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This paper studies the stabilization problem for nonlinear networked control systems (NNCSs) with bilateral 
network-induced random delay and packet dropout. T-S fuzzy model is employed to represent the nonlinear 
controlled plant. Based on the T-S model, a discrete-time fuzzy switched system model with uncertain param-
eters is established by means of the uncertain method and switching system method. And an augmented ma-
trix is used to represent the system model. Furthermore, the exponential stability condition for the state of the 
fuzzy switched system is obtained by using the combination of slow switching model-dependent average dwell 
time (MDADT) method and fast switching MDADT method. Finally, a series of rotary inverted pendulum (RIP) 
experiments are provided to illustrates the effectiveness of the proposed method and prove that the proposed 
fuzzy controller based on T-S fuzzy model can balance the rotary inverted pendulum in a greater state range 
rather than the linear controller based on linearization
KEYWORDS: nonlinear networked control systems, T-S fuzzy model, switched system, mode-dependent av-
erage dwell time.
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1. Introduction
With the rapid development of network communica-
tion technology and computer technology, network 
control systems (NCSs) came into being. Compared 
with the traditional control strategy, NCSs have sev-
eral advantages, such as remote distributed control, 
remote distributed sharing, easy installation, easy 
maintenance and high flexibility [27]. However, the 
network-induced delays and packet dropouts would 
occur inevitably during the data transmission in 
NCSs, which would lower the control performance 
and even make NCSs unstable. A large number of 
methods such as input delay approach, Bernoul-
li distribution, Markov chain and switched system 
approach have been employed to model and analyze 
linear NCSs with random delays and random packet 
dropouts [27]. However, few paper have studied the 
nonlinear NCSs. It is necessary to study NNCSs sub-
ject to random delays and packet losses.
In general, nonlinear plants are usually linearized 
near the equilibrium point, and then the control-
ler is analyzed and designed based on the linearized 
model. However, there is a large error between the 
linearized model and the original nonlinear model, 
which will degrade the control performance of the 
system. T-S fuzzy model is considered as a powerful 
technique to deal with nonlinear functions, and has 
been widely used to represent nonlinear system mod-
els [17]. In recent years, the analysis and synthesis 
of fuzzy-model-based nonlinear networked control 
systems have received increasing attentions [15]. The 
input delay approach has been effectively utilized to 
analyze the NCS. However, the input delay approach 
aims to obtain the maximum delay upper bound that 
the NCS can tolerate, and many results are based on 
more complex Lyapunov–Krasovskii function (LKF). 
Hu et al. [5] and Marouf et al. [14] represented the 
network-induced delays and packet dropouts by the 
input delay approach, and the stability of the NNCS 
based on T-S fuzzy model is studied. Zhi et al. [28] 
investigated the stabilization problem for T-S fuzzy 
system with interval time-varying delay by construct-
ing a novel augmented LKF and proposed a developed 
reciprocally convex matrix inequality to bound the 
derivative of the LKF. In [20], a networked fuzzy con-
trol system was established based on event-triggered 

T-S fuzzy model and the H∞ controller is obtained by 
parallel distributed compensation (PDC) technique. 
In [24], the probability of random delays and random 
packet dropouts in the NCS was taken as the fuzzy 
membership function, and a quasi-T-S fuzzy mod-
el is proposed to represent the NCS. In [13], a robust 
H∞ control problem for a networked switched fuzzy 
system was studied. The induced delay and packet 
dropout caused by network are dealt with LKFs and 
free-weighting matrices. Han et al. [2] and Lin et al. 
[9] described the event of packet dropouts in the NCS 
as Bernoulli distribution process, and utilize the sto-
chastic system analysis approach to analyze the con-
dition of mean square stability for the NNCS based 
on T-S fuzzy model. In [6], the problem of the fuzzy 
controller for NNCS with packet losses and param-
eter uncertainties was studied by using the interval 
type-2 fuzzy-model-based approach and a novel fuzzy 
controller to guarantee the closed-loop system to be 
stochastically stable with an optimal performance. 
He et al. [4] analyzed the Markovian jump systems 
with nonlinearity and time-varying delay and pro-
posed an improved exponential stability criterion for 
the system.
Because the switched system approach can efficient-
ly describe the different modes of the system due to 
the changes in the external environment, it is widely 
applied in power transmission systems, traffic control 
systems, flight control systems and other fields. In 
recent years, a number of scholars have studied and 
analyzed the NCS subject to delays and packet losses 
by mean of the switched system approach. In [7], the 
NCS with time-varying short delays was represented 
as an improve system according to the distribution of 
delays and design a mode-dependent state feedback 
controller wheres the packet dropout is not studied. 
In [26], the NCS with constant delays and random 
packet dropouts was modeled as a switched system, 
and exponential stability is investigated based on 
average dwell time (ADT). In [19], T-S fuzzy system 
with time-varying delays and random packet losses 
was modeled as a fuzzy switched system with input 
delays, and its exponential stability was analyzed by 
means of the ADT technique. Based on ADT, Zhang 
et al. [25] proposed slow switching model-depen-
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dent average dwell time (MDADT) approach and 
fast switching model-dependent average dwell time 
(MDADT) approach, and presented new stability 
results for a discrete-time switched system with un-
stable subsystems. Liu et al. [11] applied MDADT to 
T-S fuzzy model, but this paper only studied the open-
loop switched system. In [12], the NCS with bilateral 
random delays and packet losses was modeled as a 
discrete-time switched system model with parameter 
uncertainty, and the exponential stability of the sys-
tem was considered by means of the slow-switching 
MDADT method. However, only the linear system 
was studied in the paper. Li and zhang [8] investigated 
robust H∞ stability of open-loop switched uncertain 
discrete-time fuzzy systems under slow-switching 
MDADT switching. Xue et al. [21] was concerned with 
the stabilization problem of type-2 fuzzy systems 
with network-induced packet losses. By regarding the 
packet lost process as an unstable mode of a switched 
system, the stability of the system was then guaran-
teed with the aid of the MDADT approach in the sense 
of the slow and fast switching. However, the paper did 
not consider the random delay existing in the system 
and assumed the control input was zero when the 
event of data dropout occurred.
Motivated by the above discussion, this paper de-
scribes the NNCS with bilateral random delays 
and random packet losses as a discrete-time fuzzy 
switched system model with uncertain parameters. 
Based on multiple Lyapunov functions (MLFs) and 
model-dependent average dwell time (MDADT) in 
the sense of the slow and fast switching, the expo-
nential stability of the network switched system are 
analyzed. And the fuzzy state feedback controller 
gains are derived by solving linear matrix inequalities 
(LMIs). Finally, a series of rotary inverted pendulum 
(RIP) experiments are provided to illustrate the feasi-
bility of the proposed method and verify that the fuzzy 
controller based on T-S fuzzy model can balance the 
RIP in a larger stability range than the linear control-
ler based on model linearization. 
The contributions of this paper can be summarized as 
follows: (1) a new discrete-time fuzzy switched sys-
tem model with uncertain parameters is proposed to 
described the NNCS with random delay and packet 
losses; (2) the exponential stability condition for the 
system is analyzed by utilizing MDADT approach in 
the sense of the slow and fast switching; (3) the fuzzy 

controller gains of the closed system are derived by 
solving LMIs. 

2. Problem Formulation and System 
Model
In this section, T-S fuzzy model is introduced to rep-
resent the nonlinear plant in the NCS subject to ran-
dom delays and random packet losses. The nonlinear 
controlled plant in the NCS is considered as
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The NNCS subject to bilateral random delays and 
random packet losses is shown in Figure 1. 
The assumptions are given as follows: 
(1) The sensor is time-driven and its sampling period is 
T. 
(2) Both the controller and the actuator are event-
driven. The actual input of the system is realized via a 
zero-order hold device. When the event of packet loss 
occurs in the system (between the sensor and the 
controller or between the controller and the actuator), 
the actuator data will not be updated during the current 
sampling period. 
(3) The random network-induced delay satisfies

( )0,sc ca
k k k Tτ τ τ= + ∈ , and sc

kτ  is sensor-to-controller 
delay while ca

kτ  is the controller-to-actuator delay. 

The signal timing of the NCS is shown in figure 2. By 
considering the network-induced delays, the control 
input is [18] 
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When the event of packet loss does not occurs within 
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The assumptions are given as follows:
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kτ  is sensor-to-controller 
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kτ  is the controller-to-actuator delay.

The signal timing of the NCS is shown in figure 2. By 
considering the network-induced delays, the control 
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The NNCS subject to bilateral random delays and 
random packet losses is shown in Figure 1. 
The assumptions are given as follows: 
(1) The sensor is time-driven and its sampling period is 
T. 
(2) Both the controller and the actuator are event-
driven. The actual input of the system is realized via a 
zero-order hold device. When the event of packet loss 
occurs in the system (between the sensor and the 
controller or between the controller and the actuator), 
the actuator data will not be updated during the current 
sampling period. 
(3) The random network-induced delay satisfies
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kτ  is sensor-to-controller 
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kτ  is the controller-to-actuator delay. 

The signal timing of the NCS is shown in figure 2. By 
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When the event of packet loss does not occurs within 
the current sampling interval, such as ( ), 1kT k T+   , 

( ) ( )3 , 4k T k T+ +    and ( ) ( )4 , 5k T k T+ +   . The 
random delays exist, so the corresponding discrete-time  
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Within the sampling interval ( ) ( )1 , 2k T k T+ +    
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denote system switching signal. Therefore, the 
system models (5) and (6) can be described as the 
following discrete-time fuzzy switched system 
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According to the parallel distribution compensation 
(PDC) [17], the fuzzy state feedback controller is 
designed by the state information of augmented matrix  
( )z k  as follows 
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where iK  is the controller gain matrices determined 
later. 
By substituting Equation (8) into Equation (7), the 
closed-loop system model with uncertain parameters 
can be obtained as follows 
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For ( ) { }0,1kσ ∈Ω = , 0S  denotes the subsystem 
mode where the packet is transmitted successfully 
during the current sampling period and 1S  
denotes the subsystem mode where the event of 
packet-dropout occurs during the current 
sampling period. According to the switched 
system (9), the subsystem 0S  can be stabilized by 
means of a proper controller when the open-loop 
system is unstable. However, the subsystem 1S  is 
uncontrolled, and the subsystem 1S  cannot be 
stabilized when the open-loop system is unstable. 
Therefore, according to whether the event of 
packet-dropout occurs, the system can be 
described as a whole switched system model with 
a stable subsystem 0S  and an unstable subsystem

1S . The fuzzy switched system model with 
uncertain parameters presented in this paper can 
effectively describe the NNCS with random 
delays and random packet losses. 
 

3. The System Exponential Stability 
Analysis  
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According to the parallel distribution compensation 
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signed by the state information of augmented matrix  
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where iK  is the controller gain matrices determined 
later. 
By substituting Equation (8) into Equation (7), the 
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For ( ) { }0,1kσ ∈Ω = , 0S  denotes the subsystem 
mode where the packet is transmitted successfully 
during the current sampling period and 1S  
denotes the subsystem mode where the event of 
packet-dropout occurs during the current 
sampling period. According to the switched 
system (9), the subsystem 0S  can be stabilized by 
means of a proper controller when the open-loop 
system is unstable. However, the subsystem 1S  is 
uncontrolled, and the subsystem 1S  cannot be 
stabilized when the open-loop system is unstable. 
Therefore, according to whether the event of 
packet-dropout occurs, the system can be 
described as a whole switched system model with 
a stable subsystem 0S  and an unstable subsystem
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For ( ) { }0,1kσ ∈Ω = , 0S  denotes the subsystem 
mode where the packet is transmitted successfully 
during the current sampling period and 1S  
denotes the subsystem mode where the event of 
packet-dropout occurs during the current 
sampling period. According to the switched 
system (9), the subsystem 0S  can be stabilized by 
means of a proper controller when the open-loop 
system is unstable. However, the subsystem 1S  is 
uncontrolled, and the subsystem 1S  cannot be 
stabilized when the open-loop system is unstable. 
Therefore, according to whether the event of 
packet-dropout occurs, the system can be 
described as a whole switched system model with 
a stable subsystem 0S  and an unstable subsystem

1S . The fuzzy switched system model with 
uncertain parameters presented in this paper can 
effectively describe the NNCS with random 
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let ( )1 2,pN k kσ  denote the numbers of the subsystem 
pS  activated, ( )1 2,pT k k  denote the overall running 

time period of the subsystem pS , and 0 pN  denote 
the mode-dependent chatter bounds. If there exists 
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( ) ( )1 2 0 1 2, , /p p p apN k k N T k kσ τ≤ + ,
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all running time period of the fast switching subsys-
tem pS , and 0 pN  denote the mode-dependent chatter 
bounds. If there exists 0apτ >  such that the following 
holds 

( ) ( )1 2 0 1 2, , /p p p apN k k N T k kσ τ≥ +

then apτ  is called fast switching MDADT of the subsys-
tem pS .
Remark 1. The idea of slow switching MDADT is 
aimed at that for the switched system, the time in-
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tive switching points of a subsystem Sp may be larger 
than apτ  sampling period, but the average time interval 
between two consecutive switching points of a sub-
system Sp is not larger than apτ  sampling period.
From the above definition, in [12], all subsystems 
follow the slow switching scheme. However, in this 
paper, the stable subsystem S0 follows the slow 
switching scheme while the unstable subsystem S1 
follows the fast switching scheme. The main idea 
is to design switching scheme so that the MDADT 
of the stable subsystem S0 is large enough and the 
MDADT of the unstable subsystem S1 is small 
enough, and then guarantee the whole switched sys-
tem (9) GUES. Therefore, over the interval [ ]1 2,k k , 
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tem S1, there are ( ) ( )0 1 2 00 0 1 2 0, , / aN k k N T k kσ τ≤ +  and

( ) ( )1 1 2 01 1 1 2 1, , / aN k k N T k kσ τ≥ + .
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then apτ  is called fast switching MDADT of the 
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where ( )0 ,0T k  is total running time of the subsystem

0S  and ( )1 ,0T k  is total running time of the subsystem

1S . From 0

1

0 00 1aτµ λ< < 、 1
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1 10 1aτµ λ< < , the MDADT 
of the switching signal satisfy (10). Set 

( ) ( ){ }10 ,0 01 ,0exp ln lnpp k kL N Nµ µ= + ,  
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. Therefore, we have
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When 1γ < , the state of the system is GUES. 
 

The Controller Design for the System to 
Be Exponential Stable 
Lemma 2 (Schur complement formula) For given the 
constant matrices A, B and C, where A and C is 
symmetric matrix, 0TA B CB+ <  is equivalent to 
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Lemma 3 For given the constant matrices , ,W D E  and
( )F k , where W  is symmetric matrix, for any ( )F k  

which satisfies ( ) ( )TF k F k I< , there would be 
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An existence condition for the controllers is 
presented in the following theorem based on the 
stability condition in Theorem 1. 
Theorem 2 Consider the discrete-time fuzzy 
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presented in the following theorem based on the 
stability condition in Theorem 1. 
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( 2 1 ) 
Therefore, the Equation (16) is derived from Equation 
(21). 
When 1p = , the event of packet dropout occurs. From 
the system (9), there is ˆ ˆ

pij piΦ = Φ , the Equation (20) 
can be simplified to 
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− + 
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∑                    

(22) 
Therefore, the Equation (22) holds when the Equation 
(15) holds. 
When 0p = , the event of packet dropout does not 
occur. The random delay in the system is expressed 
through uncertain parameters. It follows from (20) that  
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where 0 0j jY K X= . 

According to ( ) ( )T
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Equation (23) is equivalent to 
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Appling Lemma 2, the Equation (24) is equivalent to 
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(25) 
Therefore, the Equation (25) holds when Equation (14) 
holds. 
If the MDADT of the switched system (9) satisfies (10), 

the exponential stability conditions of the fuzzy 
switched system (9) can be analyzed through 
Theorem 1 and the controller gains can obtained 
by solving LMIs (14)-(16) in Theorem 2.  

Remark 2. The design parameters iσ
0 1 0 1µ µ λ λ、 、 、  must firstly satisfy

0 2

k
iA s

i e ds
τ

σ
′−

> ∫ , 0 1µ > , 10 1µ< < ， 

01 0λ− < < , 10 1λ< < . In addition, for the 
practical packet transmission time sequence, the 
design parameters should satisfy 

( )
* 0

0 0
0

ln
ln 1a a

µ
τ τ

λ
≥ = −

+  and 

( )
* 1

1 1
1

ln
ln 1a a

µ
τ τ

λ
≤ = −

+ . It is worth mentioning 

that the larger the packet loss rate of the system is, 
the more difficult it is to obtain the proper 
controller gains which guarantees the exponential 
stability of the system state. 
Remark 3. In the traditional average dwell time 
(ADT) method, all subsystems follow the same 
ADT. However, in the mode-dependent average 
dwell time (MDADT) method, each subsystem 
follows a separate ADT, which can obtain less 
conservation results. In addition, the combination 
of the slow switching method and the fast method 
is a complement to the MDADT method, which 
brings more flexibility to the stability analysis. 
Remark 4. It is worth mentioning that in real-
word applications, practical systems always suffer 
from such issues as input saturation, input dead 
zones and unidirectional input constraints. In [16] 
and [22], the problem of input constraints and 
input dead zones is effectively investigated to 
reduce final positioning errors. In future work, we 
may consider employing robust control technique 
to solve the problem of input constraints. 
 

4. Numerical Simulation 
In this section, a rotary inverted pendulum (RIP) 
is used as an experimental test, and the 
performance of the proposed fuzzy controller is 
evaluated in the nonlinear NCS. To verify that T-
S fuzzy model is more advantageous than 
linearization in coping with nonlinear systems, 
some experimental results of the fuzzy state 
feedback controller based on T-S fuzzy model and 
the linear state feedback controller based on 
linearization are compared. 
The experiment system, as shown in figure 3, 
consists of a Quanser RIP and a PC. The RIP is 
composed of a servo motor, a rotary and a 
pendulum link and its structure is shown in figure 
4. The controllers for the RIP are implemented in 
Matlab/Simulink. The mathematical model from 
the practical RIP is is developed using the Euler-
Lagrange method. The nonlinear dynamics model 
of the RIP is described as 
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follows a separate ADT, which can obtain less 
conservation results. In addition, the combination 
of the slow switching method and the fast method 
is a complement to the MDADT method, which 
brings more flexibility to the stability analysis. 
Remark 4. It is worth mentioning that in real-
word applications, practical systems always suffer 
from such issues as input saturation, input dead 
zones and unidirectional input constraints. In [16] 
and [22], the problem of input constraints and 
input dead zones is effectively investigated to 
reduce final positioning errors. In future work, we 
may consider employing robust control technique 
to solve the problem of input constraints. 
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is used as an experimental test, and the 
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S fuzzy model is more advantageous than 
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the linear state feedback controller based on 
linearization are compared. 
The experiment system, as shown in figure 3, 
consists of a Quanser RIP and a PC. The RIP is 
composed of a servo motor, a rotary and a 
pendulum link and its structure is shown in figure 
4. The controllers for the RIP are implemented in 
Matlab/Simulink. The mathematical model from 
the practical RIP is is developed using the Euler-
Lagrange method. The nonlinear dynamics model 
of the RIP is described as 
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Therefore, the Equation (16) is derived from Equa-
tion (21).
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Therefore, the Equation (22) holds when the Equation 
(15) holds. 
When 0p = , the event of packet dropout does not 
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Therefore, the Equation (25) holds when Equation (14) 
holds. 
If the MDADT of the switched system (9) satisfies (10), 

the exponential stability conditions of the fuzzy 
switched system (9) can be analyzed through 
Theorem 1 and the controller gains can obtained 
by solving LMIs (14)-(16) in Theorem 2.  

Remark 2. The design parameters iσ
0 1 0 1µ µ λ λ、 、 、  must firstly satisfy

0 2

k
iA s

i e ds
τ

σ
′−

> ∫ , 0 1µ > , 10 1µ< < ， 

01 0λ− < < , 10 1λ< < . In addition, for the 
practical packet transmission time sequence, the 
design parameters should satisfy 

( )
* 0

0 0
0

ln
ln 1a a

µ
τ τ

λ
≥ = −

+  and 

( )
* 1

1 1
1

ln
ln 1a a

µ
τ τ

λ
≤ = −

+ . It is worth mentioning 

that the larger the packet loss rate of the system is, 
the more difficult it is to obtain the proper 
controller gains which guarantees the exponential 
stability of the system state. 
Remark 3. In the traditional average dwell time 
(ADT) method, all subsystems follow the same 
ADT. However, in the mode-dependent average 
dwell time (MDADT) method, each subsystem 
follows a separate ADT, which can obtain less 
conservation results. In addition, the combination 
of the slow switching method and the fast method 
is a complement to the MDADT method, which 
brings more flexibility to the stability analysis. 
Remark 4. It is worth mentioning that in real-
word applications, practical systems always suffer 
from such issues as input saturation, input dead 
zones and unidirectional input constraints. In [16] 
and [22], the problem of input constraints and 
input dead zones is effectively investigated to 
reduce final positioning errors. In future work, we 
may consider employing robust control technique 
to solve the problem of input constraints. 
 

4. Numerical Simulation 
In this section, a rotary inverted pendulum (RIP) 
is used as an experimental test, and the 
performance of the proposed fuzzy controller is 
evaluated in the nonlinear NCS. To verify that T-
S fuzzy model is more advantageous than 
linearization in coping with nonlinear systems, 
some experimental results of the fuzzy state 
feedback controller based on T-S fuzzy model and 
the linear state feedback controller based on 
linearization are compared. 
The experiment system, as shown in figure 3, 
consists of a Quanser RIP and a PC. The RIP is 
composed of a servo motor, a rotary and a 
pendulum link and its structure is shown in figure 
4. The controllers for the RIP are implemented in 
Matlab/Simulink. The mathematical model from 
the practical RIP is is developed using the Euler-
Lagrange method. The nonlinear dynamics model 
of the RIP is described as 

(22)

Therefore, the Equation (22) holds when the Equa-
tion (15) holds.
When 0p = , the event of packet dropout does not 
occur. The random delay in the system is expressed 
through uncertain parameters. It follows from (20) 
that 

( )

( )

0 0

0 0 0 0 0

0 0
1 1

0 0

(1 ) *

0
0 0,

0
0

i i j

r r

i j i k i i j
i j i

T
T T

i i j i k
i

X
X Y X

F E X E Y
D

E X E Y F
D

λ

µ µ τ

τ

= =

 − + 
  Φ + Γ −  
   ′  + + <      
 

  ′ + +      

∑∑

 









(23)
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Therefore, the Equation (16) is derived from Equation 
(21). 
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(22) 
Therefore, the Equation (22) holds when the Equation 
(15) holds. 
When 0p = , the event of packet dropout does not 
occur. The random delay in the system is expressed 
through uncertain parameters. It follows from (20) that  
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Therefore, the Equation (25) holds when Equation (14) 
holds. 
If the MDADT of the switched system (9) satisfies (10), 

the exponential stability conditions of the fuzzy 
switched system (9) can be analyzed through 
Theorem 1 and the controller gains can obtained 
by solving LMIs (14)-(16) in Theorem 2.  
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that the larger the packet loss rate of the system is, 
the more difficult it is to obtain the proper 
controller gains which guarantees the exponential 
stability of the system state. 
Remark 3. In the traditional average dwell time 
(ADT) method, all subsystems follow the same 
ADT. However, in the mode-dependent average 
dwell time (MDADT) method, each subsystem 
follows a separate ADT, which can obtain less 
conservation results. In addition, the combination 
of the slow switching method and the fast method 
is a complement to the MDADT method, which 
brings more flexibility to the stability analysis. 
Remark 4. It is worth mentioning that in real-
word applications, practical systems always suffer 
from such issues as input saturation, input dead 
zones and unidirectional input constraints. In [16] 
and [22], the problem of input constraints and 
input dead zones is effectively investigated to 
reduce final positioning errors. In future work, we 
may consider employing robust control technique 
to solve the problem of input constraints. 
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consists of a Quanser RIP and a PC. The RIP is 
composed of a servo motor, a rotary and a 
pendulum link and its structure is shown in figure 
4. The controllers for the RIP are implemented in 
Matlab/Simulink. The mathematical model from 
the practical RIP is is developed using the Euler-
Lagrange method. The nonlinear dynamics model 
of the RIP is described as 
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Appling Lemma 2, the Equation (24) is equivalent to
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(22) 
Therefore, the Equation (22) holds when the Equation 
(15) holds. 
When 0p = , the event of packet dropout does not 
occur. The random delay in the system is expressed 
through uncertain parameters. It follows from (20) that  
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Therefore, the Equation (25) holds when Equation (14) 
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the more difficult it is to obtain the proper 
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stability of the system state. 
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ADT. However, in the mode-dependent average 
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follows a separate ADT, which can obtain less 
conservation results. In addition, the combination 
of the slow switching method and the fast method 
is a complement to the MDADT method, which 
brings more flexibility to the stability analysis. 
Remark 4. It is worth mentioning that in real-
word applications, practical systems always suffer 
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input dead zones is effectively investigated to 
reduce final positioning errors. In future work, we 
may consider employing robust control technique 
to solve the problem of input constraints. 
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ficult it is to obtain the proper controller gains which 
guarantees the exponential stability of the system state.
Remark 3. In the traditional average dwell time (ADT) 
method, all subsystems follow the same ADT. However, 
in the mode-dependent average dwell time (MDADT) 
method, each subsystem follows a separate ADT, which 
can obtain less conservation results. In addition, the 
combination of the slow switching method and the fast 
method is a complement to the MDADT method, which 
brings more flexibility to the stability analysis.
Remark 4. It is worth mentioning that in real-word 
applications, practical systems always suffer from such 
issues as input saturation, input dead zones and unidi-
rectional input constraints. In [16] and [22], the prob-
lem of input constraints and input dead zones is effec-
tively investigated to reduce final positioning errors. In 
future work, we may consider employing robust control 
technique to solve the problem of input constraints.

5. Numerical Simulation
In this section, a rotary inverted pendulum (RIP) is 
used as an experimental test, and the performance of 
the proposed fuzzy controller is evaluated in the non-
linear NCS. To verify that T-S fuzzy model is more ad-
vantageous than linearization in coping with nonlin-
ear systems, some experimental results of the fuzzy 
state feedback controller based on T-S fuzzy model 
and the linear state feedback controller based on lin-
earization are compared.
The experiment system, as shown in figure 3, consists 
of a Quanser RIP and a PC. The RIP is composed of 
a servo motor, a rotary and a pendulum link and its 
structure is shown in figure 4. The controllers for the 
RIP are implemented in Matlab/Simulink. The math-
ematical model from the practical RIP is is developed 
using the Euler-Lagrange method. The nonlinear dy-
namics model of the RIP is described as
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where θ  is rotary arm angle, θ  is rotary arm angular 
velocity, α  is pendulum link angle, α  is pendulum 
angular velocity, mV  is the input voltage applied on the 
servo motor. Other system parameters are shown in 
Table 1. Supposed that the state vector 

T
x θ α θ α =  



  and the input mu V= . For there is 

0θ ≈ ， 0α ≈  near the equilibrium point, the above 
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To verify that T-S fuzzy model is more 
advantageous than linearization in coping with 
nonlinear systems, T-S fuzzy model and 
linearization are employed separately to represent 
the nonlinear dynamics model Equation (27) 
Table 1 

Physical parameters of the RIP 
Symbol Description Value 

mR  Terminal resistance 8.4Ω  

mk  Motor back-emf 
constant 

0.042V s/rad⋅  

rm  Rotary arm mass 0.095kg  

rL  Rotary arm length 0.085m  

rJ  Moment of inertia about 
the arm 

5 25.720 10 kg m−× ⋅

 
rD  Friction coefficient of 

the arm 
0.0015 /N m s rad⋅ ⋅

 
pm  Pendulum link mass 0.024kg  

PL  Pendulum link length 0.129m  

pJ  Moment of inertia about 
the Pendulum link 

5 23.328 10 kg m−× ⋅

 
pD  Friction coefficient of 

the pendulum 
0.0005 /N m s rad⋅ ⋅

 
g  Gravity 29.81 /m s  

1. T-S fuzzy model 

There are ( )sin
1

α
α

≈  and ( )cos 1α ≈  when α  

approaches 0. And there are ( )sin 2 2α
α π

≈ ±  and 

( ) 2cos
2

α ≈ ±  when α  approaches 45± ° . In 

order to reduce the number of model rules, the 
local approximation approach in fuzzy partition 
spaces is used to obtain T-S fuzzy model of 
nonlinear model Equation (27). Thus, according 
to Equation (2), its fuzzy rules are 
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where θ  is rotary arm angle, θ  is rotary arm angular 
velocity, α  is pendulum link angle, α  is pendulum 
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servo motor. Other system parameters are shown in 
Table 1. Supposed that the state vector 

T
x θ α θ α =  



  and the input mu V= . For there is 

0θ ≈ ， 0α ≈  near the equilibrium point, the above 
nonlinear dynamics model can be simplified as 
Ex Ax Bu= +                                                             
(27) 

( ) ( )

( )

2 2 2 2

2

1 0 0 0
0 1 0 0

1 1 10 0 cos cos
4 4 2

1 10 0 cos
2 4

p r p p p p r p p r

p p r p p p

E m L m L m L J m L L

m L L J m L

α α

α

 
 
 
  = + − + −  

  
  − +  

  

( )

0 0 1 0
0 0 0 1

0 0 0

sin10 0
2

m
r

m

p p p

kA D
R

m L g D
α

α

 
 
 
  

= − +  
  
 
 −  

= 0 0 0
T

m

m

k
B

R
 
 
 

 

To verify that T-S fuzzy model is more 
advantageous than linearization in coping with 
nonlinear systems, T-S fuzzy model and 
linearization are employed separately to represent 
the nonlinear dynamics model Equation (27) 
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where θ  is rotary arm angle, θ  is rotary arm angular 
velocity, α  is pendulum link angle, α  is pendulum 
angular velocity, mV  is the input voltage applied on the 
servo motor. Other system parameters are shown in 
Table 1. Supposed that the state vector 
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To verify that T-S fuzzy model is more 
advantageous than linearization in coping with 
nonlinear systems, T-S fuzzy model and 
linearization are employed separately to represent 
the nonlinear dynamics model Equation (27) 
Table 1 
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constant 
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where θ  is rotary arm angle, θ  is rotary arm angular 
velocity, α  is pendulum link angle, α  is pendulum 
angular velocity, mV  is the input voltage applied on the 
servo motor. Other system parameters are shown in 
Table 1. Supposed that the state vector 

T
x θ α θ α =  
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  and the input mu V= . For there is 
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To verify that T-S fuzzy model is more 
advantageous than linearization in coping with 
nonlinear systems, T-S fuzzy model and 
linearization are employed separately to represent 
the nonlinear dynamics model Equation (27) 
Table 1 

Physical parameters of the RIP 
Symbol Description Value 

mR  Terminal resistance 8.4Ω  

mk  Motor back-emf 
constant 

0.042V s/rad⋅  

rm  Rotary arm mass 0.095kg  
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order to reduce the number of model rules, the 
local approximation approach in fuzzy partition 
spaces is used to obtain T-S fuzzy model of 
nonlinear model Equation (27). Thus, according 
to Equation (2), its fuzzy rules are 
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To verify that T-S fuzzy model is more advantageous 
than linearization in coping with nonlinear systems, 
T-S fuzzy model and linearization are employed sep-
arately to represent the nonlinear dynamics model 
Equation (27)

Table 1
Physical parameters of the RIP

Symbol Description Value

mR Terminal resistance 8.4Ω

mk Motor back-emf constant 0.042V s/rad⋅

rm Rotary arm mass 0.095kg

rL Rotary arm length 0.085m

rJ Moment of inertia  
about the arm

5 25.720 10 kg m−× ⋅

rD Friction coefficient  
of the arm

0.0015 /N m s rad⋅ ⋅

pm Pendulum link mass 0.024kg

PL Pendulum link length 0.129m

pJ Moment of inertia about the 
Pendulum link

5 23.328 10 kg m−× ⋅

pD Friction coefficient of the 
pendulum

0.0005 /N m s rad⋅ ⋅

g Gravity 29.81 /m s

1. T-S fuzzy model

There are ( )sin
1

α
α

≈  and ( )cos 1α ≈  when α  ap-

proaches 0. And there are ( )sin 2 2α
α π

≈ ±  and 

( ) 2cos
2

α ≈ ±  when α  approaches 45± °. In order to 
reduce the number of model rules, the local approxima-
tion approach in fuzzy partition spaces is used to ob-
tain T-S fuzzy model of nonlinear model Equation (27). 
Thus, according to Equation (2), its fuzzy rules are
Rule  1: IF α  is about 0, THEN 1 1x A x B u= + . 
Rule  2: IF α  is about ( )4 4π α π± < , THEN 

2 2x A x B u= + . 
Substituting the values in Table 1 into the above coef-
ficient matrices, there are

1 1

0 0 1 0 0
0 0 0 1 0

= ,
0 149.2751 14.9287 4.0149 49.7275
0 261.6091 14.7551 8.6163 49.1493

A B

   
   
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   − −
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2 2

0 0 1 0 0
0 0 0 1 0

= ,
0 44.3406 7.9352 1.6216 23.2023
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A B

   
   
   =
   − −
   
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The system defines two Triangle-shape membership 
functions, shown in Figure 5. The membership func-
tions of Rule 1 and Rule 2 are chosen as

Figure 5 
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Therefore, according to Equation (2), the nonlinear 
model Equation (27) can be written as a fuzzy model 
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2. Model linearization 
When α  approaches 0, the nonlinear model Equation 
(28) can be expressed as a linear model 
x Ax Bu= + ,                                                             (29) 
where

0 0 1 0 0
0 0 0 1 0

= ,
0 149.2751 14.9287 4.0149 49.7275
0 261.6091 14.7551 8.6163 49.1493
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According to the above two models, the fuzzy 
state feedback controller and the linear state 
feedback controller are applied to control the RIP 
system respectively. The control effects of the two 
control methods are analyzed and compared.  
The sampling period of the sensor is chosen as 

0.02T s= . For other parameters, we have 
1 2 0.080σ σ= = ，  0 1.850µ = ，  1 0.550µ = ， 

0 0.116λ = − ，  0 0.700λ = . According to (10), 
we can derive that *

0 4.9894aτ = , *
1 1.1267aτ = . 

For the above T-S fuzzy model Equation (27), 
solving LMIs （ 14 ）、 (15) and （ 16 ） , by 
theorem 2, we can get controller gain matrices 

[ ]1 0.1401 12.3400 0.4601 0.7656 0.0358K = − − ,
[ ]2 0.4084 18.9397 0.6594 1.3042 0.0819K = − − − . 

For the above linear model Equation (28), 
similarly, we can get controller gain matrix 

[ ]0.2067 12.8365 0.5122 0.8100 0.0203K = − − . 

Suppose that random delay satisfies
( )0,0.02sc ca

k k k sτ τ τ= + ∈  and the time sequence 
diagram of packet transmission is shown in figure 
6. Then the corresponding MDADT for packet-
dropout and packet-send cases respectively are

*
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7 and 8 shows the experiment results of the fuzzy 
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It can be seen from the control effects obtained by 
the above two different controllers. The fuzzy 
controller can balance the pendulum link for 
initial conditions [ ]0 30 30α ∈ − ° °  and the state 

of the system becomes unstable when 0 30α > ° . 
In contrast, the linear controller can only balance 
the pendulum for initial conditions 

[ ]0 15 15α ∈ − ° °  and the state of the system 

becomes unstable when 0 15α > ° . Therefore, the 
experiment results illustrate that the effectiveness 
of the proposed method for the NNCS with 
random delay and packet losses, and verify that 
the fuzzy controller based on T-S fuzzy model can 
balance the system in a larger stability range than 
the linear controller based on model linearization. 
However, there are some such issues as external 
disturbances in the system, input constrains and 
model errors between the established model and 
the practical nonlinear model that may lead to 
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For the above linear model Equation (28), 
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tem becomes unstable when 0 15α > °. Therefore, the 
experiment results illustrate that the effectiveness 
of the proposed method for the NNCS with random 
delay and packet losses, and verify that the fuzzy con-
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6. Conclusion
In this paper, the NNCS with bilateral random de-
lays and packet losses are modeled as a discrete-time 
fuzzy switched system with parameter uncertainty. 
The combination of slow switching and fast switch-
ing MDADT methods is used to give the state stabil-
ity condition of the switched system. The fuzzy con-
troller gains are obtained by solving corresponding 
LMIs. Experiment results illustrate the feasibility 
of the proposed method and prove T-S fuzzy model 
is more advantageous than linearization in coping 
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switched system. The fuzzy controller gains are 
obtained by solving corresponding LMIs. 
Experiment results illustrate the feasibility of the 
proposed method and prove T-S fuzzy model is 
more advantageous than linearization in coping 
with nonlinear systems. Future works could focus 
on some problems such as various external 
disturbances in the system; input constrains and 
model errors between the T-S fuzzy model and 
practical nonlinear model. 
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parameter uncertainty. The combination of slow 
switching and fast switching MDADT methods is 
used to give the state stability condition of the 
switched system. The fuzzy controller gains are 
obtained by solving corresponding LMIs. 
Experiment results illustrate the feasibility of the 
proposed method and prove T-S fuzzy model is 
more advantageous than linearization in coping 
with nonlinear systems. Future works could focus 
on some problems such as various external 
disturbances in the system; input constrains and 
model errors between the T-S fuzzy model and 
practical nonlinear model. 
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