. The frequency scheduling module
receives its decision information and conducts the cor-
responding frequency scheduling operation.

5. Case Study
In this section, we demonstrate the two-stage strate-
gy in the Web search system. We use a generate load
and a real Google trace load to respectively evaluate

for subsequent evaluation.

Power measurement module: We leverage the
RAPL tool [8] and a power meter (Watts Up Pro
Power Meter) [29] to measure the power
consumption every 1s during the workload
operation and recorded it in the power log file for
subsequent evaluation.

Decision part:

Relation table generating module: The relation
table is generated in offline mode by using the
historical data. We use the heuristic algorithm to
generate the static frequency-load relation table,
like the form described in Table 3. Details of the
heuristic algorithm are described in Section 3.1.

Load detection module: For Web search, the load
we get is the number of requests sent by the client.
We use the interface provided by libcurl to query
the Solr log file to obtain the number of requests.

IPC monitoring module: We leverage Intel PCM
(Performance Counter Monitor) tool [19] to monitor
the IPC parameter every 1ms.

Decision module: This module determines optimal
frequencies for the running workload in two stages.
In the first stage: query the relation table to
determine the matching frequency for the load and
transmit the information to the frequency
scheduling module. In the second stage: query IPC
monitoring module and check whether the IPC
value is greater than the threshold (set to 3 in this
paper), if so, determines the highest frequency for
the load, else, keep the first-stage decision. The first
decision is performed every 1s, and the second
decision is performed every 1ms.

Implementation part:

Initialization module: This module initializes the
cpufreq kernel to support the user-defined
frequency scaling. The initialization includes set the
driver to apci-driver and set the governor to
userspace.

Frequency scheduling module: This module receives
the decision information from the decision module
and sets the frequency to the corresponding value
through the interface provided by Sys.

4.2 Flow Chart of the Two-stage Strategy

We present a flowchart to illustrate how to use the
two-stage strategy to accomplish optimal frequency
scheduling. Figure 4 shows the flowchart. First, the
initialization module sets the driver to acpi-driver
and set cpufreq governor to userspace mode. Then,
if the load detection module detects that there is
workload running, it will continue to carry out

subsequent operations, otherwise, it will
end. The initialization module set a counter
to determine

Figure 4

Flowchart of how to use the two-stage
strategy to accomplish optimal frequency
scaling.

whether the frequency scheduling is based
on load or IPC. Since the load is detected
every 1s and the IPC is detected every 1ms,
thus if the value of the counter is a multiple
of 100, the frequency scheduling strategy is
determined according to the load, otherwise,
it is according to IPC. The counter is
initialized to 100 and increments in steps of
1 after each loop. If the judgment is Yes, load
detection module detects load every 1s. The
decision module queries the relation table to
determine the frequency for the load.
Frequency scheduling module receives the
decision information and conducts the
corresponding frequency scheduling
operation. If the judgement is No, IPC
monitoring module monitors the IPC value
every 1ms, and judges whether the IPC value
is greater than the threshold, if so, the
decision module determines to scale the
frequency to the highest, and if not, keep the
current frequency. The frequency

Start
Set the
driver to
acpi-driver

Set the governor
to

userspace

Initialize counter
to 100

The counter
is a multiple

of 100?

Detecting the
load

Monitoring the
IPC

IPC >
threshold?

Set the CPU
frequency to the

highest one

Counter is
incremented by 1

Query the
relation table

Set the CPU
frequency to the
queried value

Counter is
incremented by 1

YesNo

Yes

No

Workload
running?

End
No

Yes

the energy-saving effect and QoS-protection capabil-
ity of the two-phase strategy.

5.1. Evaluation Methodology
Experimental platform: Our experimental platform
consists of two servers, one as a client and the other as
a server. The two servers are connected via Ethernet.
We deployed the Web search benchmark on the plat-
form, which is one of the benchmarks in cloudsuite
simulates the real-world client that sends requests to
the index nodes. Taking the Web search as workload,
we use the two-stage strategy and the Ondemand strat-
egy for CPU frequency scheduling and evaluate their
energy-saving effects, respectively. For Web search ap-
plications, in order to achieve a good user experience,
we set its average response time to be less than 300ms.
With this performance constraint, we evaluate the en-
ergy-saving effects of the two strategies.
Generating loads: In real production systems, the cli-
ents usually send a random number of requests to the
server nodes. Thus, we generate two types of workload:
Random workload and Google trace workload.
1 Random workload: We have designed a random
load generator that is programmed by Python. The
generator uses the threading library to generate a ran-
dom number of threads every second, and uses the
urllib2 library in Python to send threads to the server.
Figure 5 shows a Random workload executed in 696s.
2 Google trace workload: In the Google trace data, the
client generates a Google trace workload. Thus, we use
Google trace to generate a Google trace workload. Fig-
ure 6 shows a Google trace workload executed in 696s.

5.2. Evaluation Metrics
The objective of the two-stage strategy is to reduce
the power consumption of the processor while en-
suring the performance of the application. Therefore,
we evaluate the two-stage strategy on the power con-
sumption metric and QoS metric.
 _ Power consumption: we measure the power

consumption of the processor every 1s during the
workload execution.

 _ QoS: we obtain the average response time of the
application every 1s during the workload execution.

5.3. Comparison
Ondemand is the default strategy for CPU frequency
scheduling in the Linux system, which is often used

617Information Technology and Control 2020/4/49

as a baseline to compare with other DVFS-based ap-
proaches. In our work, the proposed two-stage strat-
egy dynamically schedules the frequency based on
DVFS technique, so we compare the two-stage strate-
gy with Ondemand strategy. We respectively evaluate
the two-stage strategy and Ondemand strategy on the
two evaluation metrics under two types of workloads.

Figure 5
Random workload executed in 696s. The horizontal axis
shows the execution time (second), and the vertical axis
denotes the number of requests generated at each second

Figure 6
Google trace workload executed in 696s. The meaning of
the axes is the same as Figure 5

Figure 7
Power consumption and QoS measured per second during
the Random workload execution under the two-stage
strategy. Rapl and Watt respectively denotes the power
consumption measured by tools of RAPL and Watt

Figure 8
Power consumption and QoS measured per second during
the Random workload execution under the Ondemand
strategy. The meaning of Rapl and Watt are the same as
Figure 7

scheduling module receives its decision
information and conducts the corresponding
frequency scheduling operation.

5. Case Study
In this section, we demonstrate the two-stage
strategy in the Web search system. We use a
generate load and a real Google trace load to
respectively evaluate the energy-saving effect and
QoS-protection capability of the two-phase strategy.

5.1 Evaluation Methodology

Experimental platform: Our experimental platform
consists of two servers, one as a client and the other
as a server. The two servers are connected via
Ethernet. We deployed the Web search benchmark
on the platform, which is one of the benchmarks in
cloudsuite simulates the real-world client that
sends requests to the index nodes. Taking the Web
search as workload, we use the two-stage strategy
and the Ondemand strategy for CPU frequency
scheduling and evaluate their energy-saving
effects, respectively. For Web search applications,
in order to achieve a good user experience, we set
its average response time to be less than 300ms.
With this performance constraint, we evaluate the
energy-saving effects of the two strategies.

Generating loads: In real production systems, the
clients usually send a random number of requests
to the server nodes. Thus, we generate two types of
workload: Random workload and Google trace
workload. 1) Random workload: We have designed
a random load generator that is programmed by
Python. The generator uses the threading library to
generate a random number of threads every
second, and uses the urllib2 library in Python to
send threads to the server. Figure 5 shows a
Random workload executed in 696s. 2) Google trace
workload: In the Google trace data, the client
generates a Google trace workload. Thus, we use
Google trace to generate a Google trace workload.
Figure 6 shows a Google trace workload executed
in 696s.

5.2 Evaluation Metrics

The objective of the two-stage strategy is to reduce
the power consumption of the processor while
ensuring the performance of the application.
Therefore, we evaluate the two-stage strategy on
the power consumption metric and QoS metric.

 Power consumption: we measure the power
consumption of the processor every 1s during
the workload execution.

 QoS: we obtain the average response time of
the application every 1s during the workload

execution.

5.3 Comparison
Figure 5

Random workload executed in 696s. The
horizontal axis shows the execution time
(second), and the vertical axis denotes the
number of requests generated at each second.

Figure 6

Google trace workload executed in 696s. The
meaning of the axes is the same as Figure 5.

Ondemand is the default strategy for CPU
frequency scheduling in the Linux system,
which is often used as a baseline to compare
with other DVFS-based approaches. In our
work, the proposed two-stage strategy
dynamically schedules the frequency based
on DVFS technique, so we compare the two-
stage strategy with Ondemand strategy. We
respectively evaluate the two-stage strategy
and Ondemand strategy on the two
evaluation metrics under two types of
workloads.

Evaluations under Random workload:
When the client submits the Random
workload as shown in Figure 5, we use the
two-stage strategy and Ondemand strategy,
respectively, to achieve the CPU frequency
scheduling. For the two strategies, the
measured energy consumption and QoS are
shown in Figures 7-8. In both figures, the
bottom sub-figure illustrates the QoS per
second, and the top sub-figure describes the
power consumption per second, where the
black line denotes the power measured by

scheduling module receives its decision
information and conducts the corresponding
frequency scheduling operation.

5. Case Study
In this section, we demonstrate the two-stage
strategy in the Web search system. We use a
generate load and a real Google trace load to
respectively evaluate the energy-saving effect and
QoS-protection capability of the two-phase strategy.

5.1 Evaluation Methodology

Experimental platform: Our experimental platform
consists of two servers, one as a client and the other
as a server. The two servers are connected via
Ethernet. We deployed the Web search benchmark
on the platform, which is one of the benchmarks in
cloudsuite simulates the real-world client that
sends requests to the index nodes. Taking the Web
search as workload, we use the two-stage strategy
and the Ondemand strategy for CPU frequency
scheduling and evaluate their energy-saving
effects, respectively. For Web search applications,
in order to achieve a good user experience, we set
its average response time to be less than 300ms.
With this performance constraint, we evaluate the
energy-saving effects of the two strategies.

Generating loads: In real production systems, the
clients usually send a random number of requests
to the server nodes. Thus, we generate two types of
workload: Random workload and Google trace
workload. 1) Random workload: We have designed
a random load generator that is programmed by
Python. The generator uses the threading library to
generate a random number of threads every
second, and uses the urllib2 library in Python to
send threads to the server. Figure 5 shows a
Random workload executed in 696s. 2) Google trace
workload: In the Google trace data, the client
generates a Google trace workload. Thus, we use
Google trace to generate a Google trace workload.
Figure 6 shows a Google trace workload executed
in 696s.

5.2 Evaluation Metrics

The objective of the two-stage strategy is to reduce
the power consumption of the processor while
ensuring the performance of the application.
Therefore, we evaluate the two-stage strategy on
the power consumption metric and QoS metric.

 Power consumption: we measure the power
consumption of the processor every 1s during
the workload execution.

 QoS: we obtain the average response time of
the application every 1s during the workload

execution.

5.3 Comparison
Figure 5

Random workload executed in 696s. The
horizontal axis shows the execution time
(second), and the vertical axis denotes the
number of requests generated at each second.

Figure 6

Google trace workload executed in 696s. The
meaning of the axes is the same as Figure 5.

Ondemand is the default strategy for CPU
frequency scheduling in the Linux system,
which is often used as a baseline to compare
with other DVFS-based approaches. In our
work, the proposed two-stage strategy
dynamically schedules the frequency based
on DVFS technique, so we compare the two-
stage strategy with Ondemand strategy. We
respectively evaluate the two-stage strategy
and Ondemand strategy on the two
evaluation metrics under two types of
workloads.

Evaluations under Random workload:
When the client submits the Random
workload as shown in Figure 5, we use the
two-stage strategy and Ondemand strategy,
respectively, to achieve the CPU frequency
scheduling. For the two strategies, the
measured energy consumption and QoS are
shown in Figures 7-8. In both figures, the
bottom sub-figure illustrates the QoS per
second, and the top sub-figure describes the
power consumption per second, where the
black line denotes the power measured by

Evaluations under Random workload: When the cli-
ent submits the Random workload as shown in Figure 5,
we use the two-stage strategy and Ondemand strategy,
respectively, to achieve the CPU frequency scheduling.
For the two strategies, the measured energy consump-
tion and QoS are shown in Figures 7-8. In both fi gures,
the bottom sub-fi gure illustrates the QoS per second,
and the top sub-fi gure describes the power consump-
tion per second, where the black line denotes the power
measured by the RAPL tool, and the green line denotes
the power measured by the Watts Up Pro Power Meter

(Watt in short). It can be seen from Figures 7-8 that
under the two-stage strategy, the power consump-
tion per second is less than 40J with the total value
of 34587J (measured by RAPL) and 10649J (measure
by Watt). While under the Ondemand strategy, the
power consumption per second is less than 45J with
the total value of 40133J (measured by RAPL) and
15478J (measure by Watt). Compared with the Onde-
mand strategy, the two-stage strategy reduces energy
consumption by 31.2% (processor) and 13.8% (whole
server). In addition, we can see from the Figures 9-10
that under the two-stage strategy, the performance
per second is less than 600ms with the average value

the RAPL tool, and the green line denotes the power
measured by the Watts Up Pro Power Meter (Watt
in short). It can be seen from

Figure 7

Power consumption and QoS measured per second
during the Random workload execution under the
two-stage strategy. Rapl and Watt respectively
denotes the power consumption measured by tools
of RAPL and Watt.

Figure 8

Power consumption and QoS measured per second
during the Random workload execution under the
Ondemand strategy. The meaning of Rapl and Watt
are the same as Figure 7.

Figures 7-8 that under the two-stage strategy, the
power consumption per second is less than 40J with
the total value of 34587J (measured by RAPL) and
10649J (measure by Watt). While under the
Ondemand strategy, the power consumption per
second is less than 45J with the total value of 40133J
(measured by RAPL) and 15478J (measure by Watt).
Compared with the Ondemand strategy, the two-
stage strategy reduces energy consumption by
31.2% (processor) and 13.8% (whole server). In
addition, we can see from the Figures 9-10 that
under the two-stage strategy, the performance per
second is less than 600ms with the average value of
251ms. While under the Ondemand strategy, the
performance per second is less than 350ms with the
average value of 133ms. These results indicate that
Ondemand is better than the two-stage strategy in

terms of QoS.

Evaluations under Google trace workload:
When the client submits the Google trace
workload as

Figure 9

Power consumption and QoS measured per
second during the Google trace workload
execution under the two-stage strategy. The
meaning of Rapl and Watt are the same as
Figure 7.

Figure 10

Power consumption and QoS measured per
second during the Google trace workload
execution under the Ondemand strategy.
The meaning of Rapl and Watt are the same
as Figure 7.

shown in Figure 6, we use the two-stage
strategy and Ondemand strategy
respectively to achieve the CPU frequency
scheduling. For the two strategy, the
measured energy consumption and QoS are
shown in Figures 9-10. In both figures, the
bottom sub-figure illustrates the QoS per
second and the top sub-figure describes the
power consumption per second, where the
black line denotes the power measured by
RAPL tool, and the green line denotes the
power measured by the Watt. It can be seen
from Figures 9-10 that, under the two-stage
strategy, the power consumption per second
is less than 20J with the total value of 33529J

the RAPL tool, and the green line denotes the power
measured by the Watts Up Pro Power Meter (Watt
in short). It can be seen from

Figure 7

Power consumption and QoS measured per second
during the Random workload execution under the
two-stage strategy. Rapl and Watt respectively
denotes the power consumption measured by tools
of RAPL and Watt.

Figure 8

Power consumption and QoS measured per second
during the Random workload execution under the
Ondemand strategy. The meaning of Rapl and Watt
are the same as Figure 7.

Figures 7-8 that under the two-stage strategy, the
power consumption per second is less than 40J with
the total value of 34587J (measured by RAPL) and
10649J (measure by Watt). While under the
Ondemand strategy, the power consumption per
second is less than 45J with the total value of 40133J
(measured by RAPL) and 15478J (measure by Watt).
Compared with the Ondemand strategy, the two-
stage strategy reduces energy consumption by
31.2% (processor) and 13.8% (whole server). In
addition, we can see from the Figures 9-10 that
under the two-stage strategy, the performance per
second is less than 600ms with the average value of
251ms. While under the Ondemand strategy, the
performance per second is less than 350ms with the
average value of 133ms. These results indicate that
Ondemand is better than the two-stage strategy in

terms of QoS.

Evaluations under Google trace workload:
When the client submits the Google trace
workload as

Figure 9

Power consumption and QoS measured per
second during the Google trace workload
execution under the two-stage strategy. The
meaning of Rapl and Watt are the same as
Figure 7.

Figure 10

Power consumption and QoS measured per
second during the Google trace workload
execution under the Ondemand strategy.
The meaning of Rapl and Watt are the same
as Figure 7.

shown in Figure 6, we use the two-stage
strategy and Ondemand strategy
respectively to achieve the CPU frequency
scheduling. For the two strategy, the
measured energy consumption and QoS are
shown in Figures 9-10. In both figures, the
bottom sub-figure illustrates the QoS per
second and the top sub-figure describes the
power consumption per second, where the
black line denotes the power measured by
RAPL tool, and the green line denotes the
power measured by the Watt. It can be seen
from Figures 9-10 that, under the two-stage
strategy, the power consumption per second
is less than 20J with the total value of 33529J

Information Technology and Control 2020/4/49618

of 251ms. While under the Ondemand strategy, the
performance per second is less than 350ms with the
average value of 133ms. These results indicate that
Ondemand is better than the two-stage strategy in
terms of QoS.
Evaluations under Google trace workload: When
the client submits the Google trace workload as
shown in Figure 6, we use the two-stage strategy and
Ondemand strategy respectively to achieve the CPU
frequency scheduling. For the two strategy, the mea-
sured energy consumption and QoS are shown in
Figures 9-10. In both fi gures, the bottom sub-fi gure
illustrates the QoS per second and the top sub-fi gure

Figure 9
Power consumption and QoS measured per second during
the Google trace workload execution under the two-stage
strategy. The meaning of Rapl and Watt are the same as
Figure 7

Figure 10
Power consumption and QoS measured per second during
the Google trace workload execution under the Ondemand
strategy. The meaning of Rapl and Watt are the same as
Figure 7

the RAPL tool, and the green line denotes the power
measured by the Watts Up Pro Power Meter (Watt
in short). It can be seen from

Figure 7

Power consumption and QoS measured per second
during the Random workload execution under the
two-stage strategy. Rapl and Watt respectively
denotes the power consumption measured by tools
of RAPL and Watt.

Figure 8

Power consumption and QoS measured per second
during the Random workload execution under the
Ondemand strategy. The meaning of Rapl and Watt
are the same as Figure 7.

Figures 7-8 that under the two-stage strategy, the
power consumption per second is less than 40J with
the total value of 34587J (measured by RAPL) and
10649J (measure by Watt). While under the
Ondemand strategy, the power consumption per
second is less than 45J with the total value of 40133J
(measured by RAPL) and 15478J (measure by Watt).
Compared with the Ondemand strategy, the two-
stage strategy reduces energy consumption by
31.2% (processor) and 13.8% (whole server). In
addition, we can see from the Figures 9-10 that
under the two-stage strategy, the performance per
second is less than 600ms with the average value of
251ms. While under the Ondemand strategy, the
performance per second is less than 350ms with the
average value of 133ms. These results indicate that
Ondemand is better than the two-stage strategy in

terms of QoS.

Evaluations under Google trace workload:
When the client submits the Google trace
workload as

Figure 9

Power consumption and QoS measured per
second during the Google trace workload
execution under the two-stage strategy. The
meaning of Rapl and Watt are the same as
Figure 7.

Figure 10

Power consumption and QoS measured per
second during the Google trace workload
execution under the Ondemand strategy.
The meaning of Rapl and Watt are the same
as Figure 7.

shown in Figure 6, we use the two-stage
strategy and Ondemand strategy
respectively to achieve the CPU frequency
scheduling. For the two strategy, the
measured energy consumption and QoS are
shown in Figures 9-10. In both figures, the
bottom sub-figure illustrates the QoS per
second and the top sub-figure describes the
power consumption per second, where the
black line denotes the power measured by
RAPL tool, and the green line denotes the
power measured by the Watt. It can be seen
from Figures 9-10 that, under the two-stage
strategy, the power consumption per second
is less than 20J with the total value of 33529J

the RAPL tool, and the green line denotes the power
measured by the Watts Up Pro Power Meter (Watt
in short). It can be seen from

Figure 7

Power consumption and QoS measured per second
during the Random workload execution under the
two-stage strategy. Rapl and Watt respectively
denotes the power consumption measured by tools
of RAPL and Watt.

Figure 8

Power consumption and QoS measured per second
during the Random workload execution under the
Ondemand strategy. The meaning of Rapl and Watt
are the same as Figure 7.

Figures 7-8 that under the two-stage strategy, the
power consumption per second is less than 40J with
the total value of 34587J (measured by RAPL) and
10649J (measure by Watt). While under the
Ondemand strategy, the power consumption per
second is less than 45J with the total value of 40133J
(measured by RAPL) and 15478J (measure by Watt).
Compared with the Ondemand strategy, the two-
stage strategy reduces energy consumption by
31.2% (processor) and 13.8% (whole server). In
addition, we can see from the Figures 9-10 that
under the two-stage strategy, the performance per
second is less than 600ms with the average value of
251ms. While under the Ondemand strategy, the
performance per second is less than 350ms with the
average value of 133ms. These results indicate that
Ondemand is better than the two-stage strategy in

terms of QoS.

Evaluations under Google trace workload:
When the client submits the Google trace
workload as

Figure 9

Power consumption and QoS measured per
second during the Google trace workload
execution under the two-stage strategy. The
meaning of Rapl and Watt are the same as
Figure 7.

Figure 10

Power consumption and QoS measured per
second during the Google trace workload
execution under the Ondemand strategy.
The meaning of Rapl and Watt are the same
as Figure 7.

shown in Figure 6, we use the two-stage
strategy and Ondemand strategy
respectively to achieve the CPU frequency
scheduling. For the two strategy, the
measured energy consumption and QoS are
shown in Figures 9-10. In both figures, the
bottom sub-figure illustrates the QoS per
second and the top sub-figure describes the
power consumption per second, where the
black line denotes the power measured by
RAPL tool, and the green line denotes the
power measured by the Watt. It can be seen
from Figures 9-10 that, under the two-stage
strategy, the power consumption per second
is less than 20J with the total value of 33529J

describes the power consumption per second, where
the black line denotes the power measured by RAPL
tool, and the green line denotes the power measured
by the Watt. It can be seen from Figures 9-10 that,
under the two-stage strategy, the power consump-
tion per second is less than 20J with the total value
of 33529J (measured by RAPL) and 9773J (measure
by Watt). While under the Ondemand strategy, the
power consumption per second is less than 30J with
the total value of 39169J (measured by RAPL) and
14549J (measure by Watt). Compared with the Onde-
mand strategy, the two-stage strategy reduces energy
consumption by 32.8% (processor) and 14.3% (whole
server). In addition, we can see from the Figures 9-10
that under the two-stage strategy, the performance
per second is less than 400ms with the average value
of 227ms. While under the Ondemand strategy, the
performance per second is less than 200ms with the
average value of 108ms. These results indicate that
Ondemand is better than the two-stage strategy in
terms of QoS.
Discussion: From the above two experiments, we can
conclude that:
1 the two-stage strategy is more effi cient than Onde-
mand strategy for power saving.
2 the two-stage strategy is not as good as Ondemand
strategy in terms of QoS. Ondemand strategy uses a
more aggressive frequency scheduling strategy, which
schedules the CPU runs at the highest frequency once
the CPU utilization exceeds a threshold. Since On-
demand strategy frequently keeps the CPU running
at the highest frequency during the load operation,
it achieves excellent performance. Nevertheless, the
two-stage strategy still works well since it can meet
the QoS constraint. The two-stage strategy achieves
more energy-savings at the expense of performance.
However, this expense is worth it. As long as the QoS
constraint is met, users can hardly feel the diff erence
between the extremely high performance and slightly
poor performance.
To further compare the diff erence of the two strate-
gies, we count the frequency scheduling information
and analyze the diff erence. We collect the frequency
scheduling information every 1ms on the server and
calculate the proportion of all 16 frequencies to the
total time in 696s. Figures 11-12, respectively, plot the
frequency scheduling information for the two strate-

619Information Technology and Control 2020/4/49

Figure 11
The ratio of the CPU frequency of the two strategies during
a 696s period of the Random workload execution

Figure 12
The ratio of the CPU frequency of the two strategies during
a 696s period of the Google trace load execution

(measured by RAPL) and 9773J (measure by Watt).
While under the Ondemand strategy, the power
consumption per second is less than 30J with the
total value of 39169J (measured by RAPL) and
14549J (measure

Figure 11

The ratio of the CPU frequency of the two strategies
during a 696s period of the Random workload
execution

Figure 12

The ratio of the CPU frequency of the two strategies
during a 696s period of the Google trace load
execution.

by Watt). Compared with the Ondemand strategy,
the two-stage strategy reduces energy consumption
by 32.8% (processor) and 14.3% (whole server). In
addition, we can see from the Figures 9-10 that
under the two-stage strategy, the performance per
second is less than 400ms with the average value of
227ms. While under the Ondemand strategy, the
performance per second is less than 200ms with the
average value of 108ms. These results indicate that
Ondemand is better than the two-stage strategy in
terms of QoS.

Discussion: From the above two experiments, we
can conclude that: 1) the two-stage strategy is more
efficient than Ondemand strategy for power saving.
2) the two-stage strategy is not as good as
Ondemand strategy in terms of QoS. Ondemand
strategy uses a more aggressive frequency
scheduling strategy, which schedules the CPU runs
at the highest frequency once the CPU utilization
exceeds a threshold. Since Ondemand strategy
frequently keeps the CPU running at the highest

frequency during the load operation, it
achieves excellent performance.
Nevertheless, the two-stage strategy still
works well since it can meet the QoS
constraint. The two-stage strategy achieves
more energy-savings at the expense of
performance. However, this expense is
worth it. As long as the QoS constraint is
met, users can hardly feel the difference
between the extremely high performance
and slightly poor performance.

To further compare the difference of the two
strategies, we count the frequency
scheduling information and analyze the
difference. We collect the frequency
scheduling information every 1ms on the
server and calculate the proportion of all 16
frequencies to the total time in 696s. Figures
11-12, respectively, plot the frequency
scheduling information for the two
strategies under the Random workload and
the Google trace workload. It can be seen
from the figures that Ondemand strategy is
mostly at the lowest frequency and the
highest frequency for both of the two
workloads, while the two-stage strategy
makes full use of all frequencies. The
Random workload contains various size of
load, and we can see from Figure 11 that the
two-stage strategy controls the CPU runs at
multiple frequencies. In the Google trace
workload, most of the loads are between 60
to 80, and we can see from Figure 12 that the
two-stage strategy schedules the CPU
frequency mostly between 1.5GHz and
1.7GHz.

6. Related Work
Liu et al. [17] consider that the energy
inefficiency of data centers is mainly
attributed to resource under-utilization and
heat recirculation. They proposed a thermal-
aware and power-aware energy
consumption model. Along with the
constraints according to the energy
consumption model, TSTD algorithm and
DVFS technique are used to allocate different
computational tasks to the appropriate
blades and adjust the running frequency.
Krzywda et al. [16] point out that DVFS, CPU
pinning, horizontal, and vertical scaling, are
four techniques that have been proposed to
control the performance and energy
consumption on data center servers. Their
work investigated the utility of these four

(measured by RAPL) and 9773J (measure by Watt).
While under the Ondemand strategy, the power
consumption per second is less than 30J with the
total value of 39169J (measured by RAPL) and
14549J (measure

Figure 11

The ratio of the CPU frequency of the two strategies
during a 696s period of the Random workload
execution

Figure 12

The ratio of the CPU frequency of the two strategies
during a 696s period of the Google trace load
execution.

by Watt). Compared with the Ondemand strategy,
the two-stage strategy reduces energy consumption
by 32.8% (processor) and 14.3% (whole server). In
addition, we can see from the Figures 9-10 that
under the two-stage strategy, the performance per
second is less than 400ms with the average value of
227ms. While under the Ondemand strategy, the
performance per second is less than 200ms with the
average value of 108ms. These results indicate that
Ondemand is better than the two-stage strategy in
terms of QoS.

Discussion: From the above two experiments, we
can conclude that: 1) the two-stage strategy is more
efficient than Ondemand strategy for power saving.
2) the two-stage strategy is not as good as
Ondemand strategy in terms of QoS. Ondemand
strategy uses a more aggressive frequency
scheduling strategy, which schedules the CPU runs
at the highest frequency once the CPU utilization
exceeds a threshold. Since Ondemand strategy
frequently keeps the CPU running at the highest

frequency during the load operation, it
achieves excellent performance.
Nevertheless, the two-stage strategy still
works well since it can meet the QoS
constraint. The two-stage strategy achieves
more energy-savings at the expense of
performance. However, this expense is
worth it. As long as the QoS constraint is
met, users can hardly feel the difference
between the extremely high performance
and slightly poor performance.

To further compare the difference of the two
strategies, we count the frequency
scheduling information and analyze the
difference. We collect the frequency
scheduling information every 1ms on the
server and calculate the proportion of all 16
frequencies to the total time in 696s. Figures
11-12, respectively, plot the frequency
scheduling information for the two
strategies under the Random workload and
the Google trace workload. It can be seen
from the figures that Ondemand strategy is
mostly at the lowest frequency and the
highest frequency for both of the two
workloads, while the two-stage strategy
makes full use of all frequencies. The
Random workload contains various size of
load, and we can see from Figure 11 that the
two-stage strategy controls the CPU runs at
multiple frequencies. In the Google trace
workload, most of the loads are between 60
to 80, and we can see from Figure 12 that the
two-stage strategy schedules the CPU
frequency mostly between 1.5GHz and
1.7GHz.

6. Related Work
Liu et al. [17] consider that the energy
inefficiency of data centers is mainly
attributed to resource under-utilization and
heat recirculation. They proposed a thermal-
aware and power-aware energy
consumption model. Along with the
constraints according to the energy
consumption model, TSTD algorithm and
DVFS technique are used to allocate different
computational tasks to the appropriate
blades and adjust the running frequency.
Krzywda et al. [16] point out that DVFS, CPU
pinning, horizontal, and vertical scaling, are
four techniques that have been proposed to
control the performance and energy
consumption on data center servers. Their
work investigated the utility of these four

gies under the Random workload and the Google trace
workload. It can be seen from the fi gures that Onde-
mand strategy is mostly at the lowest frequency and
the highest frequency for both of the two workloads,
while the two-stage strategy makes full use of all fre-
quencies. The Random workload contains various
size of load, and we can see from Figure 11 that the
two-stage strategy controls the CPU runs at multiple
frequencies. In the Google trace workload, most of the
loads are between 60 to 80, and we can see from Fig-
ure 12 that the two-stage strategy schedules the CPU
frequency mostly between 1.5GHz and 1.7GHz.

6. Related Work
Liu et al. [17] consider that the energy ineffi ciency
of data centers is mainly attributed to resource un-
der-utilization and heat recirculation. They proposed

a thermal-aware and power-aware energy consump-
tion model. Along with the constraints according to
the energy consumption model, TSTD algorithm and
DVFS technique are used to allocate diff erent com-
putational tasks to the appropriate blades and adjust
the running frequency. Krzywda et al. [16] point out
that DVFS, CPU pinning, horizontal, and vertical
scaling, are four techniques that have been proposed
to control the performance and energy consumption
on data center servers. Their work investigated the
utility of these four techniques for power-perfor-
mance tradeoff s, such as they report that DVFS rarely
reduces the power consumption of underloaded serv-
ers by more than 5%, but it can be used to limit the
maximal power consumption of a saturated server by
up to 20%. Guerreiro et al. [11] studied the energy sav-
ing of GPU application using DVFS technique. They
proposed several classifi cation models to identifi ca-
tion which applications can benefi t from DVFS, in
terms of energy savings. Work [24] developed a learn-
ing-based DVFS framework by using reinforcement
learning, makes voltage and frequency (v-f) scaling
decisions for multi-core real-time systems. Casu et al.
[5] investigated the trade-off s between performance
and power saving in a Network-on-Chip (NoC) under
three DVFS policies (rate-based, queue-based and de-
lay-based). Through experiments they report that de-
lay-based policy generally off ers a better power-per-
formance trade-off .

7. Conclusion and Future Work
Modern data centers run a variety of applications and
process large-scale network data every day. With the
high-intensity working, data centers aff ord huge en-
ergy costs. Latency-critical workloads have the QoS
constraint, which force the server continuously runs
at the high CPU frequency, this is one of the main rea-
son for energy cost. This paper proposes a two-stage
strategy to trade-off between energy-saving as well as
QoS for latency-critical workloads, aims to reduce the
energy consumption while guarantying the QoS. The
two-stage strategy dynamically schedules the CPU
frequency during the workload operation, making de-
cisions about frequency levels that minimize energy
consumption for the workload. The core of the two-
stage strategy is using a heuristic algorithm to cal-

Information Technology and Control 2020/4/49620

culate the optimal frequency for the load, and uses a
threshold method to fine-grained adjust the frequen-
cy to protect the QoS at runtime. The evaluation re-
sults show that the two-stage strategy is efficient for
energy-saving and QoS-ensuring.
In future work, we intend to the performance and en-
ergy consumption in mobile Web applications.

Acknowledgments

This work is supported by the National Natural Sci-
ence Foundation of China (No. 61672421), the Key
Research and Development Program of Shaanxi
Province (No. 2018ZDXM-GY-036) and Shaanxi Key
Laboratory of Intelligent Processing for Big Energy
Data (No.IPBED7).

References
1. Al-Jaberi, M., Mohamed, N., Al-Jaroodi, J. E-commerce

Cloud: Opportunities and Challenges. 2015 Interna-
tional Conference on Industrial Engineering and Oper-
ations Management, (IEOM 2015), Dubai, United Arab
Emirates, March 3-5, 2015, 1-6. https://doi.org/10.1109/
IEOM.2015.7093867

2. Arroba, P., Moya, J. M., Ayala, J. L., Buyya, R. Dynamic
Voltage and Frequency Scaling-Aware Dynamic Con-
solidation of Virtual Machines for Energy Efficient
Cloud Data Centers. Concurrency and Computation:
Practice and Experience, 2017, 29(10), e4067. https://
doi.org/10.1002/cpe.4067

3. Barroso, L. A., Clidaras, J., Hölzle, U. The Datacen-
ter as a Computer: an Introduction to the Design of
Warehouse-scale Machines. Synthesis Lectures on
Computer Architecture, 2013, 8(3), 1-154. https://doi.
org/10.2200/S00516ED2V01Y201306CAC024

4. Brodowski, D., Golde, N., Wysocki, R. J., Kumar, V. CPU
Frequency and Voltage Scaling Code in the Linux(TM)
Kernel. https://www.kernel.org/doc/Documentation/
cpu-freq/governors.txt. Accessed on Nov 10, 2019.

5. Casu, M. R., Giaccone, P. Power-performance Assess-
ment of Different DVFS Control Policies in NoCs. Jour-
nal of Parallel and Distributed Computing, 2017, 109,
193-207. https://doi.org/10.1016/j.jpdc.2017.06.004

6. Chard, K., Caton, S., Rana, O., Bubendorfer, K. Social
Cloud: Cloud Computing in Social Networks. In 2010
IEEE 3rd International Conference on Cloud Comput-
ing, Miami, FL, USA, July 5-10, 2010, 99-106. https://
doi.org/10.1109/CLOUD.2010.28

7. Choi, K., Soma, R., Pedram, M. Fine-grained Dynam-
ic Voltage and Frequency Scaling for Precise Energy
and Performance Tradeoff Based on the Ratio of Off-
chip Access to on-chip Computation Times. IEEE
Transactions on Computer-aided Design of Integrated
Circuits and Systems, 2004, 24(1), 18-28. https://doi.
org/10.1109/TCAD.2004.839485

8. David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R.,
Le, C. RAPL: Memory Power Estimation and Capping.
In 2010 ACM/IEEE International Symposium on
Low-Power Electronics and Design, (ISLPED 2010),
Austin, TX, USA, Aug 18-20, 2010, 189-194. https://doi.
org/10.1145/1840845.1840883

9. Dou, H., Qi, Y., Wei, W., Song, H. A Two-time-scale
Load Balancing Framework for Minimizing Electric-
ity Bills of Internet Data Centers. Personal and Ubiq-
uitous Computing, 2016, 20(5), 681-693. https://doi.
org/10.1007/s00779-016-0941-9

10. Gregg, B. CPU Utilization is Wrong. http://www.
brendangregg.com /blog /2017-05-09/cpu-utiliza-
tion-is-wrong.html. Accessed on Nov 12, 2019.

11. Guerreiro, J., Ilic, A., Roma, N., Tomás, P. DVFS-aware
Application Classification to Improve GPGPUs Energy
Efficiency. Parallel Computing, 2019, 83, 93-117. https://
doi.org/10.1016/j.parco.2018.02.001

12. Ibrahim, S., Phan, T. D., Carpen-Amarie, A., Chihoub,
H. E., Moise, D., Antoniu, G. Governing Energy Con-
sumption in Hadoop Through CPU Frequency Scal-
ing: An Analysis. Future Generation Computer Sys-
tems, 2016, 54, 219-232. https://doi.org/10.1016/j.
future.2015.01.005

13. Janapa Reddi, V., Lee, B. C., Chilimbi, T., Vaid, K. Web
Search Using Mobile Cores: Quantifying and Mitigating
the Price of Efficiency. Proceedings of the 37th Annual
International Symposium on Computer Architecture,
(ISCA 2010), Saint-Malo, France, June 19-23, 2010,
314-325. https://doi.org/10.1145/1815961.1816002

14. Jararweh, Y., Doulat, A., AlQudah, O., Ahmed, E., Al-
Ayyoub, M., Benkhelifa, E. The Future of Mobile Cloud
Computing: Integrating Cloudlets and Mobile Edge
Computing. In 2016 23rd International Conference
on Telecommunications, (ICT 2016), Thessaloniki,
Greece, May 16-18, 2016, 1-5. https://doi.org/10.1109/
ICT.2016.7500486

621Information Technology and Control 2020/4/49

15. Kanev, S., Hazelwood, K., Wei, G. Y., Brooks, D. Tradeoffs
Between Power Management and Tail Latency in Ware-
house-scale Applications. In 2014 IEEE International
Symposium on Workload Characterization, (IISWC
2014), Raleigh, NC, USA, Oct 26-28, 2014, 31-40. https://
doi.org/10.1109/IISWC.2014.6983037

16. Krzywda, J., Ali-Eldin, A., Carlson, T. E., Östberg, P.
O., Elmroth, E. Power-performance Tradeoffs in Data
Center Servers: DVFS, CPU Pinning, Horizontal, and
Vertical Scaling. Future Generation Computer Sys-
tems, 2018, 81, 114-128. https://doi.org/10.1016/j.fu-
ture.2017.10.044

17. Liu, H., Liu, B., Yang, L. T., Lin, M., Deng, Y., Bilal, K.,
U. Khan, S. Thermal-aware and DVFS-enabled Big
Data Task Scheduling for Data Centers. IEEE Trans-
actions on Big Data, 2018, 4(2), 177-190. https://doi.
org/10.1109/TBDATA.2017.2763612

18. Lo, D., Cheng, L., Govindaraju, R., Barroso, L. A.,
Kozyrakis, C. towards Energy Proportionality for Large-
scale Latency-critical Workloads. In 2014 ACM/IEEE
41st International Symposium on Computer Architec-
ture, (ISCA 2014), Minnesota, USA, June 14-18, 2014,
301-312. https://doi.org/10.1145/2678373.2665718

19. PCM. https://github.com/opcm/pcm. Accessed on Nov
12, 2019.

20. Rojas-Cessa, R., Kaymak, Y., Dong, Z. Schemes for Fast
Transmission of Flows in Data Center Networks. IEEE
Communications Surveys & Tutorials, 2015, 17(3), 1391-
1422. https://doi.org/10.1109/COMST.2015.2427199

21. Shea, R., Liu, J., Ngai, E. C. H., Cui, Y. Cloud Gaming: Ar-
chitecture and Performance. IEEE Network, 2013, 27(4),
16-21. https://doi.org/10.1109/MNET.2013.6574660

22. Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M.
United States Data Center Energy Usage Report. https://
www.osti.gov/servlets/purl/1372902/. Accessed on Nov
10, 2019.

23. Sundriyal, V., Sosonkina, M. Modeling of the CPU Fre-
quency to Minimize Energy Consumption in Parallel
Applications. Sustainable Computing: Informatics and
Systems, 2018, 17, 1-8. https://doi.org/10.1016/j.sus-
com.2017.12.002

24. ul Islam, F. M. M., Lin, M., Yang, L. T., Choo, K. K. R.
Task Aware Hybrid DVFS for Multi-core Real-time

Systems Using Machine Learning. Information Scienc-
es, 2018, 433-434, 315-332. https://doi.org/10.1016/j.
ins.2017.08.042

25. Vamanan, B., Hasan, J., Vijaykumar, T. N. Dead-
line-aware Datacenter Tcp (d2tcp). ACM SIGCOMM
Computer Communication Review, 2012, 42(4), 115-
126. https://doi.org/10.1145/2342356.2342388

26. Wang, P., Qi, Y., Liu, X. Power-aware Optimization for
Heterogeneous Multi-tier Clusters. Journal of Parallel
and Distributed Computing, 2014, 74(1), 2005-2015.
https://doi.org/10.1016/j.jpdc.2013.09.003

27. Wang, X., Qi, Y., Wang, Z., Chen, Y., Zhou, Y. Design and
Implementation of SecPod, a Framework for Virtual-
ization-based Security Systems. IEEE Transactions on
Dependable and Secure Computing, 2017, 16(1), 44-57.
https://doi.org/10.1109/TDSC.2017.2675991

28. Wang, L., Von Laszewski, G., Dayal, J., Wang, F. Towards
Energy Aware Scheduling for Precedence Constrained
Parallel Tasks in a Cluster With DVFS. In Proceedings
of the 2010 10th IEEE/ACM International Confer-
ence on Cluster, Cloud and Grid Computing, (CCGRID
2010), Melbourne, VIC, Australia, May 10-17, 2010,
368-377. https://doi.org/10.1109/CCGRID.2010.19

29. Watts Up Pro Portable Power Meter. https://www.pow-
ermeterstore.com/p1206/watts_up_pro.php. Accessed
on Nov 12, 2019.

30. Witham, J. Achieving Data Center Energy Efficiency.
https://www.datacenterknowledge.com/industry-per-
spectives/achieving-data-center-energy-efficiency. Ac-
cessed on Nov 6, 2019.

31. Yang, C. Y., Chen, J. J., Kuo, T. W., Thiele, L. An Ap-
proximation Scheme for Energy-efficient Schedul-
ing of Real-time Tasks in Heterogeneous Multipro-
cessor Systems. In 2009 Design, Automation & Test
in Europe Conference & Exhibition, Nice, France,
April 20-24, 2009: 694-699. https://doi.org/10.1109/
DATE.2009.5090754

32. Zheng, P., Qi, Y., Zhou, Y., Chen, P., Zhan, J., Lyu, M. R. T.
An Automatic Framework for Detecting and Character-
izing Performance Degradation of Software Systems.
IEEE Transactions on Reliability, 2014, 63(4), 927-943.
https://doi.org/10.1109/TR.2014.2338255

This article is an Open Access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/).

