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A new Model-Free Control (MFC) is derived to enhance the control performance of the well-known Nonlinear 
Integral Backstepping based MFC (NIB-MFC). A Nonsingular Fast Terminal Sliding Mode (NFTSM) compo-
nent is added to NIB-MFC, which makes possible to compensate the estimation error of the time-delay estima-
tion module of NIB-MFC. The obtained in this way new control structure is called NFTSM-MFC. The system 
stability with NFTSM-MFC is proved and the application of NFTSM-MFC for glycemia regulation is consid-
ered. The performances of NFTSM-MFC are compared with those of the NIB-MFC and the intelligent propor-
tional control for a glucose-insulin model of type 1 diabetes patients under a long term simulation. 
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1. Introduction
Model-based classical control methods are nor-
mally implemented on the condition that the sys-
tem dynamics and operational circumstances are 
well known. However, for complex physical, socio-

economic, or biological systems, where the system 
models are partially or completely unknown, these 
techniques give unsatisfactory results. It is a mo-
tivation for development of control procedures 
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that requires no model for the underlying system.
The data-driven control is such a control procedure 
which uses only the measurements from input and 
output, thus the unmodeled time varying uncertain-
ties are not required known. The data driven concept 
was proposed firstly in the field of computer science, 
and has been introduced gradually into the control 
field. For instance, this concept has application in 
the control area of fault diagnosis and tolerance [40, 
41]. Data-driven control methods have been devel-
oped into many types, which include virtual reference 
feedback tuning [6], iterative learning control [21], 
dynamic programming approach [45], neural net-
work method [19], model free control [1, 13] and oth-
ers [22, 33].
The data-driven based model-free control (MFC) 
consists of several branches, such as the algebraic es-
timation technique based MFC [1, 3, 13], the time-de-
lay estimation based MFC [42], the learning adaptive 
based MFC [17], and the recursive MFC [35-37]. 
In this paper, MFC theory [1, 3, 13, 38, 44] and iPID 
control [2, 12] are adopted to design a controller 
which uses an ultra-local model for small time win-
dow to approximate the system dynamics. The un-
modeled system dynamics in the ultra-local model 
are included in a function F which an algebraic esti-
mator is used to estimate and update [1, 3, 13]. Thus 
the order of the model can be reduced to fit system dy-
namics while the system can be efficiently controlled 
by a simple law, such as the intelligent proportional iP 
controller [1, 3, 13]. To avoid the difficulties in imple-
menting the algebraic estimation, time-delay estima-
tion (TDE) can be used instead [42, 44]. To improve 
control performances, the model-free control can 
be combined with a nonlinear integral backstepping 
control, obtaining thus the so-called Nonlinear Inte-
gral Backstepping based MFC (NIB-MFC) [38].
In current paper, a relative new model-free control 
structure called NFTSM-MFC is proposed. The 
proposed model-free control is obtained by adding 
a NFTSM component to the NIB-MFC structure 
which makes it possible to compensate the estima-
tion error in TDE.
Artificial pancreas, combining insulin injection with 
advanced intelligent equipment to describe the func-
tioning of a healthy pancreas, is the most potential 
solution for T1DM. Various control strategies for ar-

tificial pancreas are designed: classical model-based 
techniques [10, 20, 32], model based predictive con-
troller [5, 8, 9, 30, 31], and model independent based 
control, such as PID [7, 26, 29] and data-driven based 
model-free control [4, 14, 27, 46].
A precise physiological model which describes corre-
sponding physiological characteristics adequately is 
hard to obtain. The limitations of the existing blood 
glucose models make it difficult to use model based 
control algorithms which take a long time in trials. 
As for non-model based controllers, such as PID 
controllers, it is also hard to overcome disturbances 
and uncertainties. By comparison, the glycemia reg-
ulation can be efficiently done by model-free control-
lers, and have the advantage of easy tuning and im-
plementation. 
The structure of the paper is introduced in this para-
graph. In Section 2, the ultra-local model and corre-
sponding TDE based iP control (TDE-iPC) are briefly 
introduced. In Section 3, NFTSM-MFC is proposed, 
and its system stability is analyzed. Then a glucose-in-
sulin dynamics model of T1DM for a long-term sim-
ulation is presented in Section 4. In Section 5, the 
TDE-iPC, NIB-MFC and NFTSM-MFC are applied 
to this model and their performances are compared 
for the parameter values of three virtual patients. Fi-
nally, Section 6 gives some conclusions comments.

 2. iP Control Using Time-Delay 
Estimation Technics 
In this section, a new iP controller using TDE instead 
of algebraic estimation is proposed. 

2.1. Ultra-local Model and iP Controller 
A general SISO unknown system could be described 
by the ultra-local model [1, 2, 12, 14]: 
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 y F u   ,  (1) 

where y denotes the system output,  y  is the derivative of y with order 1v  , andnd u denotes the system input. The 
parameter    is chosen to guarantee that u  and  y  are in the same quantitative level. F denotes the disturbances 
and system dynamics which are hard to model. The above referred integer v is usually chosen to 1 or 2. In turn, F can 
be obtained through the measurements of u and y, which can be continuously updated. 
For the system (1) with 1v  , the following iP controller is proposed in [1]: 

d pF y K e
u =


 






, (2) 

where dy  represents the desired reference dy  derivative, de y y   denotes their corresponding tracking trajectory 
error, pK  is the proportional parameter and F


 is an actual estimate of  F .  From (1-2), one obtains the closed-loop 

system equation 

0estpe K e e    ,   (3) 

where  est Fe F= -


 is the error of estimation of F. If este e  in (3), the tuning of the gain pK  is relatively easy. 

2.2. TDE Based iP Controller 
The crucial point of the iP control and of MFC in general, is the estimation of F. In this part, the TDE method is adopted. 
This TDE method estimates the lumped disturbances and unmodeled dynamics with time-delayed information. The 
selected Time-delay which is denoted as L should be small enough to keep functioning and usually chosen to be the 
same time value as the sampling time of the embedded systems, noting that the sampling time usually meets the 
requirements to system dynamics. The referred TDE can be illustrated as follows 
ˆ ( ) ( ) ( ) ( )F t F t L y t L u t L          (4) 

, (1)

where y denotes the system output, ( )y ν  is the deriva-
tive of y with order 1v ≥ , andnd u denotes the system 
input. The parameter α ∈ℜ is chosen to guarantee 
that uα  and ( )y ν

 are in the same quantitative level. 
F denotes the disturbances and system dynamics 
which are hard to model. The above referred integer 
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v is usually chosen to 1 or 2. In turn, F can be obtained 
through the measurements of u and y, which can be 
continuously updated.
For the system (1) with 1v = , the following iP control-
ler is proposed in [1]:
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a long time in trials. As for non-model based controllers, such as PID controllers, it is also hard to overcome 
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controllers, and have the advantage of easy tuning and implementation.  
The structure of the paper is introduced in this paragraph. In Section 2, the ultra-local model and corresponding TDE 
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In this section, the NIB-MFC [38] is firstly presented and then a NFTSM component is added to this control algorithm 
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To ensure the speed tracking which is derived on the error to zero, 2 1 2( , )V e e  should be semi-negative definite. Thus, if 
the condition  
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is fulfilled, the speed error will tend to zero and therefore 
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A novel MFC structure is proposed as follows, which makes possible to compensate the estimation error 

est ce F F e u   


 .   (20) 

To this end, an additional NFTSM control is added to the NIB-MFC structure:  

d c
NFTSM

F y uu u


 
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
 ,  (21) 

where NFTSMu  is the additional control signal (see figure 3). Then, the closed-loop system equation is  

c NFTSM este u u e   .  (22) 

 

 
Figure 3  NFTSM-MFC block diagram 
Defining the state variables 

1

2

,x e
x e

 

  (23) 

one obtains the system as follows: 

1 2 ,x x   (24) 

2 .c NFTSM estx u u e      (25) 

The estimation error este  is unknown, but assuming that the system is Bounded in Input and State, and that its input 
derivative is bounded, then este is bounded: 

.este E   (26) 

In regular SMC, its surface is usually calculated by [18] 
, 0.s e e      (27) 

However, the conventional SMC cannot ensure convergence in finite time. In order to overcome this shortcoming, 
terminal sliding mode (TSM) and NTSM controls are introduced [25, 43] to guarantee the convergence in finite-time. 
The corresponding sliding surfaces are  

1[ ]
1 1 1, 0,0 1,as e k e k a         (28) 

2[ ]
2 2 2, 0,1 2.as e k e k a       (29) 

where s is the sliding variable and [ ] ( )ccx x sign x  with 0c  .  

The forms of the TSM and SM sliding surface in (28) and (27) respectively for a=1. Because 0<a<1, the convergence 
rates of TSM and NTSM are rather low than the conventional SMC. Therefore, a FTSM has been proposed to speed up 
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The augmented control NFT SMu consists of two terms [23, 39]: 
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3.3. Stability Analysis 
The closed-loop system stability with NFTSM-MFC can be analyzed with Theorem 1 of [11]. The following Lyapunov 
function is considered 
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The augmented control NFT SMu consists of two terms [23, 39]: 

.NFTSM eq coru u u    (33) 

In (33), equ   is called equivalent control term and obtained under 0s   as 
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coru , named as correction term, is to ensure the system reaching the sliding surface. Taking in account (26), coru can be 
determined as  

1 ( )sgn( ),coru E s


     (35) 

where  λ  is a positive constant. Then  

2 1
1

2

1 [ ( ) sgn( )]

(1 ),

NFTSM c

l
p

u u E s

p e e
l






 
 

 

  

 
  (36) 

and 

2 1
1

2

1 [ ( ) sgn( )]

(1 ).

d

l
p

u F y E s

p e e
l






 
 

 

    

 





 (37) 

3.3. Stability Analysis 
The closed-loop system stability with NFTSM-MFC can be analyzed with Theorem 1 of [11]. The following Lyapunov 
function is considered 
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state space. However, the term 2 1ae e  in the control input may cause a singularity if 0e  and 0e  . 
According to the characteristics of NTSM and FTSM, the NFTSM surface is chosen as below:  
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The augmented control NFT SMu consists of two terms [23, 39]: 

.NFTSM eq coru u u    (33) 

In (33), equ   is called equivalent control term and obtained under 0s   as 
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3.3. Stability Analysis 
The closed-loop system stability with NFTSM-MFC can be analyzed with Theorem 1 of [11]. The following Lyapunov 
function is considered 
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state space. However, the term 2 1ae e  in the control input may cause a singularity if 0e  and 0e  . 
According to the characteristics of NTSM and FTSM, the NFTSM surface is chosen as below:  
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The augmented control NFT SMu consists of two terms [23, 39]: 

.NFTSM eq coru u u    (33) 

In (33), equ   is called equivalent control term and obtained under 0s   as 

  (34) 

coru , named as correction term, is to ensure the system reaching the sliding surface. Taking in account (26), coru can be 
determined as  
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3.3. Stability Analysis 
The closed-loop system stability with NFTSM-MFC can be analyzed with Theorem 1 of [11]. The following Lyapunov 
function is considered 
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cause a singularity if 
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state space. However, the term 2 1ae e  in the control input may cause a singularity if 0e  and 0e  . 
According to the characteristics of NTSM and FTSM, the NFTSM surface is chosen as below:  
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The augmented control NFT SMu consists of two terms [23, 39]: 

.NFTSM eq coru u u    (33) 

In (33), equ   is called equivalent control term and obtained under 0s   as 
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coru , named as correction term, is to ensure the system reaching the sliding surface. Taking in account (26), coru can be 
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3.3. Stability Analysis 
The closed-loop system stability with NFTSM-MFC can be analyzed with Theorem 1 of [11]. The following Lyapunov 
function is considered 
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According to the characteristics of NTSM and FTSM, 
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state space. However, the term 2 1ae e  in the control input may cause a singularity if 0e  and 0e  . 
According to the characteristics of NTSM and FTSM, the NFTSM surface is chosen as below:  
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with s the sliding variable, 1 2,   the positive constants, and l and p positive odd values satisfying 1 < l/p < 2 and  > 
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The augmented control NFT SMu consists of two terms [23, 39]: 

.NFTSM eq coru u u    (33) 

In (33), equ   is called equivalent control term and obtained under 0s   as 

  (34) 

coru , named as correction term, is to ensure the system reaching the sliding surface. Taking in account (26), coru can be 
determined as  
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3.3. Stability Analysis 
The closed-loop system stability with NFTSM-MFC can be analyzed with Theorem 1 of [11]. The following Lyapunov 
function is considered 
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with s the sliding variable, 1 2,σ σ  the positive con-
stants, and l and p positive odd values satisfying  
1 < l/p < 2 and ϕ > l/p.
To guarantee its sliding convergence, the following 
should satisfy  
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with s the sliding variable, 1 2,   the positive constants, and l and p positive odd values satisfying 1 < l/p < 2 and  > 
l/p. 
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The augmented control NFT SMu consists of two terms [23, 39]: 

.NFTSM eq coru u u    (33) 

In (33), equ   is called equivalent control term and obtained under 0s   as 
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coru , named as correction term, is to ensure the system reaching the sliding surface. Taking in account (26), coru can be 
determined as  
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3.3. Stability Analysis 
The closed-loop system stability with NFTSM-MFC can be analyzed with Theorem 1 of [11]. The following Lyapunov 
function is considered 
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The augmented control NFT SMu  consists of two terms 
[23, 39]:
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1

ak e  
dominates over 2[ ]

2
ak e and equation (30) can be approached by 1[ ]

1 0as e k e    which ensure a fast convergence. 
When near the equilibrium point, the term 2[ ]

2
ak e dominates over 1[ ]

1
ak e and equation (30) can be approximated by 

2[ ]
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state space. However, the term 2 1ae e  in the control input may cause a singularity if 0e  and 0e  . 
According to the characteristics of NTSM and FTSM, the NFTSM surface is chosen as below:  
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with s the sliding variable, 1 2,   the positive constants, and l and p positive odd values satisfying 1 < l/p < 2 and  > 
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The augmented control NFT SMu consists of two terms [23, 39]: 

.NFTSM eq coru u u    (33) 

In (33), equ   is called equivalent control term and obtained under 0s   as 
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coru , named as correction term, is to ensure the system reaching the sliding surface. Taking in account (26), coru can be 
determined as  
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3.3. Stability Analysis 
The closed-loop system stability with NFTSM-MFC can be analyzed with Theorem 1 of [11]. The following Lyapunov 
function is considered 
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According to the characteristics of NTSM and FTSM, the NFTSM surface is chosen as below:  

[ ] [ / ]
1 2

l ps e e e       (31) 

with s the sliding variable, 1 2,   the positive constants, and l and p positive odd values satisfying 1 < l/p < 2 and  > 
l/p. 
To guarantee its sliding convergence, the following should satisfy   

1 1
1 2

1
1

1
2

  

( ).

l
p

l
p

c NFT SM est

ls e e e e e
p

e e e
l e u u e
p





  

 

 

 





   

  

   

    

 



  (32) 

The augmented control NFT SMu consists of two terms [23, 39]: 
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In (33), equ   is called equivalent control term and obtained under 0s   as 
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3.3. Stability Analysis 
The closed-loop system stability with NFTSM-MFC can be analyzed with Theorem 1 of [11]. The following Lyapunov 
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The augmented control NFT SMu consists of two terms [23, 39]: 
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In (33), equ   is called equivalent control term and obtained under 0s   as 
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3.3. Stability Analysis 
The closed-loop system stability with NFTSM-MFC can be analyzed with Theorem 1 of [11]. The following Lyapunov 
function is considered 
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The augmented control NFT SMu consists of two terms [23, 39]: 
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In (33), equ   is called equivalent control term and obtained under 0s   as 
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3.3. Stability Analysis 
The closed-loop system stability with NFTSM-MFC can be analyzed with Theorem 1 of [11]. The following Lyapunov 
function is considered 
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The augmented control NFT SMu consists of two terms [23, 39]: 
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In (33), equ   is called equivalent control term and obtained under 0s   as 
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3.3. Stability Analysis 
The closed-loop system stability with NFTSM-MFC can be analyzed with Theorem 1 of [11]. The following Lyapunov 
function is considered 
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Taking its first derivative, one has   
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Since l, p and 2σ  are positive, then:
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 

, one has 
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  

2 2

2 2

0 00 0 1 0
1280 00 0 1 0 0

1 2 00 0 0 0
0

0 0 0 0 1 0 0 0
1 2 00 0 0 0

si

l

u

u u i u

r

r r B r

k
GG k

M
I kI u

T T V TII r
DD
D kD

T T V T

   
                                                                       







 



, (41) 

where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 

, by substituting (36) into (22), one obtains

 

 

1[ ] [ / ]
1 2 1

1
2

2 2
1

2
[ ] [ / ]

1 2

1
2

1
2

( )[

                ( ( )sgn( )

(1 ))]

   ( )

[ ( ( )sgn( ))]

   ( ( )sgn( ) )

   

l p

l
p

est

l
p

l p

l
p

est

l
p

est

V ss e e e e e
l e e E s
p

p e e
l

e e e
l e e E s
p

l e e s E s s
p







  

 




 

 

 



 



 





    

  

 

  

 

  



   











1
2 s .

l
p

l e
p



 (39) 

Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 

(40)

For 0s >  one has 

 

 

1[ ] [ / ]
1 2 1

1
2

2 2
1

2
[ ] [ / ]

1 2

1
2

1
2

( )[

                ( ( )sgn( )

(1 ))]

   ( )

[ ( ( )sgn( ))]

   ( ( )sgn( ) )

   

l p

l
p

est

l
p

l p

l
p

est

l
p

est

V ss e e e e e
l e e E s
p

p e e
l

e e e
l e e E s
p

l e e s E s s
p







  

 




 

 

 



 



 





    

  

 

  

 

  



   











1
2 s .

l
p

l e
p



 (39) 

Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 

 and for 0s <  one has 
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 
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which means that 
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 

 is not an attractor. This also means 
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  

2 2

2 2

0 00 0 1 0
1280 00 0 1 0 0

1 2 00 0 0 0
0

0 0 0 0 1 0 0 0
1 2 00 0 0 0

si

l

u

u u i u

r

r r B r

k
GG k

M
I kI u

T T V TII r
DD
D kD

T T V T

   
                                                                       







 



, (41) 

where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 

, such that 

 

 

1[ ] [ / ]
1 2 1

1
2

2 2
1

2
[ ] [ / ]

1 2

1
2

1
2

( )[

                ( ( )sgn( )

(1 ))]

   ( )

[ ( ( )sgn( ))]

   ( ( )sgn( ) )

   

l p

l
p

est

l
p

l p

l
p

est

l
p

est

V ss e e e e e
l e e E s
p

p e e
l

e e e
l e e E s
p

l e e s E s s
p







  

 




 

 

 



 



 





    

  

 

  

 

  



   











1
2 s .

l
p

l e
p



 (39) 

Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 

 for 0s < . 
Thus, according to [11], the finite-time sliding surface 
crossing for the system states,
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 

 for 0s >  
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 

 to 

 

 

1[ ] [ / ]
1 2 1

1
2

2 2
1

2
[ ] [ / ]

1 2

1
2

1
2

( )[

                ( ( )sgn( )

(1 ))]

   ( )

[ ( ( )sgn( ))]

   ( ( )sgn( ) )

   

l p

l
p

est

l
p

l p

l
p

est

l
p

est

V ss e e e e e
l e e E s
p

p e e
l

e e e
l e e E s
p

l e e s E s s
p







  

 




 

 

 



 



 





    

  

 

  

 

  



   











1
2 s .

l
p

l e
p



 (39) 

Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  

2 2

2 2

0 00 0 1 0
1280 00 0 1 0 0

1 2 00 0 0 0
0

0 0 0 0 1 0 0 0
1 2 00 0 0 0

si

l

u

u u i u

r

r r B r

k
GG k

M
I kI u

T T V TII r
DD
D kD

T T V T

   
                                                                       







 



, (41) 

where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 

For 0s   one has e    and for 0s   one has e  , which means that e  is not an attractor. This also means that for 
a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 

 for 0s < . Thus, the referred s=0 could be at-
tained in finite time from anywhere. Meanwhile, the 
control algorithm (34) is always nonsingular with  
1 < l/p < 2.
Therefore NFTSM-MFC ensures system stability 
and convergence in finite time from any initial differ-
ent states without any singularity. 

4. Glucose-Insulin Dynamic Model
The proposed controller is implemented and evalu-
ated for a type 1 diabetes long-term glucose-insulin 
dynamic model [15, 16, 24, 28, 34]. 
This proposed model makes possible to overcome 
the following two common drawbacks by compar-
ing to other mathematical system models. The first 
drawback is that the existing models can only predict 
glucose level for a rather short time, only capable to 
fit clinical data for a few hours [34], or with up-limit 
of 20h [15, 28]. The second common drawback is that 
the model is not capable to take functional insulin 
therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior 
to few days with validation with diabetic patients 
clinical data taken form Rennes and Nantes Univer-
sity-Hospital Centers [24]. 
The proposed long-term model in [24] consists three 
parts which describe the glucose, insulin and diges-
tion dynamics respectively. The proposed glucose-in-
sulin model is denoted as follows [24]: 
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Since l, p and 2  are positive, then: 

1) for 0e  , one has 0V   and 0s   obtained in finite time; 
2) for 0e  , by substituting (36) into (22), one obtains 

( )sgn( ) .este E s e       (40) 
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a small 0   there exists neighborhood e   of 0e  , such that e    for 0s   and e   for 0s  . Thus, 
according to [11], the finite-time sliding surface crossing for the system states, e   to e    for 0s   and from 
e   to e  for 0s  , can be guaranteed. While in others under e  , the sliding surface can be obtained in finite 
time, since e    for 0s  , and e   for 0s  . Thus, the referred s=0 could be attained in finite time from anywhere. 
Meanwhile, the control algorithm (34) is always nonsingular with 1 < l/p < 2. 
Therefore NFTSM-MFC ensures system stability and convergence in finite time from any initial different states without 
any singularity.  

  
4. Glucose-Insulin Dynamic Model 
The proposed controller is implemented and evaluated for a type 1 diabetes long-term glucose-insulin dynamic model 
[15, 16, 24, 28, 34].  

This proposed model makes possible to overcome the following two common drawbacks by comparing to other 
mathematical system models. The first drawback is that the existing models can only predict glucose level for a rather 
short time, only capable to fit clinical data for a few hours [34], or with up-limit of 20h [15, 28]. The second common 
drawback is that the model is not capable to take functional insulin therapy into account [16]. While this proposed long-
term model, it can predict closely glycemia behavior to few days with validation with diabetic patients clinical data 
taken form Rennes and Nantes University-Hospital Centers [24].  
The proposed long-term model in [24] consists three parts which describe the glucose, insulin and digestion dynamics 
respectively. The proposed glucose-insulin model is denoted as follows [24]:  
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where ( )u t  is input insulin injection rate (U/min), ( )G t  is first element of the state representing glucose level (mg/dL), 

(41)

where ( )u t  is input insulin injection rate (U/min), 
( )G t  is first element of the state representing glucose 

level (mg/dL), ( )I t  is the second element of the state 
representing insulin level (U/dL), ( )D t  is glucose ap-
pearance rate in the result of the carbohydrate diges-
tion (mg/(dL*min)), ( )r t  is the carbohydrate in meal 
(mg). The parameter values for three patients (IF2, 
IF3, BE) are given in Appendix A. The parameters 
for each patient are identified by fitting the corre-
sponding CGM data thus several virtual patients can 
be established as the control objects. In addition, 
measurement noise is added to simulate the actual 
situation.
The control objectives can be divided into two by ac-
cording to different stages of virtual patients, called 
normal stage and postprandial stage. At the normal 
stage, the glycemia need to be maintained in the 
range of l [70, 120]mg/dL. At the postprandial stage, 
the glycemia need to be kept under [120, 170]mg/dL 
in the 1st 60 minutes, and need not to exceed 140 mg/
dL in the 2nd 60 minutes then returning to normal 
levels within 180 minutes. And the hypoglycemia 
should be prevented as glycemia is under 70 mg/dL, 
where the life safety of patients will be threatened.

5. Glycemia Regulation Using 
NFTSM-MFC
In this section, the NFTSM-MFC is applied to the 
glucose-insulin dynamics model (41) and its perfor-
mances are compared with those of TDE-iPC and 
NIB-MFC for the three virtual patients IF2, IF3 and 
BE. In TDE-iPC, α is set to 2000000 and kept in con-

stant value, and  
pK  is set per patient to 1.2 (IF2), 0.45 

(IF3), and 0.6 (BE). In NIB-MFC α is set to 1800. For 
IF3 the following values of parameters are chosen: 
k1=0.0005, k2=0.0001, k3=0.4. The corresponding pa-
rameters values for BE are k1=0.04, k2=0.0005, k3=0.8, 
and for IF2 these values are k1=0.05, k2=0.0001, 
k3=0.5. The values of parameters in NFTSM-MFC 
are chosen as E=0.1, λ=0.5, p=17, l=19, δ1=0.1, δ2=0.1, 
ϕ=1.3.  
For the patient IF3, the considered controllers are com-
pared for the following three cases: (0) 160 /G mg dL= , 

(0) 40 /G mg dL= , and taking a meal represented by 
the carbohydrates intake rate 100exp( 5 )r t g= −  at 

1t h= . The numerical results are illustrated in Fig. 4. 
It shows that in the considered cases the three con-
trollers succeed to force glucose to the desired value. 
The NIB-MFC and NFTSM-MFC ensure a quite sim-
ilar convergence, faster than the convergence using 
TDE-iPC. Concerning the overshoot and steady-state 
error, the NFTSM-MFC shows superiority than the 
NIB-MFC and the NFTSM-MFC without NIB. 
In the next simulation, several regular meals are 
taking by the virtual patient IF3 to test the perfor-
mance in daily situation. The corresponding results 
as illustrated in Figure 5. Furthermore, situation of 
large amount of meal intake for the virtual patient 
BE is simulated to evaluate hypoglycemic ability. 
The obtained results are shown in Figure 6. Finally, 
for the virtual patient IF2, the considered control-
lers are compared for the situation in snack time, 
with small amounts and frequent carbohydrate in-
take. The corresponding results are shown in Figure 
7. The summaries of simulation statistics are given 
in Appendix B. 
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Figure 4 
IF3 virtual patient responses for TDE-iPC, NIB-MFC, NFTSM-MFC without NIB and NFTSM-MFC

(a) G(0)=160mg/dL

(b) G(0)=40mg/dL

(c) BG with meal intake
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Figure 5  
IF3 virtual patient responses for TDE-iPC, NIB-MFC, NFTSM-MFC without NIB and NFTSM-MFC

(a) BG behavior

(b) Meals and corresponding glucose rate of appearance

(c) Insulinemia
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(d) Insulin infusion rate
 

 

 

 

The simulation results presented in Figures 5, 6 and 
7 show the higher performances of NIB-MFC com-
pared to TDE-iPC. The hyperglycemia is substantially 
reduced using NIB-MFC, especially when postpran-
dial phase is detected. In particular figure 7(a) shows 
that overdose of insulin and possible hypoglycemia 
could be more easily prevented by NIB-MFC than by 
TDE-iPC. The global BG mean value is upgraded and 
overshoots are decreased. 

Due to compensation of the estimation error in TDE, 
the NFTSM-MFC is more efficient than NIB-MFC. 
The NFTSM-MFC makes possible to achieve smaller 
max value of G, bigger min value of G, mean of G clos-
er to desired value, smaller overshoots, shorter hyper-
glycemia and hypoglycemia phases and smaller mean 
of  u(t).

Figure 6  
BE virtual patient responses for TDE-iPC, NIB-MFC, NFTSM-MFC without NIB and NFTSM-MFC

(a) BG behavior
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(b) Meals and corresponding glucose rate of appearance

(c) Insulinemia

(d) Insulin infusion rate
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Figure 7  
IF2 virtual patient responses for TDE-iPC, NIB-MFC, NFTSM-MFC without NIB and NFTSM-MFC

(a) BG behavior

(b) Meals and corresponding glucose rate of appearance

(c) Insulinemia
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(d) Insulin infusion rate
 

6. Conclusion  
In conclusion, a NFTSM-MFC is proposed and its 
application to glucose regulation systems is consid-
ered. The new control structure is obtained by adding 
a NFTSM component to the well-known NIB-MFC in 
order to compensate the estimation error of the TDE 
module of NIB-MFC. The corresponding system sta-
bility under the new controller is analyzed and the 
application of NFTSM-MFC for glycemia regulation 
is considered. The numerical simulations show that 

NFTSM-MFC can stabilize glycemia level more rapid-
ly and with small error than the NIB-MFC and intelli-
gent proportional control for a glucose-insulin dynam-
ic model of a T1DM patient for long-term simulation. 
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Parameter Definition Units IF2 IF3 BE

M Body weight kg 72 94 73.5

siK Gain for effect of insulin *
mg

U min 197 274 186

uT Insulin dynamics time constant min 122 88 59

iV  Equivalent volume for insulin dispersion dL 10 15 10

/u iK V Constant /min dL 180 235 183.75

rT Time constant for individual difference min 183 49 38

BV Equivalent volume for blood dL 0.11 0.1248 0.13

/r BT V Constant /min dL 46.8 61.1 47.775

128 /lK M− Endogenous glucose production
mg

dL* min 1.94 1.72 1.91

Appendix A 
Model parameters and its values for IF2, IF3, BE

Appendix B 
Simulation statistics

Parameter
IF3 BE IF2

TDE-iPC NIB-
MFC

NFTSM-
MFC

TDE-
iPC

NIB-
MFC

NFTSM-
MFC

TDE-
iPC NIB-MFC NFTSM-

MFC

Max glucose level 
(mg/dL) 186.8 182 179.1 248.5 224 216.1 149.2 129.6 127.7

Min glucose level 
(mg/ dL) 70.06 79.62 75.47 62.89 69.66 69.66 63.74 72.64 72.25

Hyperglycemia 
period (G>200) (h)  /  /  / 7 2.4 2.1  /  /  /

Hypoglycemia period 
(G<70) (h)  /  /  / 2 1.4 14 4.7  /  /

Mean glucose level 
(mg/dL) 118.2 110.9 108.1 128.7 114.6 111.2 104.2 106.3 105.2

Standard Deviation 
of glucose level (mg/
dL)

35.72 29.55 29.28 57.16 41.03 38.68 27.96 16.06 15.88

Mean insulin level 
(U/h) 1.7265 1.6900 1.3068 1.9410 1.8912 1.6872 1.2954 1.1976 1.1976


