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The vehicle routing problem with task priority and limited resources (VRPTPLR) is a generalized version of 
the vehicle routing problem (VRP) with multiple task priorities and insufficient vehicle capacities. The objec-
tive of this problem is to maximize the total benefits. Compared to the traditional mathematical analysis meth-
ods, the pointer neural network proposed in this paper continuously learns the mapping relationship between 
input nodes and output decision schemes based on the actual distribution conditions. In addition, a global at-
tention mechanism is adopted in the neural network to improve the convergence rate and results. To verify the 
effectiveness of the method, we model the VRPTPLR and compare the results with those of genetic algorithm 
and differential evolution algorithm. The parameter sensitivity of each algorithm is assessed using different 
datasets. Then, comparison experiments with the three algorithms employing optimal parameter configura-
tions are performed for the validation sets, which are generated at different instance scales. It is found that the 
solution time of the pointer neural network is much shorter than that of the genetic algorithm and the proposed 
method provides better solutions for large-scale instances.
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1. Introduction
The vehicle routing problem with task priority and 
limited resources (VRPTPLR) is a type of combina-
torial optimization problem that maximizes the total 
benefit by arranging tasks with different priorities 
and appropriately constructing heterogeneous ve-
hicle routes. In this approach, the resources cannot 
meet all the demands, and the priorities are given in 
advance according to the importance degree and the 
urgency demands of the customer. This problem has 
been addressed in many fields, such as the emergen-
cy distribution of goods [28], and research to date has 
focused on the design and implementation of efficient 
algorithms.
A number of operations research methods have been 
proposed to solve this problem, which can be divid-
ed into exact algorithms [7] and heuristic algorithms 
[19]. The former always finds the optimal solution, 
but their efficiency in solving large-scale problems 
cannot satisfy the practical requirements. The latter 
can obtain feasible solutions quickly; however, the 
algorithm performance cannot be validated by math-
ematical theory. Therefore, based on mathematical 
abstracting and modeling, there is often a trade-off 
between solution performance and solution time.
In recent years, with the rapid development and suc-
cessful application of machine learning technology 
in various fields, such as management operation re-
search [10, 16], medicine [4, 22], computer science 
[11], etc., several technologies have been introduced 
to solve combinatorial optimization problems [26, 
29]. Vinyals et al. [29] proposed a model consisting of 
two recurrent neural networks (RNNs) and an atten-
tion mechanism to solve combinatorial optimization 
problems. However, this method cannot effectively 
solve combinatorial optimization problems in the ab-
sence of label data. Subsequently, Bello et al. [3] im-
proved the efficiency of the model and adjusted the 
parameters through reinforcement learning; exper-
iments were then performed based on the traveling 
salesman problem (TSP) with 20, 50, and 100 node in-
stances. The results showed that the performance of 
reinforcement learning methods was better than that 
of Christofide’s heuristic algorithm [5]. The type of 
model presented by Bello does not require mathemat-
ical modeling and achieves a trade-off between solu-
tion time and performance, thereby providing a new 

way of obtaining an adaptive solution to real-time 
scheduling problems, e.g., VRPTPLR.
Compared with the traditional VRP, the VRPTPLR 
studied in this paper can only access some custom-
er nodes due to limited resources, and each vehicle 
should visit the customers following the order of pri-
orities. Therefore, a pointer neural network model is 
proposed in this paper to select served customers first 
and then assign tasks to heterogeneous vehicles.
The primary contributions of the paper are as follows. 
1) The latent rule that relates the vehicle routing sets 
and objective function values is learned by the pointer 
neural network by combining deep learning and rein-
forcement learning, and an excellent feasible solution 
can be obtained in a short time after training. 2) Be-
cause the attention mechanism can selectively learn 
input data and because the sequence of the model 
output is related to this mechanism, a global atten-
tion mechanism [14] is introduced in the proposed 
pointer neural network to calculate the weights of all 
nodes and exclude those nodes that violate certain 
constraints. Then, a polynomial sampling distribu-
tion is used to select the next node to be accessed by 
the vehicle.
This paper is structured as follows: Section 2 sum-
marizes the findings for similar types of VRPs; Sec-
tion 3 details the model of the pointer neural network; 
Section 4 describes the parameter experiments con-
ducted with the three algorithms, presents the exper-
imental results and compares the results achieved 
with different datasets; and Section 5 summarizes the 
work of this paper.

2. Related Work
The VRP and its generalized problems, including 
VRPTPLR, have been a focus of studies involving 
combinatorial optimization problems, and various 
algorithms with different mechanisms have been pro-
posed. In addition to numerous operations research 
methods, reinforcement learning methods have re-
cently been introduced to solve such problems [17].
As mentioned above, exact algorithms and heuristic 
algorithms are the primary classes of operation re-
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search methods. In some instances, exact algorithms, 
such as dynamic programming [20], column genera-
tion [8] and the branch-and-price [2] method, have 
been used. Yu et al. [32] propose an improved branch-
and-price (BAP) algorithm to precisely solve the het-
erogeneous fleet green vehicle routing problem with 
time windows, and a multi-vehicle approximate dy-
namic programming algorithm was designed to speed 
up the pricing problem in BAP. Then, the effectiveness 
of the BAP algorithm is verified by extensive com-
putational experiments performed on the Solomon 
benchmark instances. In addition to a specific type of 
VRP, Pessoa et al. [21] introduce a Branch-Cut-and-
Price algorithm for a family of VRP variants. The al-
gorithm was extensively tested in instances of the lit-
erature and was shown to be significantly better than 
previous exact algorithms.
Because the efficiency of exact algorithms declines 
greatly in large-scale instances, heuristic algorithms 
have attracted considerable attention for large-scale 
instance problems; such algorithms include the ant 
colony algorithm [13, 33], tabu search algorithm 
[15], genetic algorithm [23] and others. Arnold et al. 
[1] and Triki et al. [27] designed heuristic algorithms 
for their specific large-scale mathematical problems 
to obtain improved feasible solutions. Zhang et al. 
[33] proposed a multi-objective solution strategy 
based on the ant colony algorithm and three muta-
tion operators to solve the multi-objective vehicle 
routing problem with flexible time windows. The 
performance of the proposed approach was evalu-
ated on Solomon benchmark instances, and exper-
imental results show that the suggested approach 
is comparative to the best known results in the lit-
erature. Moreover, in recent years, hybrid heuris-
tic algorithms have gained increasing interest for 
solving combinatorial optimization problems [12, 
24]. Kucukoglu et al. [9] consider efficient search 
procedures based on the constraints of the problem, 
a modified solution acceptance criterion and an ad-
vanced tabu list structure, and finally proposed the 
hybrid simulated annealing/tabu search algorithm. 
The experimental results based on benchmark prob-
lems indicated that the efficiency and solution qual-
ity were both better than those of well-known solu-
tion approaches. Sedighizadeh et al. [25] proposed a 
hybrid heuristic algorithm based on particle swarm 
optimization and an artificial bee colony algorithm, 

and comparison experiments between non-hybrid 
algorithms and hybrid algorithms were performed 
for multiple instances.
In addition to mathematical programming meth-
ods, machine learning methods have been increas-
ingly used to solve VRPs; for example, Cooray et al. 
[6] enhanced the genetic algorithm with machine 
learning technology and decreased the calculation 
time to below that of the general genetic algorithm. 
Moreover, machine learning can not only be com-
bined with heuristic algorithms but can also be used 
to construct neural network models to solve VRPs. 
Wang et al. [30] built neural network models for TSP 
and then trained neural network models and adjust-
ed the parameters iteratively. Experiments verified 
that the solution quality of the well-trained neural 
network was better than that of state-of-the-art re-
sults of learning algorithms. Yu et al. [31] propose 
a novel deep reinforcement learning-based neural 
combinatorial optimization strategy, which used an 
unsupervised auxiliary network to train the model 
parameters.  The simulation results show that the 
proposed strategy can significantly outperform con-
ventional strategies with limited computation time 
in both static and dynamic logistic systems. Nazari 
et al. [18] present an end-to-end framework for solv-
ing VRP using deep reinforcement learning. After 
problem instances are sampled from a given distri-
bution, the model is trained by observing the reward 
signals and following feasibility rules. The experi-
mental results show that the tour length of the mod-
el after training is not longer than a recent method 
for solving TSP, and at the same time, the framework 
can be applied in variants of VRP.
At present, the most popular methods solving combi-
natorial optimization problems are still to obtain opti-
mal or near-optimal solutions through mathematical 
modeling and algorithm designing, and for large-scale 
problems the heuristic algorithms are always the 
focus due to the high efficiency requirements. How-
ever, the booming deep learning and reinforcement 
learning technologies provide us with a new idea for 
solving the problems. We can build neural networks 
and output excellent feasible solutions in very short 
time after training the networks with a large number 
of samples, while complex modeling and validation of 
mathematical models is not required.
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3. Establishment of the Pointer 
Neural Network Model
For the VRPTPLR, the pointer neural network model 
is established in this paper. This model simultane-
ously takes into account the allowance of the current 
vehicle and the priority of accessing the customer 
during the processing step. Then, vehicle routing 
plans are established based on the total benefits. To 
improve the convergence effect of the model, the 
strategy gradient method is used to make the neural 
network converge by adjusting its parameters in ac-
cordance with the objective function values of two 
consecutive batches.

3.1. Description of the Problem
The VRPTPLR is common in real environments, 
especially in peak periods. This problem can be de-
scribed as follows: each customer is associated with 
a priority in view of the urgency of demands, and a 
fleet of heterogeneous vehicles is used to serve the 
corresponding customers. Because the number of ve-
hicles is limited, only a portion of the customers can 
be assigned to vehicles considering the priorities and 
side constraints. The objective of the problem is to 
maximize the total benefits by choosing the appropri-
ate customers and constructing the optimal vehicle 
routes. Here, the total benefit can be calculated by the 
total rewards of serving customers minus the total 
travel costs of vehicles.
In this paper, to solve the above problem, a point-
er neural network is proposed. The network inputs 
include the indexed vehicle and node data, and the 
outputs are the resulting orders for each vehicle. Be-
cause the inputs and outputs are both described as se-
quences, a type of encoder-decoder framework based 
on deep learning is introduced. In this framework, the 
encoder transforms the input sequences into a fixed-
length vector, and the decoder outputs the visiting 
orders of appointed vehicles considering the capacity 
of each vehicle and the task priorities. Moreover, to 
adequately extract the network features, embedding 
is performed ahead of the encoder-decoder process 
to improve the learning effects of the neural network.

3.2. Components of the Model
The pointer neural network model in this paper con-
sists of an embedding layer, an encoder layer and a 

decoder layer. Initially, the input data are raised di-
mensions in the embedding layer. Then, the embed-
ded information is passed to the encoder layer to ob-
tain the fixed-length vector of the input data features. 
Finally, the vector is transformed into the visiting 
orders of specified vehicles by the decoder layer, and 
the relative total benefits are calculated. The model is 
shown in Figure 1, in which the encoder layer and de-
coder layer are both long short-term memory (LSTM) 
networks.

Figure 1 
The pointer neural network model

1 Vehicle and node information: Vehicle informa-
tion refers to the vehicle properties, including the 
vehicle capacity and travel costs per kilometer. 
Node information refers to the depot and custom-
ers properties, which include coordinates ( ),x y , 
customer demands, task priorities and the visiting 
rewards. The corresponding symbol definitions are 
as follows.

It is assumed that { }, ,...,1= =jY y j m , where m  is the total 
number of vehicles, j  is the set of vehicle properties, 

( ),    ,...,1= =j j jy c f j m  is associated with the j th vehicle, 
jc  is the capacity of the j th vehicle, and jf  is the travel 

cost of the j th vehicle per unit kilometer.
Let { }, , ,...,0 1= =iS s i n  be the node set, in which node 
0 is a depot and the other nodes are customers, 
where n  is the total number of nodes. The five-tuple

( ), y , , , ,    , ,...,0 1= =i i i i i is x d p b i n , is  represents the proper-
ties of the i th node, where the first two variables are 
X-Y coordinates, the third variable is the demand, the 
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fourth variable is the task priority level, and the final 
variable is the reward value of visiting the node.
2 Encoder-Decoder: The origin node properties are 

represented by the abovementioned five-dimen-
sional vector, and it is very difficult to estimate the 
benefit of visiting each node based on low-dimen-
sion data, especially when the dimensional features 
are similar. Hence, an encoder-decoder model in-
tegrated with embedding operations is proposed to 
learn the decision schemes, as shown in Figure 2.

In the encoder scheme, the embedded vectors are 
input to an LSTM network, and a reflect vector 

_==ref Encoder outputs  is output, where ref  is an ×N M  
matrix in which N represents the quantity of nodes 
and M  represents the increased dimension after em-
bedding. Here, iE  is the embedded vector associated 
with the i th node. Let c  and h be the long-term unit 
state and the hidden state, respectively, of the LSTM 
network, where ic  and ih  are the unit state and hidden 
state, respectively, when encoding the i th node. The 
encoder network is shown in the upper right portion of 
Figure 2.
As shown in Figure 2, the decoder consists of four 
components: an LSTM network, an attention mecha-
nism, constraint verification and a node selection op-
eration. During each iteration, the component of the 
reflect vector associated with the current node iidx  

Figure 2 
Encoder-decoder model
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is input into the LSTM network to obtain the hidden 
state 1+′ih  at step i . Then, ref , 1+′ih  and the vehicle in-
formation are input into the attention mechanism to 
calculate the visiting probability of each node in the 
next iteration. To ensure the feasibility of the solution, 
constraint verification is performed before selecting 
the visiting node in the next iteration.
The details of the attention mechanism are shown in 
Figure 3. The reflect vector from the encoder, the hid-
den state ′h  from the LSTM network of the decoder 
and the vehicle properties from the input dataset are 
used for the attention mechanism. First, the weight 
of the i th node of the j th vehicle is calculated. Then, 
the visiting probability of each node is obtained by the 
softmax function. Finally, a polynomial sampling func-
tion is used to choose the node most likely to be visited.
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Figure 3
Attention mechanism

In formula (1), jπ  indicates the sequence of the current 
travel set of the j th vehicle as , , ,1 2 3 4  s s s s , k  is the in-
dex of s, and l  indicates the length of the sequence set 
of the j th vehicle. Thus, ( )j kπ  represents the specific 
node that was accessed at step k  by the j th vehicle, 
and ( )j lπ  represents the last node in the travel set of 
the j th vehicle. q  is an ×N M  matrix based on a hid-
den state ′h  transform of the dimension. [ ]:ref q  is the 
transpose matrix after q  contacts with ref , and the 
shape is [ ]2 ×M N . ( )j

ip C  is the probability that the i
th node of the j th vehicle is selected. Tv  and aW  are 
learnable parameters of the model, where Tv  is a 1× M  
vector and aW  is an 2×M M  matrix.
3 Optimization algorithm: At the end of the decod-

ing process, the node sequence of each vehicle to 
be accessed is output, and the vehicles distribution 
distance is calculated as follows:
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where jh  indicates the length of the sequence set of 
the j th vehicle when all vehicles are considered. 
( )jL Sπ  denotes the distance traveled by the j th 

vehicle.
The objective function maximizes the benefit of all 
vehicles after completion of their access tasks and is 
calculated as follows:
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represents the customer 

rewards of the j th vehicle. ( )j jf L Sπ represents the 
transportation cost of the vehicle.
To optimize the parameters of the neural network, the 
strategy gradient method of the Adam (adaptive mo-
ment estimation) optimization algorithm is adopted 
in the pointer neural network. The gradient is calcu-
lated according to the objective function difference of 
two consecutive batch decision schemes to adjust the 
parameters in the neural network. The optimization 
algorithm can dynamically adjust the learning rate 
of each parameter, and the learning rate has a cer-
tain range in each iteration. This approach has good 
adaptability for the problem explored in this paper.

4. Experiments and Results
To test the performance of the pointer neural network 
algorithm, the training and test datasets are generat-
ed, as described in Section 4.1, and a comparison with 
genetic algorithm (GA) and differential evolution 
algorithm (DE) is performed. All the experiments 
are run on a computer with an AMD Ryzen 7 1700X 
eight-core processor, 8 GB of memory, and Windows 
10 (64 bits). The algorithms were coded in the Python 
language to implement the deep learning methods.

4.1. Experimental Datasets
For the pointer neural network algorithm, we define 
the generation rules of the input data. The node coor-
dinates are chosen randomly in the range of [ ] [ ], ,0 1 0 1× . 
The quantity demand and priority are drawn uniform-
ly at random in [ ],10 30  and in [ ],0 10  uniform distribu-
tion, respectively, and the reward value of accessing 
the node is equal to 2dp , indicating that a high priori-
ty number corresponds to a high return value. Three 
types of vehicles were defined. The capacity c  was set 
to 50, 70, and 100, and the corresponding transporta-
tion cost per unit kilometer f  was set to 100, 150, and 
200, respectively. The three types of vehicles were ran-
domly selected when generating the vehicle sets. In the 
parameter sensitivity test, 1.28 million groups of nodes 
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and vehicle datasets were generated according to the 
distribution rule for 50 nodes with 10 vehicles, 75 
nodes with 15 vehicles, 100 nodes with 20 vehicles and 
150 nodes with 30 vehicles. After parameter sensitiv-
ity tests were performed, the pointer neural network 
was trained with the optimal parameter combination 
based on 8 test problem sets, and verification sets (C1, 
C2, C3, C4, C5, C6, C7, and C8) were generated at the 
same scales, where C1 was 50 nodes with 8 vehicles, C2 
was 50 nodes with 10 vehicles, C3 was 75 nodes with 10 
vehicles, C4 was 75 nodes with 15 vehicles, C5 was 100 
nodes with 15 vehicles, C6 was 100 nodes with 20 ve-
hicles, C7 was 150 nodes with 25 vehicles, and C8 was 
150 nodes with 30 vehicles.

4.2. Algorithm Experiments
In this section, two types of experiments are de-
scribed. The first experiment is a parameter sensi-
tivity test for the three algorithms, and the optimal 
parameter configurations are found for different data-
sets. The second experiment involves three types of 
performance indicators, including the solution time, 
solution result and corresponding stability. For these 
three indicators, the three algorithms were compared 
considering their optimal parameter configurations 
based on verification sets to test the performance of 
the pointer neural network.
1 Parameter sensitivity test: During the train-

ing process of the pointer neural network for four 
types of training datasets, the influence of the input 
data batch size and number of units in the LSTM 
hidden layer were tested. The batch size was 32, 
64, and 128, and the number of hidden layer units 
was 32, 64, and 128. The sensitivity test results for 
these parameters of the pointer neural network are 
shown in Figure 4.

Then, sensitivity tests considering the population size, 
crossover probability, mutation probability and up-
date ratio of the GA were conducted. The range of the 
population size was set to [ ],100 2000 , and the step size 
was 100; the range of the crossover probability was 
set to [ ]. , .0 1 0 95 , and the step size was 0.05; the range of 
the mutation probability was set to [ ]. , .0 025 0 5 , and the 
step size was 0.025; and the range of the update ratio 
was set to [ ]. ,0 05 1 , and the step size was 0.05. The test 
results for the various parameter settings are shown in 
Figure5.

Figure 4 
The parameter sensitivity test results for the pointer neural 
network

 

（（b））Training results under different numbers of hidden layer units

 

（（b））Training results under different numbers of hidden layer units

 

（（b））Training results under different numbers of hidden layer units

 

（（b））Training results under different numbers of hidden layer units

Last, sensitivity tests considering the population size, 
crossover probability and impact factor of the DE were 
conducted. The range of the population size was set to
[ ],100 2000 , and the step size was 100; the range of the 
crossover probability was set to [ ]. ,0 5 1 , and the step 
size was 0.025; the range of the impact factor was set to
[ ]. ,0 1 2 , and the step size was 0.025; and the range of the 
update ratio was set to [ ]. ,0 1 2 , and the step size was 0.1. 
The test results for the various parameter settings are 
shown in Figure 6.
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Figure 6
The parameter sensitivity test results for the DE

（（a））GA test result under different population sizes

（（d））GA test result under different update ratios

（（b））GA test result under different crossover probabilities

（（c））GA test result under different mutation probabilities

（（bb））DDEE  tteesstt  rreessuulltt  uunnddeerr  ddiiffffeerreenntt  ccrroossssoovveerr  pprroobbaabblliittiieess（（cc））DDEE  tteesstt  rreessuulltt  uunnddeerr  ddiiffffeerreenntt  iimmppaacctt  ffaaccttoorrss

（（aa））DDEE  tteesstt  rreessuulltt  uunnddeerr  ddiiffffeerreenntt  ppooppuullaattiioonn  ssiizzeess

Figure 5
The parameter sensitivity test results for the GA
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2 Algorithm comparison: For each optimal param-
eter set, the pointer neural network, GA and DE 
were implemented based on 8 verification datasets 
(C1, C2, C3, C4, C5, C6, C7, and C8); then, the qual-
ity of the solutions, running times and robustness 
of the algorithms were compared. A comparison of 
the performance of the three algorithms is shown 
in Figure 7.

4.3. Results
Here, we describe the performance of the three algo-
rithms. In the parameter sensitivity test, the param-
eters of the three algorithms have different effects 
on the convergence of the results, and the four pa-
rameters in the GA have stronger influences on the 
experimental results than do the pointer neural net-
work parameters. In the algorithm comparison ex-
periment, the results of the three algorithms differ for 
the different performance indicators, and the pointer 
neural network displays better performance for the 
medium- and large-scale datasets.
In the parameter sensitivity test of the pointer neural 
network, the convergence rate is higher when more 
data are used, and the fluctuation is large, as shown 
in Figure 4(a). However, the number of groups in each 
batch does not affect the final convergence results. As 
shown in Figure 4(b), upon increasing the number of 
hidden units in the LSTM network, the convergence 
speed of the neural network increases significantly, 
but the final convergence results remain the same. We 
nonetheless test the number of hidden layers in the 
LSTM network and the parameters in the Adam op-
timization algorithm, including the learning rate and 

Figure 7
Performance of the three algorithms

（（a））Comparison of the results of the three algorithms （（b））Running time comparison of the three algorithms （（c））Robustness comparison  of the three algorithms（（a））Comparison of the results of the three algorithms （（b））Running time comparison of the three algorithms （（c））Robustness comparison  of the three algorithms（（a））Comparison of the results of the three algorithms （（b））Running time comparison of the three algorithms （（c））Robustness comparison  of the three algorithms（（a））Comparison of the results of the three algorithms （（b））Running time comparison of the three algorithms （（c））Robustness comparison  of the three algorithms

the attenuation rate. These parameters only affect 
the convergence speed of the pointer neural network 
training and do not affect the final convergence re-
sults. Therefore, to ensure a reasonable convergence 
speed and the stability of the pointer neural network, 
the number of groups and the number of hidden units 
in each batch are set to 128.
In the parameter sensitivity test of the GA, the growth 
of the population size from 50 nodes to 75 nodes has 
no marked influence on the vehicle benefits, as shown 
in Figure 5(a), and when the node size exceeds 75, 
revenue growth gradually increases as the population 
scale increases. As shown in Figure 5(b), for different 
numbers of nodes, the yield value increases gradual-
ly with increasing crossover probability, and when 
the crossover probability exceeds 0.9, the benefits 
decrease. As shown in Figure 5(c), the probability 
of variation has no significant influence on the ben-
efits of the four instance sizes. As shown in Figure 
5(d), when the update ratio is between 0.05 and 0.3 
or between 0.45 and 0.9, the benefits are largely sta-
ble. When the update ratio is approximately 0.4, the 
benefits at the four instance scales peak, and when 
the update ratio exceeds 0.9, the benefits decrease sig-
nificantly. Therefore, for the four instance sizes, the 
population size of the GA is set to 1500, 1500, 1900, 
and 2000; the crossover probability of the GA is set to 
0.95, 0.9, 0.9, and 0.9; the mutation probability of the 
GA is set to 0.25, 0.45, 0.475, and 0.45; and the update 
ratio of the GA is set to 0.4, 0.5, 0.4, and 0.45.  
In the parameter sensitivity test of the DE, the sen-
sitivity test results of the three parameters from 50 
nodes to 75 nodes showed no significant influence, as 
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shown in Figure 6. However, the peak of the popula-
tion size of 100 nodes and 150 nodes occurred at 1100 
and 1400, respectively, as shown in Figure 6(a). As 
shown in Figure 6(b), when the crossover probability 
of 150 nodes increases to 0.55, the revenue grows rap-
idly to the peak. As shown in Figure 6(c), the peak of 
the impact factor of 100 nodes and 150 nodes has a dis-
tinct difference; the peak of 100 nodes is at 1.5, and that 
of 150 nodes is at 0.7. Therefore, for the four instance 
sizes, the population size of the DE is set to 800, 500, 
1100, and 1400; the crossover probability of the DE is 
set to 0.65, 0.8, 0.65, and 0.55; and the impact factor of 
the DE is set to 0.6, 0.7, 1.5, and 0.7.
As shown in Figure 7(a), we can find that the results of 
DE are consistently the worst of the three algorithms, 
while the results of the pointer neural network are 
close to those of the GA when the node number is 50. 
As the node number is increased to 75 and 100, the re-
sults of the pointer neural network gradually exceed 
those of the GA; the performance of the network for 
C3 to C6 is superior to that of the GA and DE. Further-
more, when the node number is increased to 150, the 
results of the DE are differ significantly from the other 
two algorithms. Except for the comparison of results, 
the time required by the pointer neural network is 
much lower than that required by the GA and DE. The 
solution time of the eight test datasets is consistently 
within 2 seconds, and the stability is high, as shown 
in Figure 7(b). However, the solution time of the two 
heuristic algorithms increases significantly as the 
problem scale increases, and the running time of the 
DE is longer than that of the GA. When the problem 
scale increases to 150, more than 25 minutes are re-
quired to solve the problem. As shown in Figure 7(c), 
the volatility of the GA maintains a largely stable level 
in the 50-node case, and the volatility increases sig-
nificantly as the node number increases. Compared 
with the GA, the pointer neural network and DE are 
more stable at different scales, and the standard de-
viation of the DE results is the minimum of the three 
algorithms.
In light of different test dataset scales, the parame-
ters in the neural network are largely stable after the 
pointer neural network is adequately trained, so the 
functional relationship between the input and out-
put can be effectively learned. The pointer neural 
network can be used to obtain a feasible solution in a 

very short time, and the output is consistently stable. 
Compared with the pointer neural network, the GA 
or DE can stably output a feasible solution based on 
small-scale examples. In large-scale instances, the end 
of the evolution can easily arrive at different local op-
timal values due to the large scale of the problem. The 
results obtained in each experiment converge to local 
extreme points, and the difference in the results is 
large, which leads to the high volatility of the solution 
results. Therefore, the pointer neural network method 
proposed in this paper is most suitable for medium- to 
large-scale instances. After providing sufficient data 
training, the proposed method can output multiple 
feasible solutions in a very short time, and the decision 
makers can choose the best feasible solution.

5. Conclusion 
In the VRPTPLR, the available resources and urgen-
cy of customer tasks are considered common con-
straints, and the supplier filters the visited customers 
with the objective of maximizing profits and arrang-
ing the vehicles to meet customer demands. We ap-
plied a novel machine learning method to improve the 
current vehicle routing scheme. First, a pointer neural 
network model was proposed to ensure the feasibility 
of solution. Then, training datasets were used to find 
the optimal parameter configuration and continuous-
ly optimize the parameters of the neural network un-
til the trained neural network yielded excellent feasi-
ble solutions for the verification sets. According to the 
experimental results, the performance of the pointer 
neural network in medium- and large-scale instances 
is similar to that of the GA, and the performance of the 
proposed method for large-scale instances is superior 
to that of the GA and DE based on three indicators, in-
cluding the running time, solution quality and robust-
ness. The machine learning method not only solves 
the problem studied in this paper but also provides a 
new solution to variants of the VRP.
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