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Membership determination with classification is an essential function for a variety of applications, such as 
network routing and packet inspection. We aim to constitute a mechanism capable of performing such a service 
with the considerations of efficiency and error ratio issues. The proposed method employs an array structure 
in which each cell composes of multiple bits of memory. The array houses a circular bound representation and 
a Bloom filter, where the former encodes the members and makes judgments of queries, while the latter acts as 
a secondary means for programming cases indeterministic by the former. Experimental results show that the 
error ratios were competitive and consistent with different levels of classification, as well as the memory space 
utilized. The lookup time decreased as the memory space increased. We depict specific characteristics for tack-
ling the problem, including simplicity of data structure for encoding the members, avoidance of checking all 
classification IDs in the lookup process, and adoption of an auxiliary means for improving the error ratios. The 
ID-bound method is novel, and with the Bloom filter as the assistant, the proposed approach is robust in perfor-
mances of both efficiency and error ratio. 
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1. Introduction
Generally, a mechanism of membership determina-
tion comprises of two operational modules, the en-
coding, and the checking one, with a specifically-de-
signed data structure. The former is responsible for 
inserting known members to the data structure, while 
the latter judges a query’s status accordingly. The 
checking process must perform as quickly as possible 
because it often works at the network transmission 
speed [1]. The Bloom filter (BF) has been notably ca-
pable in dealing with such a problem because it incor-
porates a hashing scheme and a bit array, allowing a 
nearly constant speed for determining membership. 
False-positive error is inevitable due to the hashing 
scheme and partly tight memory constraint [2]. Even 
so, the BF and its variants have successfully applied 
to a variety of problem issues because of its simple 
encoding and checking procedures with the easiness 
of operating the bit array [16].
The BF, however, could only provide the membership 
information, true or false, of a query, not competent 
in combining a classification ID with a recognized 
member if it belongs to one of many disjoint sets [4]. 
The determining or lookup time mainly relates to the 
number of hash functions because it represents the 
number of memory accesses [9]. Geravanda and Ah-
madib [6] indicated that each retrieval with only one 
bit is wasteful because multibit accesses within the 
system capacity do not affect the overall performance 
and could associate a member with more information 
of interest. Based on this concept, we aim to encode 
the members with the classification ID into a single 
data structure with only a small number of retrievals 
to the memory space. Our goal is to expedite the look-
up process with the least error ratios, including the 
false-positive (FP) and the true-negative (TN) ones.
We formalize the problem as given g sets and their 
classification or set IDs (SID) starting from one to 
g. The size of each group could vary to some extent, 
and g is ordinarily huge, e.g., several thousand. When 
processing a query Q, the mechanism must respond 
to the membership status and its designated SID as 
quickly as possible with low error ratios.
The performance metrics include the two error ra-
tios, TN and FP, and the online processing time of 
the checking module. A feasible mechanism must 

be robust on these metrics. For example, the aver-
age lookup time should not significantly increase as 
g grows, and the overall error ratio does not deteri-
orate when the number of total members becomes 
relatively large. Among the performance metrics, 
the lookup time is essential because it symbolizes 
the efficiency of the mechanism in real-time, which 
accounts for the number of memory accesses and 
the computational complexity of the checking pro-
cedure [14].
The proposed approach uses a single array A of m 
cells, each of which is composed of b bits, where b re-
lies on the number of disjoint sets g. Supposing g=500, 
an SID requires at least 9 bits for representing the IDs 
from 1 to 511. The array includes the bound and sup-
port fields, where the former consists of two bounds 
for describing the scope of SIDs involved, and the 
later contains two additional bits for each cell, estab-
lishing a couple of bitstreams on the array for assist-
ing the bound-field encoding and judgment actions. 
Table 1 lists all the notations and their descriptions 
used throughout this paper.

Table 1
Notation and description

Notation Description

A The proposed array of multi-bit cells

g The number of disjoint sets

m The size of A

n The total number of all elements in g sets

k The number of hash functions

e A member element

Se The SID of e

Q A query in the checking mode

Ce
The cells of A addressed by e using the 
hashing scheme

Cq
The cells of A directed by Q using the 
hashing scheme
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2. Related Work
Since a single BF could no longer handle the addressed 
problem, some researchers alter the bit array of BF to 
other forms, while others adhere to the original one 
and employ additional hash functions for resolving 
the issue. Yu and Mahapatra [22] proposed a multi-ti-
er structure for saving power in dealing with packet 
classification on the Internet. Each tier is composed 
of several BFs for representing many classes of pack-
ets. On the bottom level, each BF denotes only one 
category to obtain the SID information when a que-
ry reaches this tier. The purpose of such a structure 
is to recognize undetermined packets at higher levels 
so it could minimize the number of memory access-
es. However, it is challenging to decide the number of 
layers and the sizes for the BFs for proper error ratios. 
Xiao & Hua [17] proposed three structures, including 
the ones named PBF, PBF-HT, and PBF-BF, where 
PBF is responsible for storing multiple attributes of 
a set element, and the other two reduce the false-pos-
itive errors and remove unnecessary memory space. 
The Bloom tree [21] deploys many BFs on a hierarchy 
for determining the SID information of a query. The 
sizes of the BFs on each level could be troublesome 
to specify because the dimensions of the disjoint 
sets could vary to some extent. The Invertible Bloom 
Lookup Table [7] stores the element and the attached 
information as key-value pairs in the same data struc-
ture. Each cell contains three fields, including the 
element count, the sum of the keys, and the values of 
all the items at the same cell. When the lookup pro-
cess finds a cell whose count is one, it returns the at-
tached content; however, it could answer “not found” 
for a member if all the counts of the hash-map cells 
are greater than one, which accounts for a significant 
portion of the true-negative errors.
Hao et al. [8] proposed the combinatorial of Bloom 
filters (COMB), which employs a single Bloom filter 
of an enormous length with the combinations of hash 
functions to achieve distinguishing the classification. 
The method could downgrade the overall lookup effi-
ciency when there is a tremendous number of sets be-
cause all the combinations must proceed through the 
checking procedure. The Bloom multi-filter (BMF) 
[18] is an integer-number array, which employs bit-
wise operations for both the insertion and deletion 

of the set elements. The process, however, could ele-
vate the false-positive ratios with many sets involved. 
Dai et al. [3] also used an array composed of multi-bit 
cells, the noisy Bloom filter (NBF), where the first 
bitstream is the standard BF for encoding members, 
and the rest is to record the SIDs. The ID Bloom fil-
ter [10] employs bitwise operations, which designates 
the SIDs with decimal numbers for saving memory 
accesses at the lookup phase. The bitwise operations 
could be difficult to encode a considerable amount of 
sets into the data structure.
The shifting framework [20] stores membership and 
additional information using a BF, and retrieves a 
chunk of memory from the bit array with an offset fol-
lowing Ce. The framework encodes each (e, Se) pair to 
a single bit array, which could become extremely long, 
and thus complicated to maneuver. The Difference 
Bloom Filter [18] applied two designs for providing 
the desired information, where they considered the 
memory type as a cost-efficient strategy. The OMASS 
scheme [12] used a block of BFs, which is subsequent-
ly divided into several subblocks and mapped by the 
same set of hash functions for obtaining the SID in-
formation. Einziger & Friedman [5] pointed out that 
the BF is not memory efficient; therefore, the authors 
proposed several designs for saving memory space 
with low false-positive ratios using an array of words 
as the data structure. Additional access to memory 
could take place as several data structures involved. A 
neural network approach [11] based on the cerebellar 
model articulation controller uses the Se of each e as 
the target for mapping e during the encoding process. 
All elements of the same set establish boundaries for 
each SID, so all the members fall within the enclosed 
limits in the lookup phase to recognize as a member 
with that SID.
Sun et al. [15] proposed a magic cube Bloom filter ap-
proach that employs a second set of hash functions 
for obtaining offsets in coding parallel Bloom filters. 
Such an approach could bring down the TN ratio; 
however, it still needs to go through all the possible 
SID arrays for a specific answer, which could become 
less efficient when g is large. Qiao et al. [13] employed 
two data structures, including an index filter and a 
set-ID table. The index filter is a BF, while the set-ID 
table is responsible for storing the Se for each e. The 
checksum of e functions as a secondary confirmation 
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if the result the BF is positive. An empty cell must be 
available in Ce for storing the Se and the checksum. 
In the checking procedure, the method concatenates 
each cell address of Cq on the set-ID table with Q to 
consult with the index filter for the existence of a 
member. When the membership is positive, and the 
checksum matches that of Q, it is then a member with 
the SID stored at the address of the set-ID table. This 
approach is efficient in terms of processing a lookup 
because it only needs to examine k hash addresses. 
The checksum could significantly reduce the FP error 
ratio; however, it must find an empty cell to store the 
Se in the encoding process, which could cause addi-
tional TN errors when the memory space is compact. 
There are three profiles that we draw from the pre-
vious investigations for tackling the addressed prob-
lem. First, the data structure and the hashing scheme 
must be simple for performing efficient lookups. Sec-
ond, the checking module should not scrutinize all 
the SIDs for reaching a decision. Third, a secondary 
mechanism could involve in the process to slim down 
the error ratios. Thus, we adopt the work of Qiao et al. 
[13] as the benchmark because it fits all the profiles. 

3. The Proposed Approach
The proposed approach encodes n pairs of (e, Se) to an 
array structure, while the checking procedure deter-
mines the status of Q according to the encoded con-
sequence.

3.1. Array Structure
In the proposed array structure, each cell consists of 
a bound field, including the first and second bounds, 
and a support field composed of two additional bits, as 
shown in Figure 1. The memory requirement for the 
former depends on g, while the latter is constant. For 
example, it requires 9 bits to designate g=1~511, while 
10 bits could have g up to 1,023. Thus, when g=500, 
each cell in A claims 20 bits (9*2+2) of the memory 
space. And if each member consumes c bits, we have 
n*c bits as the working memory capacity, and m would 
be n*c/20.
Figure 1 shows a fragment of the results after the en-
coding process is complete. There are four types of 
outcomes for each cell, including the ones receive 0, 

1, 2, and 3-or-more (3plus-) hash-maps by all the n 
members (also referred to as the payload). We note 
that each member has k hash-maps to A. To elaborate 
this, the 0-hash-map cells are those that the payload 
never encounters with, and both bounds remain 0, 
such as cell #1. The 1-hash-map cells contain only one 
bound with a SID, e.g., cell #2 and #m-2. The location 
of the SID, first or second, relies on the order the hash 
functions in our approach, for facilitating an addi-
tional tool to detect false-positive errors in the look-
up phase. The hashing scheme is a sequence of hash 
functions, each of which transforms e to an address of 
A. In our approach, we store the SID in the first bound 
when an odd-number hash function reaches the cell, 
while the counterpart is the opposite. Explicitly, an 
even-number hash function encounters cell #2, while 
an odd-number one runs into cell #m-2.
When no zero is in the bound field, e.g., cell #3, #4, 
#5, and #m, it could be a 2- or 3plus- hash-map case. 
We allocate a bit in the support field, referred to as 
the 2-hash-map index, for distinguishing these two 
instances. For example, cell #3 has the bounds of 
285 and 388, and the 2-hash-map index is one, indi-
cating that only those members with these two SIDs 
fall in the cell. The 2-hash-map index is initially zero 
and turns to one when exactly two SIDs engage in the 
same cell. It returns to zero when more than two SIDs 
occupy the same compartment. For the 3plus-hash-
map cells, we introduce a circular representation in 
the counter-clockwise direction for minimizing the 
acceptance range (AR), as shown in Figure 2. The AR 
composes of all the SIDs that seize the cell. With such 
a representation, the FP ratio has the largest chance 
to shrink because it covers the minimal number of 
SIDs and the opportunity that a non-member drops in 
the AR decrease. Figure 2 (a) and (b) demonstrate the 
ARs of cell #4 and #5, respectively.

Figure 1 
Array structure of the proposed approach
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3.2. Encoding Process
There are two stages in the encoding process, includ-
ing (1) program the payload to A according to Table 2, 
and (2) configure the auxiliary BF (ABF) for resolv-
ing the uncertain cases of the bound field. In the first 
stage, each (e, Se) pair sequentially inserts to A, where 
e hashes to Ce and Se merge into Ce using Table 2. The 
second stage collects the TN and FP errors that the 
bound field fails to discriminate and configures those 
to the ABF for a confirmed judgment of Q.

Figure 2 
Circular representation of SIDs for 3plus-hash-map cells
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Table 2
Operations of inserting a member pair to different types of 
cell

Type of cell Operations

0-hash-map Store Se to the correct bound

1-hash-map (1) Store Se to the 0 location
(2) Switch the 2-hash-map index to 1

2-hash-map (1) Set the bounds for the minimal AR
(2) Switch the 2-hash-map indicator to 0

3plus-hash-map Set the bounds for the minimal AR

We now investigate the probabilities that a random 
cell receives r encounters by the payload, Pr, as in 
(1)~(5).

, (1)

, (2)

, (3)

, (4)

(5)

We derive (1) from the birthday problem, which is a 
general expression of the probability that a cell col-
lects r appointments by n members and (2)~(5) ac-
cording to (1). Therefore, if k=5, n=2,000,000, and 
m=4,000,000 using 40 bits of memory space for each 
member, we have P0=0.0821, P1=0.2053, P2=0.2563 
and P3+=0.4563. When k=3, the portions are P0=0.2231, 
P1=0.33475, P2=0.251 and P3+=0.1912.
With the probability distribution of various types of 
cells, we establish the membership determining rules 
based on Table 2 as: (1) A first or second bound is an 
“eligible” SID for Q when it is within all the ARs of 
Cq, (2) If there is no eligible bound, Q is a non-mem-
ber, (3) A single eligible bound is the SID of Q, and (4) 
When there are multiple eligible bounds, the one with 
the most appearances is the winner. For example, if an 
e, with k=3, whose mapping addresses are cell #4, #5, 
and #m-1 in Figure 1, both 98 and 22 are eligible. But 
since there are two bound appearances of 98, and 22 
has only one, the former is the winner as the Se.
On the other hand, when an e hashes to cell #4, #5, and 
#m, although both 98 and 22 are eligible, they both 
have only one bound appearance. In such a tied situ-
ation, also a type of the TN error, the process initiates 
to configure the ABF by adopting the shifting strategy 
of [20]. For example, if the second eligible bound 22 is 
the Se, we offset Ce by two cells for encoding the ABF, 
i.e., zeros to ones. Conversely, if 98 is the Se, the pro-
cess configures the ABF on the Ce+1 addresses. Such a 
method could accommodate the situation when there 
is a tie of several bounds. For the checking procedure, 
therefore, we examine these tied bounds, and the one 
with the ABF confirmation (all ones) is the winner. 
On the other hand, Q is a non-member if there is no 
endorsement of the ABF.
Besides the enhancement in reducing the TN error 
using the ABF, we also explore the FP one by using an 
adequate amount of non-members to test an encod-
ed A. Consequently, the most FP scenario lies in that 
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there is a single eligible bound with only one bound 
appearance. Therefore, we consider such a situation 
is a non-member unless there is a confirmation from 
the ABF for indicating that it is a member. So, in the 
second stage of the encoding process, we deal with 
such a matter by encoding the ABF at the Ce address 
to 1 for such a condition. For example, if e address-
es cell #5, #m-1, and #m in Figure 1, only the bound 
465 is eligible with only one appearance. The process, 
therefore, encodes ones to the ABF at Ce for the con-
firmation as a member in the lookup phase.
The ABF plays a supporting role in discriminating 
uncertain cases of the bound-field determination, so 
we concern about its inherent error of FP because it 
is, after all, a BF. As a standard BF, the larger the ra-
tio m/n, the less the FP errors. Fortunately, the ABF 
only engages in a relatively small portion of the TN, 
and FP errors escaped from the bound-field filtra-
tion (n), and the size of it (m) is adequate so that we 
could ignore the FP ratio of the ABF [2]. Therefore, 
we modify rule (3) of the membership determining 
to “A single eligible bound whose bound appearance 
is one must consult with the ABF for being a mem-
ber.”, and (4) to “When there are multiple eligible 
bounds, the one with the most appearances is the 
winner, but the process must conform with the ABF 
when there is a tie”.

3.3. Lookup Process
The lookup process determines Q’s status, i.e., if there 
is a single eligible bound, Q is a member, whose ID is 
that bound; otherwise, Q is a non-member. Figure 3 
shows the pseudo-codes of the checking procedure.
The purpose of holding such a checking sequence is 
to determine the status of Q as quickly as possible. 
Our approach has a couple of advantages for such use. 
First, since there is a single array structure involved, 
it could quicken the procedure in real-time since the 
number of memory retrievals lessens. Second, the 
method could be more efficient since there are two 
sites in the bound field, representing the limits of 
the SIDs at the same address, and that could result in 
practical maneuvers for fast filtering the non-mem-
bers. For example, when there is a 1-hash-map cell in 
Cq, the procedure checks if the SID’s location, first or 
second, is correct, and it is immediately a non-mem-
ber when it is on the wrong site.

Figure 3
Pseudo-codes of the checking procedure

procedure CheckingStatus(Q)
1: for i=1 to k  do if Cq(i)  {0-hash-encounter} then 

return (0);
2: for i=1 to k  do if Cq(i)  {1-hash-encounter} then 
3:     if Cq(i).FirstBound=0 and i mod 2=1 return (0);
4:         if Eligible(Cq(i).SecondBound) then        
5:             return (Cq(i).SecondBound);
6:         end if
7:     end if
8:     if Cq(i).SecondBound=0 and i mod 2=0 return (0);
9:         if Eligible(Cq(i).FirstBound) then        
10:             return (Cq(i).FirstBound);
11:         end if
12:     end if
13: end for 
14: EligibleList
15: NumberEligible0;
16: for i=1 to k  do
17: if Eligible(Cq(i).FirstBound) or Eligible(Cq(i).

SecondBound) then
18: Add Cq(i).FirstBound or Cq(i).SecondBound 

to EligibleList;
19: NumberEligibleNumberEligible+1;
20:     end if
21: end for
22: if NumberEligible=1 and Appear(EligibleList(1))=1 

then
23:     if  ABF(Cq)=1 then return (EligibleList(1))
24:     return (0);
25: end if 
26: if NumberEligible>1 then
27        NumberEligibleAppearTied=FindTied(EligibleList)
28:     for i=1 to NumberEligibleAppearTied do
29:         if  ABF(Cq+i) =1 then return (EligibleList(i));
30:         return (0);
31:     end for
32: end if 
end CheckingStatus

Furthermore, we could check the eligibility of Q for 
concluding its status. The ABF only participates in 
the situations when the bound field could not ascer-
tain the result of Q. Two scenarios constitute the most 
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cases, including (1) potential TN error with multiple 
eligible  SIDs, and (2) possible FP error of a sole suit-
able SID with a single bound appearance. We deal 
with these two situations by taking advantage of pro-
gramming the ABF, and the error ratios significantly 
reduce, as shown in the next section.

4. Experimental Results
We conducted several experiments with varies of two 
parameters, including the level of classification and 
the memory-space utilization, for evaluating the er-
ror ratios. The error ratios involve the TN (true-neg-
ative) and FP (false-positive) ones. The former is the 
case that the mechanism misjudges a member as a 
non-member, while the latter is the counterpart. Be-
sides, we also investigated the lookup efficiency and 
compared all the results with those of the “iSet” ap-
proach by Qiao et al. [13], a state-of-the-art effort in 
recent years. Since there are no guidelines in setting 
the configuration of the reference, we used the same 
size for both the index filter and the set-ID table, and 
the checksum is of the same number of bits with the 
SID in the set-ID table.

4.1. Level of Classification
The number of sets represents the level of classifica-
tion, and there were 1,000, 2,000, and 4,000 ones in 
the experiment. We used 2,000,000 randomly-gener-
ated elements, strings of 32 characters, as the mem-

bers for encoding both approaches at different levels 
of classification, where the number of hash functions 
k=5. The assignments of the SID for each member 
were random between one and g. The memory-space 
utilization is 40 bits per member; thus, it required 
80M bits of the memory space for this experiment. We 
also employed another set of 2,000,000 non-member 
samples with no SID attached for estimating the FP 
ratios. Figure 4 shows the results.
The combined rate is the summation of the TN and FP 
ones. It appears that the error ratios of our approach 
are more consistent than the “iSet” method with var-
ious levels of classification, and it had approximately 
69~88% decreases in the combined rates compared 
with the reference.

4.2. Memory-Space Utilization 
Intuitively, the larger the memory-space usage, the 
less the error ratios. Therefore, in this subsection, we 
looked into the sensitivity of different utilizations of 
memory space to the error ratios for both approaches. 
We allocated the memory space of 30, 40, and 50 bits 
per member, and the level of classification was 4,000. 
Figure 5 shows the results for both means.
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Both approaches achieved lower error ratios as the 
memory-space utilization increased. The proposed 
method reported about 77~89% reductions to those in 
the combined section of the benchmark. The results 
also show that the TN ratios of our approach were 
competitive in this category. Such an outcome could 
benefit from the number of unsuccessfully-encoded 
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members is not significantly high using our scheme 
due to the circular representation.

4.3. Lookup Time
We performed the lookup procedures of both ap-
proaches on an Intel Core i7-7700 at 3.6 GHz with 
128M SRAM. Figure 6 shows the elapsed time in sec-
onds for processing 2,000,000 queries of the member 
and non-member samples with different levels of 
classification, based on 40 bits of memory space per 
member. Figure 7 presents the ones with varied mem-
ory-space utilizations, where the classification level 
was 4,000.
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In Figure 6, the lookup time for members was longer 
than those of the non-members in both approaches, 
and the levels of classification did not significantly 
affect the lookup efficiencies. It could conceive that 
the lookup time for a member is more complicated 
than that of the non-members because many non-
members could filter themselves out at the early 
stage of the procedure, but the member must 
accompany with a SID to conclude. Our approach 
required about 5~15% more time than the reference 
at all levels. However, in Figure 7, it shows that 
lookup efficiency improves as the memory-space 
utilization increases for our approach, while that of 
the benchmark lacks such a tendency. 
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data structure and scheme for encoding the 
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(3) a secondary means for distinguishing the 

uncertain cases of the primary scheme. The 
first one is the cornerstone for the entire 
mechanism, where we propose a single array 
with an ID-bound method for meeting such a 
need. For (2), the checking procedure of our 
approach could produce a result by only 
examining the bound SIDs of those cells 
induced by a query. And for the third, we 
employ an auxiliary Bloom filter embedded in 
the array structure as the second net for 
capturing the members slipped through the 
primary (ID-bound) filtration. Such a design, as 
the experimental results show, substantially 
reduces the error ratios because it only handles 
a small portion of the indistinguished 
members, and the performance is remarkable 
because the size of it is well sufficient for such 
a task. The proposed mechanism could achieve 
relatively low error ratios with different levels 
of classification, as well as the memory-space 
utilization. Furthermore, it could also promote 
lookup efficiency as the memory-space 
utilization increases, which represents the 
ability to adapt to the environment when 
necessary with sufficient memory space 
available. 
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for the entire mechanism, where we propose a single 
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