
197Information Technology and Control 2020/2/49

Multiclass Membership
Determination Integrating an
ID-Bound Method with
Bloom Filter

ITC 2/49
Information Technology
and Control
Vol. 49 / No. 2 / 2020
pp. 197-205
DOI 10.5755/j01.itc.49.2.24633

Multiclass Membership Determination Integrating an ID-Bound
Method with Bloom Filter

Received 2019/11/17 Accepted after revision 2020/03/18

 http://dx.doi.org/10.5755/j01.itc.49.2.24633

HOW TO CITE: Chen, L.-I., Ma, H. (2020). Multiclass Membership Determination Integrating an ID-Bound Method with Bloom Filter.
Information Technology and Control, 49(2), 197-205. https://doi.org/10.5755/j01.itc.49.2.24633

Corresponding author: hengma@g.chu.edu.tw

Lu-I Chen
Ph.D. Program of Technology Management, Chung Hua University; 707, Sec.2, WuFu Rd., Hsinchu, 30012
Taiwan, R.O.C.; phone: +886 3 5186082; fax: +886 3 5186575; e-mail: d10303010@g.chu.edu.tw

Heng Ma
Department of Industrial Management; Chung Hua University; 707, Sec.2, WuFu Rd., Hsinchu, 30012 Taiwan,
R.O.C.; phone: +886 3 5186082; fax: +886 3 5186575; e-mail: hengma@g.chu.edu.tw

Membership determination with classification is an essential function for a variety of applications, such as
network routing and packet inspection. We aim to constitute a mechanism capable of performing such a service
with the considerations of efficiency and error ratio issues. The proposed method employs an array structure
in which each cell composes of multiple bits of memory. The array houses a circular bound representation and
a Bloom filter, where the former encodes the members and makes judgments of queries, while the latter acts as
a secondary means for programming cases indeterministic by the former. Experimental results show that the
error ratios were competitive and consistent with different levels of classification, as well as the memory space
utilized. The lookup time decreased as the memory space increased. We depict specific characteristics for tack-
ling the problem, including simplicity of data structure for encoding the members, avoidance of checking all
classification IDs in the lookup process, and adoption of an auxiliary means for improving the error ratios. The
ID-bound method is novel, and with the Bloom filter as the assistant, the proposed approach is robust in perfor-
mances of both efficiency and error ratio.
KEYWORDS: Membership determination, Classification, Bloom filter, Data structure, Distributed systems,
Network services.

mailto:obodovskiy58@gmail.com

Information Technology and Control 2020/2/49198

1. Introduction
Generally, a mechanism of membership determina-
tion comprises of two operational modules, the en-
coding, and the checking one, with a specifically-de-
signed data structure. The former is responsible for
inserting known members to the data structure, while
the latter judges a query’s status accordingly. The
checking process must perform as quickly as possible
because it often works at the network transmission
speed [1]. The Bloom filter (BF) has been notably ca-
pable in dealing with such a problem because it incor-
porates a hashing scheme and a bit array, allowing a
nearly constant speed for determining membership.
False-positive error is inevitable due to the hashing
scheme and partly tight memory constraint [2]. Even
so, the BF and its variants have successfully applied
to a variety of problem issues because of its simple
encoding and checking procedures with the easiness
of operating the bit array [16].
The BF, however, could only provide the membership
information, true or false, of a query, not competent
in combining a classification ID with a recognized
member if it belongs to one of many disjoint sets [4].
The determining or lookup time mainly relates to the
number of hash functions because it represents the
number of memory accesses [9]. Geravanda and Ah-
madib [6] indicated that each retrieval with only one
bit is wasteful because multibit accesses within the
system capacity do not affect the overall performance
and could associate a member with more information
of interest. Based on this concept, we aim to encode
the members with the classification ID into a single
data structure with only a small number of retrievals
to the memory space. Our goal is to expedite the look-
up process with the least error ratios, including the
false-positive (FP) and the true-negative (TN) ones.
We formalize the problem as given g sets and their
classification or set IDs (SID) starting from one to
g. The size of each group could vary to some extent,
and g is ordinarily huge, e.g., several thousand. When
processing a query Q, the mechanism must respond
to the membership status and its designated SID as
quickly as possible with low error ratios.
The performance metrics include the two error ra-
tios, TN and FP, and the online processing time of
the checking module. A feasible mechanism must

be robust on these metrics. For example, the aver-
age lookup time should not significantly increase as
g grows, and the overall error ratio does not deteri-
orate when the number of total members becomes
relatively large. Among the performance metrics,
the lookup time is essential because it symbolizes
the efficiency of the mechanism in real-time, which
accounts for the number of memory accesses and
the computational complexity of the checking pro-
cedure [14].
The proposed approach uses a single array A of m
cells, each of which is composed of b bits, where b re-
lies on the number of disjoint sets g. Supposing g=500,
an SID requires at least 9 bits for representing the IDs
from 1 to 511. The array includes the bound and sup-
port fields, where the former consists of two bounds
for describing the scope of SIDs involved, and the
later contains two additional bits for each cell, estab-
lishing a couple of bitstreams on the array for assist-
ing the bound-field encoding and judgment actions.
Table 1 lists all the notations and their descriptions
used throughout this paper.

Table 1
Notation and description

Notation Description

A The proposed array of multi-bit cells

g The number of disjoint sets

m The size of A

n The total number of all elements in g sets

k The number of hash functions

e A member element

Se The SID of e

Q A query in the checking mode

Ce
The cells of A addressed by e using the
hashing scheme

Cq
The cells of A directed by Q using the
hashing scheme

199Information Technology and Control 2020/2/49

2. Related Work
Since a single BF could no longer handle the addressed
problem, some researchers alter the bit array of BF to
other forms, while others adhere to the original one
and employ additional hash functions for resolving
the issue. Yu and Mahapatra [22] proposed a multi-ti-
er structure for saving power in dealing with packet
classification on the Internet. Each tier is composed
of several BFs for representing many classes of pack-
ets. On the bottom level, each BF denotes only one
category to obtain the SID information when a que-
ry reaches this tier. The purpose of such a structure
is to recognize undetermined packets at higher levels
so it could minimize the number of memory access-
es. However, it is challenging to decide the number of
layers and the sizes for the BFs for proper error ratios.
Xiao & Hua [17] proposed three structures, including
the ones named PBF, PBF-HT, and PBF-BF, where
PBF is responsible for storing multiple attributes of
a set element, and the other two reduce the false-pos-
itive errors and remove unnecessary memory space.
The Bloom tree [21] deploys many BFs on a hierarchy
for determining the SID information of a query. The
sizes of the BFs on each level could be troublesome
to specify because the dimensions of the disjoint
sets could vary to some extent. The Invertible Bloom
Lookup Table [7] stores the element and the attached
information as key-value pairs in the same data struc-
ture. Each cell contains three fields, including the
element count, the sum of the keys, and the values of
all the items at the same cell. When the lookup pro-
cess finds a cell whose count is one, it returns the at-
tached content; however, it could answer “not found”
for a member if all the counts of the hash-map cells
are greater than one, which accounts for a significant
portion of the true-negative errors.
Hao et al. [8] proposed the combinatorial of Bloom
filters (COMB), which employs a single Bloom filter
of an enormous length with the combinations of hash
functions to achieve distinguishing the classification.
The method could downgrade the overall lookup effi-
ciency when there is a tremendous number of sets be-
cause all the combinations must proceed through the
checking procedure. The Bloom multi-filter (BMF)
[18] is an integer-number array, which employs bit-
wise operations for both the insertion and deletion

of the set elements. The process, however, could ele-
vate the false-positive ratios with many sets involved.
Dai et al. [3] also used an array composed of multi-bit
cells, the noisy Bloom filter (NBF), where the first
bitstream is the standard BF for encoding members,
and the rest is to record the SIDs. The ID Bloom fil-
ter [10] employs bitwise operations, which designates
the SIDs with decimal numbers for saving memory
accesses at the lookup phase. The bitwise operations
could be difficult to encode a considerable amount of
sets into the data structure.
The shifting framework [20] stores membership and
additional information using a BF, and retrieves a
chunk of memory from the bit array with an offset fol-
lowing Ce. The framework encodes each (e, Se) pair to
a single bit array, which could become extremely long,
and thus complicated to maneuver. The Difference
Bloom Filter [18] applied two designs for providing
the desired information, where they considered the
memory type as a cost-efficient strategy. The OMASS
scheme [12] used a block of BFs, which is subsequent-
ly divided into several subblocks and mapped by the
same set of hash functions for obtaining the SID in-
formation. Einziger & Friedman [5] pointed out that
the BF is not memory efficient; therefore, the authors
proposed several designs for saving memory space
with low false-positive ratios using an array of words
as the data structure. Additional access to memory
could take place as several data structures involved. A
neural network approach [11] based on the cerebellar
model articulation controller uses the Se of each e as
the target for mapping e during the encoding process.
All elements of the same set establish boundaries for
each SID, so all the members fall within the enclosed
limits in the lookup phase to recognize as a member
with that SID.
Sun et al. [15] proposed a magic cube Bloom filter ap-
proach that employs a second set of hash functions
for obtaining offsets in coding parallel Bloom filters.
Such an approach could bring down the TN ratio;
however, it still needs to go through all the possible
SID arrays for a specific answer, which could become
less efficient when g is large. Qiao et al. [13] employed
two data structures, including an index filter and a
set-ID table. The index filter is a BF, while the set-ID
table is responsible for storing the Se for each e. The
checksum of e functions as a secondary confirmation

Information Technology and Control 2020/2/49200

if the result the BF is positive. An empty cell must be
available in Ce for storing the Se and the checksum.
In the checking procedure, the method concatenates
each cell address of Cq on the set-ID table with Q to
consult with the index filter for the existence of a
member. When the membership is positive, and the
checksum matches that of Q, it is then a member with
the SID stored at the address of the set-ID table. This
approach is efficient in terms of processing a lookup
because it only needs to examine k hash addresses.
The checksum could significantly reduce the FP error
ratio; however, it must find an empty cell to store the
Se in the encoding process, which could cause addi-
tional TN errors when the memory space is compact.
There are three profiles that we draw from the pre-
vious investigations for tackling the addressed prob-
lem. First, the data structure and the hashing scheme
must be simple for performing efficient lookups. Sec-
ond, the checking module should not scrutinize all
the SIDs for reaching a decision. Third, a secondary
mechanism could involve in the process to slim down
the error ratios. Thus, we adopt the work of Qiao et al.
[13] as the benchmark because it fits all the profiles.

3. The Proposed Approach
The proposed approach encodes n pairs of (e, Se) to an
array structure, while the checking procedure deter-
mines the status of Q according to the encoded con-
sequence.

3.1. Array Structure
In the proposed array structure, each cell consists of
a bound field, including the first and second bounds,
and a support field composed of two additional bits, as
shown in Figure 1. The memory requirement for the
former depends on g, while the latter is constant. For
example, it requires 9 bits to designate g=1~511, while
10 bits could have g up to 1,023. Thus, when g=500,
each cell in A claims 20 bits (9*2+2) of the memory
space. And if each member consumes c bits, we have
n*c bits as the working memory capacity, and m would
be n*c/20.
Figure 1 shows a fragment of the results after the en-
coding process is complete. There are four types of
outcomes for each cell, including the ones receive 0,

1, 2, and 3-or-more (3plus-) hash-maps by all the n
members (also referred to as the payload). We note
that each member has k hash-maps to A. To elaborate
this, the 0-hash-map cells are those that the payload
never encounters with, and both bounds remain 0,
such as cell #1. The 1-hash-map cells contain only one
bound with a SID, e.g., cell #2 and #m-2. The location
of the SID, first or second, relies on the order the hash
functions in our approach, for facilitating an addi-
tional tool to detect false-positive errors in the look-
up phase. The hashing scheme is a sequence of hash
functions, each of which transforms e to an address of
A. In our approach, we store the SID in the first bound
when an odd-number hash function reaches the cell,
while the counterpart is the opposite. Explicitly, an
even-number hash function encounters cell #2, while
an odd-number one runs into cell #m-2.
When no zero is in the bound field, e.g., cell #3, #4,
#5, and #m, it could be a 2- or 3plus- hash-map case.
We allocate a bit in the support field, referred to as
the 2-hash-map index, for distinguishing these two
instances. For example, cell #3 has the bounds of
285 and 388, and the 2-hash-map index is one, indi-
cating that only those members with these two SIDs
fall in the cell. The 2-hash-map index is initially zero
and turns to one when exactly two SIDs engage in the
same cell. It returns to zero when more than two SIDs
occupy the same compartment. For the 3plus-hash-
map cells, we introduce a circular representation in
the counter-clockwise direction for minimizing the
acceptance range (AR), as shown in Figure 2. The AR
composes of all the SIDs that seize the cell. With such
a representation, the FP ratio has the largest chance
to shrink because it covers the minimal number of
SIDs and the opportunity that a non-member drops in
the AR decrease. Figure 2 (a) and (b) demonstrate the
ARs of cell #4 and #5, respectively.

Figure 1
Array structure of the proposed approach

cause additional TN errors when the memory
space is compact.

There are three profiles that we draw from the
previous investigations for tackling the addressed
problem. First, the data structure and the hashing
scheme must be simple for performing efficient
lookups. Second, the checking module should not
scrutinize all the SIDs for reaching a decision.
Third, a secondary mechanism could involve in
the process to slim down the error ratios. Thus, we
adopt the work of Qiao et al. [13] as the
benchmark because it fits all the profiles.

3. The Proposed Approach
The proposed approach encodes n pairs of (e, Se) to
an array structure, while the checking procedure
determines the status of Q according to the
encoded consequence.

3.1. Array Structure
In the proposed array structure, each cell consists
of a bound field, including the first and second
bounds, and a support field composed of two
additional bits, as shown in Figure 1. The memory
requirement for the former depends on g, while
the latter is constant. For example, it requires 9 bits
to designate g=1~511, while 10 bits could have g
up to 1,023. Thus, when g=500, each cell in A
claims 20 bits (9*2+2) of the memory space. And if
each member consumes c bits, we have n*c bits as
the working memory capacity, and m would be
n*c/20.

Figure 1
Array structure of the proposed approach

auxiliary BF (ABF) 0 0 0 0 0 … 0 0 0
2-hash-map index 0 0 1 0 0 … 0 0 0

Second bound 0 72 388 98 153 … 0 98 100
First bound 0 0 285 22 465 … 50 400 453
Cell address# 1 2 3 4 5 … m-2 m-1 m

Figure 1 shows a fragment of the results after the
encoding process is complete. There are four types
of outcomes for each cell, including the ones
receive 0, 1, 2, and 3-or-more (3plus-) hash-maps
by all the n members (also referred to as the
payload). We note that each member has k hash-
maps to A. To elaborate this, the 0-hash-map cells
are those that the payload never encounters with,
and both bounds remain 0, such as cell #1. The 1-
hash-map cells contain only one bound with a SID,
e.g., cell #2 and #m-2. The location of the SID, first

or second, relies on the order the hash
functions in our approach, for facilitating an
additional tool to detect false-positive errors
in the lookup phase. The hashing scheme is a
sequence of hash functions, each of which
transforms e to an address of A. In our
approach, we store the SID in the first bound
when an odd-number hash function reaches
the cell, while the counterpart is the opposite.
Explicitly, an even-number hash function
encounters cell #2, while an odd-number one
runs into cell #m-2.

When no zero is in the bound field, e.g., cell
#3, #4, #5, and #m, it could be a 2- or 3plus-
hash-map case. We allocate a bit in the
support field, referred to as the 2-hash-map
index, for distinguishing these two instances.
For example, cell #3 has the bounds of 285
and 388, and the 2-hash-map index is one,
indicating that only those members with
these two SIDs fall in the cell. The 2-hash-
map index is initially zero and turns to one
when exactly two SIDs engage in the same
cell. It returns to zero when more than two
SIDs occupy the same compartment. For the
3plus-hash-map cells, we introduce a circular
representation in the counter-clockwise
direction for minimizing the acceptance
range (AR), as shown in Figure 2. The AR
composes of all the SIDs that seize the cell.
With such a representation, the FP ratio has
the largest chance to shrink because it covers
the minimal number of SIDs and the
opportunity that a non-member drops in the
AR decrease. Figure 2 (a) and (b)
demonstrate the ARs of cell #4 and #5,
respectively.

Figure 2
Circular representation of SIDs for 3plus-hash-
map cells

1
465

500 1 500
22

98
153

(b) First >Second (a) First<Second

3.2. Encoding Process
There are two stages in the encoding process,
including (1) program the payload to A

201Information Technology and Control 2020/2/49

3.2. Encoding Process
There are two stages in the encoding process, includ-
ing (1) program the payload to A according to Table 2,
and (2) configure the auxiliary BF (ABF) for resolv-
ing the uncertain cases of the bound field. In the first
stage, each (e, Se) pair sequentially inserts to A, where
e hashes to Ce and Se merge into Ce using Table 2. The
second stage collects the TN and FP errors that the
bound field fails to discriminate and configures those
to the ABF for a confirmed judgment of Q.

Figure 2
Circular representation of SIDs for 3plus-hash-map cells

cause additional TN errors when the memory
space is compact.

There are three profiles that we draw from the
previous investigations for tackling the addressed
problem. First, the data structure and the hashing
scheme must be simple for performing efficient
lookups. Second, the checking module should not
scrutinize all the SIDs for reaching a decision.
Third, a secondary mechanism could involve in
the process to slim down the error ratios. Thus, we
adopt the work of Qiao et al. [13] as the
benchmark because it fits all the profiles.

3. The Proposed Approach
The proposed approach encodes n pairs of (e, Se) to
an array structure, while the checking procedure
determines the status of Q according to the
encoded consequence.

3.1. Array Structure
In the proposed array structure, each cell consists
of a bound field, including the first and second
bounds, and a support field composed of two
additional bits, as shown in Figure 1. The memory
requirement for the former depends on g, while
the latter is constant. For example, it requires 9 bits
to designate g=1~511, while 10 bits could have g
up to 1,023. Thus, when g=500, each cell in A
claims 20 bits (9*2+2) of the memory space. And if
each member consumes c bits, we have n*c bits as
the working memory capacity, and m would be
n*c/20.

Figure 1
Array structure of the proposed approach

auxiliary BF (ABF) 0 0 0 0 0 … 0 0 0
2-hash-map index 0 0 1 0 0 … 0 0 0

Second bound 0 72 388 98 153 … 0 98 100
First bound 0 0 285 22 465 … 50 400 453
Cell address# 1 2 3 4 5 … m-2 m-1 m

Figure 1 shows a fragment of the results after the
encoding process is complete. There are four types
of outcomes for each cell, including the ones
receive 0, 1, 2, and 3-or-more (3plus-) hash-maps
by all the n members (also referred to as the
payload). We note that each member has k hash-
maps to A. To elaborate this, the 0-hash-map cells
are those that the payload never encounters with,
and both bounds remain 0, such as cell #1. The 1-
hash-map cells contain only one bound with a SID,
e.g., cell #2 and #m-2. The location of the SID, first

or second, relies on the order the hash
functions in our approach, for facilitating an
additional tool to detect false-positive errors
in the lookup phase. The hashing scheme is a
sequence of hash functions, each of which
transforms e to an address of A. In our
approach, we store the SID in the first bound
when an odd-number hash function reaches
the cell, while the counterpart is the opposite.
Explicitly, an even-number hash function
encounters cell #2, while an odd-number one
runs into cell #m-2.

When no zero is in the bound field, e.g., cell
#3, #4, #5, and #m, it could be a 2- or 3plus-
hash-map case. We allocate a bit in the
support field, referred to as the 2-hash-map
index, for distinguishing these two instances.
For example, cell #3 has the bounds of 285
and 388, and the 2-hash-map index is one,
indicating that only those members with
these two SIDs fall in the cell. The 2-hash-
map index is initially zero and turns to one
when exactly two SIDs engage in the same
cell. It returns to zero when more than two
SIDs occupy the same compartment. For the
3plus-hash-map cells, we introduce a circular
representation in the counter-clockwise
direction for minimizing the acceptance
range (AR), as shown in Figure 2. The AR
composes of all the SIDs that seize the cell.
With such a representation, the FP ratio has
the largest chance to shrink because it covers
the minimal number of SIDs and the
opportunity that a non-member drops in the
AR decrease. Figure 2 (a) and (b)
demonstrate the ARs of cell #4 and #5,
respectively.

Figure 2
Circular representation of SIDs for 3plus-hash-
map cells

1
465

500 1 500
22

98
153

(b) First >Second (a) First<Second

3.2. Encoding Process
There are two stages in the encoding process,
including (1) program the payload to A

(a) First< Second (b) First > Second

Table 2
Operations of inserting a member pair to different types of
cell

Type of cell Operations

0-hash-map Store Se to the correct bound

1-hash-map (1) Store Se to the 0 location
(2) Switch the 2-hash-map index to 1

2-hash-map (1) Set the bounds for the minimal AR
(2) Switch the 2-hash-map indicator to 0

3plus-hash-map Set the bounds for the minimal AR

We now investigate the probabilities that a random
cell receives r encounters by the payload, Pr, as in
(1)~(5).

, (1)

, (2)

, (3)

, (4)

(5)

We derive (1) from the birthday problem, which is a
general expression of the probability that a cell col-
lects r appointments by n members and (2)~(5) ac-
cording to (1). Therefore, if k=5, n=2,000,000, and
m=4,000,000 using 40 bits of memory space for each
member, we have P0=0.0821, P1=0.2053, P2=0.2563
and P3+=0.4563. When k=3, the portions are P0=0.2231,
P1=0.33475, P2=0.251 and P3+=0.1912.
With the probability distribution of various types of
cells, we establish the membership determining rules
based on Table 2 as: (1) A first or second bound is an
“eligible” SID for Q when it is within all the ARs of
Cq, (2) If there is no eligible bound, Q is a non-mem-
ber, (3) A single eligible bound is the SID of Q, and (4)
When there are multiple eligible bounds, the one with
the most appearances is the winner. For example, if an
e, with k=3, whose mapping addresses are cell #4, #5,
and #m-1 in Figure 1, both 98 and 22 are eligible. But
since there are two bound appearances of 98, and 22
has only one, the former is the winner as the Se.
On the other hand, when an e hashes to cell #4, #5, and
#m, although both 98 and 22 are eligible, they both
have only one bound appearance. In such a tied situ-
ation, also a type of the TN error, the process initiates
to configure the ABF by adopting the shifting strategy
of [20]. For example, if the second eligible bound 22 is
the Se, we offset Ce by two cells for encoding the ABF,
i.e., zeros to ones. Conversely, if 98 is the Se, the pro-
cess configures the ABF on the Ce+1 addresses. Such a
method could accommodate the situation when there
is a tie of several bounds. For the checking procedure,
therefore, we examine these tied bounds, and the one
with the ABF confirmation (all ones) is the winner.
On the other hand, Q is a non-member if there is no
endorsement of the ABF.
Besides the enhancement in reducing the TN error
using the ABF, we also explore the FP one by using an
adequate amount of non-members to test an encod-
ed A. Consequently, the most FP scenario lies in that

Information Technology and Control 2020/2/49202

there is a single eligible bound with only one bound
appearance. Therefore, we consider such a situation
is a non-member unless there is a confirmation from
the ABF for indicating that it is a member. So, in the
second stage of the encoding process, we deal with
such a matter by encoding the ABF at the Ce address
to 1 for such a condition. For example, if e address-
es cell #5, #m-1, and #m in Figure 1, only the bound
465 is eligible with only one appearance. The process,
therefore, encodes ones to the ABF at Ce for the con-
firmation as a member in the lookup phase.
The ABF plays a supporting role in discriminating
uncertain cases of the bound-field determination, so
we concern about its inherent error of FP because it
is, after all, a BF. As a standard BF, the larger the ra-
tio m/n, the less the FP errors. Fortunately, the ABF
only engages in a relatively small portion of the TN,
and FP errors escaped from the bound-field filtra-
tion (n), and the size of it (m) is adequate so that we
could ignore the FP ratio of the ABF [2]. Therefore,
we modify rule (3) of the membership determining
to “A single eligible bound whose bound appearance
is one must consult with the ABF for being a mem-
ber.”, and (4) to “When there are multiple eligible
bounds, the one with the most appearances is the
winner, but the process must conform with the ABF
when there is a tie”.

3.3. Lookup Process
The lookup process determines Q’s status, i.e., if there
is a single eligible bound, Q is a member, whose ID is
that bound; otherwise, Q is a non-member. Figure 3
shows the pseudo-codes of the checking procedure.
The purpose of holding such a checking sequence is
to determine the status of Q as quickly as possible.
Our approach has a couple of advantages for such use.
First, since there is a single array structure involved,
it could quicken the procedure in real-time since the
number of memory retrievals lessens. Second, the
method could be more efficient since there are two
sites in the bound field, representing the limits of
the SIDs at the same address, and that could result in
practical maneuvers for fast filtering the non-mem-
bers. For example, when there is a 1-hash-map cell in
Cq, the procedure checks if the SID’s location, first or
second, is correct, and it is immediately a non-mem-
ber when it is on the wrong site.

Figure 3
Pseudo-codes of the checking procedure

procedure CheckingStatus(Q)
1: for i=1 to k do if Cq(i) {0-hash-encounter} then

return (0);
2: for i=1 to k do if Cq(i) {1-hash-encounter} then
3: if Cq(i).FirstBound=0 and i mod 2=1 return (0);
4: if Eligible(Cq(i).SecondBound) then
5: return (Cq(i).SecondBound);
6: end if
7: end if
8: if Cq(i).SecondBound=0 and i mod 2=0 return (0);
9: if Eligible(Cq(i).FirstBound) then
10: return (Cq(i).FirstBound);
11: end if
12: end if
13: end for
14: EligibleList
15: NumberEligible0;
16: for i=1 to k do
17: if Eligible(Cq(i).FirstBound) or Eligible(Cq(i).

SecondBound) then
18: Add Cq(i).FirstBound or Cq(i).SecondBound

to EligibleList;
19: NumberEligibleNumberEligible+1;
20: end if
21: end for
22: if NumberEligible=1 and Appear(EligibleList(1))=1

then
23: if ABF(Cq)=1 then return (EligibleList(1))
24: return (0);
25: end if
26: if NumberEligible>1 then
27 NumberEligibleAppearTied=FindTied(EligibleList)
28: for i=1 to NumberEligibleAppearTied do
29: if ABF(Cq+i) =1 then return (EligibleList(i));
30: return (0);
31: end for
32: end if
end CheckingStatus

Furthermore, we could check the eligibility of Q for
concluding its status. The ABF only participates in
the situations when the bound field could not ascer-
tain the result of Q. Two scenarios constitute the most

203Information Technology and Control 2020/2/49

cases, including (1) potential TN error with multiple
eligible SIDs, and (2) possible FP error of a sole suit-
able SID with a single bound appearance. We deal
with these two situations by taking advantage of pro-
gramming the ABF, and the error ratios significantly
reduce, as shown in the next section.

4. Experimental Results
We conducted several experiments with varies of two
parameters, including the level of classification and
the memory-space utilization, for evaluating the er-
ror ratios. The error ratios involve the TN (true-neg-
ative) and FP (false-positive) ones. The former is the
case that the mechanism misjudges a member as a
non-member, while the latter is the counterpart. Be-
sides, we also investigated the lookup efficiency and
compared all the results with those of the “iSet” ap-
proach by Qiao et al. [13], a state-of-the-art effort in
recent years. Since there are no guidelines in setting
the configuration of the reference, we used the same
size for both the index filter and the set-ID table, and
the checksum is of the same number of bits with the
SID in the set-ID table.

4.1. Level of Classification
The number of sets represents the level of classifica-
tion, and there were 1,000, 2,000, and 4,000 ones in
the experiment. We used 2,000,000 randomly-gener-
ated elements, strings of 32 characters, as the mem-

bers for encoding both approaches at different levels
of classification, where the number of hash functions
k=5. The assignments of the SID for each member
were random between one and g. The memory-space
utilization is 40 bits per member; thus, it required
80M bits of the memory space for this experiment. We
also employed another set of 2,000,000 non-member
samples with no SID attached for estimating the FP
ratios. Figure 4 shows the results.
The combined rate is the summation of the TN and FP
ones. It appears that the error ratios of our approach
are more consistent than the “iSet” method with var-
ious levels of classification, and it had approximately
69~88% decreases in the combined rates compared
with the reference.

4.2. Memory-Space Utilization
Intuitively, the larger the memory-space usage, the
less the error ratios. Therefore, in this subsection, we
looked into the sensitivity of different utilizations of
memory space to the error ratios for both approaches.
We allocated the memory space of 30, 40, and 50 bits
per member, and the level of classification was 4,000.
Figure 5 shows the results for both means.

Figure 4
Error ratios for different levels of classification

compared all the results with those of the “iSet”
approach by Qiao et al. [13], a state-of-the-art
effort in recent years. Since there are no guidelines
in setting the configuration of the reference, we
used the same size for both the index filter and the
set-ID table, and the checksum is of the same
number of bits with the SID in the set-ID table.

4.1. Level of Classification
The number of sets represents the level of
classification, and there were 1,000, 2,000, and
4,000 ones in the experiment. We used 2,000,000
randomly-generated elements, strings of 32
characters, as the members for encoding both
approaches at different levels of classification,
where the number of hash functions k=5. The
assignments of the SID for each member were
random between one and g. The memory-space
utilization is 40 bits per member; thus, it required
80M bits of the memory space for this experiment.
We also employed another set of 2,000,000 non-
member samples with no SID attached for
estimating the FP ratios. Figure 4 shows the
results.

Figure 4
Error ratios for different levels of classification

The combined rate is the summation of the TN
and FP ones. It appears that the error ratios of our
approach are more consistent than the “iSet”
method with various levels of classification, and it
had approximately 69~88% decreases in the
combined rates compared with the reference.

4.2. Memory-Space Utilization
Intuitively, the larger the memory-space usage, the
less the error ratios. Therefore, in this subsection,
we looked into the sensitivity of different
utilizations of memory space to the error ratios for
both approaches. We allocated the memory space
of 30, 40, and 50 bits per member, and the level of
classification was 4,000. Figure 5 shows the results

for both means.

Figure 5
Error ratios for different memory-space
utilizations

Both approaches achieved lower error ratios as
the memory-space utilization increased. The
proposed method reported about 77~89%
reductions to those in the combined section of
the benchmark. The results also show that the
TN ratios of our approach were competitive in
this category. Such an outcome could benefit
from the number of unsuccessfully-encoded
members is not significantly high using our
scheme due to the circular representation.

4.3. Lookup Time
We performed the lookup procedures of both
approaches on an Intel Core i7-7700 at 3.6 GHz
with 128M SRAM. Figure 6 shows the elapsed
time in seconds for processing 2,000,000
queries of the member and non-member
samples with different levels of classification,
based on 40 bits of memory space per member.
Figure 7 presents the ones with varied
memory-space utilizations, where the
classification level was 4,000.

Figure 6
Elapsed time for processing 2,000,000 queries of
different levels of classification

Figure 5
Error ratios for different memory-space utilizations

compared all the results with those of the “iSet”
approach by Qiao et al. [13], a state-of-the-art
effort in recent years. Since there are no guidelines
in setting the configuration of the reference, we
used the same size for both the index filter and the
set-ID table, and the checksum is of the same
number of bits with the SID in the set-ID table.

4.1. Level of Classification
The number of sets represents the level of
classification, and there were 1,000, 2,000, and
4,000 ones in the experiment. We used 2,000,000
randomly-generated elements, strings of 32
characters, as the members for encoding both
approaches at different levels of classification,
where the number of hash functions k=5. The
assignments of the SID for each member were
random between one and g. The memory-space
utilization is 40 bits per member; thus, it required
80M bits of the memory space for this experiment.
We also employed another set of 2,000,000 non-
member samples with no SID attached for
estimating the FP ratios. Figure 4 shows the
results.

Figure 4
Error ratios for different levels of classification

The combined rate is the summation of the TN
and FP ones. It appears that the error ratios of our
approach are more consistent than the “iSet”
method with various levels of classification, and it
had approximately 69~88% decreases in the
combined rates compared with the reference.

4.2. Memory-Space Utilization
Intuitively, the larger the memory-space usage, the
less the error ratios. Therefore, in this subsection,
we looked into the sensitivity of different
utilizations of memory space to the error ratios for
both approaches. We allocated the memory space
of 30, 40, and 50 bits per member, and the level of
classification was 4,000. Figure 5 shows the results

for both means.

Figure 5
Error ratios for different memory-space
utilizations

Both approaches achieved lower error ratios as
the memory-space utilization increased. The
proposed method reported about 77~89%
reductions to those in the combined section of
the benchmark. The results also show that the
TN ratios of our approach were competitive in
this category. Such an outcome could benefit
from the number of unsuccessfully-encoded
members is not significantly high using our
scheme due to the circular representation.

4.3. Lookup Time
We performed the lookup procedures of both
approaches on an Intel Core i7-7700 at 3.6 GHz
with 128M SRAM. Figure 6 shows the elapsed
time in seconds for processing 2,000,000
queries of the member and non-member
samples with different levels of classification,
based on 40 bits of memory space per member.
Figure 7 presents the ones with varied
memory-space utilizations, where the
classification level was 4,000.

Figure 6
Elapsed time for processing 2,000,000 queries of
different levels of classification

Both approaches achieved lower error ratios as the
memory-space utilization increased. The proposed
method reported about 77~89% reductions to those in
the combined section of the benchmark. The results
also show that the TN ratios of our approach were
competitive in this category. Such an outcome could
benefit from the number of unsuccessfully-encoded

Information Technology and Control 2020/2/49204

members is not significantly high using our scheme
due to the circular representation.

4.3. Lookup Time
We performed the lookup procedures of both ap-
proaches on an Intel Core i7-7700 at 3.6 GHz with
128M SRAM. Figure 6 shows the elapsed time in sec-
onds for processing 2,000,000 queries of the member
and non-member samples with different levels of
classification, based on 40 bits of memory space per
member. Figure 7 presents the ones with varied mem-
ory-space utilizations, where the classification level
was 4,000.

Figure 6
Elapsed time for processing 2,000,000 queries of different
levels of classification

Figure 7
Elapsed time for processing 2,000,000 queries of different
utilizations of memory space

Figure 7
Elapsed time for processing 2,000,000 queries of different
utilizations of memory space

In Figure 6, the lookup time for members was longer
than those of the non-members in both approaches,
and the levels of classification did not significantly
affect the lookup efficiencies. It could conceive that
the lookup time for a member is more complicated
than that of the non-members because many non-
members could filter themselves out at the early
stage of the procedure, but the member must
accompany with a SID to conclude. Our approach
required about 5~15% more time than the reference
at all levels. However, in Figure 7, it shows that
lookup efficiency improves as the memory-space
utilization increases for our approach, while that of
the benchmark lacks such a tendency.

5. Conclusion
The proposed approach is an effort resulted from
recent endeavors in the literature. We realize that
membership determination with classification is a
difficult task to manage and that there are specific
characteristics for tackling it, including (1) a simple
data structure and scheme for encoding the
members, (2) a checking procedure that does not go
through all the classification IDs for a decision, and
(3) a secondary means for distinguishing the

uncertain cases of the primary scheme. The
first one is the cornerstone for the entire
mechanism, where we propose a single array
with an ID-bound method for meeting such a
need. For (2), the checking procedure of our
approach could produce a result by only
examining the bound SIDs of those cells
induced by a query. And for the third, we
employ an auxiliary Bloom filter embedded in
the array structure as the second net for
capturing the members slipped through the
primary (ID-bound) filtration. Such a design, as
the experimental results show, substantially
reduces the error ratios because it only handles
a small portion of the indistinguished
members, and the performance is remarkable
because the size of it is well sufficient for such
a task. The proposed mechanism could achieve
relatively low error ratios with different levels
of classification, as well as the memory-space
utilization. Furthermore, it could also promote
lookup efficiency as the memory-space
utilization increases, which represents the
ability to adapt to the environment when
necessary with sufficient memory space
available.

References

1. Chen, H., Jin, H., Chen, L., Liu, Y., Ni, L.
Optimizing Bloom Filter Settings in Peer-to-
Peer Multikeyword Searching. IEEE
Transactions on Knowledge and Data
Engineering, 2012, 24(4), 692–706.
https://doi.org/10.1109/TKDE.2011.14

2. Christensen, K., Roginsky, A., Jimeno, M. A
New Analysis of the False Positive Rate of a
Bloom Filter. Information Processing Letters,
2010, 110(24), 944–949.
https://doi.org/10.1016/j.ipl.2010.07.024

3. Dai, H., Zhong, Y., Liu, A. X., Wang, W., Li, M.
Noisy Bloom Filters for Multi-Set Membership
Testing. The ACM SIGMETRICS, 2016, Juan-
les-Pins, France, 139-151.
https://doi.org/10.1145/2896377.2901451

4. Ding, N., Bi, X., Zhang, D. An Efficient Hybrid
Hierarchical Trie Packet Classification
Algorithm Based on No Prefix Relationship.
Journal of Computational Information Systems,
2013, 9(22), 9193-9202. DOI: 10.12733/jcis8315

5. Einziger G., Friedman R. Tinyset – an Access
Efficient Self Adjusting Bloom Filter
Construction. IEEE/ACM Transactions on
Networking, 2017, 25(4), 2295-2307.

Figure 7
Elapsed time for processing 2,000,000 queries of different
utilizations of memory space

In Figure 6, the lookup time for members was longer
than those of the non-members in both approaches,
and the levels of classification did not significantly
affect the lookup efficiencies. It could conceive that
the lookup time for a member is more complicated
than that of the non-members because many non-
members could filter themselves out at the early
stage of the procedure, but the member must
accompany with a SID to conclude. Our approach
required about 5~15% more time than the reference
at all levels. However, in Figure 7, it shows that
lookup efficiency improves as the memory-space
utilization increases for our approach, while that of
the benchmark lacks such a tendency.

5. Conclusion
The proposed approach is an effort resulted from
recent endeavors in the literature. We realize that
membership determination with classification is a
difficult task to manage and that there are specific
characteristics for tackling it, including (1) a simple
data structure and scheme for encoding the
members, (2) a checking procedure that does not go
through all the classification IDs for a decision, and
(3) a secondary means for distinguishing the

uncertain cases of the primary scheme. The
first one is the cornerstone for the entire
mechanism, where we propose a single array
with an ID-bound method for meeting such a
need. For (2), the checking procedure of our
approach could produce a result by only
examining the bound SIDs of those cells
induced by a query. And for the third, we
employ an auxiliary Bloom filter embedded in
the array structure as the second net for
capturing the members slipped through the
primary (ID-bound) filtration. Such a design, as
the experimental results show, substantially
reduces the error ratios because it only handles
a small portion of the indistinguished
members, and the performance is remarkable
because the size of it is well sufficient for such
a task. The proposed mechanism could achieve
relatively low error ratios with different levels
of classification, as well as the memory-space
utilization. Furthermore, it could also promote
lookup efficiency as the memory-space
utilization increases, which represents the
ability to adapt to the environment when
necessary with sufficient memory space
available.

References

1. Chen, H., Jin, H., Chen, L., Liu, Y., Ni, L.
Optimizing Bloom Filter Settings in Peer-to-
Peer Multikeyword Searching. IEEE
Transactions on Knowledge and Data
Engineering, 2012, 24(4), 692–706.
https://doi.org/10.1109/TKDE.2011.14

2. Christensen, K., Roginsky, A., Jimeno, M. A
New Analysis of the False Positive Rate of a
Bloom Filter. Information Processing Letters,
2010, 110(24), 944–949.
https://doi.org/10.1016/j.ipl.2010.07.024

3. Dai, H., Zhong, Y., Liu, A. X., Wang, W., Li, M.
Noisy Bloom Filters for Multi-Set Membership
Testing. The ACM SIGMETRICS, 2016, Juan-
les-Pins, France, 139-151.
https://doi.org/10.1145/2896377.2901451

4. Ding, N., Bi, X., Zhang, D. An Efficient Hybrid
Hierarchical Trie Packet Classification
Algorithm Based on No Prefix Relationship.
Journal of Computational Information Systems,
2013, 9(22), 9193-9202. DOI: 10.12733/jcis8315

5. Einziger G., Friedman R. Tinyset – an Access
Efficient Self Adjusting Bloom Filter
Construction. IEEE/ACM Transactions on
Networking, 2017, 25(4), 2295-2307.

In Figure 6, the lookup time for members was longer
than those of the non-members in both approaches,
and the levels of classification did not significantly af-
fect the lookup efficiencies. It could conceive that the
lookup time for a member is more complicated than
that of the non-members because many non-members
could filter themselves out at the early stage of the pro-
cedure, but the member must accompany with a SID
to conclude. Our approach required about 5~15% more
time than the reference at all levels. However, in Figure
7, it shows that lookup efficiency improves as the mem-
ory-space utilization increases for our approach, while
that of the benchmark lacks such a tendency.

5. Conclusion
The proposed approach is an effort resulted from
recent endeavors in the literature. We realize that
membership determination with classification is a
difficult task to manage and that there are specific
characteristics for tackling it, including (1) a simple
data structure and scheme for encoding the members,
(2) a checking procedure that does not go through all
the classification IDs for a decision, and (3) a second-
ary means for distinguishing the uncertain cases of
the primary scheme. The first one is the cornerstone
for the entire mechanism, where we propose a single
array with an ID-bound method for meeting such a
need. For (2), the checking procedure of our approach
could produce a result by only examining the bound
SIDs of those cells induced by a query. And for the
third, we employ an auxiliary Bloom filter embedded
in the array structure as the second net for capturing
the members slipped through the primary (ID-bound)
filtration. Such a design, as the experimental results
show, substantially reduces the error ratios because
it only handles a small portion of the indistinguished
members, and the performance is remarkable because
the size of it is well sufficient for such a task. The pro-
posed mechanism could achieve relatively low error
ratios with different levels of classification, as well as
the memory-space utilization. Furthermore, it could
also promote lookup efficiency as the memory-space
utilization increases, which represents the ability to
adapt to the environment when necessary with suffi-
cient memory space available.

205Information Technology and Control 2020/2/49

References
1. Chen, H., Jin, H., Chen, L., Liu, Y., Ni, L. Optimizing

Bloom Filter Settings in Peer-to-Peer Multikeyword
Searching. IEEE Transactions on Knowledge and
Data Engineering, 2012, 24(4), 692-706.https://doi.
org/10.1109/TKDE.2011.14

2. Christensen, K., Roginsky, A., Jimeno, M. A New Analysis
of the False Positive Rate of a Bloom Filter. Information
Processing Letters, 2010, 110(24), 944-949. https://doi.
org/10.1016/j.ipl.2010.07.024

3. Dai, H., Zhong, Y., Liu, A. X., Wang, W., Li, M. Noisy Bloom
Filters for Multi-Set Membership Testing. The ACM
SIGMETRICS, 2016, Juan-les-Pins, France, 139-151.
https://doi.org/10.1145/2896377.2901451

4. Ding, N., Bi, X., Zhang, D. An Efficient Hybrid Hierarchical
Trie Packet Classification Algorithm Based on No Prefix
Relationship. Journal of Computational Information Sys-
tems, 2013, 9(22), 9193-9202. DOI: 10.12733/jcis8315

5. Einziger G., Friedman R. Tinyset - an Access Efficient
Self Adjusting Bloom Filter Construction. IEEE/ACM
Transactions on Networking, 2017, 25(4), 2295-2307.
https://doi.org/10.1109/TNET.2017.2685530

6. Geravanda, S., Ahmadib, M. Bloom Filter Applications
in Network Security: A State-of-the-art Survey. Com-
puter Networks, 2013, 57(18), 4047-4064. https://doi.
org/10.1016/j.comnet.2013.09.003

7. Goodrich, M. T., Mitzenmacher, M. Invertible Bloom
Lookup Tables. The 49th Allerton Conference on Com-
munication, Control and Computing, 2015, Monticello,
IL, USA, 792-799. arXiv.org > cs > arXiv:1101.2245

8. Hao, F., Kodialam, M., Lakshman, T. V., Song, H. Fast Dy-
namic Multiple-Set Membership Testing Using Combi-
natorial Bloom Filters. IEEE/ACM Transactions on Net-
working, 2012, 21(1), 295-304. https://doi.org/10.1109/
TNET.2011.2173351

9. Lim, H., Lee, N., Lee, J., Yim, C. Reducing False Positives
of a Bloom Filter using Cross-Checking Bloom Filter. Ap-
plied Mathematics & Information Sciences, 2014, 8(4),
1865-1877. https://doi.org/10.12785/amis/080445

10. Liu, P., Wang, H., Gao, S., Yang, T., Zou, L., Uden, L., Li, X.
ID Bloom Filter: Achieving Faster Multi-Set Member-
ship Query in Network Applications. IEEE International
Conference on Communications, 2018, Kansas City, MO,
USA, 1-6. https://doi.org/10.1109/ICC.2018.8422627

11. Ma, H., Tseng, Y. C., Chen, L. I. A CMAC-Based Scheme
for Determining Membership with Classification of Text
Strings. Neural Computing with Applications, 2016, 27(7),
1959-1967. https://doi.org/10.1007/s00521-015-1989-6

12. Mitzenmacher, M., Reviriego, P., Pontarelli, S. OMASS:

One Memory Access Set Separation. IEEE Transactions
on Knowledge and Data Engineering, 2016, 28(7), 1940-
1943. https://doi.org/10.1109/TKDE.2016.2535286

13. Qiao, Y., Chen, S., Mo, Z., Yoon, M. When Bloom Filters
Are No Longer Compact: Multi-Set Membership Look-
up for Network Applications. IEEE/ACM Transactions
on Networking, 2016, 24(6), 3326-3339. https://doi.
org/10.1109/TNET.2016.2536618

14. Rottenstreich, O., Keslassy, I. The Bloom Paradox:
When Not to Use a Bloom Filter. IEEE/ACM Transac-
tions on Networking, 2015, 23(3), 703-716. https://doi.
org/10.1109/INFCOM.2012.6195533

15. Sun, Z., Gao, S., Liu, B., Wang, Y., Yang, T., Cui, B. Magic
Cube Bloom Filter: Answering Membership Queries for
Multiple Sets. IEEE International Conference on Big
Data and Smart Computing, 2019, Kyoto, Japan, 32-39.
https://doi.org/10.1109/BIGCOMP.2019.8679119

16. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E. Theory and
Practice of Bloom Filters for Distributed Systems. IEEE
Communications Surveys & Tutorials, 2012, 14(1), 131-
155. https://doi.org/10.1109/SURV.2011.031611.00024

17. Xiao, B., Hua, Y. Using Parallel Bloom Filters for Multi-
attribute Representation on Network Services. IEEE
Transaction on Parallel and Distributed Systems, 2010,
21(2), 20-32. https://doi.org/10.1109/TPDS.2009.39

18. Xu, C., Liu, Q., Rao, W. BMF: An Indexing Structure to
Support Multi-element Check. In Cui, B., Zhang, N., Xu,
J., Lian, X., Liu, D. (Eds) Web-Age Information Manage-
ment, Lecture Notes in Computer Science, 2016, 9658,
441-453. https://doi.org/10.1007/978-3-319-39937-9_34

19. Yang, D., Tian, D., Gong, J., Gao, S., Yang, .T, Li, X. Differ-
ence Bloom Filter: A Probabilistic Structure for Multi-
Set Membership Query. IEEE International Conference
on Communications, 2017, 1-6. https://doi.org/10.1109/
ICC.2017.7996678

20. Yang, T., Liu, A. X., Shahzad, M., Yang, D., Fu, Q., Xie, G.,
Li, X. A Shifting Framework for Set Queries. IEEE/ACM
Transactions on Networking, 2016, 25(5), 3116-3131.
https://doi.org/10.1109/TNET.2017.2730227

21. Yoon, M. K., Son, J. W., Shin, S. H. Bloom Tree: A Search
Tree Based on Bloom Filters for Multiple-Set Member-
ship Testing. IEEE International Conference on Com-
puter Communications, 2014, Toronto, Canada, 1429-
1437. https://doi.org/10.1109/INFOCOM.2014.6848077

22. Yu, H., Mahapatra, R. N. A Power and Throughput-Ef-
ficient Packet Classifier with n Bloom Filters. IEEE
Transactions on Computers, 2011, 60(8), 1182-1193.
https://doi.org/10.1109/TC.2010.213

https://doi.org/10.1109/TKDE.2011.14
https://doi.org/10.1109/TKDE.2011.14
https://doi.org/10.1016/j.ipl.2010.07.024
https://doi.org/10.1016/j.ipl.2010.07.024
https://doi.org/10.1145/2896377.2901451
https://doi.org/10.1109/TNET.2017.2685530
https://doi.org/10.1016/j.comnet.2013.09.003
https://doi.org/10.1016/j.comnet.2013.09.003
https://doi.org/10.1109/TNET.2011.2173351
https://doi.org/10.1109/TNET.2011.2173351
https://doi.org/10.12785/amis/080445
https://doi.org/10.1109/ICC.2018.8422627
https://doi.org/10.1007/s00521-015-1989-6
https://doi.org/10.1109/TKDE.2016.2535286
https://doi.org/10.1109/TNET.2016.2536618
https://doi.org/10.1109/TNET.2016.2536618
https://doi.org/10.1109/INFCOM.2012.6195533
https://doi.org/10.1109/INFCOM.2012.6195533
https://doi.org/10.1109/BIGCOMP.2019.8679119
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1109/TPDS.2009.39
https://doi.org/10.1007/978-3-319-39937-9_34
https://doi.org/10.1109/ICC.2017.7996678
https://doi.org/10.1109/ICC.2017.7996678
https://doi.org/10.1109/TNET.2017.2730227
https://doi.org/10.1109/INFOCOM.2014.6848077
https://doi.org/10.1109/TC.2010.213

