
123Information Technology and Control 2021/1/50

Modified Block Compressed 
Sensing for Extraction of Fetal 
Electrocardiogram from Mother 
Electrocardiogram Using Block 
Compressed Sensing Based Guided 
FOCUSS and FAST-Independent 
Component

ITC 1/50
Information Technology  
and Control
Vol. 50 / No. 1 / 2021
pp. 123-137
DOI 10.5755/j01.itc.50.1.24145

Modified Block Compressed Sensing for Extraction of Fetal Electrocardiogram 
from Mother Electrocardiogram Using Block Compressed Sensing Based Guided 

FOCUSS and FAST-Independent Component

Received 2019/09/05 Accepted after revision 2020/09/25

    http://dx.doi.org/10.5755/j01.itc.50.1.24145 

HOW TO CITE: Tayyib, M., Amir, M., Yousufi, M., Abdullah, S., Masqood, S., Irfan, M. (2021). Modified Block Compressed Sensing for 
Extraction of Fetal Electrocardiogram from Mother Electrocardiogram Using Block Compressed Sensing Based Guided FOCUSS and 
FAST-Independent Component. Information Technology and Control, 50(1), 123-137. https://doi.org/10.5755/j01.itc.50.1.24145

Corresponding author: muhammad.tayyib@iiu.edu.pk

Muhammad Tayyib, Muhammad Amir, Musyyab Yousufi, Suheel Abdullah
Faculty of Engineering and Technology; International Islamic University Islamabad; 44000, Pakistan;  
phone: +92 51 9019100; e-mails: Muhammad.tayyib@iiu.edu.pk, m.amir@iiu.edu.pk,  
musyyab.bsee1662@iiu.edu.pk, suheel.abdullah@iiu.edu.pk

Sarmad Maqsood
Department of Software Engineering, Kaunas University of Technology,  
Kaunas 51368, Lithuania; phone: +370 624 77480; e-mail: sarmad.maqsood@ktu.edu

Muhammad Irfan
Faculty of Engineering and Technology; International Islamic University Islamabad; 44000, Pakistan;  
e-mail: mirfan@iiu.edu.pk

mailto:obodovskiy58@gmail.com


Information Technology and Control 2021/1/50124

Fetal electrocardiogram extraction from abdominal electrocardiogram is perilous task for tele-monitoring of 
fetus which require in-depth understanding. Conventional source separation methods are not efficient enough 
to separate fetal electrocardiogram from huge multi-channel electrocardiogram signals. Due to huge amount of 
data, source separation techniques along with compression methods are used, however, the use of compressed 
sensing depends on the sparsity of signal. Electrocardiogram signal is not sparse in original form; therefore, it 
is made co-sparse for processing. This paper proposes block compresses sensing based reconstruction of fetal 
electrocardiogram from abdominal electrocardiogram, the novelty of this paper is in the form of using guid-
ed frequency filter for removing interdependency between multichannel electrocardiogram signals. The use 
of Walsh sensing matrix made it possible to achieve high compression ratio. Experimental results prove that 
even at very high compression ratio, successful fetal electrocardiogram reconstruction from raw electrocar-
diogram is possible. These results are validated using peak signal to noise ratio, signal to interference and noise 
ratio, and mean square error. This shows the framework, compared to other algorithms such as current block-
ing compressed sensing algorithms, Rakness based compressed sensing algorithm and wavelet algorithms, can 
greatly reduce code execution time during data compression stage and achieve better reconstruction.
KEYWORDS: Fetal ECG; Compressed Sensing; BCS-GFOCUSS; Source separation; Classification.

1. Introduction
Cognitive impairment caused by fetal hypoxia during 
the perinatal period remains a serious health prob-
lem worldwide [18]. The growth of fetus is tracked by 
closely monitoring the difference in the fetal electro-
cardiogram (ECG), morphology, heart rate, dynamic 
behavior, and heart sound during perinatal period. 
ECG allows the interpretation of the heart electri-
cal activity far beyond just heart rate and heart rate 
variability. The analysis of mother ECG (MECG) is 
quite simple, electrodes directly placed on chest give 
distinct signals for health monitoring. Obtaining fe-
tus-ECG (FECG) is entirely different, as FECG is to 
be extracted from MECG using source separation 
algorithms which is quite complex. Using FECG sig-
nal analysis, the actionable deformities during fetal 
growth i.e. deceleration, fetal intrauterine hypoxia, 
loss of high frequency variability, ischemia, and dis-
tress, can be distinguished.
 EEG based Brain Computer Interface (BCI) has shown 
significant importance in recent years for health-care 
monitoring, including early detection of seizure, trau-
ma, Alzheimer, and stroke [20]. After the advent of 
ECG in early 90’s, there have been significant improve-
ment in the standards of ECG signal monitoring. ECG 
plays vital role in the detection of many anomalies in 
the functionality of heart, however long-term ECG 
signals (in some cases fourteen days) is compulsory 
for close observation and diagnosis of certain diseas-
es [21]. Moreover, today’s ECG equipment’s uses high 

sampling frequency for recording, enforcing to deal 
with huge amount of data and with the increasing com-
putation capabilities. This huge data entails incredi-
ble threat in data monitoring, storing, processing, and 
transmitting which is not economically efficient. Con-
sequently, to deal with this, several compression tech-
niques have been proposed in the literature.
A suitable compression method can significantly re-
duce the proportion of ECG signals. However, major-
ity of the conventional compression methods are not 
suitable for wireless transmission of ECG signals due 
to their complexity. Competent compression meth-
ods usually promote either high energy consumption 
or low compression [4]. Therefore, forging an efficient 
compression method with ability to fast processing 
and less computational complexity is in high demand. 
With the advent of Compressed sensing (CS), all these 
problems are addressed in most suitable manner [11]. 
Mathematically, CS is the dimensionality reduction 
of sensing technique that uses a usually random, lin-
ear transformation to map original vectors into small-
er vectors of measurements that are enough to recon-
struct the original signal [10]. CS is a novel signal 
processing method for the efficient compression and 
signal reconstruction with minimum error by finding 
the closest possible solution to the undetermined lin-
ear problem.
CS was first introduced by Donho [6] and Candes 
[2] in 2006. CS is competent enough to successfully 
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compress and reconstruct the signal having sparse 
representation in certain bases. After presentation of 
the CS theory, there have been tremendous amount 
of work done using CS reconstruction methods. The 
introduction of CS to ECG have caught the eye of re-
searchers in recent years, with this in mind there have 
been vast number of publications in the areas of re-
construction, encoding and sampling. In contrast to 
the compression process, the reconstruction of CS is 
computationally complex. Zhang et al. [26] proposed 
the concept of Block Spare Bayesian Learning (BSBL) 
for the reconstruction of raw FECG. This method 
exploits the use of intra-block correlation that is 
present in the sparsity pattern of wavelet domain 
and uses BSBL to reconstruct the FECG signal. Cra-
ven et al. [3], have used the concept of adaptive dic-
tionary learning for the reconstruction of ECG. This 
adaptive method determines the location of the QRS 
complex and selects the most appropriate dictionary 
which results in more refined reconstruction. Very 
recently, Eftekharifar et al. [8], have used the block 
sparse model which claims that using raised cosine 
kernel for the construction of sparse bases instead of 
wavelet or Gaussian families, better performance can 
be achieved. Pareschi et al. [16], have introduced the 
concept of Rakness based model that can improve the 
reconstruction performance. Rakness is the ability of 
the linear transformation to collect the energy of the 
signal. By using Rakness based reconstruction model, 
the amount of information for each measurement is 
increased. Thus, it reduces the number of measure-
ments for transmission, however it has some signifi-
cant impact on the time window duration of the com-
putational cost, nevertheless the hardware cost. 
Although CS has achieved some success in adult ECG 
telemonitoring [26], however, it suffers from the tele-
monitoring of FECG. This conflict is due to the strict 
energy constraint and the non-sparsity of the raw 
FECG signal. The use of filtering for increasing the 
energy component of FECG is not encouraged due to 
limited energy. For CS algorithms, this indicates that 
compression should be done with minimum pre-pro-
cessing. Due to the non-sparsity of the raw FECG, the 
reconstruction quality of CS algorithms suffers. Raw 
FECG is different from normal ECG due to the pres-
ence of strong noise and unavoidable interference. Re-
cording from abdominal electrodes consist of MECG 
and FECG, both superimposed on each other. FECG 

Figure 1 
Flow diagram of proposed method

is comparatively smaller in magnitude, extracting 
the fECG from the MECG in the presence of noise is 
thus a difficult problem. Different methods have been 
introduced for this purpose in literature, state of the 
art are, adaptive filtering, Wavelets, Blind Source Sep-
aration (BSS), Principle Component Analysis (PCA), 
Independent Component Analysis (ICA), and sparse 
redundant information [18]. Blind Source Separa-
tion (BSS) [15], separates the abdominal signal into 
three components, FECG, MECG, and noise. Howev-
er, if the abdominal signal does not carry these three 
components, the BSS algorithms fails to separate the 
FECG from MECG. The ICA based blind source sep-
aration [17], was proposed to distinguish FECG from 
the maternal ECG, however, ICA lacks its ability due 
to nonstationary nature of FECG and the presence of 
white noise. The adaptive filtering algorithm has been 
used for the adaptive noise cancellation from abdom-
inal signal [1]. This method uses the combination of 
linear combiner and adaptive noise cancellation to 
update the weights, however, this approach does not 
consider the sparsity of FECG and only use a single 
chest sensor as the MECG reference.

The adoption of wavelet-based techniques is also been 
widely used for source separation, in the literature. Yu 
et al. [25], proposed to enhance the MECG components 
before the extraction of FECG, this result in optimize 
wavelet scale. Procedure is not fully automated and 
require some manual assistance in some cases. More-
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over, this specific method does not give any glimpse of 
FECG extraction. The block compressed sensing was 
introduced to overcome the memory issues by dividing 
the ECG signal into small non-overlapping blocks [26]. 
The independent sampling of these blocks is achieved 
using similar or unique measurement matrices. BCS 
effectively reduce the memory requirement compared 
to the non-BCS algorithms by introducing unique and 
efficient measurement matrices. This results in high 
speed reconstruction and substantial less encoding 
complexity. The use of parallel processing also increas-
es the process of encryption [12].

Figure 2 
Closeup of second channel daisy dataset(a) Segments of first 250 time points of the recording. (b) Subsegment containing 
the QRS complex of MECG. (c) Subsegment containing the QRS complex of FECG. (d) Subsegment containing the QRS 
complex of FECG contaminated by the QRS of MECG

(d)
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The idea of compressed sensing-based 
compressor for ECG signals was proposed in 
[11], authors have presented linear method based 
system architecture that is applicable even at 75 
percent compression. The use of compressor is 
validated by the fact the very small amount of 
data is used for compression, this although 
provides efficiency in terms of compression and 
power consumption, however, this method is 
prone to errors on different architecture. To 
improve the quality of recovered signal, 
kronecker based approach is used. This idea is 
further explored in [12], where for the 
reconstruction of signal, enhanced weighted 
greedy analysis pursuit algorithm is used. The 
problem addressed here is to solve the weighted 
optimization problem using enhanced greedy 
algorithm in the presence of impulsive noise. The 
comparative analysis of this method is presented 
with other algorithms, however, there is lack of 
comparison between advanced techniques, 
therefore, this method could be categorized as 
application/technique specific method where 
comparing it with state of the art methods may 
results in deteriorating performance.  
In this paper, we propose a modified iterative re-
weighted -norm minimization for the BCS 
framework in conjunction with guided frequency 
filter to smooth the blocks. Using -norm 
encourage the sparsity of desired signal along 
with guided frequency filter which removes the 
blocking artifacts. We also extend the joint 
reconstruction of Multi-lead ECG signal 
exploiting the high correlation present in the ECG 
signals. To validate the proposed algorithm 
performance, state of the art performance matrices 
is used, which clearly indicates that proposed 
method outperforms the reconstruction quality 
from existing methods. Extensive simulations are 
performed for the reconstruction, FECG 
separation and performance evaluation. 
The rest of the paper is organized as follows, the 
BCS-framework is explained in Section 2, Section 
3 consists of proposed method, detailed 
experimental results are discussed in Section 4, 
and finally conclusion is drawn in Section 5. 
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A raw FECG signal can be viewed as contaminated 
by noise. Figure 2 shows the segment of raw FECG 
recording, in which non-zero segments from 20-50, 
80-95, and 200-230 time points can be clearly seen. 
Remaining segment can be viewed as concentration 
of zero blocks. The whole signal is thus clean signal 
contaminated by noise, therefore, block partition is 
unknown in FECG monitoring. Hence, raw FECG can 
be modeled as block sparse signal with block partition 
and unknown noise.
There are various methods used in the literature 
for the efficient reconstruction of EEG signal from 
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sparse reconstruction using compressed sensing, 
however, there are limitations to these in terms of 
high compression ratio, whenever algorithms try 
to achieve reconstruction from high compression, 
they face degradation in signal, in [19], accelerat-
ed double temporal based sparse reconstruction is 
done for EEG signal. The use of schattern-p norm 
made it useful technique in terms of execution time, 
however, this technique is prone to noise in high 
compression ratio. Although results are prominent 
in terms of SNDR, and NMSE, however, these are 
limited to only specific data set, therefore improve-
ment could be done. Compressed sensing have wide 
range of applications in wireless communication, in 
[12], authors have presented comprehensive litera-
ture review of cognitive and wireless application for 
compressed sensing domain, the method proposed 
is distortion rate QCS (DR-QCS). The research is 
based on three sections, first section covers the CS 
techniques for wireless applications, in second part, 
data gathering, and lossy compression is addressed. 
In last section of paper, architecture based on 
multi-user detection and spectrum sensing are dis-
cussed. This study provides value able insight to the 
current trends of CS, however, there is not practical 
simulation presented by authors. 
The idea of compressed sensing-based compressor 
for ECG signals was proposed in [11], authors have 
presented linear method based system architecture 
that is applicable even at 75 percent compression. 
The use of compressor is validated by the fact the 
very small amount of data is used for compression, 
this although provides efficiency in terms of com-
pression and power consumption, however, this 
method is prone to errors on different architecture. 
To improve the quality of recovered signal, kro-
necker based approach is used. This idea is further 
explored in [12], where for the reconstruction of 
signal, enhanced weighted greedy analysis pursuit 
algorithm is used. The problem addressed here is to 
solve the weighted optimization problem using en-
hanced greedy algorithm in the presence of impul-
sive noise. The comparative analysis of this method 
is presented with other algorithms, however, there is 
lack of comparison between advanced techniques, 
therefore, this method could be categorized as appli-
cation/technique specific method where comparing 
it with state of the art methods may results in deteri-
orating performance. 

In this paper, we propose a modified iterative 
re-weighted -norm minimization for the BCS 
framework in conjunction with guided frequency fil-
ter to smooth the blocks. Using -norm encourage 
the sparsity of desired signal along with guided fre-
quency filter which removes the blocking artifacts. 
We also extend the joint reconstruction of Multi-lead 
ECG signal exploiting the high correlation present in 
the ECG signals. To validate the proposed algorithm 
performance, state of the art performance matrices is 
used, which clearly indicates that proposed method 
outperforms the reconstruction quality from exist-
ing methods. Extensive simulations are performed 
for the reconstruction, FECG separation and perfor-
mance evaluation.
The rest of the paper is organized as follows, the 
BCS-framework is explained in Section 2, Section 3 
consists of proposed method, detailed experimental 
results are discussed in Section 4, and finally conclu-
sion is drawn in Section 5.

2. Compressed Sensing
Compressed sensing is comparatively new signal pro-
cessing paradigm offering more possibilities than any 
other compression method. The theory of CS relies on 
the assumption that if the subjected signal is exactly 
or approximately sparse in appropriate basis, then 
the reconstruction below the Shannon Nyquist theo-
rem sampling is possible. Sparsity in the signal’s rep-
resentation leads to the reduced degree of freedom. 
Majority of signals are not sparse by nature, so they 
are made sparse by choosing a suitable basis matrix 
and thus transformation results in the sparsity of sig-
nal in that domain. This is achieved by selecting a suit-
able basis matrix . The real valued signal 

 is said to be k-sparse if it can be represent-
ed as,  have k (k<<N) non-zero entries, where,

 is the coefficient vector, with  and  
 is  norm indicate the number of non-zero en-

tries. The sparse representation of multiple channel 
model can be represented as, 

. (1)

where,  is data matrix 
considering P channels and N-dimensional FECG 
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signal,  is orthonor-
mal basis vector,  
represents the sparse coeffecient vector for each sig-
nal. The compressed signal is obtained using com-
pressed sensing theory, as, 

, (2)

where,  is compressed 
data,  is the sensing matrix (m << N) indi-
cating dimension far less than the original data, and 
P represent the original signal. Combining Equations 
(1) and (2),

. (3)

To ensure a stable recovery, the sensing matrix must 
satisfy the restricted isometry property (RIP) [6]. 
The sparse matrixes involve less computation and are 
memory efficient. All most all of the real-world sig-
nals are contaminated with noise, so in order to rep-
resent these signals, Equation (3) can be written more 
appropriately as,

, (4)

where  is noise vector modeling the errors occur 
during the acquisition or in CS framework.
The recovery of compressed signal from measure-
ment vector Y is ill posed problem due to m << N. This 
results in undermined system which has infinitely 
many solutions. It was suggested that to recover such 
problems, convex optimization techniques can be ap-
plied only of it satisfy the following condition: m > OK 
log (N), where O is some constant and ratio m/N is 
called compression ratio (CR). The convex optimiza-
tion problem formed is as follows,

, (5)

where,  is the inverse transform. This is an NP-
hard problem and to exactly recover the sparse signal 
following model is used,

, (6)

In Equation (6),  is the  -norm. 

3. Block Compressed Sensing
In recent years, numerous CS reconstruction algo-
rithms have been proposed. The use of Basis Pur-
suit (BP) for reconstruction gives better results, but 
due to computational cost BP is not frequently used. 
Gradient Projection for Sparse Reconstruction 
(GPSR), Orthogonal Matching Pursuit (OMP), and 
stage-wise orthogonal matching pursuit (st-OMP) 
speeds up the computations but suffer severely with 
reconstruction quality. The gradient descent-based 
methods [12-13], were proposed in literature that are 
comparatively fast and gives better quality. These 
methods divide the function into smaller subfunc-
tions, which can be solved separately with efficiency 
and less computational cost. However, these algo-
rithms suffer during reconstruction from blocking 
artifacts that are introduced during the regrouping 
of these subproblems [14]. It can cause loss in vital 
information. Recently, iterative thresholding al-
gorithm based on smoothed projected land-weber 
for Block Compressive Sensing (BCS-SPL), was 
proposed to address these problems, which can ef-
ficiently achieve sparsity and smoothness using fil-
ters and hard thresholding [20]. This algorithm like 
gradient based methods solve subproblem separate-
ly and during recovery the hard thresholding cause 
significant loss of information.
To address the above-mentioned shortcomings, we 
propose modified BCS algorithm to solve subprob-
lems as single unit. This not only achieve better per-
formance but also results in less computations [19]. 
To avoid the blocking artifacts upon reconstruction, 
Guided Frequency Filter (GFF) is proposed. In our 
previous work we have proposed to remove these ar-
tifacts using median filter [24]. The reconstruction 
performance is improved using GFF filter [23]. GFF 
filter is the frequency domain filter adopted from the 
guided filter theory. The proposed method is variant 
of FOCUSS algorithm with GFF filtering incorporat-
ed in every iteration. The proposed method is validat-
ed using statistical matrices i.e. PSNR, SINR and cor-
relation, which clearly shows that proposed method 
outperforms the BSBL-BO, Rakness, BCS-SPL, BCS-
DWT and BCS-DCT algorithms. In BCS, FECG sig-
nals are distributed into k×k blocks that are sampled 
using sequential walsh-hadmard matrix [9].
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The proposed method removes the blocking artifacts 
and work as smoothing operator, whereas, applying 
FOCUSS directly as reconstruction algorithm leads to 
blocking artifacts. In this paper, we proposed to over-
come these artifacts by incorporating GFF filter in 
each iteration. Using BCS, the FECG signal  is divid-
ed into k×k non-overlapping blocks containing  
time points. Let  the measurement ma-
trix, in our case it is sequential walsh-hadmard ma-
trix, where  are the number of measurements per 
block. Then  give the projection of  onto 
the measurement matrix. Equation (5) represent 
the problem that is solved using FOCUSS algorithm. 
The optimization problem and reconstruction is 
done using Lagrangian method, which reconstruct as  

. The novelty of proposed method is 
that FOCUSS in its pure form does not involve any 
smoothing operator for the removal of artifacts in 
each iteration, we have successfully incorporated 
the GFF filter in each iteration. The cost function for 
such iterative problem is formulated as,

. (7)

for more general scenario, Equation (7) can be writ-
ten as,

. (8)

The iterative reconstruction problem is formulated 
as, 

. (9)

Equation (9), give sparse solution by taking -norm 
of signal with respect to sparsity basis  and keeping 
the equality constraints in check. To solve this con-
strained non-linear optimization problem, Lagrang-
ian method is used and GFF filter is applied in each 
iteration for smoothing. The Lagrangian is defined as,

, (10)

where  is a vector containing Lagrangian multipli-
ers. Let  be the minimizing solution, the neces-
sary condition for Lagrangian requires  be 
the stationary points of Lagrangian function. This 
is given as,

. (11)

The partial derivative of  w.r.t  is given as

. (12)

The objective function is obtained using decomposi-
tion,

, (13)

where  is the row vector of . The gradient vector of 
objective function after decomposition is obtained as,

, (14)

where  represent the diagonal matrix of size n× n.

, (15)

where = . Refereing to Equation (12) and Equa-
tion (15), we can write,

, (16)

considering the Lagrangian in Equation (10), we may 
write as,

. (17)

From Equation (11), (16), and (17), the stationary 
points must satisfy,

(18)

. (19)

From Equation (18)

, (20)
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using this expression in Equation (19)

. (21)

Using this expression for  in Equation (20),

,
(22)

defining , the recursive form of , for iterative 
scheme is given as,

.
(23)

Although solving Equation (23) is not straight for-
ward, but in literature to solve such approach, relax-
ation method is suggested. Relaxation method solves 
the problem by approximating the difficult problem 
into simple problems.
Unlike FOCUSS algorithm, Equation (23) gives an 
approximation of each FECG signal at individual iter-
ation by incorporating smoothing filter. As Lagrange 
multiplier is used to solve the FOCUSS algorithm, we 
name it as BCS-GFOCUSS.

Algorithm 1. Proposed Algorithm

4. Experiments
For the extraction of FECG from MECG, we have used 
publicly available dataset [5]. This benchmark dataset 
has wide reputation for such tasks, the DaISy dataset 
contain barely visible FECG. To show the diversity of 
the proposed algorithm, these datasets prove efficien-
cy under different scenarios. All the simulations are 
performed on MATLAB 2017a, with 8Gb RAM. The 

validity of proposed algorithm is verified by compar-
ison with existing compressed sensing algorithm i.e. 
BSBL, Rakness, BCS-SPL, BCS-DWT and BCS-DCT. 
For the compression in each case, sequential Walsh 
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ed recording. Thus, we develop more direct approach 
by extracting FECG form raw signal as well as from 
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relation between both.

4.1. Daisy Dataset
Daisy dataset is the most used data for the telemon-
itoring of FECG [5]. Figure 2 shows the segments of 
daisy dataset. In this dataset, two not clearly visible 
FECG QRS complex are present which are overshad-
owed by two MECG QRS complexes. By observing we 
can clearly state that this dataset is not sparse and 
almost its every entry is non-zero. This poses serious 
difficulty for the CS recovery algorithms. For com-
pression, we have used 125x250 sequential Walsh 
Hadamard matrix.
For BCS-GFOCUSS, we have defined the block size 
of 32x32 for the partition of each ECG signal. As 
ECG data is very similar due to monitoring of same 
source with different angles, so using intra-block 
correlation results in better performance. This can 
be seen in Figure 3.
The comparison is done with two sets of algorithms, 
first lot contain non-blocking CS algorithms and 
second one contains blocking CS algorithms. Due to 
excessive amount of result, only results of BSBL-BO 
and Rackness CS are presented in Figure 4. To justify 
the claimed results, we have have incorporated same 
sensing matrix for the compression of DaISy dataset 
and then used BCS-GFOCUSS to reconstruct it.
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prominent in all recordings of Figure 5(a). The re-
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DaISy dataset contain prominent MECG activity 
prominent in all recordings of Figure 5(a). The 
recordings show very feeble FECG which is not very 
clear in first five readings, however fourth one 
dominated by baseline deviation probably due to 
maternal respiration. Figure 5 (b) shows all the 
reconstructed recordings using BCS-GFOCUSS, which 
do not show any distortion visibly and shows prominent 
reconstruction. By checking the reconstruction quality 
with statistical analysis, there are slight errors. The final 
goal of our work is extracting clean FECG from 
reconstructed FECG recordings, so this does not pose 
any serious issue. The extraction results are shown in 
Figure 5(d), which clearly advertise the prominent QRS 
complexes without any residual noise effects. For 
comparison, same method is repeated on original FECG 
recordings and results are shown in Figure 5(c) clearly 
indicate the same FECG patterns. Even baseline 
wanders are recovered well. 
The outcome of the proposed algorithms is source 
separation of FECG from MECG. This is achieved by 
using GIFT toolbox as a source separation toolbox [7]. 
GIFT is publicly available toolbox, with excellent 
results in source separation. FAST-ICA algorithm is 
used to extract IC's from raw FECG dataset and from 
reconstructed BCS-GFOCUSS algorithm. FECG and 
MECG are separated using FAST ICA, it can be seen in 
Figure 6, that there is very minute amount of difference 
between raw and reconstructed IC's almost 
indistinguishable by naked eye. FAST-ICA is used in 
deflation mode and six different IC's were extracted 
where fourth one is the FECG. Same procedure was 
performed on all the comparison algorithms, as seen in 
Figure 6, all these algorithms fail to achieve the task. 
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clear in first five readings, however fourth one domi-
nated by baseline deviation probably due to maternal 
respiration. Figure 5 (b) shows all the reconstructed 
recordings using BCS-GFOCUSS, which do not show 
any distortion visibly and shows prominent recon-
struction. By checking the reconstruction quality 
with statistical analysis, there are slight errors. The 
final goal of our work is extracting clean FECG from 
reconstructed FECG recordings, so this does not pose 
any serious issue. The extraction results are shown 
in Figure 5(d), which clearly advertise the prominent 
QRS complexes without any residual noise effects. 
For comparison, same method is repeated on original 
FECG recordings and results are shown in Figure 5(c) 
clearly indicate the same FECG patterns. Even base-
line wanders are recovered well.
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The outcome of the proposed algorithms is source 
separation of FECG from MECG. This is achieved by 
using GIFT toolbox as a source separation toolbox 
[7]. GIFT is publicly available toolbox, with excellent 
results in source separation. FAST-ICA algorithm is 
used to extract IC’s from raw FECG dataset and from 
reconstructed BCS-GFOCUSS algorithm. FECG 
and MECG are separated using FAST ICA, it can be 
seen in Figure 6, that there is very minute amount 
of difference between raw and reconstructed IC’s 
almost indistinguishable by naked eye. FAST-ICA 
is used in deflation mode and six different IC’s were 

Figure 5 
Comparison of original and reconstructedsegments by BCS-GFOCUSS (a) Raw fECG segment (b) Reconstructed 
fECGexploiting intra-block correlation (c) Reconstruction avoiding intra-blockcorrelation MECG, (d) Reconstruction 
avoiding intra-block correlation for fECG
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DaISy dataset contain prominent MECG activity 
prominent in all recordings of Figure 5(a). The 
recordings show very feeble FECG which is not very 
clear in first five readings, however fourth one 
dominated by baseline deviation probably due to 
maternal respiration. Figure 5 (b) shows all the 
reconstructed recordings using BCS-GFOCUSS, which 
do not show any distortion visibly and shows prominent 
reconstruction. By checking the reconstruction quality 
with statistical analysis, there are slight errors. The final 
goal of our work is extracting clean FECG from 
reconstructed FECG recordings, so this does not pose 
any serious issue. The extraction results are shown in 
Figure 5(d), which clearly advertise the prominent QRS 
complexes without any residual noise effects. For 
comparison, same method is repeated on original FECG 
recordings and results are shown in Figure 5(c) clearly 
indicate the same FECG patterns. Even baseline 
wanders are recovered well. 
The outcome of the proposed algorithms is source 
separation of FECG from MECG. This is achieved by 
using GIFT toolbox as a source separation toolbox [7]. 
GIFT is publicly available toolbox, with excellent 
results in source separation. FAST-ICA algorithm is 
used to extract IC's from raw FECG dataset and from 
reconstructed BCS-GFOCUSS algorithm. FECG and 
MECG are separated using FAST ICA, it can be seen in 
Figure 6, that there is very minute amount of difference 
between raw and reconstructed IC's almost 
indistinguishable by naked eye. FAST-ICA is used in 
deflation mode and six different IC's were extracted 
where fourth one is the FECG. Same procedure was 
performed on all the comparison algorithms, as seen in 
Figure 6, all these algorithms fail to achieve the task. 
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extracted where fourth one is the FECG. Same pro-
cedure was performed on all the comparison algo-
rithms, as seen in Figure 6, all these algorithms fail 
to achieve the task.

4.2. Performance Evaluation
In this paper, we have successfully extracted FECG 
from MECG using DaISy dataset. The main question 
rises in the form that either same algorithms will 
perform well using different dataset, as the amount 
of correlation in fetus may vary due to pregnancy 
period, position of fetus and random muscle move-
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ment. Since BCS-GFOCUSS totally rely on correla-
tion structure to improve its performance. These 
questions are answered by evaluating the experi-
mental results using different statistical measure-
ments. The aim of BCS-GFOCUSS is on applications 
where low coding optimization techniques are re-
quired to optimize available resources. As non-over-
lapping blocks in BCS reduces amount of data, com-
putation, and power, hence, in all our simulations 
non-overlapping block of 32x32 is used. To test the 
performance of proposed algorithm, we have used 
peak signal to noise ratio (PSNR) and signal to inter-
ference and noise ratio (SINR). SINR in our case is 
the ratio between the power of FECG to combined 
power of MECG and noise/interference. The results 
are shown in Table 1, at SINR value of -35 dB. It can 

Figure 6 
Comparison of FAST-ICA decomposition of original dataset and reconstructed dataset by BCS-GFOCUSS (a) ICs of recovered 
dataset (b) ICs of the original dataset 
The fourth IC in both (a) and (b) are the extracted FECG from both original and reconstructed dataset
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between the power of FECG to combined power of 

MECG and noise/interference. The results are 
shown in Table 1, at SINR value of -35 dB. It can 
be clearly observed, in the presence of strong 
noise FECGs are still recovered maintaining high 
fidelity. 
Compression ratio (CR) also plays vital role in the 
successful recovery of compressed signal. CR is 
defined as, 

  ,                                   (24)                                         
where N is the length of raw FECG signal and M 
is the length of the reconstructed FECG signal. In 
case of sensing matrix, CR varies by changing the 
values of M from 25 to 90, while N is fixed to 
512. To validate the results, we have performed 
same scenario for 20 times to avoid any errors. 
Walsh Hadamard sensing matrix and DaISy 
dataset is used for all the simulations. 

5. Discussion 
The size of the block plays an important role in 
the performance of the algorithm. Most of the CS 
algorithms deals with unknown block structure. 
Hence, they try to find true block structure 
compromising the accuracy. BCS-GFOCUSS 
create user defined arbitrary blocks, which may 
differ from true block structure. After many 
experiments and simulations, it was noted that 
best results are obtained when block size is 32x32. 
Most of the raw signals are not sparse, especially 
in the presence of noise. To reconstruct such 
signals, generally two types of approaches are 
adopted. First one is to take some threshold point 
below whose all values are made zero, which in 
case of FECG is not possible as we have seen that 
FECG signal may have very small amplitude. 
Second approach is to reconstruct the signal in 
transform domain, the success of which rely on 
the sparsity level of representation coefficients. 
However, in most of the cases, sparse coefficients 
are still not sparse enough. This results in few 
large amplitude coefficients and large amount of 
small amplitude coefficients, which in case of 
further processing, results in the failure of source 
separation of FECG from MECG. Unlike these 
scenarios, BCS-GFOCUSS directly reconstruct 
the non-sparse signals unlike resorting to above 
two strategies. High quality reconstruction allows 
this method for further signal processing and 
pattern recognition used for clinical diagnosis. 
Very clearly it can be observed the block structure 
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where N is the length of raw FECG signal and M is the 
length of the reconstructed FECG signal. In case of 
sensing matrix, CR varies by changing the values of M 
from 25 to 90, while N is fixed to 512. To validate the re-
sults, we have performed same scenario for 20 times to 
avoid any errors. Walsh Hadamard sensing matrix and 
DaISy dataset is used for all the simulations.
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Method Compression Ratio MSE PSNR SNR(dB) Mean Std

BCS-DWT

2:1(50%) 0.02517 32.36 -11 1.76e-05 2.47e-06

3.4:1(70%) 0.02832 30.64 -15 8.48e-05 1.15e-06

5:1(80%) 0.04717 28.19 -19 6.02e-05 1.78e-06

BCS-SPL

2:1(50%) 0.02471 33.30 -12 1.63e-05 1.47e-06

3.4:1(70%) 0.02781 31.77 -17 6.54e-05 1.15e-06

5:1(80%) 0.03843 28.66 -20 6.06e-05 1.68e-06

BSC-FOCUSS

2:1(50%) 0.01173 35.42 -15 8.47e-04 1.99e-05

3.4:1(70%) 0.01837 33.65 -20 7.03e-04 2.29e-05

5:1(80%) 0.02176 29.66 -22 2.76e-04 1.54e-05

BSBL-BO

2:1(50%) 0.003725 38.71 -25 2.79e-04 3.55e-05

3.4:1(70%) 0.006521 35.14 -28 9.47e-04 4.99e-04

5:1(80%) 0.007413 33.63 -32 5.03e-04 3.29e-04

Rakness

2:1(50%) 0.003545 41.48 -25 1.66e-03 2.57e-04

3.4:1(70%) 0.004618 38.92 -26 7.53e-03 1.29e-04

5:1(80%) 0.006717 36.85 -29 6.06e-03 1.23e-04

DTSR

2:1(50%) 0.002451 49.21 -32 1.56e-03 2.37e-04

3.4:1(70%) 0.006341 49.54 -31 8.58e-04 1.25e-04

5:1(80%) 0.006817 47.32 -32 7.02e-04 1.68e-04

DR-QCS

2:1(50%) 0.005545 42.58 -28 1.56e-03 2.37e-04

3.4:1(70%) 0.004714 40.72 -27 8.58e-04 1.25e-04

5:1(80%) 0.007783 39.55 -32 7.02e-04 1.68e-04

CS-based 
compressor

2:1(50%) 0.02521 45.21 -31 9.47e-04 1.99e-04

3.4:1(70%) 0.002145 44.44 -28 6.03e-04 1.29e-04

5:1(80%) 0.003561 42.14 -30 1.76e-03 2.54e-04

ewGAP

2:1(50%) 0.001122 50.25 -34 1.79e-03 2.55e-04

3.4:1(70%) 0.002140 48.47 -35 9.47e-04 1.99e-04

5:1(80%) 0.002265 43.21 -37 6.03e-04 1.29e-04

BCS-GFOCUSS

2:1(50%) 0.001025 51.24 -35 1.76e-03 2.54e-04

3.4:1(70%) 0.001541 49.75 -6 9.46e-04 1.98e-04

5:1(80%) 0.002169 45.74 -39 6.02e-04 1.27e-04

Table 1
Quantitative measures for sparse signal recovery of EEG signals
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5. Discussion
The size of the block plays an important role in the 
performance of the algorithm. Most of the CS algo-
rithms deals with unknown block structure. Hence, 
they try to find true block structure compromising 
the accuracy. BCS-GFOCUSS create user defined 
arbitrary blocks, which may differ from true block 
structure. After many experiments and simulations, 
it was noted that best results are obtained when block 
size is 32x32.
Most of the raw signals are not sparse, especially in 
the presence of noise. To reconstruct such signals, 
generally two types of approaches are adopted. First 
one is to take some threshold point below whose all 
values are made zero, which in case of FECG is not 
possible as we have seen that FECG signal may have 
very small amplitude. Second approach is to recon-
struct the signal in transform domain, the success 
of which rely on the sparsity level of representation 
coefficients. However, in most of the cases, sparse 
coefficients are still not sparse enough. This results 
in few large amplitude coefficients and large amount 
of small amplitude coefficients, which in case of fur-
ther processing, results in the failure of source sepa-
ration of FECG from MECG. Unlike these scenarios, 
BCS-GFOCUSS directly reconstruct the non-sparse 
signals unlike resorting to above two strategies. High 
quality reconstruction allows this method for fur-
ther signal processing and pattern recognition used 
for clinical diagnosis. Very clearly it can be observed 
the block structure and intra-block correlation plays 
crucial role in the high-quality reconstruction. Fur-
thermore, it is observed, that unlike existing CS algo-
rithms, BCS-GFOCUSS even perform better at high 
compression ratio.

The ability of proposed BCS-GFOCUSS to tackle 
strong noise and high-quality reconstruction even 
at high compression (very less measurements) has 
interesting mathematical implications. There are 
infinite many solutions to undetermined problem, 
in case of sparse solution, CS algorithms works but 
when solution is not sparse, it is more challenging and 
difficult. This study shows that using Walsh Hadam-
ard sensing matrix, the transformed domain shows 
better sparsity and using block structure with in-
tra-block correlation it is possible to reconstruct esti-
mated solution that is almost equal to original signal.

6. Conclusion 
Extraction of FECG from abdominal ECG is challeng-
ing task, this study proposes BCS-GFOCUSS frame-
work for the extraction of FECG from MECG. ECG 
signal being non-sparse and contaminated by noise 
is difficult to handle using conventional CS approach, 
using Walsh sensing matrix this method explores the 
efficient reconstruction of FECG signal after com-
pression. Based on the proposed method, experimen-
tation is done using statistical analysis and results are 
compared with state-of-the-art compression methods. 
The novelty of this method is based on using guided fre-
quency filter which provide distinct signal that is not 
interdependent on the multi-channel property of ECG. 
Simulations are done on the well-known FECG data set 
which shows that proposed algorithm is easy to incor-
porate, moreover, the results indicate that reconstruc-
tion accuracy of proposed method is more compare 
to Rakness, BSBL-BO, BCS-FOCUSS, BCS-SPL and 
BCS-DWT. The biggest advantage of using BCS-GFO-
CUSS is that even at high compression ratio, excellent 
reconstruction could be achieved that is not possible 
using conventional compressed sensing algorithms. 
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