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Biometrical identification of persons using the contour of a human hand belongs to a very interesting and not yet 
totally explored areas, and its accuracy and effectiveness depends, to some extent, on the technical possibilities in 
scanning of persons. The presented paper solves the problem with use of a combination of various methods. A 
hand contour, topological description of the hand, evolutionary algorithm, and linear regression algorithm to 
estimate correct knuckles positions is used. For comparison of geometrical data, the Iterative Closest Point 
(ICP) algorithm is used in its genuine shape. Just the modern evolutionary optimizers enabling to change from 
ground the view how to solve similar problems but at the expense of higher algorithm development demands. 
However, it enables to cut down computational demands of ICP algorithm markedly. Experimental verifica-
tion of proposed methods was performed with use of two different databases THID and GPDS with persons 
of different gender and age (c. 20-65 years) with total number of persons in individual databases 104 and 94. 
Experimental results proved very successfully the suitability of use the combination of the methods ICP and 
evolutionary optimizer called EPSDE for solving the given task with final algorithmic complexity O(N) and 
successful rate at classification given by coefficients THID:EER=0.38% and GPDS:EER=0.35% on real images. 
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1. Introduction
The Persons identification problem with use of hand 
contour [8, 7, 14, 29, 33, 50] is very specific. It is a de-fac-
to accurate measurement of dynamically changeable 
two-dimensional structures based only on visual in-
formation. A successful solution of this problem re-
quires use of high-quality apparatus to obtain images 
of hands, sophisticated hand image processing and 
computing of hand contour, and of course high-quality 
filtering of noise. The problem of hand contour classi-
fication is then defined as the capability of classifier to 
find, as near as possible, the correspondence between 
template hand contour, and contour which is submit-
ted for identification. All five fingers of the template 
contour of a hand are moveable, and thanks to that the 
classification process is more difficult compared with a 
hand contour which has only four fingers. The big chal-
lenges which depend purely on technical advance is 
firstly, image filtration received from common mobile 
equipment and secondly, finding correct positions of 
individual knuckles. This is because it is not possible 
to repeatedly use x-ray or magnetic resonance for per-
son identification as it is very expensive. In the survey 
study [8] a list of best possible results is mentioned 
which can be reached with use of a certain type of al-
gorithm. The methods based on simple Euclidean met-
rics can reach accuracy defined by a coefficient approx. 
EER=3-5%. This fact is commonly known. 
A method described in the presented paper modifies, 
in a suitable way, a commonly used scheme of Euclid-
ean metrics. It uses a modern, and many years proved, 
evolutionary optimizer of 3rd generation and an Itera-
tive Closest Point (ICP) algorithm [10]. Thanks to this 
combination the method is capable of coming up with 
results of methods which are based on the Linear Dis-
criminant Analysis (LDA) algorithm, which is at this 
time assumed as one of the best possible solutions 
for the given task and which is used in many papers 
e.g. in [8, 35]. An advantage of the proposed method 
is also lower algorithmic complexity in comparison 
to LDA vs ICP+EA however, at the expense of higher 
algorithmic demands (code length). Biometric identi-
fication of persons with use of hand contour falls into 
the category of methods of short-term identification, 
and very often works in connection with any other 
biometric method.  Biometrical information of a hu-
man has one undisputable advantage. It is difficult to 
forget it and even worse it can be falsified if a tested 
person is physically present. During personal identi-

fication, more features are combined very often e.g. 
hand contour and palmprint, finger print, palmprint 
only, skin folds on fingers, hand bloodstream, iris, ear 
shape, and face shape.  Moreover, it is possible to take 
into account the classic PIN code. As an example, per-
sonal identification in airports with use of ear photos 
can be mentioned [1, 28].
For experimental purposes two different databas-
es were used: Technocampus hand Image Database 
(THID) [20, 23, 58] and also database GPDS [22, 55, 
59] The Grupo de Procesado Digital de la señal, GPDS 
(Digital Signal Processing Group) with DPDS (Di-
visión de Procesado Digital de la Señal) from Institu-
to para el Desarrollo Tecnológico y la Innovación en 
Comunicaciones IDeTIC, University of Las Palmas 
de Gran Canaria, Spain.

2. Related Works

2.1. Selected Methods of Persons 
Identification with Use of Hand Contour 
Representation
There is an uncountable number of methods based on 
biometrics published in the past, and new methods 
still arise. However, the area of person identification 
with use of hand contour classification is not so wide 
and publications are rarer. [19, 20] presented an al-
gorithm enabling personal identification with use of 
hand contour and neural nets of Multi-Layer Percep-
tron (MLP) type. Success rate of the method is in the 
99-100 percent interval. Another use of neural nets 
can be found e.g. in [3]. [8] published a paper based on 
their own many years of long research. They also used 
findings of other research teams e.g. [13, 50]. The best 
results were reached with use of the Linear Discrimi-
nant Analysis (LDA) algorithm and the final coefficient 
is EER=0.52%. The value of EER=3.5% was obtained 
when using the standardized Euclidean distance algo-
rithm. [5] published a method called the “multimodal 
biometric system”, which for identification of persons, 
uses hand contour and also other geometric primitives. 
The best reached result is EER=0.31% with use of im-
ages from a proprietary database, and EER=0.52% 
with use of images from IITD database. [33] proposed 
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a method called “Hand Geometry and Crookedness 
Identification Algorithm” (HGCIA). The best reached 
accuracy is for a template made of three hand imag-
es FAR=0.0%, FRR=1.19%, IR=100% in identification 
mode and FAR=0.03%, FRR=1.19% in verification 
mode. Without use of weight coefficients they reached 
a fantastic FAR=1.19%, FRR=1.19%. [35] proposed a 
method named GA-LDA, which utilizes a Genetic Al-
gorithm (GA) in combination with the Linear Discrim-
inant Analysis (LDA). GA is not used for classification 
of contours but only in the preprocessing step. The 
method that provided the best results with accuracy 
of 100 percent for the GPDS database had a subset of 
22 and 34 significant features. The result for the IITD 
database was EER=4.6%. [9] proposed a method which 
enables classification of a hand contour with the use of 
a “k-nearest neighbours” (kNN) classifier, which was 
obtained from [35]. These authors also used a classifi-
er called “Random Forest”. Both classifiers work with 
a set of features instead of a two-dimensional shape 
of hand contour. The best reached value of EER when 
only using 4 fingers is EER=6.6-8.0% for the right hand 
and EER=6.2-8.25% for the left hand according to the 
number of persons in the used database. With an in-
creasing number of persons, the accuracy decreases.

2.2. Algorithm ICP 

For comparison purposes of two hand contours the 
algorithm named Iterative Closest Point (ICP) was 
elected [10]. ICP is somewhat older, but still much-
used algorithm. There is an uncountable number of 
modifications. The ICP algorithm represents many 
years of proved technology which because of its bene-
fits, is more often used in sensitive areas of medicine 
e.g. [19]. Convergence analysis of the ICP algorithm 
is mentioned in [10, 43, 36] and other useful informa-
tion can be found in [46].

2.3. Elected Evolutionary Optimizers 
For computation purposes of personal identification 
with use of hand contour, the EPSDE algorithm [37] is 
primarily used, which originates from optimizer Dif-
ferential Evolution (DE) [44], algorithm jDE [11] and 
algorithm JADE [61]. The reason why the EPSDE al-
gorithm was elected is that at experiments, it showed 
the best results. EPSDE totally minimizes the num-
ber of working parameters see [17, 51, 52, 53]. In the 
experimental results section, several other optimiz-
ers: SaDE [45], SPDE [2], DESAP [54], SANSDE [62], 

CMA-ES [24, 25, 26], Particle Swarm Optimization 
(PSO) [32], RPSO [57] and SGA [27, 28], Polar Bear 
Optimizer (PBO) [42] are also used. All used optimiz-
ers optimize 7, 8 and 9-dimensional functions which 
are constrained, noncontinuous, non-separable, 
strongly nonlinear and ill conditioned. As the most 
suitable optimizer from the set of tested optimizers, 
EPSDE was elected. Now, several important nota-
tions will be described which relate to the EPSDE op-
timizer and are used in the following paragraphs. 
For evolutionary optimizers, the first step of 
the algorithm is usually initialization of the  
population opP  of individuals in the total number of

popN individuals )| 0, ,i pop popX i N N +∈ ∈� , 4popN ≥ , 
)| 0, , | 0.0, 2.0i j imX x j D F j = ∈ ∈ , jx ∈�

 
. Every in-

dividual 
iX  represents one possible solution of the 

given task. iX   is a imD -dimensional vector which 
brings concrete values (real numbers) for one possi-
ble solution in actual generation 

enG . Parameter F is 
marked as a mutational (weight) constant and holds 
that 0.0 2.0F< ≤ . EPSDE computes F  automatical-
ly. In the first step of the algorithm all individuals are 
placed to random position in whole space of possible 
solutions 1 2 ... |k

om om omD D D k +Η = × × × ∈� , omD  is so called 
domain for kth dimension, ( )| min,maxom omD D ∈ , every 
dimension can have different values min,max  resp. 
limitations of space of possible solutions. 
After initialization follows an iterative process of 
evolution which is usually given with number of gen-
erations 

enG  and at the end of this process the optimiz-
er provides a result.

3. Description of Proposed Method
The presented system for personal identification 
using contour of a human hand belongs to the group 
of contactless systems. The proposed algorithm will 
be marked as eaICP. It is not necessary that a hand 
touches a pad during image capturing, but it is possi-
ble. The algorithm cannot work with scale, hence, it is 
assumed that movement in the Y axis is minimal, or it 
must be limited with suitable means e.g. glass desks. 
The hand is inserted into a sensing chamber or sens-
ing area in a defined direction and angle, with the top 
of the hand heading to the camera and with stretched 
fingers. The angle between the hand axis and the X 
axis must be as small as possible – see Fig. 1 and 3. 
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Figure 1 
Gradual process of image processing from camera – see also Figures 1-2. Firstly, an image from camera is captured, then 
image transformation follows into suitable format, next is conversion to black and white representation and next is image 
filtration and analytical description creation and creation of contours   suitable for computation with EA and ICP
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Figure 2  
Scheme of process of classification of found contour of hand C  – see also (3). The contour C  is 
classified with use of Radial Distance Diagram 

DDR   see (2) and significant points
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inflexion of the curve). By this step a curve 
RDDC   is obtained see (3). With use of contour C  and found 
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Figure 2 
Scheme of process of classification of found contour of hand C – see also (3). The contour C is classified with use of 
Radial Distance Diagram RDD see (2) and significant points PC (points of inflexion of the curve). By this step a curve CRDD is 
obtained see (3). With use of contour C and found significant points PC on curve RDD resp. CRDD, axes of individual fingers 
are then found with use of contour CLR and next the contours M and S are assembled
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Figure 3 
Fully classified hand contour with marked important points and other description. Scheme of the hand in such a manner 
of how it was created by the proposed algorithm eaICP from RGB image. Coordinate basic origin is top left, X  axis is 
horizontal, Y axis is vertical. Points  PC1 –PC14  are key-points on contour of the hand obtained by procession of the RDD. 
Points PK1 –PK6  mean positions of important knuckles in which the simulation of rotation is performed in plane XY. 
Contour c2 rotates around the knuckle PK2 and this knuckle rotates together with contour 
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using contour of a human hand belongs to the 
group of contactless systems. The proposed 
algorithm will be marked as eaICP. It is not 
necessary that a hand touches a pad during 
image capturing, but it is possible. The algorithm 
cannot work with scale, hence, it is assumed that 

movement in the Y axis is minimal, or it must be 
limited with suitable means e.g. glass desks. The 
hand is inserted into a sensing chamber or 
sensing area in a defined direction and angle, 
with the top of the hand heading to the camera 
and with stretched fingers. The angle between 
the hand axis and the X axis must be as small as 
possible – see Fig. 1 and 3. The hand position can 
be slightly variable in plane XY in a certain range 
of free space within the capturing chamber; and 
indeed, with regards to the visual field of the 
used camera.  
 
The background of the scene is black and dull. 
The RGB image obtained from the camera is first 
transformed from RGB to HSB model and then 
to B&W image 

&B WI  – see Fig. 1. The basic 
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hand in such a manner of how it was created by the proposed algorithm eaICP from RGB image. 
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RDDP  is 

point from which Radial Distance Diagram is created. A point WCP  is point in the middle of distance 
between points 1CP  and 

14CP . Movement and rotation of whole hand contour relates to point 
CMASSP . 
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The hand position can be slightly variable in plane XY 
in a certain range of free space within the capturing 
chamber; and indeed, with regards to the visual field 
of the used camera. 
The background of the scene is black and dull. The 
RGB image obtained from the camera is first trans-
formed from RGB to HSB model and then to B&W im-
age &B WI  – see Fig. 1. The basic scheme is identical to 
[55, 56], but the number of „templates“ or images from 
which were created model Μ  is equal to one. Conver-
sion to B&W representation is conducted in such way 
that the homogenous black color of the background is 
considered as an image and from this image is filtered 
out the foreground. The foreground is the area which 
is occupied by the hand. The filtered part then makes 
a black and white image of inserted hand. With use of 

mathematical morphology methods, filtration of in-
put image is then performed with use of set of filtra-
tion bitmap filtration masks F. These masks remove 
all unwilling artifacts from the whole area of the im-
age. After that hand contour C  is looked up, which is 
defined as a set of black pixels C

jP  in the image &B WI  and 
is defined as: 

scheme is identical to [55, 56], but the number of 
„templates“ or images from which were created 
model Μ  is equal to one. Conversion to B&W 
representation is conducted in such way that the 
homogenous black color of the background is 
considered as an image and from this image is 
filtered out the foreground. The foreground is 
the area which is occupied by the hand. The 
filtered part then makes a black and white image 
of inserted hand. With use of mathematical 
morphology methods, filtration of input image 
is then performed with use of set of filtration 
bitmap filtration masks F . These masks remove 
all unwilling artifacts from the whole area of the 
image. After that hand contour C  is looked up, 
which is defined as a set of black pixels C

jP  in the 
image 

&B WI  and is defined as:  
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With use of the 𝑪𝑪𝑪𝑪, Radial Distance Diagram 
(RDD) is created:  
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DD j j RDD jR P P d P P j += = ∈ . 

 

(2) 

The contour C  is, with use of RDD, segmented 
out in such a way that the standalone segments 
of individual finger contours and parts of the 
palm can be computed – see Fig. 2. On the RDD 
curve are found significant points which define 
finger tips and also roots of fingers (valleys) and 
the algorithm creates a segmented hand contour

RDDC . With use of 
RDDC ,  a 

LRC  contour is created 
which is used in the Linear Regression (LR) 
algorithm, and axes of individual fingers are 
computed (for thumb 2 knuckles are computed). 
The result of all these operations is 8-point 
clouds representing contours of individual parts 
of the hand contour - 5 fingers and 3 parts of the 
palm contour up to the wrist. These 8-point 
clouds make input information for the 
evolutionary optimizer in which the reference 
contour is compared with a contour of a person 
which is identified. Thanks to contours 

RDDC  and 

LRC , it is possible to create contour Μ , which 
represents a comparative sample and contour S
, which represents a compared sample – see (3). 
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Reference contours are marked as modelsΜ  and 
are stored in a database in the shape of 8- point 
clouds + several subsidiary items of information 
taking into account (18). Inside the classifier, 
model Μ  is compared with a contour marked as 
sample S . This sample is obtained by identical 
steps like model Μ  every time when a person 
has to be identified. Contour S is moreover 
trimmed for comparative purposes so that 
unwilling parts do not affect the process of 
classification. During the classification process, 
position and heading of a sample S  is changed 
against Μ  and heading of individual fingers of 
sample S  is changed. This change is done 
independently for every finger with regard to 
natural physiological limits. The result of 
classification is a coefficient similarity between 
Μ  and S with regard to used metrics. For 
classification purposes contours Μ  and S   are 
trimmed in a suitable manner. Short sections in 
the finger valley are omitted in range of 7 
percent around the point of root of every finger. 
Complete non-trimmed contour Μ  will be 
marked as 

coΜ and contours for which the 
trimming rule was applied will be marked as 

,ea eaSΜ . This marking is used in the section of 
experimental results. The purpose of such a 
trimming operation is to reach significantly 
better results. Individual segments , S

i ic cΜ   
according to (3) differ from segments LR

ic , which 
are used in linear regression. For LR operation 
individual segments are trimmed by 5 percent. 
LR enables finding axes of individual fingers.  
 
The next part is description of evolutionary 
process and function. Let’s mark the 
evolutionary process with use of evolutionary 
optimizer 

EAℑ   and thus we can write: 
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of individual finger contours and parts of the 
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curve are found significant points which define 
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represents a comparative sample and contour S
, which represents a compared sample – see (3). 
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classification purposes contours Μ  and S   are 
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the finger valley are omitted in range of 7 
percent around the point of root of every finger. 
Complete non-trimmed contour Μ  will be 
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coΜ and contours for which the 
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ic , which 
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The contour C  is, with use of RDD, segmented out in 
such a way that the standalone segments of individual 
finger contours and parts of the palm can be comput-
ed – see Fig. 2. On the RDD curve are found significant 
points which define finger tips and also roots of fin-
gers (valleys) and the algorithm creates a segmented 
hand contour RDDC . With use of RDDC , a LRC  contour is 
created which is used in the Linear Regression (LR) 
algorithm, and axes of individual fingers are comput-
ed (for thumb 2 knuckles are computed). The result 
of all these operations is 8-point clouds represent-
ing contours of individual parts of the hand contour 
- 5 fingers and 3 parts of the palm contour up to the 
wrist. These 8-point clouds make input information 
for the evolutionary optimizer in which the refer-
ence contour is compared with a contour of a person 
which is identified. Thanks to contours 

RDDC  and LRC , 
it is possible to create contour M, which represents a 
comparative sample and contour S, which represents 
a compared sample – see (3).

scheme is identical to [55, 56], but the number of 
„templates“ or images from which were created 
model Μ  is equal to one. Conversion to B&W 
representation is conducted in such way that the 
homogenous black color of the background is 
considered as an image and from this image is 
filtered out the foreground. The foreground is 
the area which is occupied by the hand. The 
filtered part then makes a black and white image 
of inserted hand. With use of mathematical 
morphology methods, filtration of input image 
is then performed with use of set of filtration 
bitmap filtration masks F . These masks remove 
all unwilling artifacts from the whole area of the 
image. After that hand contour C  is looked up, 
which is defined as a set of black pixels C

jP  in the 
image 

&B WI  and is defined as:  
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The contour C  is, with use of RDD, segmented 
out in such a way that the standalone segments 
of individual finger contours and parts of the 
palm can be computed – see Fig. 2. On the RDD 
curve are found significant points which define 
finger tips and also roots of fingers (valleys) and 
the algorithm creates a segmented hand contour

RDDC . With use of 
RDDC ,  a 

LRC  contour is created 
which is used in the Linear Regression (LR) 
algorithm, and axes of individual fingers are 
computed (for thumb 2 knuckles are computed). 
The result of all these operations is 8-point 
clouds representing contours of individual parts 
of the hand contour - 5 fingers and 3 parts of the 
palm contour up to the wrist. These 8-point 
clouds make input information for the 
evolutionary optimizer in which the reference 
contour is compared with a contour of a person 
which is identified. Thanks to contours 

RDDC  and 

LRC , it is possible to create contour Μ , which 
represents a comparative sample and contour S
, which represents a compared sample – see (3). 
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Reference contours are marked as modelsΜ  and 
are stored in a database in the shape of 8- point 
clouds + several subsidiary items of information 
taking into account (18). Inside the classifier, 
model Μ  is compared with a contour marked as 
sample S . This sample is obtained by identical 
steps like model Μ  every time when a person 
has to be identified. Contour S is moreover 
trimmed for comparative purposes so that 
unwilling parts do not affect the process of 
classification. During the classification process, 
position and heading of a sample S  is changed 
against Μ  and heading of individual fingers of 
sample S  is changed. This change is done 
independently for every finger with regard to 
natural physiological limits. The result of 
classification is a coefficient similarity between 
Μ  and S with regard to used metrics. For 
classification purposes contours Μ  and S   are 
trimmed in a suitable manner. Short sections in 
the finger valley are omitted in range of 7 
percent around the point of root of every finger. 
Complete non-trimmed contour Μ  will be 
marked as 

coΜ and contours for which the 
trimming rule was applied will be marked as 

,ea eaSΜ . This marking is used in the section of 
experimental results. The purpose of such a 
trimming operation is to reach significantly 
better results. Individual segments , S

i ic cΜ   
according to (3) differ from segments LR

ic , which 
are used in linear regression. For LR operation 
individual segments are trimmed by 5 percent. 
LR enables finding axes of individual fingers.  
 
The next part is description of evolutionary 
process and function. Let’s mark the 
evolutionary process with use of evolutionary 
optimizer 

EAℑ   and thus we can write: 
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Reference contours are marked as models M and are 
stored in a database in the shape of 8- point clouds + 
several subsidiary items of information taking into 
account (18). Inside the classifier, model M is com-
pared with a contour marked as sample S. This sam-
ple is obtained by identical steps like model M every 
time when a person has to be identified. Contour S is 
moreover trimmed for comparative purposes so that 
unwilling parts do not affect the process of classi-
fication. During the classification process, position 
and heading of a sample S is changed against M and 
heading of individual fingers of sample S is changed. 
This change is done independently for every finger 
with regard to natural physiological limits. The result 
of classification is a coefficient similarity between  M 
and S with regard to used metrics. For classification 
purposes contours M and S are trimmed in a suitable 
manner. Short sections in the finger valley are omitted 
in range of  7 percent around the point of root of ev-
ery finger. Complete non-trimmed contour  M will be 

marked as coΜ and contours for which the trimming 
rule was applied will be marked as ,ea eaSΜ . This mark-
ing is used in the section of experimental results. The 
purpose of such a trimming operation is to reach sig-
nificantly better results. Individual segments , S

i ic cΜ   
according to (3) differ from segments LR

ic , which are 
used in linear regression. For LR operation individual 
segments are trimmed by 5 percent. LR enables find-
ing axes of individual fingers. 
The next part is description of evolutionary process 
and function. Let’s mark the evolutionary process 
with use of evolutionary optimizer EAℑ  and thus we 
can write:
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representation is conducted in such way that the 
homogenous black color of the background is 
considered as an image and from this image is 
filtered out the foreground. The foreground is 
the area which is occupied by the hand. The 
filtered part then makes a black and white image 
of inserted hand. With use of mathematical 
morphology methods, filtration of input image 
is then performed with use of set of filtration 
bitmap filtration masks F . These masks remove 
all unwilling artifacts from the whole area of the 
image. After that hand contour C  is looked up, 
which is defined as a set of black pixels C

jP  in the 
image 

&B WI  and is defined as:  
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With use of the 𝑪𝑪𝑪𝑪, Radial Distance Diagram 
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The contour C  is, with use of RDD, segmented 
out in such a way that the standalone segments 
of individual finger contours and parts of the 
palm can be computed – see Fig. 2. On the RDD 
curve are found significant points which define 
finger tips and also roots of fingers (valleys) and 
the algorithm creates a segmented hand contour

RDDC . With use of 
RDDC ,  a 

LRC  contour is created 
which is used in the Linear Regression (LR) 
algorithm, and axes of individual fingers are 
computed (for thumb 2 knuckles are computed). 
The result of all these operations is 8-point 
clouds representing contours of individual parts 
of the hand contour - 5 fingers and 3 parts of the 
palm contour up to the wrist. These 8-point 
clouds make input information for the 
evolutionary optimizer in which the reference 
contour is compared with a contour of a person 
which is identified. Thanks to contours 

RDDC  and 

LRC , it is possible to create contour Μ , which 
represents a comparative sample and contour S
, which represents a compared sample – see (3). 
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Reference contours are marked as modelsΜ  and 
are stored in a database in the shape of 8- point 
clouds + several subsidiary items of information 
taking into account (18). Inside the classifier, 
model Μ  is compared with a contour marked as 
sample S . This sample is obtained by identical 
steps like model Μ  every time when a person 
has to be identified. Contour S is moreover 
trimmed for comparative purposes so that 
unwilling parts do not affect the process of 
classification. During the classification process, 
position and heading of a sample S  is changed 
against Μ  and heading of individual fingers of 
sample S  is changed. This change is done 
independently for every finger with regard to 
natural physiological limits. The result of 
classification is a coefficient similarity between 
Μ  and S with regard to used metrics. For 
classification purposes contours Μ  and S   are 
trimmed in a suitable manner. Short sections in 
the finger valley are omitted in range of 7 
percent around the point of root of every finger. 
Complete non-trimmed contour Μ  will be 
marked as 

coΜ and contours for which the 
trimming rule was applied will be marked as 

,ea eaSΜ . This marking is used in the section of 
experimental results. The purpose of such a 
trimming operation is to reach significantly 
better results. Individual segments , S
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according to (3) differ from segments LR

ic , which 
are used in linear regression. For LR operation 
individual segments are trimmed by 5 percent. 
LR enables finding axes of individual fingers.  
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The aim of the evolutionary process (task of optimiz-
er) is to find such value ε , for which holds that 0ε ≅ . Of 
course, this holds only in the case that only two iden-
tical contours are compared or. The value ε  is equal 
to value fitness according to (5) for only one optimal 
alignment of contours M and S. Metrics of the fitness  
function was elected based on practical experiments. 
The fitness function utilizes Euclidean distance of 
contours M and S and also information of topology 
of some important points 7 9 11, ,C C CP P PΜ Μ Μ  which are on the 
hand contour – see Fig. 3. The function fitness is then 
given according to (5) as follows:  

The aim of the evolutionary process (task of 
optimizer) is to find such value ε , for which 
holds that 0ε ≅ . Of course, this holds only in the 
case that only two identical contours are 
compared or. The value ε  is equal to value
fitness according to (5) for only one optimal 

alignment of contours Μ  and S . Metrics of the 
fitness  function was elected based on practical 

experiments. The fitness  function utilizes 
Euclidean distance of contours Μ  and S  and also 
information of topology of some important 
points

7 9 11, ,C C CP P PΜ Μ Μ   which are on the hand contour 
– see Fig. 3. The function fitness  is then given 
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jP  of contour S  with regard to 
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...

S
CP means 

positions of points 7 9 11, ,S S S
C C CP P P    with regard to 

actual values of genes  
0,1,2x   of chromosome
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R  in (17) is a rotational matrix given by value of 
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0,1x  with regard 

to
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fitness according to (5) for only one optimal 
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fitness  function was elected based on practical 

experiments. The fitness  function utilizes 
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information of topology of some important 
points
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– see Fig. 3. The function fitness  is then given 
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information of topology of some important 
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values of genes of chromosome 

iX .  
...

S
CP means 

positions of points 7 9 11, ,S S S
C C CP P P    with regard to 

actual values of genes  
0,1,2x   of chromosome

iX .
R  in (17) is a rotational matrix given by value of 
gene

2x   of chromosome
iX , t  is translational 

vector given by values of gene  
0,1x  with regard 

to
CMASSPΜ  and S

CMASSP . Points  
7,9,11CPΜ and 7,9,11

S
CP   are 

significant points on contours Μ  and S  – see 

*

.

*
(13)

The aim of the evolutionary process (task of 
optimizer) is to find such value ε , for which 
holds that 0ε ≅ . Of course, this holds only in the 
case that only two identical contours are 
compared or. The value ε  is equal to value
fitness according to (5) for only one optimal 

alignment of contours Μ  and S . Metrics of the 
fitness  function was elected based on practical 

experiments. The fitness  function utilizes 
Euclidean distance of contours Μ  and S  and also 
information of topology of some important 
points

7 9 11, ,C C CP P PΜ Μ Μ   which are on the hand contour 
– see Fig. 3. The function fitness  is then given 
according to (5) as follows:   
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(9), which is given by hand topology and 
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additional equations (16), (17). 

IR  means vale of 
objective function, which is given by geometry 
of contour S  resp. by points S

jP   and is 
calculated according to rules of the algorithm 
ICP and with use of classification rule (7) and 
equation (8) – alignment of two 2D point clouds. 
For (8) holds that &

min , &
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(5) represents number of points of contour S  
and also holds that ,0 ,fitness j+ +∈ ∈ 

.  
 

( )
( )

4

1 ,0

min 1

, _ _
,

, _ _

S
j

I IS
j

d P P if L true
R R

d P P if L false

Ω +

Μ

 = ∈
=



 

 

(6) 

3

4 8

1 0,1

2

, _ 0.40 ; 0.40

, _ 0.30 ; 0.30

, _

, _ 0.40 ; 0.40

,

RAD RAD

RAD RAD

RAD RAD

true if x

true if x
L true if x

true if x

false otherwise

−

 ∉ − +

 ∉ − +


=  ∉Ω


∉ − +



 

 

(7) 

( )&
min , min: ,B WI

x yP d P PΜ Μ =  

( )&
, &min , , ,B WI

x y i B Wd P P x y IΜ= ∀ ∈  
 

(8) 

,0
1 2 3,H h h h HR r r r R += + + ∈  

 

(9) 

( )1 7 7 2
1

2

* , _ _

0 _ _

S
ul C C

h

M d P P if L true
r

if L false

Μ == 
 =

 

 

(10) 

( )1 9 9 3
2

3

* , _ _

0 _ _

S
ul C C

h

M d P P if L true
r

if L false

Μ == 
 =

 

 

(11) 

( )1 11 11 4
3

4

* , _ _

0 _ _

S
ul C C

h

M d P P if L true
r

if L false

Μ == 
 =

 

 

(12) 

( ) ( )7 7 2 7,9,11
2

_ _ , 0.01

_

S
C C ultrue if d P P M d

L
false otherwise

Μ > × ×= 


 

 
 

(13) 

( ) ( )9 9 2 7,9,11
3

, 0.01S
C C ultrue if d P P M d

L
false oth

Μ >= 


 

 

(14) 

 

( ) ( )11 11 2 7,9,11
4

_ _ , 0.01

_

S
C C ultrue if d P P M d

L
false otherwise

Μ > × ×= 


 

 

(15) 

 

( ) ( )7,9,11 7 9 9 11, ,C C C Cd d P P d P PΜ Μ Μ Μ= +  
 

(16) 

  
( ) [ ]... ... 0 1,S S S

C C CMASS CMASSP R P P t t P x xΜ= − + ≡ +  

 

(17) 

( )
( )( ) ( )( )

( )( ) ( )( )

& &

& &

, min , min0,0 ,0

, min , min0, ,

, ... ,

, ... ... ...

, ... ,

B W B W

B W B W

I I
x y x y x

ist

I I
x y x yv x y

d P P d P P

D x y

d P P d P P

Μ Μ

Μ Μ

 
 
 =
 
 
 

. 

 

(18) 

S
jP  is j-th point of contour S ,

minPΜ  means a point 
of contour Μ , which in sense of used metrics is 
closest to point S

jP  of contour S  with regard to 
values of genes of chromosome 

iX .  
...

S
CP means 

positions of points 7 9 11, ,S S S
C C CP P P    with regard to 

actual values of genes  
0,1,2x   of chromosome

iX .
R  in (17) is a rotational matrix given by value of 
gene

2x   of chromosome
iX , t  is translational 

vector given by values of gene  
0,1x  with regard 

to
CMASSPΜ  and S

CMASSP . Points  
7,9,11CPΜ and 7,9,11

S
CP   are 

significant points on contours Μ  and S  – see 
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The aim of the evolutionary process (task of 
optimizer) is to find such value ε , for which 
holds that 0ε ≅ . Of course, this holds only in the 
case that only two identical contours are 
compared or. The value ε  is equal to value
fitness according to (5) for only one optimal 

alignment of contours Μ  and S . Metrics of the 
fitness  function was elected based on practical 

experiments. The fitness  function utilizes 
Euclidean distance of contours Μ  and S  and also 
information of topology of some important 
points

7 9 11, ,C C CP P PΜ Μ Μ   which are on the hand contour 
– see Fig. 3. The function fitness  is then given 
according to (5) as follows:   
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where 
HR   represents value of objective function 

(9), which is given by hand topology and 
heuristic rules (10), (11), (12) a (13), (14), (15) and 
additional equations (16), (17). 

IR  means vale of 
objective function, which is given by geometry 
of contour S  resp. by points S

jP   and is 
calculated according to rules of the algorithm 
ICP and with use of classification rule (7) and 
equation (8) – alignment of two 2D point clouds. 
For (8) holds that &
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x y B WP P IΜ ∈Μ ∧ ∈ . n  in 
(5) represents number of points of contour S  
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S
jP  is j-th point of contour S ,

minPΜ  means a point 
of contour Μ , which in sense of used metrics is 
closest to point S

jP  of contour S  with regard to 
values of genes of chromosome 

iX .  
...

S
CP means 

positions of points 7 9 11, ,S S S
C C CP P P    with regard to 

actual values of genes  
0,1,2x   of chromosome

iX .
R  in (17) is a rotational matrix given by value of 
gene

2x   of chromosome
iX , t  is translational 

vector given by values of gene  
0,1x  with regard 

to
CMASSPΜ  and S

CMASSP . Points  
7,9,11CPΜ and 7,9,11

S
CP   are 

significant points on contours Μ  and S  – see 
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The aim of the evolutionary process (task of 
optimizer) is to find such value ε , for which 
holds that 0ε ≅ . Of course, this holds only in the 
case that only two identical contours are 
compared or. The value ε  is equal to value
fitness according to (5) for only one optimal 

alignment of contours Μ  and S . Metrics of the 
fitness  function was elected based on practical 

experiments. The fitness  function utilizes 
Euclidean distance of contours Μ  and S  and also 
information of topology of some important 
points

7 9 11, ,C C CP P PΜ Μ Μ   which are on the hand contour 
– see Fig. 3. The function fitness  is then given 
according to (5) as follows:   
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where 
HR   represents value of objective function 

(9), which is given by hand topology and 
heuristic rules (10), (11), (12) a (13), (14), (15) and 
additional equations (16), (17). 

IR  means vale of 
objective function, which is given by geometry 
of contour S  resp. by points S

jP   and is 
calculated according to rules of the algorithm 
ICP and with use of classification rule (7) and 
equation (8) – alignment of two 2D point clouds. 
For (8) holds that &
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x y B WP P IΜ ∈Μ ∧ ∈ . n  in 
(5) represents number of points of contour S  
and also holds that ,0 ,fitness j+ +∈ ∈ 

.  
 

( )
( )

4

1 ,0

min 1

, _ _
,

, _ _

S
j

I IS
j

d P P if L true
R R

d P P if L false

Ω +

Μ

 = ∈
=



 

 

(6) 

3

4 8

1 0,1

2

, _ 0.40 ; 0.40

, _ 0.30 ; 0.30

, _

, _ 0.40 ; 0.40

,

RAD RAD

RAD RAD

RAD RAD

true if x

true if x
L true if x

true if x

false otherwise

−

 ∉ − +

 ∉ − +


=  ∉Ω


∉ − +



 

 

(7) 

( )&
min , min: ,B WI

x yP d P PΜ Μ =  

( )&
, &min , , ,B WI

x y i B Wd P P x y IΜ= ∀ ∈  
 

(8) 

,0
1 2 3,H h h h HR r r r R += + + ∈  

 

(9) 

( )1 7 7 2
1

2

* , _ _

0 _ _

S
ul C C

h

M d P P if L true
r

if L false

Μ == 
 =

 

 

(10) 

( )1 9 9 3
2

3

* , _ _

0 _ _

S
ul C C

h

M d P P if L true
r

if L false

Μ == 
 =

 

 

(11) 

( )1 11 11 4
3

4

* , _ _

0 _ _

S
ul C C

h

M d P P if L true
r

if L false

Μ == 
 =

 

 

(12) 

( ) ( )7 7 2 7,9,11
2

_ _ , 0.01

_

S
C C ultrue if d P P M d

L
false otherwise

Μ > × ×= 


 

 
 

(13) 

( ) ( )9 9 2 7,9,11
3

_ _ , 0.01

_

S
C C ultrue if d P P M d

L
false otherwise

Μ > × ×= 


 

 

(14) 

 

( ) ( )11 11 2 7,9,11
4

_ _ , 0.01

_

S
C C ultrue if d P P M d

L
false otherwise

Μ > × ×= 


 

 

(15) 

 

( ) ( )7,9,11 7 9 9 11, ,C C C Cd d P P d P PΜ Μ Μ Μ= +  
 

(16) 

  
( ) [ ]... ... 0 1,S S S

C C CMASS CMASSP R P P t t P x xΜ= − + ≡ +  

 

(17) 

( )
( )( ) ( )( )

( )( ) ( )( )

& &

& &

, min , min0,0 ,0

, min , min0, ,

, ... ,

, ... ... ...

, ... ,

B W B W

B W B W

I I
x y x y x

ist

I I
x y x yv x y

d P P d P P

D x y

d P P d P P

Μ Μ

Μ Μ

 
 
 =
 
 
 

. 

 

(18) 

S
jP  is j-th point of contour S ,

minPΜ  means a point 
of contour Μ , which in sense of used metrics is 
closest to point S

jP  of contour S  with regard to 
values of genes of chromosome 

iX .  
...

S
CP means 

positions of points 7 9 11, ,S S S
C C CP P P    with regard to 

actual values of genes  
0,1,2x   of chromosome

iX .
R  in (17) is a rotational matrix given by value of 
gene

2x   of chromosome
iX , t  is translational 

vector given by values of gene  
0,1x  with regard 

to
CMASSPΜ  and S

CMASSP . Points  
7,9,11CPΜ and 7,9,11

S
CP   are 

significant points on contours Μ  and S  – see 
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The aim of the evolutionary process (task of 
optimizer) is to find such value ε , for which 
holds that 0ε ≅ . Of course, this holds only in the 
case that only two identical contours are 
compared or. The value ε  is equal to value
fitness according to (5) for only one optimal 

alignment of contours Μ  and S . Metrics of the 
fitness  function was elected based on practical 

experiments. The fitness  function utilizes 
Euclidean distance of contours Μ  and S  and also 
information of topology of some important 
points

7 9 11, ,C C CP P PΜ Μ Μ   which are on the hand contour 
– see Fig. 3. The function fitness  is then given 
according to (5) as follows:   
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additional equations (16), (17). 

IR  means vale of 
objective function, which is given by geometry 
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of contour Μ , which in sense of used metrics is 
closest to point S
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7,9,11CPΜ and 7,9,11
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The aim of the evolutionary process (task of 
optimizer) is to find such value ε , for which 
holds that 0ε ≅ . Of course, this holds only in the 
case that only two identical contours are 
compared or. The value ε  is equal to value
fitness according to (5) for only one optimal 

alignment of contours Μ  and S . Metrics of the 
fitness  function was elected based on practical 

experiments. The fitness  function utilizes 
Euclidean distance of contours Μ  and S  and also 
information of topology of some important 
points

7 9 11, ,C C CP P PΜ Μ Μ   which are on the hand contour 
– see Fig. 3. The function fitness  is then given 
according to (5) as follows:   
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(18) 

S
jP  is j-th point of contour S ,

minPΜ  means a point 
of contour Μ , which in sense of used metrics is 
closest to point S

jP  of contour S  with regard to 
values of genes of chromosome 

iX .  
...

S
CP means 

positions of points 7 9 11, ,S S S
C C CP P P    with regard to 

actual values of genes  
0,1,2x   of chromosome

iX .
R  in (17) is a rotational matrix given by value of 
gene

2x   of chromosome
iX , t  is translational 

vector given by values of gene  
0,1x  with regard 

to
CMASSPΜ  and S

CMASSP . Points  
7,9,11CPΜ and 7,9,11

S
CP   are 

significant points on contours Μ  and S  – see 

(18)

S
jP  is j-th point of contour S, minPΜ  means a point of con-

tour M, which in sense of used metrics is closest to 
point S

jP  of contour S with regard to values of genes 
of chromosome iX . ...

S
CP  means positions of points

7 9 11, ,S S S
C C CP P P  with regard to actual values of genes  0,1,2x   

of chromosome iX . R in (17) is a rotational matrix giv-
en by value of gene 2x   of chromosome iX , t is trans-
lational vector given by values of gene 0,1x  with regard 
to CMASSPΜ  and S

CMASSP . Points 7,9,11CPΜ and 7,9,11
S

CP   are signifi-
cant points on contours M and S – see Fig. 3. Values 

1 50ulΜ =  and 2 20ulΜ =  are selected constants. Heu-
ristic rule HR  (9) is composed of three parts 1 2 3, ,h h hr r r   
and defines when the penalization of the fitness  func-
tion is activated as a consequence of disagreement of 
topological features of compared contours. Activation 
of the rule is given with options marked as 2 3 4, ,L L L . In 
the case that during the evolution, a point Pj

S of con-
tour S is placed out of space of possible solutions 

omD , 
a penalization is elected with use of rule 1L . 1L  is giv-
en as ( )4

,S
jd P PΩ , for every such point S

jP  of contour S. 
( )...d  means Euclidean metrics. Calculation accord-

ing to (5) is processed for all points in individual se-
lected segments S

ic  of the contour S. Values of matrix
istD  are calculated for every contour M and for every 

point &
,
B WI

x yP  of the image &B WI  and define the distance 
of a point &

,
B WI

x yP  to the closest point iPΜ  of contour Μ  in 
sense of Euclidean metrics - see also (8). Such a point 
is marked as minPΜ . Structure of the ICP algorithm is not 
modified/touched by this step. 
Complexity of the original ICP algorithm - see [43] 
is, for worst case, equal to ( )O NM  or ( )2O N , where N  
is number of points in contour S and M is number 
of points in contour M. To cut down huge computa-
tional demands even more, the matrix ( ),istD x y  was 
introduced – see (18), (8). Into the matrix ( ),istD x y  are 
stored the values of ( )&

, min,B WI
x yd P PΜ

 
in advance for every 

point of the image &B WI  and for the given corresponding 
contour M. M in turn, is sketched into the image &B WI . 
Let’s define values ,M Sκ κ , which mark what point of a 
contour will be used for calculation. Corresponding 
values ,M Sη η , define how many points of a contour is 
used for calculation with regard to values ,M Sκ κ . Com-
plexity of the proposed eaICP algorithm, which, with 
use of the evolutionary optimizer, aligns two contours   
M and S is given as follows:

O(Gen × Npop × 𝜂s ) ≈ O(N), (19)

where enG  means number of generations of evolu-
tion algorithm necessary to reach optimal solution, 

popN  means number of an individual in population opP  
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of evolutionary algorithm and Sη  is assumed as con-
stant for whole time of evolution. Values enG  and popN  
are in an ideal case also constant for whole compu-
tation time. 
Practical realization of the algorithm eaICP is con-
structed in such way that optimizer EPSDE calcu-
lates objective function according to (5) and with use 
of matrix istD . Arrangement of every chromosome iX   
is as follows: 0x  -movement of whole contour in axis X, 

1x  -movement of whole contour in axis Y, 2x  -heading 
of whole contour towards axis X in radians, 3 8x −  -rota-
tion of individual fingers in knuckles 

1 6KP −
 in radians. 

Angle of heading is limited by (7). Before calculation 
of objective function, it is necessary to engage the ICP 
algorithm to align contours of one step. One genera-
tion of EA means one iteration step of ICP. EPSDE 
modifies heading of individual fingers and heading of 
whole hand and position of whole hand in plane XY. 
Every iteration of algorithm ICP changes the position 
of point clouds of contours and S (resp. , ,co ea eaSΜ Μ  
according to elected arrangement) – see (17). Both al-
gorithms EPSDE and ICP and objective function (5) 
are mutually interconnected. 

4. Experimental Results
The paragraph of experimental results is divided into 
several sections: A: time demands of used evolution-
ary optimizers, B: election of suitable evolutionary 
optimizer, C: Election of working parameters and ac-
curacy of calculation, D: way of classification, elected 
assemblages of estimators, E: Results of classification 
with use of estimator eaICP and comparison with 
other works. 

4.1. Time Demands of Used Evolutionary 
Optimizers 
Samples from database THID, image resolu-
tion 640x480. Used images THID: P001-03-M vs. 
P001-03-S, , 4M Sκ κ = . Results – see Fig. 4: CMA-
ES (A): 20λ = , 10µ = , 0.9σ = , 200CMA ES

enG − = ; CMA-
ES (B): 20λ = , 10µ = , 0.9σ = , 300CMA ES

enG − = ; EPS-
DE (A): 15EPSDE

popN = , 200EPSDE
enG = , 10EPSDE

pL = ; EPSDE 
(B): 20EPSDE

popN = , 200EPSDE
enG = , 10EPSDE

pL = ; JADE (A): 
15JADE

popN = , 200JADE
enG = , 0.1JADEc = , 0.05JADEp = , with ar-

chive; JADE (B): without archive; jDE: 15jDE
popN = ,

200jDE
enG = , 1 0.9jDEτ = , 2 0.2jDEτ = , 0.7jDE

uf = , 0.3jDE
lf = ; 

SADE: 15SADE
popN = , 200SADE

enG = , 10SADE
pL = ; SANSDE: 

15SANSDE
popN = , 200SANSDE

enG = , 10SANSDE
pL = , 0.5SANSDE

pf = ; 
SPDE: 40SPDE

popN = , 300SPDE
enG = , 0.00001,2SPDEF = ,

0.00001,1SPDE
cxP = , , 4M Sκ κ = . Calculations of time 

demand were performed with use of 6 core processor 
AMD-fx-6100-3.3GHz. Used algorithm development 
is in MSVS2008SP1-C++/CLI-.NET3.5, 32bit task.

Figure 4
Time demands of tested optimizers at comparison of two 
samples
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4.2. Election of Suitable Evolutionary 
Optimizer 
Eleven carefully selected optimizers were tested 
if they are suitable for solving a given 
optimization task: CMA-ES, EPSDE, JADE, jDE, 
SADE, SANSDE, SPDE and marginally also 
PSO, RPSO, SGA and PBO. For test purposes, 
the eaICP optimizer was elected which uses 
fitness calculation without the matrix 

istD . 
During tests hand images/contours were used 
and marked as THID:   : P001-03-M and S  
P001-03-S, but for  positions of all points

kP   for 
all fingers were changed. The contour stayed 
identical. P001 marks number of person in 
database, -03- marks number of image from 
every person in range 1 to 10 images. Positions 
of points

kP   were changed a bit in such way that 
final fitness  was not equal to zero and the 
optimizer has the more complicated task to 
solve. E.g. for little finger  : 6. 346.97181KP x    , 

6. 151.68178KP y    and position of corresponding 
knuckle S : 

6. 346.87492KP x  , 
6. 151.33841KP y  . 

Thanks to such modification many narrowly 
bordered optimums arise around the ideal pose. 
At tests, values , 4M S    -th sample of contours
  and S  was used. In an ideal case the ideal 
fitness value has to be equal to zero. The error in 

order of individual pixels is not substantial. 
Hence in order to compare individual 
optimizers, identical number of individuals and 
generations were elected:  200, 15en popG N  . For 
CMA-ES then 20, 10, 0.9     . Value 

200enG   is elected regarding to time limitations 
and size of used databases THID, GPDS. In 
images, convergence of population for 100x 
repeating trial is recorded, and also best reached 
value fitness  in individual iterations. Because 
used EAs have different working parameters, 
only the combination which led to best results 
was elected. Final results are recorded in Fig. 5-
11. Working parameters of individual EAs are 
recorded too. It is visible, that the best results 
were provided by the EPSDE optimizer – see Fig. 
6. On second place tightly follows jDE optimizer 
– see Fig. 8. EPSDE and jDE show both only 
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4.2. Election of Suitable Evolutionary 
Optimizer

Eleven carefully selected optimizers were tested if 
they are suitable for solving a given optimization task: 
CMA-ES, EPSDE, JADE, jDE, SADE, SANSDE, SPDE 
and marginally also PSO, RPSO, SGA and PBO. For test 
purposes, the eaICP optimizer was elected which uses 
fitness calculation without the matrix istD . During tests 

hand images/contours were used and marked as THID: 
M : P001-03-M and S P001-03-S, but for M positions 
of all points kP  for all fingers were changed. The con-
tour stayed identical. P001 marks number of person in 
database, -03- marks number of image from every per-
son in range 1 to 10 images. Positions of points kP  were 
changed a bit in such way that final fitness was not equal 
to zero and the optimizer has the more complicated 
task to solve. E.g. for little finger M: 6. 346.97181KP x = , 

6. 151.68178KP y =  and position of corresponding knuck-
le S: 6. 346.87492KP x = , 6. 151.33841KP y = . Thanks to such 
modification many narrowly bordered optimums arise 
around the ideal pose. At tests, values , 4M Sκ κ =  -th sam-
ple of contours M and S was used. In an ideal case the ide-
al fitness value has to be equal to zero. The error in order 
of individual pixels is not substantial. Hence in order to 
compare individual optimizers, identical number of indi-
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viduals and generations were elected: 200, 15en popG N= = . 
For CMA-ES then 20, 10, 0.9λ µ σ= = = . Value 200enG =  
is elected regarding to time limitations and size of used 
databases THID, GPDS. In images, convergence of pop-
ulation for 100x repeating trial is recorded, and also best 
reached value fitness  in individual iterations. Because 
used EAs have different working parameters, only the 
combination which led to best results was elected. Final 
results are recorded in Fig. 5-11. Working parameters 
of individual EAs are recorded too. It is visible, that the 
best results were provided by the EPSDE optimizer – see  
Fig. 6. On second place tightly follows jDE optimiz-
er – see Fig. 8. EPSDE and jDE show both only small 
differences, but EPSDE is better although only about 
5-7 percent. 

Figure 5 
Optimizer CMA-ES:

20λ = , 10µ = , 0.9σ = , 200CMA ES
enG − = , , 4M Sκ κ =

Figure 6 
Optimizer EPSDE.

15EPSDE
popN = , 200EPSDE

enG = , 10EPSDE
pL = , , 4M Sκ κ =

Figure 7 
Optimizer JADE.

15JADE
popN = , 200JADE

enG = , 0.1JADEc = , 0.05JADEp = , with 
archive. “with archive” and “without archive” – almost 
identical results , 4M Sκ κ =

Figure 8 
Optimizer jDE.

15jDE
popN = , 200jDE

enG = , 1 0.9jDEτ = , 2 0.2jDEτ = , 0.7jDE
uf = , 

0.3jDE
lf = , , 4M Sκ κ =

Figure 9 
Optimizer SADE.

15SADE
popN = , 200SADE

enG = , 10SADE
pL = , , 4M Sκ κ =

small differences, but EPSDE is better although 
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Figure 10  
Optimizer SANSDE. 

small differences, but EPSDE is better although 
only about 5-7 percent.  
 
Figure 5  
Optimizer CMA-ES: 

20  , 10  , 0.9  , 200CMA ES
enG   , , 4M S   . 

 

 
 

Figure 6  
Optimizer EPSDE. 15EPSDE

popN  , 200EPSDE
enG  ,

10EPSDE
pL   , , 4M S   . 

 

 
 
 
Figure 7  
Optimizer JADE. 

15JADE
popN  , 200JADE

enG  , 0.1JADEc  , 0.05JADEp  , 
with archive. “with archive” and “without 
archive” – almost identical results. , 4M S   . 
 

 
 
 
 
Figure 8  
Optimizer jDE. 

15jDE
popN  , 200jDE

enG    , 
1 0.9jDE  ,      

2 0.2jDE  , 0.7jDE
uf  , 0.3jDE

lf  , , 4M S    
 
 

 
 

Figure 9  
Optimizer SADE. 

15SADE
popN  , 200SADE

enG  , 10SADE
pL  , , 4M S    

 

 
 
 
Figure 10  
Optimizer SANSDE. 

small differences, but EPSDE is better although 
only about 5-7 percent.  
 
Figure 5  
Optimizer CMA-ES: 

20  , 10  , 0.9  , 200CMA ES
enG   , , 4M S   . 

 

 
 

Figure 6  
Optimizer EPSDE. 15EPSDE

popN  , 200EPSDE
enG  ,

10EPSDE
pL   , , 4M S   . 

 

 
 
 
Figure 7  
Optimizer JADE. 

15JADE
popN  , 200JADE

enG  , 0.1JADEc  , 0.05JADEp  , 
with archive. “with archive” and “without 
archive” – almost identical results. , 4M S   . 
 

 
 
 
 
Figure 8  
Optimizer jDE. 

15jDE
popN  , 200jDE

enG    , 
1 0.9jDE  ,      

2 0.2jDE  , 0.7jDE
uf  , 0.3jDE

lf  , , 4M S    
 
 

 
 

Figure 9  
Optimizer SADE. 

15SADE
popN  , 200SADE

enG  , 10SADE
pL  , , 4M S    

 

 
 
 
Figure 10  
Optimizer SANSDE. 

small differences, but EPSDE is better although 
only about 5-7 percent.  
 
Figure 5  
Optimizer CMA-ES: 

20  , 10  , 0.9  , 200CMA ES
enG   , , 4M S   . 

 

 
 

Figure 6  
Optimizer EPSDE. 15EPSDE

popN  , 200EPSDE
enG  ,

10EPSDE
pL   , , 4M S   . 

 

 
 
 
Figure 7  
Optimizer JADE. 

15JADE
popN  , 200JADE

enG  , 0.1JADEc  , 0.05JADEp  , 
with archive. “with archive” and “without 
archive” – almost identical results. , 4M S   . 
 

 
 
 
 
Figure 8  
Optimizer jDE. 

15jDE
popN  , 200jDE

enG    , 
1 0.9jDE  ,      

2 0.2jDE  , 0.7jDE
uf  , 0.3jDE

lf  , , 4M S    
 
 

 
 

Figure 9  
Optimizer SADE. 

15SADE
popN  , 200SADE

enG  , 10SADE
pL  , , 4M S    

 

 
 
 
Figure 10  
Optimizer SANSDE. 

small differences, but EPSDE is better although 
only about 5-7 percent.  
 
Figure 5  
Optimizer CMA-ES: 

20  , 10  , 0.9  , 200CMA ES
enG   , , 4M S   . 

 

 
 

Figure 6  
Optimizer EPSDE. 15EPSDE

popN  , 200EPSDE
enG  ,

10EPSDE
pL   , , 4M S   . 

 

 
 
 
Figure 7  
Optimizer JADE. 

15JADE
popN  , 200JADE

enG  , 0.1JADEc  , 0.05JADEp  , 
with archive. “with archive” and “without 
archive” – almost identical results. , 4M S   . 
 

 
 
 
 
Figure 8  
Optimizer jDE. 

15jDE
popN  , 200jDE

enG    , 
1 0.9jDE  ,      

2 0.2jDE  , 0.7jDE
uf  , 0.3jDE

lf  , , 4M S    
 
 

 
 

Figure 9  
Optimizer SADE. 

15SADE
popN  , 200SADE

enG  , 10SADE
pL  , , 4M S    

 

 
 
 
Figure 10  
Optimizer SANSDE. 



Information Technology and Control 2020/1/4964

Figure 10 
Optimizer SANSDE.

15SANSDE
popN = , 200SANSDE

enG = , 10SANSDE
pL = , 0.5SANSDE

pf = ,
, 4M Sκ κ =

15SANSDE
popN  , 200SANSDE

enG  , 10SANSDE
pL  ,  0.5SANSDE

pf  ,
, 4M S    

  
 

 
 
Figure 11  
Optimizer SPDE. 

40SPDE
popN  , 300SPDE

enG  , 0.00001,2SPDEF  ,

0.00001,1SPDE
cxP   , , 4M S   . 

 
 

 
 

Other places took algorithms SADE – see Fig. 9, 
JADE – see Fig. 7 and there is no difference 
between JADE with archive and without 
archive, SANSDE – see Fig. 10 and CMA-ES – see 
Fig. 5. SPDE recorded very bad results – see Fig. 
11, which shows very frequent sticking in a local 
optimum. Algorithms JADE, jDE, SADE, EPSDE 
and SANSDE are very similar to each other for 
converge to optimal solution. Big differences 
occurred in the last 50 generations where the 
best solution of a given task is capable of finding 
only jDE and EPSDE algorithms. A big 
disappointment was CMA-ES. Convergence 
speed is large – see Fig. 5. After 100-120 
generations, it reaches relatively good value of
fitness , but next decrease of fitness to zero is a 

huge problem. CMA-ES is not suitable to solve 
this problem.  
Marginally were also tested optimizers PSO, 
RPSO. Unfortunately, both are not suitable to 
solve the given task. The SGA optimizer was 
also tested with a chromosome which is 
expressed as the chain of bits of length of 
chromosome/gene 136/17 bits, 20SGA

popN  , 200SGA
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, accuracy 51 10   and with various types of 
evolutionary operators. SGA enables very fast 
starting convergence and behaves like CMA-ES, 
but it has big problem to find an accurate 
solution and gets stuck in local optima very 
often or convergence fails totally.  
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Figure 12
The chart of progress at estimation of accuracy of proposed method for various values ,M Sκ κ . In first step is ascertained 
value fitness  for , 1M Sκ κ = , then value ,M Sκ κ  is changed in given range and vector iX  is inserted back to algorithm eaICP with 
coefficients , 1M Sκ κ =  and final fitness  is calculated. Used samples THID: P001-03-M and P057-08-S (smaller hand) 
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Figure 13  
Top-attained values fitness  for gradually increasing values ,M Sκ κ . Samples THID: P001-03-M and 
P057-08-S. vector

iX   was after calculation inserted back to estimator with parameters , 1M Sκ κ =   
and then was estimated the final fitness . , 1M Sκ κ =   is reference sample. Bottom-difference between

26526.5fitness =  for , 1M Sκ κ =  and fitness , which was obtained for actually tested value ,M Sκ κ . (dotted 
line is the trend) 
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calculated. Used samples THID: P001-03-M and P057-08-S (smaller hand).  
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Table 1 
Elected assemblages A1-A11 of evolutionary estimators. 1 8 4 8,ea eac cΜ Μ

− −  – marking of contours used at classification. Marking 
,H IR R  is according to (5). In some experiments are omitted heuristic rules HR  and fitness is calculated with use of rule IR . 

1 6KP −  – means numbers of knuckles of individual fingers – see Fig. 2, which participates at calculation according to Fig. 1,  
Ex – means the number of the estimator (algorithm) according to [60]

A
sm

. Database, image resolution, used contours, num. 
of fingers,  classifier rules, used knuckles, num. of 

dimensions, estimator name A
sm

. Database, image resolution, used contours, num. 
of fingers,  classifier rules, used knuckles, num. of 

dimensions, estimator name

A1 THID, 1280x960, 4 8 4 8,co eaSc cΜ
− − , 4 fingers, H IR R+ , 3 6KR − ,

7imD = , E9
A7 THID, 640x480, 1 8

cocΜ
− , 1 8

eaSc − , 5 fingers, H IR R+ , 1 6KP − , 
9imD = , E8

A2 THID, 1280x960, 4 8
eacΜ
− , 4 8

eaSc −  , 4 fingers, H IR R+ , 3 6KP − , 
7imD = , E9

A8 GPDS, 1403x1021, 4 8 4 8,co eaSc cΜ
− − , 4 fingers, H IR R+ , 3 6KP − ,

7imD = , E9

A3 THID, 1280x960, 4 7
eacΜ
− , 4 7

eaSc − , 4 fingers, IR , 3 6KP − , 
7imD = , E5

A9 GPDS, 640x480, 1 8
eacΜ

− , 1 8
eaSc − , 5 fingers, IR , 1 6KP − ,  

9imD = , E3

A4 THID, 640x480, 4 8 4 8,co eaSc cΜ
− − , 4 fingers, H IR R+ , 3 6KP − , 

7imD = , E9
A10 GPDS, 640x480, 1 8

eacΜ
− , 1 8

eaSc − , 5 fingers, 1,3 6KP − , 2KP  fixed, 
8imD = , E11

A5 THID, 640x480, 4 7 4 7,co eaSc cΜ
− − , 4 fingers, H IR R+ , 3 6KP − , 

7imD = , E10
A11 GPDS, 640x480, 4 8 4 8,co eaSc cΜ

− − , 4 fingers, H IR R+ , 3 6KP − ,
7imD = , E9

A6 THID, 640x480, 1 8
eacΜ

− , 1 8
eaSc − , 5 fingers, IR , 1,3 6KP − , 2KP  

fixed, 8imD = , E11
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Description of individual marking Ex with regard to assemblages A1 to A11 used in algorithm [64]:

Mark of eaICP estimator E3, 9 dim task: 
0 1 2 3 4 5 6 7 8, , , , , , , ,x x x x x x x x x ; all contours  ... ... ... ... ... ... ... ...

1 2 3 4 5 6 7 8, , , , , , ,c c c c c c c c

are used in calculation and corresponding knuckles 1 6KP −   i.e. all 
5 fingers, only the rule IR   is used in calculation fitness  accord-
ing to (5).  
Mark of eaICP estimator E5, 7 dim task:

0 1 2 5 6 7 8, , , , , ,x x x x x x x ; the knuckles 1 2,K KP P  are omitted from cal-
culation and also corresponding contours ... ... ...

1 2 3, ,c c c ; contours 
which participate in calculation ... ... ... ... ...

4 5 6 7 8, , , ,c c c c c  and knuckles 

3 6KP − , only rule IR  is used in calculation of fitness value accord-
ing to (5). 
Mark of eaICP estimator E8, 9 dim task:

0 1 2 3 4 5 6 7 8, , , , , , , ,x x x x x x x x x ; the contours which participate in calcu-
lation ... ... ... ... ... ... ... ...

1 2 3 4 5 6 7 8, , , , , , ,c c c c c c c c  and corresponding knuckles 1 6KP −  
i.e. all 5 fingers, the classification rules H IR R+   are used to calcu-
late the value fitness according to (5). 

Mark of eaICP estimator E9, 7 dim task: 
0 1 2 5 6 7 8, , , , , ,x x x x x x x ; the knuckles 1 2,K KP P  are omitted form 

calculation and also corresponding contours ... ... ...
1 2 3, ,c c c ; the 

contours which participate in calculation ... ... ... ... ...
4 5 6 7 8, , , ,c c c c c and 

knuckles 3 6KP − , it uses the rules H IR R+  to calculate fitness value 
according to (5). 
Mark of eaICP estimator E10, 7 dim task:

0 1 2 5 6 7 8, , , , , ,x x x x x x x ; the knuckles 1 2,K KP P  are  omitted from 
calculation and also corresponding contours ... ... ...

1 2 3, ,c c c  the contour 
...
8c  is also omitted ; the contours which participate at calculation 
... ... ... ...
4 5 6 7, , ,c c c c  and knuckles 3 6KP − , it uses both the classification 

rules H IR R+  in calculation of fitness  according to (5).
Mark of eaICP estimator E11, 8 dim task:
x0, x1, x2, x3, x5, x6, x7, x8; the knuckle 2KP  is fixed ; the contours 
which participate in calculation ... ... ... ... ... ... ... ...

1 2 3 4 5 6 7 8, , , , , , ,c c c c c c c c  and 
corresponding knuckles 1,3 6KP −  i.e. all 5 fingers, only the rule IR  is 
used in calculation of value fitness according to (5).

Marginally were also tested optimizers PSO, RPSO. 
Unfortunately, both are not suitable to solve the giv-
en task. The SGA optimizer was also tested with a 
chromosome which is expressed as the chain of bits 
of length of chromosome/gene 136/17 bits, 20SGA

popN = , 
200SGA

enG = , accuracy 51 10−×  and with various types of 
evolutionary operators. SGA enables very fast start-
ing convergence and behaves like CMA-ES, but it 
has big problem to find an accurate solution and gets 
stuck in local optima very often or convergence fails 
totally. 
Just the random malfunctions of convergence to opti-
mal solution makes the SGA scarcely usable. A meta-
heuristic optimizer PBO was also tested which is a 

newbie in the optimization sphere but its efficiency 
at solving of 7, 8 and primarily 9-dimensional optimi-
zation tasks is very bad. PBO shows 50 percent worse 
results and primarily thanks to its internal arrange-
ment, is 3x slower in comparison to EPSDE. Such 
classifier is unusable. As the most suitable optimizer, 
the EPSDE algorithm was selected.

4.3. Election of Working Parameters, 
Accuracy of Calculation 
Selected optimizer EPSDE has only one working pa-
rameter EPSDE

pL . For correct operation it is necessary 
to also find the correct number of individuals in the 
population, the number of generations as termination 
condition, and values ,M Sη η  resp. ,M Sκ κ . Based on the 
performed experiment it was ascertained that param-
eter EPSDE

pL  has only very small effect on the result of 
optimization, hence for all calculations was set to val-
ue 10. Convergence curves of the EPSDE are smooth 
and without any unwilling peaks. Selection of values 

,M Sκ κ  were processed with regard to technical possi-
bilities and accuracy of final result. For tests two im-
ages from database THID were selected, and marked 
as P001-03-M and P057-08-S – see Fig. 12. One bigger 
and one smaller contour were selected, so it was ev-
ident that there is no unambiguous correspondence 
at alignment. Hence in order for it to be possible to 

Figure 14
Effect of values EPSDE

popN , EPSDE
popG  on final value EER% for 

108160 evolutions resp. contour alignments. Database 
THID, 640x480, contours 4 7

eacΜ
− , 4 7

eaSc − , 4 fingers, IR , 7imD =

optimal solution makes the SGA scarcely usable. 
A metaheuristic optimizer PBO was also tested 
which is a newbie in the optimization sphere but 
its efficiency at solving of 7, 8 and primarily 9-
dimensional optimization tasks is very bad. PBO 
shows 50 percent worse results and primarily 
thanks to its internal arrangement, is 3x slower 
in comparison to EPSDE. Such classifier is 
unusable. As the most suitable optimizer, the 
EPSDE algorithm was selected. 
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4.3. Election of Working Parameters, 
Accuracy of Calculation  
Selected optimizer EPSDE has only one working 
parameter EPSDE

pL . For correct operation it is 

necessary to also find the correct number of 
individuals in the population, the number of 
generations as termination condition, and values

,M Sη η   resp. ,M Sκ κ . Based on the performed 
experiment it was ascertained that parameter 

EPSDE
pL  has only very small effect on the result of 

optimization, hence for all calculations was set 
to value 10. Convergence curves of the EPSDE 
are smooth and without any unwilling peaks. 
Selection of values ,M Sκ κ  were processed with 
regard to technical possibilities and accuracy of 
final result. For tests two images from database 
THID were selected, and marked as P001-03-M 
and P057-08-S – see Fig. 12. One bigger and one 
smaller contour were selected, so it was evident 
that there is no unambiguous correspondence at 
alignment. Hence in order for it to be possible to 
ascertain minimal values ,M Sκ κ  usable for next 
experiments, both contours were aligned for 

, 1M Sκ κ = . The used eaICP algorithm, with 
parameters 20EPSDE

popN = , 500EPSDE
enG = , and 10EPSDE

pL = , then 
calculated values 

jx  of vector u
iX . Number of 

repetitions was 10. Average value of fitness  was 
also calculated equal to 26526,50 pixels from 
these 10 repetitions. After that the trial was 
performed for row of values , 2, 20M Sκ κ ∈   with 
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Description of individual marking Ex with regard to assemblages A1 to A11 used in algorithm [64]: 
Mark of eaICP estimator E3, 9 dim task: 

0 1 2 3 4 5 6 7 8, , , , , , , ,x x x x x x x x x ; all contours  
... ... ... ... ... ... ... ...
1 2 3 4 5 6 7 8, , , , , , ,c c c c c c c c are used in calculation and 

corresponding knuckles
1 6KP −

  i.e. all 5 fingers, only the rule
IR   is 

used in calculation fitness  according to (5).   
Mark of eaICP estimator E5, 7 dim task: 

0 1 2 5 6 7 8, , , , , ,x x x x x x x  

; the knuckles
1 2,K KP P   are omitted from calculation and also 

corresponding contours  ... ... ...
1 2 3, ,c c c ; contours which participate 

in calculation ... ... ... ... ...
4 5 6 7 8, , , ,c c c c c  and knuckles 

3 6KP −
, only rule 

IR is used in calculation of fitness value according to (5).  

Mark of eaICP estimator E8, 9 dim task: 

0 1 2 3 4 5 6 7 8, , , , , , , ,x x x x x x x x x ; the contours which participate in 

calculation ... ... ... ... ... ... ... ...
1 2 3 4 5 6 7 8, , , , , , ,c c c c c c c c   and corresponding knuckles

1 6KP −
  i.e. all 5 fingers, the classification rules 

H IR R+   are used 

to calculate the value fitness  according to (5).  
 

Mark of eaICP estimator E9, 7 dim task: 

0 1 2 5 6 7 8, , , , , ,x x x x x x x  ; the knuckles
1 2,K KP P   are omitted form 

calculation and also corresponding contours ... ... ...
1 2 3, ,c c c ; the 

contours which participate in calculation ... ... ... ... ...
4 5 6 7 8, , , ,c c c c c and 

knuckles
3 6KP −

, it uses the rules
H IR R+   to calculate fitness  value 

according to (5).  
Mark of eaICP estimator E10, 7 dim task: 

0 1 2 5 6 7 8, , , , , ,x x x x x x x ; the knuckles 
1 2,K KP P  are  omitted from 

calculation and also corresponding contours ... ... ...
1 2 3, ,c c c the contour 

...
8c   is also omitted ; the contours which participate at calculation
... ... ... ...
4 5 6 7, , ,c c c c   and knuckles

3 6KP −
, it uses both the classification 

rules
H IR R+   in calculation of fitness  according to (5). 

Mark of eaICP estimator E11, 8 dim task: 
0 1 2 5 6 7 8, , , , , ,x x x x x x x   ; the knuckle

2KP  is fixed ; the contours 

which participate in calculation ... ... ... ... ... ... ... ...
1 2 3 4 5 6 7 8, , , , , , ,c c c c c c c c and 

corresponding knuckles
1,3 6KP −

  i.e. all 5 fingers, only the rule 
IR  

is used in calculation of value fitness  according to (5). 
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ascertain minimal values ,M Sκ κ  usable for next exper-
iments, both contours were aligned for , 1M Sκ κ = . The 
used eaICP algorithm, with parameters 20EPSDE

popN = , 
500EPSDE

enG = , and 10EPSDE
pL = , then calculated values jx  

of vector u iX . Number of repetitions was 10. Average 
value of fitness was also calculated equal to 26526,50 
pixels from these 10 repetitions. After that the trial 
was performed for row of values , 2, 20M Sκ κ ∈  with 
step 1 and setting of EPSDE: 15EPSDE

popN = , 200EPSDE
enG = ,

10EPSDE
pL = . Every trial was again repeated 10x. Result-

ing values were recorded and average value calculat-
ed from genes jx  of the chromosome iX  from the 10 
repetitions for individual , 2, 20M Sκ κ ∈  was again 
inserted back as a correct solution into algorithm ea-
ICP, where , 1M Sκ κ =  and the fitness  was calculated – 
see Fig. 13. According to presupposition, the fitness  
value was gradually slowly increasing at increasing 
values ,M Sκ κ . The proposed estimator is consider-
ably stable. Based on extensive experiments see Fig. 
5-11, the EPSDE optimizer was selected as the best 
optimizer from the group of tested optimizers – the 
optimizer shows the smallest number of malfunc-
tions at convergence and contains only a minimal 
number of working parameters. The only useful val-
ues were EPSDE

popN  and EPSDE
enG . These values have to be set 

manually and, according to expectations, depend on 
image resolution and number of pixels of hand con-
tour. For image resolution 640x480 pixels are good 
enough values 15 20EPSDE

popN = − , 200EPSDE
enG = , 10EPSDE

enL = . 
Unfortunately, at experiments it was proved that 
at large number of repetitions in order of ten thou-
sand, imperfect convergence for EPSDE can occur. 
Complete processing of the database THID requires 
108160 contour alignments. Total malfunction simi-
lar to SGA is, indeed, not observed but the final value 
for every thousand evolutions does not reach an ideal 
value at contour alignment. This effect is visible for 
coefficient EER. This effect is recorded in Fig. 14 and 
has universal character for all image resolutions. Dif-
ference between ideal values of EER at large number 
of evolutions is however small cca 0.1%, but visible. 
To reach better values it is possible to increase the 
number of individuals in the population and also the 
number generations to e.g. 40EPSDE

popN = , 600EPSDE
enG = . 

For experimental purposes following arrangements 
of contours, image resolution and classification crite-
ria (5) were elected see Tab. 1. Individual assemblages 

of estimators are marked as A1-11. The type of used 
database is also noted. The type of contours M and S 
at experiments, and number of contours are used ac-
cording to (3). The number of fingers, and type of used 
classification criteria is according to (5). All knuckles 
are included into the calculation - see Fig. 3. The num-
ber of dimensions of the task and also number of esti-
mators are according to algorithm in [60]. In Tables 
8-19 are recorded all important results and statistical 
values ULIΣ , %FAR ,  𝛴𝐺OL , %FRR  and %EER . Point EER  
is recorded in percent and also in pixels. Individual 
assemblages A1-A11 – see Tab. 1, use different types 
of contours which are marked as , ,co ea eaM M S . Based 
on practical experiments, it was ascertained that 
during the comparison of trimmed and non-trimmed 
contours ,co eaM S , it is possible to attain significantly 
better results even with use of only one template coM  
or eaM  from every person (genuine). For classification 
purposes FAR (False Acceptance Rate) values, FRR 
(False Rejection Rate) and point EER (Equal Error 
Rate point or Equilibrium) are used – see e.g. (Sanch-
es-Reillo et al. 2000) according to (20, 21, 22):

step 1 and setting of EPSDE: 15EPSDE
popN = , 200EPSDE

enG =

, 10EPSDE
pL = . Every trial was again repeated 10x. 

Resulting values were recorded and average 
value calculated from genes 

jx  of the 
chromosome

iX  from the 10 repetitions for 
individual , 2, 20M Sκ κ ∈   was again inserted 
back as a correct solution into algorithm eaICP, 
where , 1M Sκ κ =   and the fitness  was calculated – 
see Fig. 13. According to presupposition, the
fitness  value was gradually slowly increasing at 

increasing values ,M Sκ κ . The proposed estimator 
is considerably stable. Based on extensive 
experiments see Fig. 5-11, the EPSDE optimizer 
was selected as the best optimizer from the 
group of tested optimizers – the optimizer 
shows the smallest number of malfunctions at 
convergence and contains only a minimal 
number of working parameters. The only useful 
values were EPSDE

popN   and EPSDE
enG . These values 

have to be set manually and, according to 
expectations, depend on image resolution and 
number of pixels of hand contour. For image 
resolution 640x480 pixels are good enough 
values 15 20EPSDE

popN = − , 200EPSDE
enG = , 10EPSDE

enL = . 
Unfortunately, at experiments it was proved that 
at large number of repetitions in order of ten 
thousand, imperfect convergence for EPSDE can 
occur. Complete processing of the database 
THID requires 108160 contour alignments. Total 
malfunction similar to SGA is, indeed, not 
observed but the final value for every thousand 
evolutions does not reach an ideal value at 
contour alignment. This effect is visible for 
coefficient EER . This effect is recorded in Fig. 14 
and has universal character for all image 
resolutions. Difference between ideal values of 
EER  at large number of evolutions is however 
small cca 0.1%, but visible. To reach better values 
it is possible to increase the number of 
individuals in the population and also the 
number generations to e.g. 40EPSDE

popN = , 
600EPSDE

enG = .  
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experiments, and number of contours are used 
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where
OLGΣ  – sum of all genuine samples for 

which exceeded the required limit 
EERλ ,

TOTGΣ  – 
total number of genuine samples, 

ULIΣ  – number 
of impostors, which thanks to malfunction of 
classifier fall under predefined value 

EERλ   , 
TOTIΣ  

– total number of impostors. Value
EERλ   

(22)

where 
OLGΣ  – sum of all genuine samples for which 

exceeded the required limit EERλ , TOTGΣ  – total num-
ber of genuine samples, 

ULIΣ  – number of impostors, 
which thanks to malfunction of classifier fall under 
predefined value 

EERλ , 
TOTIΣ  – total number of impos-

tors. Value EERλ  represents the found point of equilib-
rium in pixels. Several experiments were performed 
with various values 1,5,10,15,20,25,30,35,40Sκ ∈ , in order 
to ascertain how stable and robust are the proposed 
estimators. Any value Sκ  greater than 1 almost always 
led to worse results. Value Mκ  greater than 1 eminently 
always led to worse results and hence only value 1Mκ =   
was always used.
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Figure 15 
Selected curves FAR, FRR for selected values Sκ  and for results in Tab. 2. Key:   FAR   FRR, eaICP, Vertical axis 
is in percent in range 0.0,1.0 . Horizontal axis gives value fitness in pixels or interval 0, EERλ   in which the EER value is 
sought. THID database

represents the found point of equilibrium in 
pixels. Several experiments were performed 
with various values 1,5,10,15,20,25,30,35,40Sκ ∈ , in 
order to ascertain how stable and robust are the 
proposed estimators. Any value 

Sκ  greater than 
1 almost always led to worse results. Value 

Mκ  
greater than 1 eminently always led to worse 
results and hence only value 1Mκ =   was always 
used. 
 
4.5. Results of Classification with Use of 
Estimator eaICP and Comparison with 
Other Works 
In Tab. 8-19 are recorded all results for elected 
assemblages A1-A12 of estimator eaICP – see 
Tab. 1. All calculations were performed with use 
of the matrix

istD   – see (5). First will be presented 
results for database THID (104 persons - genuine 
x 1040 images impostors + genuine, 10 images of 
every person, totally 108160 comparisons) and 
corresponding estimator assemblages A1-A7 
and various combinations of types of contours 
and number of fingers. The best results of eaICP 
algorithm at work with database THID were 
reached for assemblage A1: 0.38%FAR = ,

0.38%FRR = , 0.38%EER = , 99.61%IR =  - see Tab. 2 
and Fig. 15, 16. Value A1: 0.38%EER = , is not 
“totally” ideal. The reason is that e.g. person 
P055 in images P055-09,P55-10 incorrectly 
placed his hand to the pad – fingers were 
unnaturally bent at angle 70 of degrees etc. [8] 
attained using identical database a best result of

0.52%EER =  with use of LDA algorithm and 
with use of standalone Euclidean rule, only a 

value of 3.5%EER =  – see Tab. 13. In Tab. 3 are 
recorded results for assemblage A2: 0.48%FAR = , 

0.48%FRR = , 0.48%EER = . These results are still 
better than [8] attained using LDA algorithm. A 
value of 0.48%EER =  for assemblage A2 is worse 
in comparison to A1, because contours

eaΜ , 
eaS   

were compared. For assemblage A3, Tab. 4 the 
eaICP estimator recorded final values A3: 

1.92%FAR = , 1.92%FRR = , 1.92%EER = . Only 
Euclidean criteria

IR  was used during 
calculations – see (5). The reason of worse result 
than for A1 is that ICP algorithm without any 
support of heuristic rules

HR  has not such 
efficiency. The difference in assemblage A1 and 
A3 is that for A3 part of contour from little finger 
to wrist was omitted. The fact that this part of the 
hand contour is important was ascertained 
based on experiments. This is visible from 
results in Tab. 2 and Tab. 4. For assemblage A4 
was attained values 1.15%FAR = , 1.15%FRR = , 

1.15%EER =   for A5: 1.83%FAR = , 1.82%FRR = , 
1.83%EER = , for A6: 3.49%FAR = , 3.46%FRR = , 
3.49%EER =  and finally for A7: 1.82%FAR = ,
1.82%FRR = , 1.82%EER = . Assemblage A4 works 

with 4 fingers and uses both classification 
criteria. Assemblage A5 is identical to A4, but 
part of hand contour between little finger and 
wrist is omitted. Assemblage A6 works with 5 
fingers but the thumb has only one knuckle. 
Hence, all results are markedly worse. In 
assemblage A7, the thumb has two knuckles. 
Thanks to that the final result is significantly 
better in comparison to A6. From results in Tab. 
4,5,6 for assemblage A3, A4, A5, it follows that 
the final value EER  has big effect on the type of 

Figure 15  
Selected curves ,FAR FRR  for selected values 

Sκ  and for results in Tab. 2. Key: 
, eaICP, Vertical axis is in percent in range 0.0,1.0 . Horizontal axis gives value fitness  in pixels or 
interval 0, EERλ   in which the EER  value is sought. THID database. 
 

A. 1, 1; lim 10000M Sκ κ= = =  B. 1, 20; lim 3000M Sκ κ= = =   C. 1, 30; lim 3000M Sκ κ= = =   D. 1, 40; lim 1500M Sκ κ= = =  
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4.5. Results of Classification with Use of 
Estimator eaICP and Comparison with Other 
Works

In Tab. 8-19 are recorded all results for elected as-
semblages A1-A12 of estimator eaICP – see Tab. 1. 
All calculations were performed with use of the ma-
trix istD  – see (5). First will be presented results for 
database THID (104 persons - genuine x 1040 images 
impostors + genuine, 10 images of every person, to-
tally 108160 comparisons) and corresponding esti-
mator assemblages A1-A7 and various combinations 
of types of contours and number of fingers. The best 
results of eaICP algorithm at work with database 

THID were reached for assemblage A1: 0.38%FAR = , 
FRR = 0.38%, 0.38%EER = , 99.61%IR =  - see Tab. 2 
and Fig. 15, 16. Value A1: 0.38%EER = , is not “totally” 
ideal. The reason is that e.g. person P055 in images 
P055-09,P55-10 incorrectly placed his hand to the 
pad – fingers were unnaturally bent at angle 70 of de-
grees etc. [8] attained using identical database a best 
result of 0.52%EER =  with use of LDA algorithm and 
with use of standalone Euclidean rule, only a value 
of 3.5%EER =  – see Tab. 13. In Tab. 3 are recorded re-
sults for assemblage A2: 0.48%FAR = , 0.48%FRR = ,

0.48%EER = . These results are still better than [8] at-
tained using LDA algorithm. A value of 0.48%EER =  

Table 2  
Statistics of success rate of estimator A1, values FAR, FRR, EER, viz Tab. 1, A1: THID, 1280x960, 4 8

cocΜ
− , 4 8

eaSc − , 4 fingers, H IR R+ , 
3 6KR − , 7imD = , E9. Time demands in [sec.ms] are assumed for successful alignment of samples THID: P001-03-M a P057-08-S – 

samples see Fig. 12. Total number of evolutions is: 9 rows × 108160 comparisons Mco vs Sea = 973 440 evolutions. For row 1 is 
the value of Identification rate (IR) equal to 99.61%. 40EPSDE

popN = , 420EPSDE
enG =

n. Mκ Sκ ULIΣ %FAR OLGΣ %FRR %ERR / pixel Tot. time

1 1 1 412 0.38 4 0.38 0.38 / 4873 23.340

2 1 5 615 0.57 6 0.57 0.57 / 965 5.240

3 1 10 614 0.57 6 0.57 0.57 / 476 2.790

4 1 15 512 0.47 5 0.48 0.47 / 309 1.990

5 1 20 427 0.39 4 0.38 0.38 / 226 1.540

6 1 25 613 0.57 6 0.57 0.57 / 189 1.290

7 1 30 563 0.52 5 0.48 0.52 / 155 1.140

8 1 35 599 0.55 6 0.57 0.55 / 133 1.000

9 1 40 680 0.63 7 0.67 0.63 / 118 0.920
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Figure 16 
Selected Receive Operating Characteristics - ROC curves 
for estimator A1. ROC curves are for values in Tab. 2 i.e. for 
estimator. A1: THID, 1280x960, 4 8

cocΜ
− , 4 8

eaSc − , 4 fingers, H IR R+ , 
3 6KP − , 7imD = , E9. Horizontal axis–False Positive Rate (FPR), 

Vertical axis–True Positive Rate (TPR)

compared contours , ,co ea eaSΜ Μ . The best results 
can be reached just for combination of contours

,co eaSΜ   and at use of both classification criteria

H IR R+   according to (5). The estimator which uses 
contours ,ea eaSΜ   is also less robust. This fact is 
highly visible at comparison of results for

1 40Sκ = − . For all estimators where only the
IR    

rule is used, without
HR , worse results were 

reached. The rule of guaranteed convergence of 
the ICP algorithm holds for identical or “almost” 
identical point clouds. In the case of 
classification of set of points which makes a 
hand contour with use of the ICP algorithm, the 
favored position of alignment of contourΜ  and 
S is in direction to end of fingers, where there is 
larger number of points than in the area between 
fingers – in root of fingers. This effect was 
observed without regard to type of used contour 

, ,co ea eaSΜ Μ . It is the reason why use of only rule 

IR  does not lead to such good results in 
comparison to use of combination 

H IR R+ . Thanks 
to rule 

HR   the ICP algorithm correctly matches 
contours Μ  and S . In the course of experiments 
the value

Sκ  was changed in range 1 40Sκ = −  for 
whole time of evolution in accordance to Tab. 7. 
The reason of test of various values

Sκ  is of 
course, in an effort to ascertain how much the 
estimator eaICP is robust/stable at a lower 
number of points which make the hand contour. 
For 40Sκ =  e.g. A1: values 0.63%FAR = ,

0.67%FRR = , 0.63%EER =   was reached - see Tab. 
8. For all other assemblages the results are 
worse. Proposed eaICP estimator in assemblage 
A1 is very robust and offers very good results. In 
Fig. 15 curves ,FAR FRR  for results in Tab. 2 are 
displayed. In Fig. 16 are displayed 
corresponding ROC (Receive Operating 
Characteristics) curves for individual tested 
values 

Sκ   in range 1 40Sκ = − . 
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Selected Receive Operating Characteristics - 
ROC curves for estimator A1. ROC curves are 
for values in Tab. 2 i.e. for estimator. A1: THID, 
1280x960, 

4 8
cocΜ
−
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eaSc −
  , 4 fingers, 

H IR R+ , 
3 6KP −
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Table 2   
Statistics of success rate of estimator A1, values

, ,FAR FRR EER , viz Tab. 1, A1: THID, 1280x960,  

4 8
cocΜ
−

,
4 8

eaSc −
, 4 fingers, 

H IR R+ , 
3 6KR −

, 7imD = , E9.  
Time demands in [sec.ms] are assumed for 
successful alignment of samples THID: P001-03-
M a P057-08-S – samples see Fig. 12. Total 
number of evolutions is: 9 rows ×  108160 
comparisons 

coΜ  vs 
eaS   = 973 440 evolutions. For 

row 1 is the value of Identification rate (IR) equal 
to 99.61%. 40EPSDE

popN = , 420EPSDE
enG = . 

 
n. Mκ  

Sκ  
ULIΣ  %FAR  OLGΣ  %FRR  %ERR / pixel Tot. time 

1 1  1  412 0.38 4 0.38 0.38 / 4873 23.340 
2 1 5 615 0.57 6 0.57 0.57 / 965 5.240 
3 1 10 614 0.57 6 0.57 0.57 / 476 2.790 
4 1 15 512 0.47 5 0.48 0.47 / 309 1.990 
5 1 20 427 0.39 4 0.38 0.38 / 226 1.540 
6 1 25 613 0.57 6 0.57 0.57 / 189 1.290 
7 1 30 563 0.52 5 0.48 0.52 / 155 1.140 
8 1 35 599 0.55 6 0.57 0.55 / 133 1.000 
9 1 40 680 0.63 7 0.67 0.63 / 118 0.920 

 
Table 3   
Statistics of success rate of estimator A2, values 

, ,FAR FRR EER , see Tab. 1. A2: THID, 1280x960, 

4 8
eacΜ
−

,
4 8

eaSc −
 , 4 fingers,  

H IR R+ , 
3 6KP −

, 7imD = , E9 
Time demands in [sec.ms] are assumed for 
successful alignment of samples THID: P001-03-
M a P057-08-S – samples see Fig. 12. Total 
number of evolutions is: 9 rows ×  108160 
comparisons 

eaΜ  vs eaS   = 973 440 evolutions. 

40EPSDE
popN = , 420EPSDE

enG = . 
 
n. Mκ  

Sκ  
ULIΣ  %FAR  OLGΣ  %FRR  %ERR / pixel Tot. time 

1 1  1  515 0.48 5 0.48 0.48 / 4856 23.180 
2 1 5 523 0.48 5 0.48 0.48 / 963 5.160 
3 1 10 591 0.55 5 0.48 0.56 / 482 2.770 
4 1 15 637 0.59 6 0.57 0.59 / 402 1.980 
5 1 20 699 0.65 7 0.67 0.64 / 373 1.530 
6 1 25 782 0.73 8 0.76 0.75 / 285 1.290 
7 1 30 847 0.79 9 0.86 0.79 / 201 1.120 
8 1 35 911 0.85 10 0.96 0.85 / 157 1.000 
9 1 40 1079 1.00 10 0.96 1.00 / 132 0.900 
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for assemblage A2 is worse in comparison to A1, be-
cause contours eaΜ , eaS  were compared. For assem-
blage A3, Tab. 4 the eaICP estimator recorded final 
values A3: 1.92%FAR = , 1.92%FRR = , 1.92%EER = . 
Only Euclidean criteria

IR  was used during calcula-
tions – see (5). The reason of worse result than for A1 
is that ICP algorithm without any support of heuris-
tic rules

HR  has not such efficiency. The difference in 
assemblage A1 and A3 is that for A3 part of contour 
from little finger to wrist was omitted. The fact that 
this part of the hand contour is important was ascer-
tained based on experiments. This is visible from re-
sults in Tab. 2 and Tab. 4. For assemblage A4 was at-

tained values 1.15%FAR = , 1.15%FRR = , 1.15%EER =   
for A5: 1.83%FAR = , 1.82%FRR = , 1.83%EER = , for A6: 

3.49%FAR = , 3.46%FRR = , 3.49%EER =  and finally for 
A7: 1.82%FAR = , 1.82%FRR = , 1.82%EER = . Assem-
blage A4 works with 4 fingers and uses both classifi-
cation criteria. Assemblage A5 is identical to A4, but 
part of hand contour between little finger and wrist is 
omitted. Assemblage A6 works with 5 fingers but the 
thumb has only one knuckle. Hence, all results are 
markedly worse. In assemblage A7, the thumb has 
two knuckles. Thanks to that the final result is sig-
nificantly better in comparison to A6. From results 
in Tab. 4,5,6 for assemblage A3, A4, A5, it follows that 
the final value EER  has big effect on the type of com-
pared contours , ,co ea eaSΜ Μ . The best results can be 
reached just for combination of contours ,co eaSΜ  and 
at use of both classification criteria H IR R+  according 
to (5). The estimator which uses contours ,ea eaSΜ  is 
also less robust. This fact is highly visible at compar-
ison of results for 1 40Sκ = − . For all estimators where 
only the IR  rule is used, without HR , worse results 
were reached. The rule of guaranteed convergence 
of the ICP algorithm holds for identical or “almost” 
identical point clouds. In the case of classification of 
set of points which makes a hand contour with use of 
the ICP algorithm, the favored position of alignment 
of contourΜ  and S is in direction to end of fingers, 
where there is larger number of points than in the 

Table 3  
Statistics of success rate of estimator A2, values FAR, FRR, EER, see Tab. 1. A2: THID, 1280x960, 4 8

eacΜ
− , 4 8

eaSc − , 4 fingers, H IR R+ , 
3 6KP − , 7imD = , E9. Time demands in [sec.ms] are assumed for successful alignment of samples THID: P001-03-M a P057-08-S – 

samples see Fig. 12. Total number of evolutions is: 9 rows ×  108160 comparisons Mea vs Sea = 973 440 evolutions. 40EPSDE
popN = , 

420EPSDE
enG =

n. Mκ Sκ ULIΣ %FAR OLGΣ %FRR %ERR / pixel Tot. time

1 1 1 515 0.48 5 0.48 0.48 / 4856 23.180

2 1 5 523 0.48 5 0.48 0.48 / 963 5.160

3 1 10 591 0.55 5 0.48 0.56 / 482 2.770

4 1 15 637 0.59 6 0.57 0.59 / 402 1.980

5 1 20 699 0.65 7 0.67 0.64 / 373 1.530

6 1 25 782 0.73 8 0.76 0.75 / 285 1.290

7 1 30 847 0.79 9 0.86 0.79 / 201 1.120

8 1 35 911 0.85 10 0.96 0.85 / 157 1.000

9 1 40 1079 1.00 10 0.96 1.00 / 132 0.900
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Table 4  
Statistics of success rate of estimator A3, values FAR, FRR, EER, see Tab. 1. A3: THID, 1280x960, 4 7

eacΜ
− , 4 7

eaSc − , 4 fingers, IR , 
3 6KR − , 7imD = , E5. Time demands in [sec.ms] are assumed for successful alignment of samples THID: P001-03-M a P057-

08-S – samples see Fig. 12. Total number of evolutions is: 9 rows ×  108160 comparisons Mea vs Sea = 973 440 evolutions. 
40EPSDE

popN = , 420EPSDE
enG =

n. Mκ Sκ ULIΣ %FAR OLGΣ %FRR %ERR / pixel Tot. time

1 1 1 2062 1.92 20 1.92 1.92 / 4572 21.652

2 1 5 2078 1.93 22 2.11 1.93 / 914 4.860

3 1 10 2130 1.98 23 2.21 1.97 / 453 2.610

4 1 15 2243 2.09 26 2.50 2.09 / 342 1.830

5 1 20 2560 2.38 27 2.59 2.38 / 246 1.470

6 1 25 2782 2.59 29 2.78 2.59 / 201 1.210

7 1 30 3078 2.87 30 2.88 2.87 / 189 0.940

8 1 35 3200 2.98 30 2.88 2.98 / 157 0.920

9 1 40 3610 3.37 34 3.26 3.37 / 139 0.870

Table 5 
Statistics of success rate of estimator A4, values FAR, FRR, EER, see Tab. 1. A4: THID, 640x480, 4 8

cocΜ
− , 4 8

eaSc − , 4 fingers, H IR R+ , 
3 6KR − , 7imD = , E9. Time demands in [sec.ms] are assumed for successful alignment of samples THID: P001-03-M a P057-

08-S – samples see Fig. 12. Total number of evolutions is: 9 rows ×  108160 comparisons Mco vs Sea = 973 440 evolutions. 
20EPSDE

popN = , 200EPSDE
enG =

n. Mκ Sκ ULIΣ %FAR OLGΣ %FRR %ERR / pixel Tot. time

1 1 1 1239 1.15 12 1.15 1.15 / 1248 1.996

2 1 5 1288 1.20 17 1.63 1.20 / 249 0.491

3 1 10 1302 1.21 19 1.82 1.22 / 115 0.296

4 1 15 1478 1.37 22 2.11 1.37 / 98 0.218

5 1 20 2077 1.93 25 2.40 1.95 / 92 0.187

6 1 25 2498 2.33 28 2.69 2.34 / 88 0.171

7 1 30 2870 2.67 29 2.78 2.67 / 62 0.150

8 1 35 3132 2.92 30 2.88 2.92 / 40 0.144

9 1 40 3538 3.33 30 2.88 3.30 / 33 0.140



71Information Technology and Control 2020/1/49

Table 6  
Statistics of success rate of estimator A5, values FAR, FRR, EER, see Tab. 1. A5: THID, 640x480, 4 7

cocΜ
− , 4 7

eaSc − , 4 fingers, H IR R+ , 
3 6KP − , 7imD = , E10. Time demands in [sec.ms] are assumed for successful alignment of samples THID: P001-03-M a P057-

08-S – samples see Fig. 12. Total number of evolutions is: 9 rows × 108160 comparisons Mco vs Sea = 973 440 evolutions. 
20EPSDE

popN = , 200EPSDE
enG =

n. Mκ Sκ ULIΣ %FAR OLGΣ %FRR %ERR / pixel Tot. time

1 1 1 1963 1.83 19 1.82 1.83 / 1153 1.903

2 1 5 1998 1.86 19 1.82 1.85 / 230 0.483

3 1 10 2002 1.86 22 2.11 1.87 / 164 0.280

4 1 15 2140 1.99 27 2.59 1.97 / 130 0.218

5 1 20 2490 2.32 29 2.78 2.32 / 98 0.171

6 1 25 2673 2.49 30 2.88 2.49 / 74 0.156

7 1 30 2980 2.78 31 2.98 2.78 / 41 0.150

8 1 35 3054 2.85 33 3.17 2.85 / 32 0.144

9 1 40 3139 2.93 34 3.26 2.93 / 27 0.140

Table 7 
Statistics of success rate of estimator A6, values FAR, FRR, EER, viz Tab. 1. A6: THID, 640x480, 1 8

eacΜ
− , 1 8

eaSc − , 5 fingers, IR , 1 6KR − , 
2KR  fixed, 8imD = , E11. Time demands in [sec.ms] are assumed for successful alignment of samples THID: P001-03-M 

a P057-08-S – samples see Fig. 12. Total number of evolutions is: 9 rows × 108160 comparisons Mea vs Sea = 973440 
evolutions. 20EPSDE

popN = , 200EPSDE
enG =

n. Mκ Sκ ULIΣ %FAR OLGΣ %FRR %ERR / pixel Tot. time

1 1 1 3742 3.49 36 3.46 3.49 / 2902 1.970

2 1 5 3802 3.54 39 3.75 3.54 / 576 0.480

3 1 10 3917 3.65 42 4.03 3.65 / 268 0.290

4 1 15 4117 3.84 47 4.51 3.84 / 232 0.220

5 1 20 4627 3.31 50 4.80 3.31 / 201 0.190

6 1 25 4790 4.47 53 5.09 4.47 / 170 0.160

7 1 30 5237 4.88 57 5.48 4.88 / 120 0.140

8 1 35 5701 5.32 59 5.67 5.32 / 101 0.140

9 1 40 5744 5.36 59 5.67 5.36 / 82 0.140
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Table 8   
Statistics of success rate of estimator A7, values FAR, FRR, EER, see Tab. 1. A7: THID, 640x480, 1 8

cocΜ
− , 1 8

eaSc − , 5 fingers, H IR R+ , 
1 6KP − , 9imD = , E8. Time demands in [sec.ms] are assumed for successful alignment of samples THID: P001-03-M a P057-

08-S – samples see Fig. 12. Total number of evolutions is: 9 rows ×  108160 comparisons Mco vs Sea = 973 440 evolutions. 
20EPSDE

popN = , 200EPSDE
enG =

n. Mκ Sκ ULIΣ %FAR OLGΣ %FRR %ERR / pixel Tot. time

1 1 1 1956 1.82 19 1.82 1.82 / 2199 2.496

2 1 5 1960 1.82 19 1.82 1.82 / 435 0.608

3 1 10 1958 1.82 19 1.82 1.82 / 215 0.343

4 1 15 1970 1.83 20 1.92 1.84 / 198 0.280

5 1 20 1982 1.85 19 1.82 1.85 / 140 0.218

6 1 25 1989 1.85 20 1.92 1.85 / 100 0.202

7 1 30 1998 1.86 20 1.92 1.86 / 74 0.187

8 1 35 2008 1.87 20 1.92 1.87 / 56 0.171

9 1 40 2010 1.87 20 1.91 1.87 / 49 0.156

area between fingers – in root of fingers. This effect 
was observed without regard to type of used contour 

, ,co ea eaSΜ Μ . It is the reason why use of only rule IR  
does not lead to such good results in comparison to 
use of combination H IR R+ . Thanks to rule HR  the ICP 
algorithm correctly matches contours M and S. In the 
course of experiments the value Sκ  was changed in 
range 1 40Sκ = −  for whole time of evolution in accor-
dance to Tab. 7. The reason of test of various values 

Sκ  is of course, in an effort to ascertain how much the 

estimator eaICP is robust/stable at a lower number 
of points which make the hand contour. For 40Sκ =  
e.g. A1: values 0.63%FAR = , 0.67%FRR = , 0.63%EER =   
was reached - see Tab. 8. For all other assemblages 
the results are worse. Proposed eaICP estimator in 
assemblage A1 is very robust and offers very good re-
sults. In Fig. 15 curves ,FAR FRR  for results in Tab. 2 
are displayed. In Fig. 16 are displayed corresponding 
ROC (Receive Operating Characteristics) curves for 
individual tested values Sκ   in range 1 40Sκ = − .

For experiments with GPDS database (94 persons 
- genuine x 940 images impostors + genuine, 10 im-
ages of every person, totally 88360 comparisons) an 
assemblage of estimators named A8-A11 were elect-
ed – see Tab. 1 and Tab. 9-12, 13 with different image 
resolution, number of fingers and contours. The best 
result was reached for assemblage A8: 0.35%FAR = ,

0.31%FRR = , 0.35%EER = , 99.68%IR =  for native im-
age resolution 1403x1021 pixels – see Tab. 9 and Fig. 
17. In Fig. 17 ROC curves are recorded for individual 
rows in Tab. 9, assemblage A8. In several cases it was 
not possible to classify a contour because one of im-
ages obtained from an identical person had e.g. short-
er fingers or the fingers were unexpectedly deformed 
e.g. shorter of 10mm etc. – see Fig. 18. Unfortunately, 

the eaICP estimator is very sensitive to such similar 
anomalies. In paper [4] authors reached, with use of 
identical database, values 1.50%FAR = , 3.50%FRR =  
for database of size 50 persons and results values 

1.50%FAR = , 5.95%FRR =  for database of size 100 per-
sons. In paper [5] authors attained values 0.50%FAR = , 

2.00%FRR =  for 100 persons in database GPDS. In 
Tab. 9, assemblage A8, row 8 a value 0.26%EER =  is re-
corded for 35Sκ = . The processed task and whole ea-
ICP mechanism represents a strongly non-linear sys-
tem. The calculation was repeated several times with 
identical result (or almost identical) and it was ascer-
tained that this phenomenon is only “a piece of luck”. 
For image resolution 640x480 pixels - see Tab. 10-128, 
eaICP estimator attained values A9: 0.63%FAR = , 
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Table 9  
Statistics of success rate of estimator A8, values FAR, FRR, EER, see Tab. 1. A8: GPDS, 1403x1021, 4 8

cocΜ
− , 4 8

eaSc − , 4 fingers, H IR R+ , 
3 6KR − , 7imD = , E9. Time demands in [sec.ms] are assumed for successful alignment of samples GPDS: P001-03-M a P057-

08-S. Total number of evolutions is: 9 rows ×  88360 comparisons Mco vs Sea = 795 240 evolutions. For row 1 is the value 
Identification Rate (IR) equal to 99.68%. 40EPSDE

popN = , 420EPSDE
enG =

n. Mκ Sκ ULIΣ %FAR OLGΣ %FRR %ERR / pixel Tot. time

1 1 1 310 0.35 3 0.31 0.35 / 6006 42.470

2 1 5 311 0.35 3 0.31 0.35 / 1190 10.400

3 1 10 331 0.36 3 0.28 0.37 / 593 5.220

4 1 15 413 0.38 4 0.38 0.42 / 400 3.580

5 1 20 370 0.42 4 0.42 0.42 / 297 2.680

6 1 25 276 0.36 3 0.31 0.36 / 230 2.270

7 1 30 333 0.38 4 0.42 0.38 / 193 1.900

8 1 35 229 0.26 3 0.31 0.26 / 160 1.650

9 1 40 368 0.42 4 0.42 0.42 / 147 1.550

Table 10  
Statistics of success rate of estimator A9, values FAR, FRR, EER, see Tab. 1. A9: GPDS, 640x480, 1 8

eacΜ
− , 1 8

eaSc −  , 5 fingers, 
IR , 

1 6KR −
, 

9imD = , E3. Time demands in [sec.ms] are assumed for successful alignment of samples GPDS: P001-03-M a P057-08-S. 
Total number of evolutions is: 9 rows × 88360 comparisons Mea vs Sea = 795240 evolutions. 20EPSDE

popN = , 200EPSDE
enG =

n. Mκ Sκ ULIΣ %FAR OLGΣ %FRR %ERR / pixel Tot. time

1 1 1 559 0.63 6 0.63 0.63 / 2455 4.210

2 1 5 1216 1.39 13 1.38 1.39 / 533 0.970

3 1 10 1232 1.40 13 1.39 1.40 / 250 0.630

4 1 15 1255 1.43 14 1.43 1.41 / 212 0.450

5 1 20 1274 1.45 14 1.45 1.44 / 189 0.380

6 1 25 1285 1.46 14 1.48 1.46 / 115 0.310

7 1 30 1623 1.85 17 1.80 1.85 / 87 0.270

8 1 35 1625 1.85 18 1.91 1.85 / 87 0.260

9 1 40 1640 1.87 18 1.91 1.87 / 76 0.255

0.63%FRR = , 0.63%EER =  and for A10: 2.12%FAR = , 
2.12%FRR = , 2.12%EER = . A worse result for A10 in 

comparison to A9 is given thanks to a thumb that has 
only one knuckle, while the second knuckle is strong-
ly fixed. Identical results were reached for THID data-
base too. In both the cases A9 and A10 only one clas-
sification criteria

IR   was used, without some heuristic 
rules. For assemblage A11, Tab. 12 were recorded val-
ues 0.64%FAR = , 0.63%FRR = , 0.64%EER = . In compar-

ison of results for A8 and A11 it is well visible that de-
crease of image resolution has significant effect on final 
accuracy. Values for A11 are fifty percent worse than 
for A8 at preservation of all other working parameters 
(except resolution). A difference between A9, A10 and 
A11 is that A11 compares two contours of type coΜ , eaS . 
The A9, A10 compares contours eaΜ , eaS . According to 
attained results it is highly visible that the final result 
is highly effected in the case of comparison of 5-fin-
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gered contour with two knuckles of the thumb. This 
effect is also given by high quality images in the GPDS 
database. This is more superior in comparison to the 
THID database. From results in Tabs. 9-12 it follows 
that proposed estimators are markedly robust. For 
assemblage A8 and A11 the reached EER results are 
nearly invariable even for the coefficient 40Sκ = . For 
assemblage A11 – GPDS database, this means that 
ICP algorithm matches contours with only approx. 
10 points for every one of 4 fingers. In paper [56] also 
used the GPDS database with the number of persons 
being 100. Unfortunately, authors did not report val-
ues for , ,FAR FRR EER, but for GPDS database they 

Figure 17 
Selected ROC curves for estimator A8 in Tab. 9. A8: GPDS, 
1403x1021, 4 8

cocΜ
− , 4 8

eaSc − , 4 fingers, H IR R+ , 3 6KR − , 7imD = , E9. 
Horizontal axis–False Positive Rate (FPR), Vertical axis–
True Positive Rate (TPR)

 
Figure 17  
Selected ROC curves for estimator A8 in Tab. 9. 
A8: GPDS, 1403x1021, 

4 8
cocΜ
−

,
4 8

eaSc −
 , 4 fingers, 

H IR R+ , 

3 6KR −
, 7imD = , E9. Horizontal axis–False Positive 

Rate (FPR), Vertical axis–True Positive Rate 
(TPR) 
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Table 10   
Statistics of success rate of estimator A9, values 

, ,FAR FRR EER , see Tab. 1. A9: GPDS, 640x480, 

1 8
eacΜ

−
,

1 8
eaSc −

 , 5 fingers, 
IR , 

1 6KR −
, 9imD = , E3. Time 

demands in [sec.ms] are assumed for successful 
alignment of samples GPDS: P001-03-M a P057-
08-S. Total number of evolutions is: 9 rows ×  
88360 comparisons 

eaΜ  vs eaS  = 795240 
evolutions. 20EPSDE

popN = , 200EPSDE
enG = . 

 
n. 

Mκ  
Sκ  

ULIΣ  %FAR  OLGΣ  %FRR  %ERR / pixel Tot. time 
1 1  1  559 0.63 6 0.63 0.63 / 2455 4.210 
2 1 5 1216 1.39 13 1.38 1.39 / 533 0.970 
3 1 10 1232 1.40 13 1.39 1.40 / 250 0.630 
4 1 15 1255 1.43 14 1.43 1.41 / 212 0.450 
5 1 20 1274 1.45 14 1.45 1.44 / 189 0.380 
6 1 25 1285 1.46 14 1.48 1.46 / 115 0.310 
7 1 30 1623 1.85 17 1.80 1.85 / 87 0.270 
8 1 35 1625 1.85 18 1.91 1.85 / 87 0.260 
9 1 40 1640 1.87 18 1.91 1.87 / 76 0.255 

 
Table 11 
Statistics of success rate of estimator A10, values 

, ,FAR FRR EER , viz Tab. 1, A10: GPDS, 640x480, 

1 8
eacΜ

−
,

1 8
eaSc −

 , 5 fingers, 
IR , 

1 6KR −
,

2KR fixed,  8imD = ,  E11. 
Time demands in [sec.ms] are assumed for 
successful alignment of samples GPDS: P001-03-
M a P057-08-S. Total number of evolutions is: 9 
rows ×  88360 comparisons 

eaΜ  vs eaS  = 795 240 
evolutions. 20EPSDE

popN = , 200EPSDE
enG = . 

 
n. 

Mκ  
Sκ  

ULIΣ  %FAR  OLGΣ  %FRR  %ERR / pixel Tot. time 
1 1  1  1856 2.12 20 2.12% 2.12 / 3324 4.290 
2 1 5 1876 2.14 20 2.12% 2.14 / 676  0.990 
3 1 10 1894 2.16 21 2.23% 2.16 / 345  0.520 

4 1 15 2169 2.48 23 2.44% 2.48 / 239  0.420 
5 1 20 1967 2.25 22 2.34% 2.25 / 181  0.350 
6 1 25 2218 2.53 25 2.65% 2.53 / 150  0.300 
7 1 30 2304 2.63 23 2.44% 2.63 / 127  0.270 
8 1 35 2405 2.75 26 2.76% 2.75 / 113 0.250 
9 1 40 2613 2.98 28 2.97% 2.98 / 100  0.200 

 
Table 12   
Statistics of success rate of estimator A11, values 

, ,FAR FRR EER , viz Tab. 1. A11: GPDS, 640x480, 

4 8
cocΜ
−

,
4 8

eaSc −
, 4 fingers, 

H IR R+ , 
3 6KR −

, 7imD =  , E9. 
Time demands in [sec.ms] are assumed for 
successful alignment of samples GPDS: P001-03-
M a P057-08-S. Total number of evolutions is: 9 
rows ×  88360 comparisons 

coΜ  vs eaS  = 795 240 
evolutions. 20EPSDE

popN = , 200EPSDE
enG = . 

 
n. 

Mκ  
Sκ  

ULIΣ  %FAR  OLGΣ  %FRR  %ERR / pixel Tot. time 
1 1  1  561 0.64 6 0.63 0.64 / 1371 3.280 
2 1 5 561 0.64 6 0.64 0.64 / 268 0.840 
3 1 10 560 0.64 6 0.64 0.64 / 136 0.500 
4 1 15 560 0.64 6 0.64 0.64 / 115 0.360 
5 1 20 561 0.64 6 0.64 0.64 / 97 0.300 
6 1 25 560 0.64 6 0.63 0.64 / 85 0.250 
7 1 30 561 0.64 6 0.63 0.64 / 67 0.240 
8 1 35 561 0.64 6 0.64 0.64 / 46 0.210 
9 1 40 560 0.64 6 0.63 0.64 / 29 0.200 
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Table 11
Statistics of success rate of estimator A10, values FAR, FRR, EER, viz Tab. 1, A10: GPDS, 640x480, 1 8

eacΜ
− , 1 8

eaSc − , 5 fingers, IR , 
1 6KR − , 2KR  fixed, 8imD = , E11. Time demands in [sec.ms] are assumed for successful alignment of samples GPDS: P001-03-M 

a P057-08-S. Total number of evolutions is: 9 rows ×  88360 comparisons Mea vs Sea = 795 240 evolutions. 20EPSDE
popN = ,

200EPSDE
enG =

n. Mκ Sκ ULIΣ %FAR OLGΣ %FRR %ERR / pixel Tot. time

1 1 1 1856 2.12 20 2.12% 2.12 / 3324 4.290

2 1 5 1876 2.14 20 2.12% 2.14 / 676 0.990

3 1 10 1894 2.16 21 2.23% 2.16 / 345 0.520

4 1 15 2169 2.48 23 2.44% 2.48 / 239 0.420

5 1 20 1967 2.25 22 2.34% 2.25 / 181 0.350

6 1 25 2218 2.53 25 2.65% 2.53 / 150 0.300

7 1 30 2304 2.63 23 2.44% 2.63 / 127 0.270

8 1 35 2405 2.75 26 2.76% 2.75 / 113 0.250

9 1 40 2613 2.98 28 2.97% 2.98 / 100 0.200

Table 12  
Statistics of success rate of estimator A11, values FAR, FRR, EER, viz Tab. 1. A11: GPDS, 640x480, 4 8

cocΜ
− , 4 8

eaSc − , 4 fingers, H IR R+ , 
3 6KR − , 7imD = , E9. Time demands in [sec.ms] are assumed for successful alignment of samples GPDS: P001-03-M a P057-

08-S. Total number of evolutions is: 9 rows × 88360 comparisons Mco vs Sea = 795 240 evolutions. 20EPSDE
popN = , 200EPSDE

enG =

n. Mκ Sκ ULIΣ %FAR OLGΣ %FRR %ERR / pixel Tot. time

1 1 1 561 0.64 6 0.63 0.64 / 1371 3.280

2 1 5 561 0.64 6 0.64 0.64 / 268 0.840

3 1 10 560 0.64 6 0.64 0.64 / 136 0.500

4 1 15 560 0.64 6 0.64 0.64 / 115 0.360

5 1 20 561 0.64 6 0.64 0.64 / 97 0.300

6 1 25 560 0.64 6 0.63 0.64 / 85 0.250

7 1 30 561 0.64 6 0.63 0.64 / 67 0.240

8 1 35 561 0.64 6 0.64 0.64 / 46 0.210

9 1 40 560 0.64 6 0.63 0.64 / 29 0.200
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Table 13 
Comparison of efficiency of the eaICP with other works with use of statistical coefficient EER

n. Author Method, database, success rate %EER

1 [56] DHMMK + SVM, GPDS db. + UST db., GPDS db. succ. rate 99.87%, 3 templates
UST db. succ. rate 100%, 99.2%

0.31

2 [55] SVM, 5 fingers, GPDS db., succ. rate 99.9% -
3 [14] Hand geometry + palmprint, 4 fingers, proprietary db., DCT: GAR=99.5% 1.1198
4 [50] Shape + Geom., IITD db., EER=0.52%, Shape + Geom., propriet. db., EER=0.31% 0.52, 0.31
5 [31] 2D+3D Hand geometry, proprietary db. 0.22
6 [31] 2D Hand geometry, proprietary db. 6.3
7 [21] Geometry + palm texture, proprietary db. 0.17
8 [48] SVM, k-NN, HTC db., UST db., IIT db. 2.5,2.0,1.4
9 [49] Contour, parametric curve, proprietary db. 3.7

10 [30] Fourier descriptors, 4 fingers, Bogazici University Hand Database 3.69, 2.73
11 [35] GPDS db., CASIA db., IITD-TPD db., Casia, GA-LDA: EER=4.64%, IITD,  

GA-LDA: EER=4.51%
4.51,
4.61

12 [38] SVM, 3 fingers, proprietary db. 3.4
13 [9] k-NN, RF classifier, 4 fingers, 5 fingers, Bogazici University Hand Database 6.0, 8.0
14 [16] ICA, left + right hand, palmprint, shape + texture fusion, proprietary db. 1.0, 0.33
15 [63] Hand shape, ICA, 5 fingers, proprietary db. 458 persons, c. 99.48% succ. rate 6.14
16 [34] Hand geometry, proprietary db., FAR=5.29%, FRR=8.34% -
17 [4] Geometry + SVM, GPDS db., FAR=1.5%, FRR=3.5% -
18 [5] Geometry, 16 topologies of minimal edge connected graph, Euklid. dist., GPDS db., 50 

persons: FAR=0.0%, FRR=1.5%, 100 persons: FAR=0.5%, FRR=2.0% -

19 [33] Set of features, abs. value from difference of features + weight coefs., 4 fingers, HGDB, 
FAR=0.00%, FRR=1.19%

0.59

20 [8] Euclidean distance, THID db. 3.5
21 [8] LDA, hand geometry + subset selection with Decidability, THID db. 0.9
22 [8] Hand geom., subset sel. with intra/inter-class variability, LDA,4 fingers, THID db. 0.52
23 This work, A1 Geometry+topology, 4 fingers, Mco, Sea, THID db., 1280x960, IR%=100, E9 0.38
24 This work, A2 Geometry+topology, 4 fingers, 4 knuckles, Mea, Sea, THID db., 1280x960, E9 0.48
25 This work, A3 Geometry, 4 fingers, 4 knuckles, Mea, Sea, THID db., 1280x960, E5 1.92
26 This work, A4 Geometry+topology, 4 fingers, 4 knuckles, Mco, Sea, THID db., 640x480, E9 1.15
27 This work, A5 Geometry+topology, 4 fingers, 4 knuckles, Mco, Sea, THID db., 640x480, E10 1.83
28 This work, A6 Geometry, 4 fingers, 5 fingers, 5 knuckles, Mea, Sea, THID db., 640x480, E11 3.49
29 This work, A7 Geometry+topology, 5 fingers, 6 knuckles, Mco, Sea, THID db., 640x480, E8 1.82
30 This work, A8 Geometry+topology, 4 fingers, Mco, Sea, GPDS db., 1403x1021, E9 0.35
31 This work, A9 Geometry, 5 fingers, 6 knuckles, Mea, Sea, GPDS db., 640x480, E3 0.63
32 This work, A10 Geometry, 5 fingers, 5 knuckles, Mea, Sea, GPDS db., 640x480, E11 2.12
33 This work, A11 Geometry+topology, 5 fingers, 4 knuckles, Mco, Sea, GPDS db., 640x480, E9 0.64

Order of estimators A1-A7 (THID), A8-A11 (GPDS) according to efficiency expressed by EER coefficient in percent.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Table 13  
Comparison of efficiency of the eaICP with other works with use of statistical coefficient EER. 

n. Author Method, database, success rate %EER  
1 [56] DHMMK + SVM, GPDS db. + UST db., GPDS db. succ. rate 99.87%, 3 templates 

UST db. succ. rate 100%, 99.2% 
0.31 

2 [55] SVM, 5 fingers, GPDS db., succ. rate 99.9%  - 
3 [14] Hand geometry + palmprint, 4 fingers, proprietary db., DCT: GAR=99.5% 1.1198 
4 [50] Shape + Geom., IITD db., EER=0.52%, Shape + Geom., propriet. db., EER=0.31% 0.52, 0.31 
5 [31] 2D+3D Hand geometry, proprietary db.  0.22 
6 [31] 2D Hand geometry, proprietary db.  6.3 
7 [21] Geometry + palm texture, proprietary db. 0.17 
8 [48] SVM, k-NN, HTC db., UST db., IIT db. 2.5,2.0,1.4 
9 [49] Contour, parametric curve, proprietary db. 3.7 
10 [30] Fourier descriptors, 4 fingers, Bogazici University Hand Database 3.69, 2.73 
11 [35] GPDS db., CASIA db., IITD-TPD db., Casia, GA-LDA: EER=4.64%, IITD,  

GA-LDA: EER=4.51% 
4.51, 
4.61 

12 [38] SVM, 3 fingers, proprietary db. 3.4 
13 [9] k-NN, RF classifier, 4 fingers, 5 fingers, Bogazici University Hand Database 6.0, 8.0 
14 [16] ICA, left + right hand, palmprint, shape + texture fusion, proprietary db. 1.0, 0.33 
15 [63] Hand shape, ICA, 5 fingers, proprietary db. 458 persons, c. 99.48% succ. rate 6.14 
16 [34] Hand geometry, proprietary db., FAR=5.29%, FRR=8.34% - 
17 [4] Geometry + SVM, GPDS db., FAR=1.5%, FRR=3.5% - 
18 [5] Geometry, 16 topologies of minimal edge connected graph, Euklid. dist., GPDS db., 50 persons: 

FAR=0.0%, FRR=1.5%, 100 persons: FAR=0.5%, FRR=2.0% - 

19 [33] Set of features, abs. value from difference of features + weight coefs., 4 fingers, HGDB, 
FAR=0.00%, FRR=1.19% 

0.59 
 

20 [8] Euclidean distance, THID db. 3.5 
21 [8] LDA, hand geometry + subset selection with Decidability, THID db. 0.9 
22 [8] Hand geom., subset sel. with intra/inter-class variability, LDA,4 fingers, THID db. 0.52 
23 This work, A1 Geometry+topology, 4 fingers, 

co   , 
eaS ,THID db., 1280x960, IR%=100, E9 0.38 

24 This work, A2 Geometry+topology, 4 fingers, 4 knuckles, 
ea   , 

eaS  , THID db., 1280x960, E9 0.48 

25 This work, A3 Geometry, 4 fingers, 4 knuckles, 
ea   , 

eaS   , THID db., 1280x960, E5 1.92 

26 This work, A4 Geometry+topology, 4 fingers, 4 knuckles, 
co   , 

eaS  , THID db., 640x480, E9 1.15 

27 This work, A5 Geometry+topology, 4 fingers, 4 knuckles, 
co   , 

eaS  , THID db., 640x480, E10 1.83 

28 This work, A6 Geometry, 4 fingers, 5 fingers, 5 knuckles, 
ea   , 

eaS  , THID db., 640x480, E11 3.49 

29 This work, A7 Geometry+topology, 5 fingers, 6 knuckles, 
co   , 

eaS  , THID db., 640x480, E8 1.82 

30 This work, A8 Geometry+topology, 4 fingers, 
co   , 

eaS  , GPDS db., 1403x1021, E9 0.35 
31 This work, A9 Geometry, 5 fingers, 6 knuckles, 

ea   , 
eaS   , GPDS db., 640x480, E3 0.63 

32 This work, A10 Geometry, 5 fingers, 5 knuckles, 
ea   , 

eaS   , GPDS db., 640x480, E11 2.12 

33 This work, A11 Geometry+topology, 5 fingers, 4 knuckles, 
co   , 

eaS , GPDS db., 640x480, E9 0.64 

Order of estimators A1-A7 (THID), A8-A11 (GPDS) according to efficiency expressed by EER coefficient in percent.   
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reached values of 99.87%IR =  for comparative tem-
plate assembled with three contours of an identical 
person. For the template assembled with only one im-
age of an identical person 99.42%IR = . 

Figure 18 
Different length of fingers for identical person on different 
images. Difference is up to 1cm. A difference is also in 
thickness and shape of some of the 5 fingers from an 
identical person. The reason is that the scanned person put 
his hand on the pad in bad manner

Figure 18  
Different length of fingers for identical person 
on different images. Difference is up to 1cm. A 
difference is also in thickness and shape of some 
of the 5 fingers from an identical person. The 
reason is that the scanned person put his hand 
on the pad in bad manner.  

 
 
  
5. Discussion 
When in 1996 [44] presented the DE algorithm, 
all looked very hopeful. The optimizer was 
created which relatively easily could optimize a 
large number of tasks. Sadly, year after year it 
was proved true that DE is very hard to use 
thanks to a large number of working parameters, 
which it is necessary to change running time of 
the optimizer see e.g. [17] etc. DE is a very 
powerful instrument for optimization of some 
low-dimensional tasks e.g. in areas of robotics – 
laser navigation of cars [39, 40] with use of 2D 
laser, which is 2 or 3-dimensional task. This task 
solves so called continual localization. At 
increasing number of dimensions of an 
optimization task solved using DE, negative 
features arise originating from incapability of 
automatic change of working parameters of the 
original DE - and it is necessary to use some 
more advanced optimizer.  
 
Evolutionary algorithms are not only one means, 
with which is possible to solve certain groups of 
optimization tasks. There is an uncountable 
number of ways. E.g. [8] presented the method 
for person identification which uses the Linear 
Discriminant Analysis (LDA) algorithm. An 
identical approach can be also found in [35]. The 
main disadvantage of the LDA is its complexity 
O( 3 )or in the best case O( 2N ). The whole 
system proposed by [8] is relatively complicated 

in itself and its practical realization requires 
cooperation of more workers. This rule holds 
also for other commonly used methods such as 
SVM (Support Vector Machines), k-NN (k-
nearest-neighborhood) see [35]. If it is necessary 
to create everything from scratch this is a 
relatively short time-period. Evolutionary 
algorithm usually makes another, higher level, 
superior level for already existing methods. 
Thanks to that, the whole algorithm 
development process is many times more 
complicated. However, thanks to evolutionary 
algorithms it is possible to cut-down 
computational demands, sometimes radically. 
The most important thing is that resulting 
accuracy stays identical or can be even better see 
„eaICP vs [8] “. Something similar can not be 
reached without the use of evolutionary 
algorithms. An absolutely typical example is 
described in a couple of methods [6] vs. [41]. For 
presented eaICP estimator it is possible, thanks 
to used evolutionary optimizers, to cut down 
computational complexity to value O(N), where 
for the value N there is strongly fixed maximal 
limit with regard to physiological features of a 
human. The disadvantage of using evolutionary 
algorithms is that practical realization requires 
“an intelligent” approach and experiences. The 
theorem [61] which says that “nothing is free” 
holds, sadly, for evolutionary algorithms twice.  
 

 
6. Conclusion 
In the presented paper the proposed algorithm, 
marked as eaICP, enables identification of a 
person with use of knowledge of human hand 
contours and their complexity is O(N). The best 
reached accuracy is expressed by the EER 
coefficient for individual tested databases THID: 
EER=0.38%, GPDS: EER=0.35%. It was proven 
that significant influence on final accuracy was 
the quality of model contour and the number of 
points (entities in general sense), from which the 
contour is assembled. The whole process of 
classification strongly depends on modern 
technologies and also on the computational 
potential of commonly reasonable priced 
processors. During contour classification many 
findings were used from many branches of 

5. Discussion
When in 1996 [44] presented the DE algorithm, all 
looked very hopeful. The optimizer was created which 
relatively easily could optimize a large number of tasks. 
Sadly, year after year it was proved true that DE is very 
hard to use thanks to a large number of working pa-
rameters, which it is necessary to change running time 
of the optimizer see e.g. [17] etc. DE is a very powerful 
instrument for optimization of some low-dimensional 
tasks e.g. in areas of robotics – laser navigation of cars 
[39, 40] with use of 2D laser, which is 2 or 3-dimen-
sional task. This task solves so called continual local-
ization. At increasing number of dimensions of an opti-
mization task solved using DE, negative features arise 
originating from incapability of automatic change of 
working parameters of the original DE - and it is neces-
sary to use some more advanced optimizer. 
Evolutionary algorithms are not only one means, with 
which is possible to solve certain groups of optimiza-
tion tasks. There is an uncountable number of ways. 
E.g. [8] presented the method for person identifica-
tion which uses the Linear Discriminant Analysis 
(LDA) algorithm. An identical approach can be also 

found in [35]. The main disadvantage of the LDA is 
its complexity O( 3Μ )or in the best case O( 2NΜ ). The 
whole system proposed by [8] is relatively compli-
cated in itself and its practical realization requires 
cooperation of more workers. This rule holds also for 
other commonly used methods such as SVM (Support 
Vector Machines), k-NN (k-nearest-neighborhood) 
see [35]. If it is necessary to create everything from 
scratch this is a relatively short time-period. Evolu-
tionary algorithm usually makes another, higher level, 
superior level for already existing methods. Thanks 
to that, the whole algorithm development process is 
many times more complicated. However, thanks to 
evolutionary algorithms it is possible to cut-down 
computational demands, sometimes radically. The 
most important thing is that resulting accuracy stays 
identical or can be even better see „eaICP vs [8]“. 
Something similar can not be reached without the use 
of evolutionary algorithms. An absolutely typical ex-
ample is described in a couple of methods [6] vs. [41]. 
For presented eaICP estimator it is possible, thanks 
to used evolutionary optimizers, to cut down compu-
tational complexity to value O(N), where for the value 
N there is strongly fixed maximal limit with regard to 
physiological features of a human. The disadvantage 
of using evolutionary algorithms is that practical re-
alization requires “an intelligent” approach and expe-
riences. The theorem [61] which says that “nothing is 
free” holds, sadly, for evolutionary algorithms twice. 

6. Conclusion
In the presented paper the proposed algorithm, 
marked as eaICP, enables identification of a person 
with use of knowledge of human hand contours and 
their complexity is O(N). The best reached accuracy is 
expressed by the EER coefficient for individual tested 
databases THID: EER=0.38%, GPDS: EER=0.35%. It 
was proven that significant influence on final accura-
cy was the quality of model contour and the number of 
points (entities in general sense), from which the con-
tour is assembled. The whole process of classification 
strongly depends on modern technologies and also on 
the computational potential of commonly reasonable 
priced processors. During contour classification many 
findings were used from many branches of artificial in-
telligence which at the same time mirrors the state-of-
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the-art in the affected areas. The aim of this study was 
to find if it is possible to successfully solve the given 7, 8 
and 9-dimensional task with use of modern evolution-
ary optimizers. The group of suitable optimizers was 
found. The eaICP algorithm uses the most up-to-date 
classification methods which are commonly used in 
many sensitive medical and military areas. 
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