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Reducing energy consumption can bring various benefits, such as saving power, reducing operating costs and 
improving system reliability. Data centers afford huge energy costs. Reducing energy consumption and pro-
viding efficient quality of service (QoS) are the goals pursued by data centers. This paper aims to develop the 
scheduling strategy to reduce the energy consumption for latency-critical workload with the Dynamic Voltage 
Frequency Scaling technique. In this paper, we propose a two-stage strategy that dynamically schedules the 
CPU to run at the optimal frequency level and provides satisfactory QoS during the latency-critical workload 
execution. The two-stage strategy includes a static stage and a dynamic stage. In the static stage, a heuristic 
algorithm is developed to determine an optimal frequency level for different loads, at which the CPU consumes 
lower energy. However, due to the dynamic characteristics of the load, the determined frequency in the static 
stage may not guarantee QoS. Therefore, in the dynamic stage, a threshold method is proposed to fine-tune 
the frequency to ensure the QoS. The two stages are worked together to reduce energy consumption for la-
tency-critical workload which has QoS constraint. A case study on the Web search application shows that our 
scheduling strategy is effective for energy-saving, with a reduction of more than 13% compared with the base-
line strategy.
KEYWORDS: High energy cost, latency-critical workload, two-stage strategy, energy-saving, QoS constraint.
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1. Introduction
Cloud computing technology and big data technol-
ogy have promoted the vigorous development of the 
Internet. These technologies have been applied to all 
aspects of our modern life, such as social networking 
[6], media streaming [21], e-commerce [1], mobile 
Internet [14] and so on. With the popularity of these 
technologies, data centers need to process a large 
amount of data every day, which makes enterprises 
and governments have to invest in building more data 
centers. However, building a data center costs mil-
lions of dollars, of which the energy cost accounting 
for a significant proportion of total investment [9], 
[22]. According to 2017 statistics, about 8 million 
data centers around the world are processing Internet 
data. The power consumption of these data centers is 
416.2 terawatt hours, accounting for 2% of the global 
total power consumption [30]. In addition, these data 
centers produce more than 43 million carbon diox-
ide annually [2]. Huge power consumption not only 
brings high energy costs but also damages the envi-
ronment. Therefore, reduction of power consumption 
is significant and urgent.
Power saving is a challenging issue in data centers 
because of the contradiction between low power con-
sumption and high performance. Latency-critical ap-
plications such as Web search, media streaming, etc. 
must meet their service-level agreement (SLA) for 
performance [15], [32]. To guarantee the quality of 
service (QoS) of these applications, data centers have 
to force the CPU to run at a higher frequency, which 
results in high power consumption. The trade-off be-
tween power consumption and performance is a hot 
issue of common concern in industry and academia 
[13][19].
The CPU is the most energy consuming component 
in the server, so studying the CPU power efficiency 
is a significant direction for energy-saving [3][27]. 
Dynamic Voltage and Frequency Scaling (DVFS) 
is a well-known technique for reducing processor 
power and energy. Many researchers have proposed 
their strategies or techniques based on DVFS for en-
ergy-saving from different perspectives. Ibrahim et 
al. [12] investigated the DVFS technology in the Ha-
doop cluster. Their work provides a useful insight 
into designing power-aware techniques for Hadoop 
systems. The work in [23] uses the DVFS technique 

to minimize energy consumption in parallel applica-
tions. Choi et al. [7] proposed an intra-process DVFS 
technique to save energy for the non-real-time ap-
plications running on an embedded system. Wang et 
al. [26] focus on power reduction in heterogeneous 
multi-tier clusters and apply Generalized Benders 
Decomposition (GBD) to solve the optimization prob-
lem.
Ondemand [4] is a typical DVFS based CPU frequency 
governor in the Linux system. It is a default strategy in 
Linux system and is often used as a baseline for com-
parison with other DVFS based strategies. Ondemand 
strategy scheduling the CPU frequency based on the 
workload running on the server. It uses the CPU utili-
zation as an indicator of frequency scheduling. When 
it detects that the CPU utilization exceeds a specific 
threshold, it quickly schedules the processor to run 
at the highest frequency to ensure the performance 
of the load. Ondemand strategy can automatically 
scale the frequency according to the load while incur-
ring almost negligible overhead. However, for laten-
cy-critical workloads, Ondemand strategy exposes 
two limitations. First, Ondemand aggressively sched-
ules the frequency between almost the highest and 
lowest frequencies, so it cannot make full use of other 
intermediate frequencies to save power. Second, On-
demand only uses CPU utilization as the scheduling 
indicator. Sometimes a single CPU utilization does 
not accurately reflect the real work of the processor.
To address these limitations, we propose a two-stage 
strategy to dynamically schedule the CPU frequency 
during latency-critical workload execution to min-
imize energy consumption and meet the QoS con-
straint. The two-stage strategy includes a static fre-
quency determination stage and a dynamic frequency 
adjustment stage. The static stage uses a heuristic 
algorithm to model the frequency-load relationship 
and generate a quantitative relation table. This table 
determines the optimal CPU frequency for a running 
workload, at that frequency the energy consumption 
is minimum when performance constraint is met. 
To avoid transient load surge that may damage QoS, 
the dynamic stage uses a threshold method to fine-
grained adjust the CPU frequency. The threshold 
method adjusts the frequency based on the calculated 
Instruction per cycle (IPC) of the processor. Once the 
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IPC value exceeds the threshold, the CPU frequency 
is quickly adjusted to the highest frequency. Or else, 
if the IPC value does not exceed the threshold, the 
optimal frequency of the static stage is maintained. 
During the workload operation, the static stage de-
tects the load every 1 second (abbreviated as s and lat-
er s is used) and determines the optimal frequency for 
it, while the dynamic stage calculates the IPC value 
every 1 millisecond (abbreviated as ms and later ms is 
used) and determines whether to adjust the frequen-
cy. The two stages worked together to minimize the 
energy cost and ensuring the QoS.
In summary, our paper makes the following contribu-
tions:
 _ A two-stage scheduling strategy is proposed to 

reduce the energy consumption and provide 
satisfactory QoS for the latency-critical workload. 

 _ A heuristic algorithm is developed to determine 
an optimal CPU frequency for a running workload 
which is under the QoS constraint. At the optimal 
frequency, the CPU consumes lower energy.

 _ A comprehensive evaluation is conducted to 
demonstrate the effectiveness of the two-stage 
strategy for energy-saving and QoS-protection.

Paper organization: In Section 2, we briefly de-
scribe the background and clarify the motivation of 
this work. Section 3 elaborates on the two-stage strat-
egy, including the heuristic algorithm and the thresh-
old method. Section 4 describes the implementation 
of the two-stage strategy and Section 5 presents the 
case study. Section 6 reviews the related work, and 
Section 7 concludes the whole work.

2. Background and Motivation
In this section, we briefly introduce the frequency 
scheduling strategy in the Linux system and discuss 
its limitations through an experiment. Then we give a 
motivation example to clarify the insight of this work.

2.1. Ondemand Strategy and Its Limitation
Cpufreq is a kernel subsystem in the Linux power man-
agement system, and the governor in cpufreq controls 
the frequency scaling strategy of the processor. Cpu-
freq provides several frequency scaling strategies such 
as, performance, powersave, ondemand, and userspace 

etc. The governor schedules the strategy according to 
the user’s demand. For instance, performance strategy 
highlights performance and keeps the CPU running 
at the highest frequency, while powersave emphasiz-
es energy-saving and fix the CPU running at the low-
est frequency. Ondemand strategy is the default one 
in the Linux system. It schedules the CPU frequency 
between the highest and lowest according to the CPU 
utilization. Once the detected CPU utilization exceeds 
a certain threshold, Ondemand schedules the CPU to 
run at the highest frequency, else it keeps the CPU to 
run at the lowest frequency. Usersapce provides a pro-
gram interface that allows users to customize their 
frequency scaling strategy. Ondemand automatically 
scheduling the CPU frequency according to the system 
load. However, it is not flexible because it does not use 
other frequency levels and therefore limits the more 
space to save energy.
We evaluate the power saving effect of the Ondemand 
strategy on the Web search application. Web search 
is a typical latency-critical workload in data cen-
ters, which has a SLA requirement. To let users feel 
a good search experience, it is generally believed that 
the response time of Web search should be less than 
300ms, otherwise the users rather choose to drop or 
leave [20][25]. Therefore, for latency-critical work-
loads, the scheduling strategy should reduce power 
consumption as well as meet their performance re-
quirements. This paper uses the Web search appli-
cation as an example of latency-critical workload to 
carry out the research. Our strategy is also applicable 
to other latency-critical workloads. We deploy the 
Web search benchmark on two servers, of which one 
works as server end, and the other works as client end. 
In the experiment, we set the server end works in On-
demand strategy and set the client to send different 
numbers of requests to the server end continuously 
within a period of 696s. During the workload opera-
tion, we measure the response time of the Web search 
and the energy consumption of the CPU of the server 
end. The details of how to measure the response time 
and CPU energy are presented in Section 4.1. In this 
experiment, the measured average response time is 
108ms, and the total energy consumption in the whole 
process is 14549J. We can see that Ondemand strat-
egy can better meet the QoS requirement (less than 
300ms) but consume a lot of energy. To improve ener-
gy-saving, this paper proposes a two-stage strategy to 
tradeoff energy consumption and performance.
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2.2. Motivation
According to the characteristic of CMOS circuit, the 
dynamic power of the processor is proportional to the 
square of the processor frequency and voltage [28]
[31]. Therefore, the higher the frequency, the more 
of the power consumption. DVFS is a dynamic CPU 
voltage and frequency scaling technology enables the 
operating system to scale the CPU frequency up or 
down according to the system load. At present, most 
processor microarchitectures equipped with DVFS 
technique and it has been widely used for CPU power 
optimization in industry and academia. We propose a 
two-stage strategy based on DVFS technique, which 
aims to reduce energy consumption and guarantee 
performance for the latency-critical workload. The 
objective of the two-stage strategy is to determine 
the optimal frequency level for the given workload, at 
which the CPU consumes lower energy. We analyze 
the relationship between frequency, performance, 
and power through a case study on Web search. In the 
case study, the server is equipped with the Intel Has-
well architecture processor. Table 1 lists the detail 
parameters of the processor and Table 2 lists the fre-
quency levels that the processor supported.
We configure the client generates three different siz-
es of load (light, medium, and heavy) and set the pro-

Table 1
Information of the processor

Item Parameter

Processor Intel(R) Core(TM) i5-4460 
CPU @ 3.20GHz

Microarchitecture Haswell

CPU cores 4

Operating system Ubuntu 14.04.5 LTS

Kernel version Linux version 
3.16.0-77-generic

Table 2
Frequency levels of the processor supported

Frequency
(GHz)

0.8 1.0 1.1 1.3 1.5 1.7 1.8 2.0

2.2 2.3 2.5 2.7 2.9 3.0 3.2 3.201

cessor to run on each of the 16 frequency levels. Each 
load runs for 300s on the 16 frequencies of the proces-
sor, and the response time and power consumption 
are measured during the load operation. It is worth 
noting that the response time at each frequency is the 
average response time of the load running for 300s, 
and the energy at each frequency is the total energy 
of 300s. Figure 1 illustrates the performance varia-
tions of the three loads at different CPU frequencies. 
Figure 2 shows the power consumption variations of 
the three loads at different CPU frequencies. It can be 
seen from the two figures that, the higher the frequen-
cy, the smaller the response time and the greater the 
energy consumption. However, the change rates are 
different. It can be seen from Figure 1 and Figure 2 
that for the medium load, the performance improve-
ment is very little after the frequency above 2.5, but 
the energy consumption is still increasing greatly. 
This observation hints that for different loads, choos-
ing the appropriate frequency can both reduce the 
power and provide satisfactory performance. 

Figure 1
Performance variations of the three loads at different 
CPU frequencies. The horizontal axis shows different 
CPU frequencies, and the vertical axis represents the 
performance of the load at that frequency. Light Medium 
and Heavy refers to three different size of loads

 

Therefore, our work needs to model the relationship 
between load and frequency in order to determine the 
optimal frequency level for the load which is under the 
QoS constraint. As can be seen from Figure 2, the re-
lationship between power consumption and frequen-
cy approximately presents a linear trend. At a specific 
frequency, energy consumption is related to the load 
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being processed. Thus, we empirically assume that 
there is also an approximately linear relation between 
load and frequency. The two-stage strategy is devel-
oped under this assumption. The evaluation results 
show that the proposed strategy has achieved good 
effect for energy-saving and QoS-protection, which 
indirectly illustrates the rationality of the linear as-
sumption. 

3. The Two-stage Strategy
This section elaborates on the two-stage strategy. The 
two stages are static stage and dynamic stage. The 
static stage generates a frequency-load relation table 
through a well-designed heuristic algorithm. To avoid 
transient load surge to damage the QoS, the dynamic 
stage adjusts the previously planned frequency by us-
ing the threshold method.

3.1. Static Stage
In Section 2.2, we assume that load and frequency 
are approximately linear relationship. Based on this 
assumption, a heuristic algorithm is designed to de-
termine a corresponding frequency for a load, and 
finally generates a [ , ]frequency load  matching pairs. 
The response time of Web search is required less than 
300ms. Thus, the Qos constraint is 300ms. The heu-
ristic algorithm calculates the optimal frequency for 
the load that is under this QoS constraint. The follow-
ing part will describe the heuristic algorithm and its 
pseudo-code.

Figure 2
Power consumption variations of the three loads at 
different CPU frequencies. The horizontal axis shows 
different CPU frequencies, and the vertical axis represents 
the power consumption of the CPU at that frequency. Light 
Medium and Heavy refers to three different size of loads

 

Description of the heuristic algorithm:
Step  1: Determine the frequency of the lower limit 
load under QoS constraint. Specifically, for the lower 
limit load lowload , measure its actual response time 
res  at the lower limit frequency lowfreq . If the actual 
response time is less than the QoS constraint con, i.e.,
res con< , then the matching pair [ , ]frequency load  
is determined, else the frequency level is increased 
step by step until meeting the QoS constraint, i.e., 
meet res con< , this frequency level is determined as 
a match to lowload .
Step  2: Determine the frequency of the upper limit 
load under QoS constraint. Similar to step 1, for the 
upper limit load uppload , measure its actual response 
time res at the upper limit frequency uppfreq . If the ac-
tual response time is greater than the QoS constraint, 
i.e., res con> , then the matching pair[ , ]frequency load  
is determined, else the frequency level is decreased by 
one level and measure the response time at this level. 
If the actual response time is less than the QoS con-
straint, i.e., res con< , this frequency level is deter-
mined as a match to uppload .

Algorithm 1: The heuristic algorithm

    

 
 

 

processed. Thus, we empirically assume that there 
is also an approximately linear relation between 
load and frequency. The two-stage strategy is 
developed under this assumption. The evaluation 
results show that the proposed strategy has 
achieved good effect for energy-saving and QoS-
protection, which indirectly illustrates the 
rationality of the linear assumption.  

3. The Two-stage Strategy 
This section elaborates on the two-stage strategy. 
The two stages are static stage and dynamic stage. 
The static stage generates a frequency-load relation 
table through a well-designed heuristic algorithm. 
To avoid transient load surge to damage the QoS, 
the dynamic stage adjusts the previously planned 
frequency by using the threshold method. 

3.1 Static Stage 

In Section 2.2, we assume that load and frequency 
are approximately linear relationship. Based on this 
assumption, a heuristic algorithm is designed to 
determine a corresponding frequency for a load, 
and finally generates a [ , ]frequency load  
matching pairs. The response time of Web search is 
required less than 300ms. Thus, the Qos constraint 
is 300ms. The heuristic algorithm calculates the 
optimal frequency for the load that is under this 
QoS constraint. The following part will describe the 
heuristic algorithm and its pseudo-code. 

Description of the heuristic algorithm: 

Step 1: Determine the frequency of the lower limit 
load under QoS constraint. Specifically, for the 
lower limit load lowload , measure its actual 
response time res  at the lower limit frequency 

lowfreq . If the actual response time is less than the 
QoS constraint con , i.e., res con< , then the 
matching pair [ , ]frequency load  is determined, 
else the frequency level is increased step by step 
until meeting the QoS constraint, i.e., meet 
res con< , this frequency level is determined as a 
match to lowload . 

Step 2: Determine the frequency of the upper limit 
load under QoS constraint. Similar to step 1, for the 
upper limit load uppload , measure its actual 
response time res  at the upper limit frequency 

uppfreq . If the actual response time is greater than 
the QoS constraint, i.e., res con> , then the 
matching pair  [ , ]frequency load  is determined, 
else the frequency level is decreased by one level 
and measure the response time at this level. If the 
actual response time is less than the QoS constraint, 

i.e., res con< , this frequency level is 
determined  
Algorithm 1: The heuristic algorithm 
1：Input: , [ ], , , ,low uppcon freq N low upper load load  

2：Output: [ , ]frequency load  
3： _ ( , [ ])lowres measure response load freq low←  

4：If res con>  Then 
5：    For res con>  Do 
6：        1low low← +  
7：        _ ( , [ ])lowres measure response load freq low←   

8：    End For 
9：End If 
10：[ , [ ]] lowfrequency load low load←  

11： _ ( , [ ])uppres measure response load freq upp←  

12：If res con>  Then 
13：    [ , [ ]] uppfrequency load upp load←  

14：Else 
15：    1high high← −  
16：    _ ( , [ ])uppres measure response load freq upp←  

17：        If res con<  Then 
18：            [ , [ ]] uppfrequency load upp load←  

19：        End If 
20：End If 

21： _ ( , [ ], , ,
, ,[ , ])low med

generate med con freq N low med
load load frequency load

…  

22：
_ ( , [ ], , ,

, ,[ , ])med upp

generate med con freq N med upp
load load frequency load

…
 

23：return [ , ]frequency load  

as a match to uppload . 

Step 3: Determine the frequency of the 
median load under QoS constraint. Since the 
linear relationship between load and 
frequency, when the load takes the median 
value of the upper limit load and lower limit 
load, the corresponding frequency value 
should also be near the median of the upper 
limit frequency and lower limit frequency. 
Specifically, calculate the median load 

medload  and median frequency medfreq . 
Measure the actual response time res  of 

medload  at medfreq . If the actual response 
time is less than the constraint, i.e.,
res con< ,  then the matching pair 
[ , ]frequency load  is determined, else the 
frequency level is increased step by step 
from median frequency medfreq  until 
meeting the QoS constraint, i.e., res con< , 
this frequency level is determined as a match 
to medload . 
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Step 3: Determine the frequency of the median load 
under QoS constraint. Since the linear relationship 
between load and frequency, when the load takes the 
median value of the upper limit load and lower lim-
it load, the corresponding frequency value should 
also be near the median of the upper limit frequency 
and lower limit frequency. Specifically, calculate the 
median load medload  and median frequency medfreq .  
Measure the actual response time res of medload  at

medfreq . If the actual response time is less than the 
constraint, i.e., res con<  then the matching pair 
[ , ]frequency load  is determined, else the frequency 
level is increased step by step from median frequen-
cy 

medfreq  until meeting the QoS constraint, i.e.,
res con< , this frequency level is determined as a 
match to medload .

Algorithm 2: The function of generate_med

  

Step 4: Iteratively determine the new median load 
and the new median frequency. Repeat  
Algorithm 2: The function of generate_med 

1：Input: , [ ], , , , ,
[ , ]

low uppcon freq N low upp load load
frequency load

…  

2：Output: [ , ]frequency load  
3： , ,

2 2
low upp

med

load load low uppload med
+ +

← ← …  

_ ( , [ ])medres measure response load freq med←  

4：If res con>  Then 
5：    For res con>  Do 
6：          1med med← +  
7： _ ( , [ ])medres measure response load freq med←  

8：    End For 
9： End If 
10：[ , [ ]] medfrequency load med load←  

11： _ ( , [ ], , ,
, ,[ , ])low med

generate med con freq N low med
load load frequency load

…  

12： _ ( , [ ], , ,
, ,[ , ])med upp

generate med con freq N med upp
load load frequency load

… 

Table 3 

Descriptions of the variables in the pseudo-codes 

Variable Meaning 

[ ]freq N  The Array of frequency levels 
that the processor supported  

N  Number of frequency levels 
con  QoS constraint 
res  Actual response time 
low  Lower limit index 

upper  Upper limit index 

lowload  Lower limit load 

uppload  Upper limit load 

medload  Median load 

step 3 by dichotomy method until no median 
frequency need be calculated. 

Algorithm 1 and Algorithm 2 are pseudo-codes of 
the heuristic algorithm. Table 3 describes the 
variables in the pseudo-codes.  

We apply the heuristic algorithm to the Web search 
application and the Haswell architecture processor 
(described in Tables 1-2) to calculate the 
[frequency,load] matches. We set the lower limit 
load is 10, the upper limit load is 440, the lower limit 
index is 1, the upper limit index is 16 and the QoS 
constraint to 300ms. The heuristic algorithm 
calculates the optimal frequency levels for loads 
that ranging from 10 to 440. Table 4 lists the relation 
table, where the first column is the range of the 
load, and the second column is the corresponding 
frequency level. During the workload operation, 

the relation table is used as the frequency 
scheduling rule to set the CPU run at a 
matching  

Table 4 

Application of the heuristic algorithm 

Range of load Frequency 
0-5 0.8GHz 
5-32 1.0GHz 

32-45 1.1GHz 
45-59 1.3GHz 
59-65 1.5GHz 
65-72 1.7GHz 
72-86 1.8GHz 
86-92 2.0GHz 
92-99 2.2GHz 

99-112 2.3GHz 
112-119 2.5GHz 
119-139 2.7GHz 
139-153 2.9GHz 
153-159 3.0GHz 
159-166 3.2GHz 

166- 3.201GHz 

frequency. For instance, when the detection 
load is 80, the processor will be set to run at 
1.8GHz. 

To illustrate the stability and applicability of 
the algorithm, we discuss the effect of 
variation of parameters on the system 
behavior. As shown in Table 3, there are nine 
parameters in the algorithm, of which 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓[𝑁𝑁𝑁𝑁] and 𝑁𝑁𝑁𝑁  are parameters related to 
processor, and the others related to the 
running workload. 1) For a certain processor, 
if the processor supports more frequency 
levels ( 𝑁𝑁𝑁𝑁  becomes larger), the algorithm 
needs calculate more median frequencies. 
However, the output will be not affected by 
this parameter. Since the dichotomy method 
is applied to calculate the median frequency, 
the computational complexity is O (1). 2) For 
a workload, if the QoS constraint ( 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) 
changes, the output of the frequency may 
change. For example, the looser the 
constraint, the lower the matched frequency, 
because lower frequency can meet the QoS 
constraint; If the size of the load changes, the 
output of the frequency may also change. For 
example, the larger size of the load, the 
higher the matched frequency is. Since the 
larger load needs a more powerful CPU 
frequency. 

3.2 Dynamic Stage 

The static stage determines the frequency of 

Step 4: Iteratively determine the new median load 
and the new median frequency. Repeat step 3 by di-
chotomy method until no median frequency need be 
calculated.
Algorithm 1 and Algorithm 2 are pseudo-codes of the 
heuristic algorithm. Table 3 describes the variables in 
the pseudo-codes. 
We apply the heuristic algorithm to the Web search 
application and the Haswell architecture processor 
(described in Table 1) to calculate the [frequency,-
load] matches. We set the lower limit load is 10, the 

Table 3
Descriptions of the variables in the pseudo-codes

Variable Meaning

[ ]freq N The Array of frequency levels that 
the processor supported 

N Number of frequency levels

con QoS constraint

res Actual response time

low Lower limit index

upper Upper limit index

lowload Lower limit load

uppload Upper limit load

medload Median load

upper limit load is 440, the lower limit index is 1, 
the upper limit index is 16 and the QoS constraint to 
300ms. The heuristic algorithm calculates the op-
timal frequency levels for loads that ranging from 
10 to 440. Table 4 lists the relation table, where the 
first column is the range of the load, and the second 
column is the corresponding frequency level. During 
the workload operation, the relation table is used as 
the frequency scheduling rule to set the CPU run at a 
matching frequency. For instance, when the detection 
load is 80, the processor will be set to run at 1.8GHz.

To illustrate the stability and applicability of the al-
gorithm, we discuss the effect of variation of param-
eters on the system behavior. As shown in Table 3, 
there are nine parameters in the algorithm, of which  
freq[N] and N are parameters related to processor, 
and the others related to the running workload. 
1 For a certain processor, if the processor supports 
more frequency levels (N becomes larger), the al-
gorithm needs calculate more median frequencies. 
However, the output will be not affected by this pa-
rameter. Since the dichotomy method is applied to 
calculate the median frequency, the computational 
complexity is O (1). 
2 For a workload, if the QoS constraint (con) chang-
es, the output of the frequency may change. For exam-
ple, the looser the constraint, the lower the matched 
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Range of load Frequency

0-5 0.8GHz

5-32 1.0GHz

32-45 1.1GHz

45-59 1.3GHz

59-65 1.5GHz

65-72 1.7GHz

72-86 1.8GHz

86-92 2.0GHz

92-99 2.2GHz

99-112 2.3GHz

112-119 2.5GHz

119-139 2.7GHz

139-153 2.9GHz

153-159 3.0GHz

159-166 3.2GHz

166- 3.201GHz

frequency, because lower frequency can meet the QoS 
constraint; If the size of the load changes, the output 
of the frequency may also change. For example, the 
larger size of the load, the higher the matched fre-
quency is. Since the larger load needs a more powerful 
CPU frequency.

3.2. Dynamic Stage
The static stage determines the frequency of the run-
ning load every 1s, but the sudden load surges and 
processor delays may damage the QoS. The dynamic 
stage uses a threshold method to fine-grained adjust 
the CPU frequency to protect QoS.
In the dynamic stage, we monitor the Instructions per 
Cycle (IPC) value every 1ms and scheduling the CPU 
frequency according to this value. Unlike Ondemand 
strategy, we use IPC value as the indicator rather than 
CPU utilization. CPU utilization sometimes does not 
accurately reflect the actual work of the processor. 
For instance, 90% of the CPU utilization is not nec-
essarily 90% of the time is busy, it may be 20% of the 
time is busy and 70% of the time is stalled [10]. Stall-
ing means the processor was not making forward 

Table 4
Application of the heuristic algorithm

progress with instructions, and usually happens be-
cause it is waiting on memory I/O. IPC shows on aver-
age how many instructions were completed for each 
CPU clock cycle, which is more accurately reflects the 
effective work of the CPU. In this paper, IPC is more 
suitable as an indicator for frequency scheduling than 
the CPU utilization. The dynamic stage determines 
the frequency of the running load every 1ms. This de-
cision is based on a threshold method. The threshold 
is the IPC value of the load at full load operation. If the 
monitored IPC value is greater than the threshold, the 
CPU frequency is quickly scheduled to the highest 
one, otherwise, keep the CPU frequency unchanged. 

4. Frequency Scheduling with the 
Two-stage Strategy
Based upon the two-stage strategy, we implement a 
prototype for dynamic frequency scheduling. This sec-
tion describes the implementation of the prototype.

4.1. Implementation of the Prototype
Figure 3 shows the architecture of the prototype that 
contains three parts: the evaluation part, the decision 
part and the implementation part. In evaluation part, 
QoS acquisition module responsible for evaluating 
the QoS of the running workload, and the power mea-
surement module evaluates the power consumption 
of the CPU. The decision part and the implementa-
tion part complete the frequency scheduling through 
two interactions. The relation table generating mod-
ule generates [frequency, load] matches according 
to the heuristic algorithm described in Section 3.1. 
This work is done offline. The load detection module 
detects the load of the running system every 1s, and 
the decision module queries the relation table to de-
termine the matching frequency for the detected load. 
Then the [frequency, load] information is transmitted 
to the frequency scheduling module to implement the 
first-stage frequency scheduling. In the implemen-
tation part, the initialization module sets the gover-
nor mode, driver, and counter in the cpufreq system 
to prepare for frequency scheduling. The frequency 
scheduling module receives the information from the 
decision module and sets the CPU runs at the cor-
responding frequency. Meanwhile, IPC monitoring 
module continuously monitors the IPC of the proces-
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Figure 3
Architecture of the prototype

sor every 1ms and judges whether IPC greater than 
the preset threshold, if so, the decision module deter-
mines the highest frequency for the load and trans-
mits the information to frequency scheduling module 
to implement the second-stage frequency scheduling. 
Otherwise, the decision module determines to keep 
the first-stage frequency scheduling decision. In the 
following, we describe the implementation details of 
each module in Figure 3.

Evaluation part:
QoS acquisition module: We obtain the QoS met-
ric through parsing the Solr log file. Specifically, we 
use curl_get_req interface to send a request to the 
Solr server every 1s and parse out the ‘QTime’ metric 
from the log file. This metric is the response time of 
the server to the client requests.  We take the average 
response time of all requests processed by the server 
per second as the QoS value and recorded it in the QoS 
log file for subsequent evaluation.
Power measurement module: We leverage the RAPL 
tool [8]  and a power meter (Watts Up Pro Power Me-
ter) [29] to measure the power consumption every 1s 
during the workload operation and recorded it in the 
power log file for subsequent evaluation.

Decision part:
Relation table generating module: The relation ta-
ble is generated in offline mode by using the historical 
data. We use the heuristic algorithm to generate the 

static frequency-load relation table, like the form de-
scribed in Table 3. Details of the heuristic algorithm 
are described in Section 3.1.
Load detection module: For Web search, the load we 
get is the number of requests sent by the client. We 
use the interface provided by libcurl to query the Solr 
log file to obtain the number of requests.
IPC monitoring module: We leverage Intel PCM 
(Performance Counter Monitor) tool [19] to monitor 
the IPC parameter every 1ms.
Decision module: This module determines optimal 
frequencies for the running workload in two stages. 
In the first stage: query the relation table to determine 
the matching frequency for the load and transmit the 
information to the frequency scheduling module. 
In the second stage: query IPC monitoring module 
and check whether the IPC value is greater than the 
threshold (set to 3 in this paper), if so, determines the 
highest frequency for the load, else, keep the first-
stage decision. The first decision is performed every 
1s, and the second decision is performed every 1ms.

Implementation part:
Initialization module: This module initializes the 
cpufreq kernel to support the user-defined frequency 
scaling. The initialization includes set the driver to 
apci-driver and set the governor to userspace.
Frequency scheduling module: This module re-
ceives the decision information from the decision 
module and sets the frequency to the corresponding 
value through the interface provided by Sys.

4.2. Flow Chart of the Two-stage Strategy
We present a flowchart to illustrate how to use the 
two-stage strategy to accomplish optimal frequency 
scheduling. Figure 4 shows the flowchart. First, the 
initialization module sets the driver to acpi-driver and 
set cpufreq governor to userspace mode. Then, if the 
load detection module detects that there is workload 
running, it will continue to carry out subsequent oper-
ations, otherwise, it will end. The initialization mod-
ule set a counter to determine whether the frequency 
scheduling is based on load or IPC. Since the load is de-
tected every 1s and the IPC is detected every 1ms, thus 
if the value of the counter is a multiple of 100, the fre-
quency scheduling strategy is determined according to 
the load, otherwise, it is according to IPC. The counter 
is initialized to 100 and increments in steps of 1 after 
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Figure 4
Flowchart of how to use the two-stage strategy to 
accomplish optimal frequency scaling

each loop. If the judgment is Yes, load detection mod-
ule detects load every 1s. The decision module queries 
the relation table to determine the frequency for the 
load. Frequency scheduling module receives the deci-
sion information and conducts the corresponding fre-
quency scheduling operation. If the judgement is No, 
IPC monitoring module monitors the IPC value every 
1ms, and judges whether the IPC value is greater than 
the threshold, if so, the decision module determines to 
scale the frequency to the highest, and if not, keep the 
current frequency. The frequency scheduling module 
receives its decision information and conducts the cor-
responding frequency scheduling operation.

5. Case Study
In this section, we demonstrate the two-stage strate-
gy in the Web search system. We use a generate load 
and a real Google trace load to respectively evaluate 
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the energy-saving effect and QoS-protection capabil-
ity of the two-phase strategy.

5.1. Evaluation Methodology
Experimental platform: Our experimental platform 
consists of two servers, one as a client and the other as 
a server. The two servers are connected via Ethernet. 
We deployed the Web search benchmark on the plat-
form, which is one of the benchmarks in cloudsuite 
simulates the real-world client that sends requests to 
the index nodes. Taking the Web search as workload, 
we use the two-stage strategy and the Ondemand strat-
egy for CPU frequency scheduling and evaluate their 
energy-saving effects, respectively. For Web search ap-
plications, in order to achieve a good user experience, 
we set its average response time to be less than 300ms. 
With this performance constraint, we evaluate the en-
ergy-saving effects of the two strategies.
Generating loads: In real production systems, the cli-
ents usually send a random number of requests to the 
server nodes. Thus, we generate two types of workload: 
Random workload and Google trace workload. 
1 Random workload: We have designed a random 
load generator that is programmed by Python. The 
generator uses the threading library to generate a ran-
dom number of threads every second, and uses the 
urllib2 library in Python to send threads to the server. 
Figure 5 shows a Random workload executed in 696s. 
2 Google trace workload: In the Google trace data, the 
client generates a Google trace workload. Thus, we use 
Google trace to generate a Google trace workload. Fig-
ure 6 shows a Google trace workload executed in 696s.

5.2. Evaluation Metrics
The objective of the two-stage strategy is to reduce 
the power consumption of the processor while en-
suring the performance of the application. Therefore, 
we evaluate the two-stage strategy on the power con-
sumption metric and QoS metric.
 _ Power consumption: we measure the power 

consumption of the processor every 1s during the 
workload execution.

 _ QoS: we obtain the average response time of the 
application every 1s during the workload execution.

5.3. Comparison
Ondemand is the default strategy for CPU frequency 
scheduling in the Linux system, which is often used 
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as a baseline to compare with other DVFS-based ap-
proaches. In our work, the proposed two-stage strat-
egy dynamically schedules the frequency based on 
DVFS technique, so we compare the two-stage strate-
gy with Ondemand strategy. We respectively evaluate 
the two-stage strategy and Ondemand strategy on the 
two evaluation metrics under two types of workloads.

Figure 5
Random workload executed in 696s. The horizontal axis 
shows the execution time (second), and the vertical axis 
denotes the number of requests generated at each second

Figure 6
Google trace workload executed in 696s. The meaning of 
the axes is the same as Figure 5

Figure 7
Power consumption and QoS measured per second during 
the Random workload execution under the two-stage 
strategy. Rapl and Watt respectively denotes the power 
consumption measured by tools of RAPL and Watt

Figure 8
Power consumption and QoS measured per second during 
the Random workload execution under the Ondemand 
strategy. The meaning of Rapl and Watt are the same as 
Figure 7

scheduling module receives its decision 
information and conducts the corresponding 
frequency scheduling operation.

5. Case Study
In this section, we demonstrate the two-stage 
strategy in the Web search system. We use a 
generate load and a real Google trace load to 
respectively evaluate the energy-saving effect and 
QoS-protection capability of the two-phase strategy.
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consists of two servers, one as a client and the other 
as a server. The two servers are connected via 
Ethernet. We deployed the Web search benchmark 
on the platform, which is one of the benchmarks in
cloudsuite simulates the real-world client that 
sends requests to the index nodes. Taking the Web 
search as workload, we use the two-stage strategy 
and the Ondemand strategy for CPU frequency 
scheduling and evaluate their energy-saving
effects, respectively. For Web search applications, 
in order to achieve a good user experience, we set 
its average response time to be less than 300ms. 
With this performance constraint, we evaluate the 
energy-saving effects of the two strategies.

Generating loads: In real production systems, the 
clients usually send a random number of requests 
to the server nodes. Thus, we generate two types of 
workload: Random workload and Google trace
workload. 1) Random workload: We have designed 
a random load generator that is programmed by 
Python. The generator uses the threading library to 
generate a random number of threads every 
second, and uses the urllib2 library in Python to 
send threads to the server. Figure 5 shows a 
Random workload executed in 696s. 2) Google trace
workload: In the Google trace data, the client 
generates a Google trace workload. Thus, we use 
Google trace to generate a Google trace workload. 
Figure 6 shows a Google trace workload executed
in 696s.

5.2 Evaluation Metrics

The objective of the two-stage strategy is to reduce 
the power consumption of the processor while 
ensuring the performance of the application. 
Therefore, we evaluate the two-stage strategy on 
the power consumption metric and QoS metric.

 Power consumption: we measure the power 
consumption of the processor every 1s during 
the workload execution.

 QoS: we obtain the average response time of 
the application every 1s during the workload 

execution.

5.3 Comparison
Figure 5

Random workload executed in 696s. The 
horizontal axis shows the execution time 
(second), and the vertical axis denotes the 
number of requests generated at each second.

Figure 6

Google trace workload executed in 696s. The 
meaning of the axes is the same as Figure 5.

Ondemand is the default strategy for CPU 
frequency scheduling in the Linux system, 
which is often used as a baseline to compare 
with other DVFS-based approaches. In our 
work, the proposed two-stage strategy 
dynamically schedules the frequency based 
on DVFS technique, so we compare the two-
stage strategy with Ondemand strategy. We 
respectively evaluate the two-stage strategy 
and Ondemand strategy on the two 
evaluation metrics under two types of 
workloads.

Evaluations under Random workload: 
When the client submits the Random 
workload as shown in Figure 5, we use the 
two-stage strategy and Ondemand strategy, 
respectively, to achieve the CPU frequency 
scheduling. For the two strategies, the 
measured energy consumption and QoS are 
shown in Figures 7-8. In both figures, the
bottom sub-figure illustrates the QoS per 
second, and the top sub-figure describes the 
power consumption per second, where the 
black line denotes the power measured by 
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Evaluations under Random workload: 
When the client submits the Random 
workload as shown in Figure 5, we use the 
two-stage strategy and Ondemand strategy, 
respectively, to achieve the CPU frequency 
scheduling. For the two strategies, the 
measured energy consumption and QoS are 
shown in Figures 7-8. In both figures, the
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and the top sub-fi gure describes the power consump-
tion per second, where the black line denotes the power 
measured by the RAPL tool, and the green line denotes 
the power measured by the Watts Up Pro Power Meter 

(Watt in short). It can be seen from Figures 7-8 that 
under the two-stage strategy, the power consump-
tion per second is less than 40J with the total value 
of 34587J (measured by RAPL) and 10649J (measure 
by Watt). While under the Ondemand strategy, the 
power consumption per second is less than 45J with 
the total value of 40133J (measured by RAPL) and 
15478J (measure by Watt). Compared with the Onde-
mand strategy, the two-stage strategy reduces energy 
consumption by 31.2% (processor) and 13.8% (whole 
server). In addition, we can see from the Figures 9-10 
that under the two-stage strategy, the performance 
per second is less than 600ms with the average value 
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of RAPL and Watt.
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Compared with the Ondemand strategy, the two-
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31.2% (processor) and 13.8% (whole server). In 
addition, we can see from the Figures 9-10 that 
under the two-stage strategy, the performance per 
second is less than 600ms with the average value of 
251ms. While under the Ondemand strategy, the 
performance per second is less than 350ms with the 
average value of 133ms. These results indicate that 
Ondemand is better than the two-stage strategy in 

terms of QoS.
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When the client submits the Google trace
workload as 
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Power consumption and QoS measured per 
second during the Google trace workload
execution under the two-stage strategy. The 
meaning of Rapl and Watt are the same as 
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as Figure 7.
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of 251ms. While under the Ondemand strategy, the 
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average value of 133ms. These results indicate that 
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Evaluations under Google trace workload: When 
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frequency scheduling. For the two strategy, the mea-
sured energy consumption and QoS are shown in 
Figures 9-10. In both fi gures, the bottom sub-fi gure 
illustrates the QoS per second and the top sub-fi gure 
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Power consumption and QoS measured per second 
during the Random workload execution under the 
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are the same as Figure 7.

Figures 7-8 that under the two-stage strategy, the 
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the total value of 34587J (measured by RAPL) and 
10649J (measure by Watt). While under the 
Ondemand strategy, the power consumption per 
second is less than 45J with the total value of 40133J 
(measured by RAPL) and 15478J (measure by Watt). 
Compared with the Ondemand strategy, the two-
stage strategy reduces energy consumption by 
31.2% (processor) and 13.8% (whole server). In 
addition, we can see from the Figures 9-10 that 
under the two-stage strategy, the performance per 
second is less than 600ms with the average value of 
251ms. While under the Ondemand strategy, the 
performance per second is less than 350ms with the 
average value of 133ms. These results indicate that 
Ondemand is better than the two-stage strategy in 

terms of QoS.
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workload as 

Figure 9

Power consumption and QoS measured per 
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Figure 7.
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Power consumption and QoS measured per 
second during the Google trace workload
execution under the Ondemand strategy.
The meaning of Rapl and Watt are the same 
as Figure 7.
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describes the power consumption per second, where 
the black line denotes the power measured by RAPL 
tool, and the green line denotes the power measured 
by the Watt. It can be seen from Figures 9-10 that, 
under the two-stage strategy, the power consump-
tion per second is less than 20J with the total value 
of 33529J (measured by RAPL) and 9773J (measure 
by Watt). While under the Ondemand strategy, the 
power consumption per second is less than 30J with 
the total value of 39169J (measured by RAPL) and 
14549J (measure by Watt). Compared with the Onde-
mand strategy, the two-stage strategy reduces energy 
consumption by 32.8% (processor) and 14.3% (whole 
server). In addition, we can see from the Figures 9-10 
that under the two-stage strategy, the performance 
per second is less than 400ms with the average value 
of 227ms. While under the Ondemand strategy, the 
performance per second is less than 200ms with the 
average value of 108ms. These results indicate that 
Ondemand is better than the two-stage strategy in 
terms of QoS.
Discussion: From the above two experiments, we can 
conclude that:
1 the two-stage strategy is more effi  cient than Onde-
mand strategy for power saving. 
2 the two-stage strategy is not as good as Ondemand 
strategy in terms of QoS. Ondemand strategy uses a 
more aggressive frequency scheduling strategy, which 
schedules the CPU runs at the highest frequency once 
the CPU utilization exceeds a threshold. Since On-
demand strategy frequently keeps the CPU running 
at the highest frequency during the load operation, 
it achieves excellent performance. Nevertheless, the 
two-stage strategy still works well since it can meet 
the QoS constraint. The two-stage strategy achieves 
more energy-savings at the expense of performance. 
However, this expense is worth it. As long as the QoS 
constraint is met, users can hardly feel the diff erence 
between the extremely high performance and slightly 
poor performance.
To further compare the diff erence of the two strate-
gies, we count the frequency scheduling information 
and analyze the diff erence. We collect the frequency 
scheduling information every 1ms on the server and 
calculate the proportion of all 16 frequencies to the 
total time in 696s. Figures 11-12, respectively, plot the 
frequency scheduling information for the two strate-
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second is less than 400ms with the average value of 
227ms. While under the Ondemand strategy, the 
performance per second is less than 200ms with the 
average value of 108ms. These results indicate that 
Ondemand is better than the two-stage strategy in 
terms of QoS.

Discussion: From the above two experiments, we 
can conclude that: 1) the two-stage strategy is more 
efficient than Ondemand strategy for power saving.
2) the two-stage strategy is not as good as 
Ondemand strategy in terms of QoS. Ondemand 
strategy uses a more aggressive frequency 
scheduling strategy, which schedules the CPU runs 
at the highest frequency once the CPU utilization 
exceeds a threshold. Since Ondemand strategy 
frequently keeps the CPU running at the highest 

frequency during the load operation, it 
achieves excellent performance. 
Nevertheless, the two-stage strategy still 
works well since it can meet the QoS 
constraint. The two-stage strategy achieves 
more energy-savings at the expense of 
performance. However, this expense is 
worth it. As long as the QoS constraint is 
met, users can hardly feel the difference 
between the extremely high performance 
and slightly poor performance.

To further compare the difference of the two 
strategies, we count the frequency 
scheduling information and analyze the 
difference. We collect the frequency 
scheduling information every 1ms on the 
server and calculate the proportion of all 16 
frequencies to the total time in 696s. Figures 
11-12, respectively, plot the frequency 
scheduling information for the two 
strategies under the Random workload and 
the Google trace workload. It can be seen 
from the figures that Ondemand strategy is 
mostly at the lowest frequency and the 
highest frequency for both of the two 
workloads, while the two-stage strategy 
makes full use of all frequencies. The 
Random workload contains various size of 
load, and we can see from Figure 11 that the 
two-stage strategy controls the CPU runs at 
multiple frequencies. In the Google trace
workload, most of the loads are between 60 
to 80, and we can see from Figure 12 that the 
two-stage strategy schedules the CPU 
frequency mostly between 1.5GHz and 
1.7GHz.

6. Related Work
Liu et al. [17] consider that the energy
inefficiency of data centers is mainly 
attributed to resource under-utilization and 
heat recirculation. They proposed a thermal-
aware and power-aware energy 
consumption model. Along with the 
constraints according to the energy 
consumption model, TSTD algorithm and 
DVFS technique are used to allocate different 
computational tasks to the appropriate 
blades and adjust the running frequency. 
Krzywda et al. [16] point out that DVFS, CPU 
pinning, horizontal, and vertical scaling, are 
four techniques that have been proposed to 
control the performance and energy 
consumption on data center servers. Their 
work investigated the utility of these four 
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from the figures that Ondemand strategy is 
mostly at the lowest frequency and the 
highest frequency for both of the two 
workloads, while the two-stage strategy 
makes full use of all frequencies. The 
Random workload contains various size of 
load, and we can see from Figure 11 that the 
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multiple frequencies. In the Google trace
workload, most of the loads are between 60 
to 80, and we can see from Figure 12 that the 
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inefficiency of data centers is mainly 
attributed to resource under-utilization and 
heat recirculation. They proposed a thermal-
aware and power-aware energy 
consumption model. Along with the 
constraints according to the energy 
consumption model, TSTD algorithm and 
DVFS technique are used to allocate different 
computational tasks to the appropriate 
blades and adjust the running frequency. 
Krzywda et al. [16] point out that DVFS, CPU 
pinning, horizontal, and vertical scaling, are 
four techniques that have been proposed to 
control the performance and energy 
consumption on data center servers. Their 
work investigated the utility of these four 

gies under the Random workload and the Google trace 
workload. It can be seen from the fi gures that Onde-
mand strategy is mostly at the lowest frequency and 
the highest frequency for both of the two workloads, 
while the two-stage strategy makes full use of all fre-
quencies. The Random workload contains various 
size of load, and we can see from Figure 11 that the 
two-stage strategy controls the CPU runs at multiple 
frequencies. In the Google trace workload, most of the 
loads are between 60 to 80, and we can see from Fig-
ure 12 that the two-stage strategy schedules the CPU 
frequency mostly between 1.5GHz and 1.7GHz.

6. Related Work
Liu et al. [17] consider that the energy ineffi  ciency 
of data centers is mainly attributed to resource un-
der-utilization and heat recirculation. They proposed 

a thermal-aware and power-aware energy consump-
tion model. Along with the constraints according to 
the energy consumption model, TSTD algorithm and 
DVFS technique are used to allocate diff erent com-
putational tasks to the appropriate blades and adjust 
the running frequency. Krzywda et al. [16] point out 
that DVFS, CPU pinning, horizontal, and vertical 
scaling, are four techniques that have been proposed 
to control the performance and energy consumption 
on data center servers. Their work investigated the 
utility of these four techniques for power-perfor-
mance tradeoff s, such as they report that DVFS rarely 
reduces the power consumption of underloaded serv-
ers by more than 5%, but it can be used to limit the 
maximal power consumption of a saturated server by 
up to 20%. Guerreiro et al. [11] studied the energy sav-
ing of GPU application using DVFS technique. They 
proposed several classifi cation models to identifi ca-
tion which applications can benefi t from DVFS, in 
terms of energy savings. Work [24] developed a learn-
ing-based DVFS framework by using reinforcement 
learning, makes voltage and frequency (v-f ) scaling 
decisions for multi-core real-time systems. Casu et al. 
[5] investigated the trade-off s between performance 
and power saving in a Network-on-Chip (NoC) under 
three DVFS policies (rate-based, queue-based and de-
lay-based). Through experiments they report that de-
lay-based policy generally off ers a better power-per-
formance trade-off . 

7. Conclusion and Future Work
Modern data centers run a variety of applications and 
process large-scale network data every day. With the 
high-intensity working, data centers aff ord huge en-
ergy costs. Latency-critical workloads have the QoS 
constraint, which force the server continuously runs 
at the high CPU frequency, this is one of the main rea-
son for energy cost. This paper proposes a two-stage 
strategy to trade-off  between energy-saving as well as 
QoS for latency-critical workloads, aims to reduce the 
energy consumption while guarantying the QoS. The 
two-stage strategy dynamically schedules the CPU 
frequency during the workload operation, making de-
cisions about frequency levels that minimize energy 
consumption for the workload. The core of the two-
stage strategy is using a heuristic algorithm to cal-
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culate the optimal frequency for the load, and uses a 
threshold method to fine-grained adjust the frequen-
cy to protect the QoS at runtime. The evaluation re-
sults show that the two-stage strategy is efficient for 
energy-saving and QoS-ensuring.
In future work, we intend to the performance and en-
ergy consumption in mobile Web applications. 
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