
179Information Technology and Control 2020/1/49

Alternating Direction 
Projections onto Convex 
Sets for Super-Resolution 
Image Reconstruction

ITC 1/49
Information Technology  
and Control
Vol. 49 / No. 1 / 2020
pp. 179-190
DOI /10.5755/j01.itc.49.1.24121

Alternating Direction Projections onto Convex Sets for  
Super-Resolution Image Reconstruction

Received 2019/07/31 Accepted after revision 2019/12/03

    http://dx.doi.org//10.5755/j01.itc.49.1.24121 

HOW TO CITE: Zhou, B., Ye, D.-J., Wei, W., & Woźniak, M. (2020). Alternating Direction Projections onto Convex Sets for Super-
Resolution Image Reconstruction. Information Technology and Control, 49(1), 179-190. https://doi.org//10.5755/j01.itc.49.1.24121

Corresponding author: binzhou@swpu.edu.cn, weiwei@xaut.edu.cn

Bin Zhou
School of Sciences, Southwest Petroleum University, Chengdu 610050, China; e-mail: binzhou@swpu.edu.cn
Institute of Artificial Intelligence, Southwest Petroleum University, Chengdu 610500, China
Research Center of Mathematical Mechanics, Southwest Petroleum University, Chengdu 610500, China

Dong-jun Ye
School of Sciences, Southwest Petroleum University, Chengdu 610050, China; e-mail: dongjunye1996@yeah.net

Wei Wei
College of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China;  
e-mail: weiwei@xaut.edu.cn

Marcin Woźniak
Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland;  
e-mail: Marcin.Wozniak@polsl.pl

Image reconstruction is important in computer vision and many technologies have been presented to achieve 
better results. In this paper, gradient information is introduced to define new convex sets. A novel POCS-based 
model is proposed for super resolution reconstruction. The projection on the convex sets is alternative accord-
ing to the gray value field and the gradient field. Then the local noise estimation is introduced to determine the 
threshold adaptively. The efficiency of our proposed model is verified by several numerical experiments. Exper-
imental results show that, the PSNR and the SSIM can be both significantly improved by the proposed model.
KEYWORDS: Reconstruction, Projection, Convex sets, Adaptive, Gradient information.

mailto:obodovskiy58@gmail.com


Information Technology and Control 2020/1/49180

1. Introduction
In the process of image acquisition, due to limitations 
of imaging conditions and imaging methods, the im-
aging system usually cannot obtain all the informa-
tion in the original scene. Therefore, how to effec-
tively improve the image quality without modifying 
hardware system has always been the key problem 
that the imaging processing field committed to solv-
ing [17, 38, 39].
Image restoration can remove the influence of var-
ious interferences in the imaging process to some 
extent, and finally improve the quality of acquired 
images. However, it can only restore the frequency to 
the corresponding cutoff frequency of the diffraction 
limit, the energy and information outside the cutoff 
frequency will be lost, so it cannot really improve the 
resolution of the image [6]. For solve this problem, Su-
per resolution reconstruction (SRR) is proposed.
Tsai and Huang pioneered the reconstruction of a 
high-resolution (HR) image from a low-resolution 
(LR) image sequence, and proposed a frequency-do-
main based restoration method [30]. Since then, SRR 
has become a research hotspot in the field of image 
processing and many methods presented based on 
frequency domain or space domain in the past years 
[15, 22, 24, 26, 30, 31]. 
Frequency-domain based methods transforms the 
image from spatial domain to frequency domain. Con-
volution, translation, rotation and so on the opera-
tions that are more complex in the spatial domain are 
simpler in the frequency domain. By transforms the 
SRR from space domain into the frequency domain 
through Fourier transform, Tsai and Huang solve SR 
image based on LR image sequence with global mo-
tion [30]. Rhee proposed to replace the Fourier trans-
form with the discrete cosine transform, which im-
proved the operation efficiency [22]. 
The wavelet transform as an alternative to the Fouri-
er transform has been widely used in frequency do-
main-based SR algorithms. Usually it is used to de-
compose the input image into structurally correlated 
sub-images. This allows exploiting the self-similarities 
between local neighboring regions [2, 18]. As an exam-
ple, in [2] the input image is first decomposed into sub-
bands. Then, the input image and the high-frequency 
subbands are both interpolated, the results of a station-

ary wavelet transform of the high frequency subbands 
are used to improve the interpolated subbands. Finally, 
the super-resolved HR output is generated by com-
bining all of these subbands using an inverse discrete 
wavelet transform. However, lower resolution image 
sequences often occur with local motion, and the fre-
quency-domain based method is difficult to solve the 
spectrum of target restored image.
The methods based on Spatial-domain have strong 
adaptability to various motion models and prior in-
formation. Non-uniform interpolation method is the 
most intuitive Spatial-domain based method [31]. 
Projection onto convex sets (POCS) based method de-
fines a set of constrained convex sets and ensures that 
their intersection contains solutions [26]. An approx-
imate solution satisfying all the conditions of convex 
constraint sets can be obtained after effective itera-
tions processed. Maximum a posterior (MAP) based 
method finds the high-resolution images with the 
highest probability of occurrence on the premise that 
the low-resolution image sequence is known [24].
Learning-based method is another one of the re-
search hotspots in recent years [1, 3, 5, 10, 15, 32, 33]. 
Learning with PCA is an effective method. In PCA-
based methods, usually the matrices representing 
each training image are first vectorized and then they 
are combined into a large matrix to obtain the cova-
riance matrix of the training data for modeling the 
eigenspace. In addition, Baker and Kanade proposed 
an identification-based reconstruction algorithm. 
The reconstruction is realized by segmentation the 
low-resolution images and searching the matching 
blocks in the constructed training sample database 
[1]. Freeman introduces Markov network to describe 
the matching conditions of image blocks and sample 
blocks in the input low-resolution images [5]. On this 
basis, Wang extended the Markov network model and 
proposed a blind restoration method to estimate the 
point spread function (PSF) parameters of pixel sen-
sors [32]. In recent years, learning-based research 
has been inclined to convolutional neural network 
(CNN). Dong introduced CNN to directly learn the 
mapping between LR image and HR image, then re-
alized the super-resolution reconstruction based on 
a single image [3]. Deeply-recursive convolutional 
network (DRCN) is proposed to learn mapping, then 
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the difficulty of training can be reduced by the appli-
cation of recursive monitoring and jump connection 
[10]. Lai and Huang proposed LapSRN (Laplacian 
Pyramid Super-Resolution Network) to gradually re-
construct the sub-band residuals of high-resolution 
images [12].
POCS-based methods are more advantageous to use 
prior knowledge and they are still efficient to some 
complex cases with motions or different observation 
models. These methods were first proposed by Stark 
and Oskoui [26]. Tekalp proposes an improved pocs-
based method, which considers the effecting of sensor 
blurring and observation noise, and shows that the 
POCS formulation presented for the high-resolution 
image reconstruction problem can also be used as a 
new method for the restoration of spatially invari-
ant blurred images [28]. On this basis, Patti and his 
partner came up with a new formula that takes into 
consideration blurring due to sensor-based motion, 
integration and noise [19].
However, in traditional methods based on POCS, cal-
culation is often expensive, the solution is not unique 
and often affected by serious artifacts.
Tom and Katsaggelos proposed to define constraint 
sets by ellipsoids (instead of regular spheres) and 
determined the unique target solution [29]. Yu made 
improvements to the Point Spread Function (PSF). 
The blur PSF centered at an edge pixel is weighted by 
an exponential function, so the PSF coefficients de-
crease along the orthogonal direction of the edge and 
reduce the quantity of Gibbs artifacts present [37]. 
Based on the visual mechanism, Liu proposed the 
variability threshold to deal with the super-resolution 
reconstruction of infrared images, improved contrast 
of results [14]. After introducing fractional calculus 
to convex set projection, Lei proposed a super-reso-
lution enhancement algorithm for UAV images. The 
high-resolution and low-resolution reference frames 
can be enhanced by fractional calculus operator, and 
the PSF of POCS is simulated by a fractional integral 
filter instead of Gaussian filter [13].
In this paper, gradient information is introduced to 
build novel convex sets and the artifacts can be sup-
pressed more efficiently in the reconstruction. Local 
adaptive constraint thresholds and a dynamic relax 
factor are used to improve the calculation efficiency. 
Then alternating direction projections on the novel 

convex sets are presented to solve the super-resolu-
tion reconstruction problem. Finally, some numerical 
experiments are carried out to verify the accuracy and 
efficiency of proposed algorithm.
The rest of this paper is arranged as follows. The fun-
damentals of POCS method are delineated in Section 
2. In Section 3, novel convex sets and an alternative 
projections algorithm are proposed. Experiments and 
results are demonstrated in Section 4 after some real 
low-resolution image sequences are prepared [4, 8, 9, 
20, 21, 25, 34, 35, 37].

2. Fundamentals
2.1. Super-resolution Reconstruction
There are many ways to improve spatial resolution 
through hardware, such as increase the pixel density 
or chip size. However, the high cost for high precision 
optics and image sensors is a negative factor in com-
mercial promotion. 
Super-resolution reconstruction can help to improve 
the resolution of images without modifying hardware 
system so as to reduce funds. Therefore, SRR has 
been developed in image processing fields [17]. Figure 
1 shows the degradation procedure and the meaning 
of super resolution reconstruction.
Based on the aliasing relationship between SR im-
age and LR image sequence with global motion in 
frequency domain, Tsai and Huang takes the Fourier 
transform of the LR image sequence, solve the spec-
trum of the SR image, and the SR image is obtained by 
the inverse Fourier transform to spectrum [30].
The non-uniform interpolation is the simplest meth-
od of super-resolution reconstruction. SRR is re-
garded as an Image interpolation problem, where the 
restoration result can be obtained through different 
interpolation methods [7].
POCS-based methods are a kind of the iteration 
method of SRR. In the classical POCS method, vari-
ous constraints on the target HR image are defined as 
closed convex sets in the HR image space, target solu-
tions are in their intersection [24].
MAP-based methods are based on probability. They 
regard super-resolution (SR) image as the solution of 
a complex optimization problem. Under the premise 
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of knowing LR image sequence, HR image with the 
maximum posterior probability is taken as the solu-
tion [1].
POCS-based methods can effectively find feasible 
solutions to complex optimization problems, and their 
advantages lie in their simple ideas, flexible method 
forms and convenient addition of prior knowledge.

2.2. Projections on Convex Sets

In traditional POCS-based methods, the unknown 
signal u is assumed to be an element of an appropri-
ate Hilbert space H [36]. Each prior information or 
constraint restricts the solution to a closed convex 
set in H. Thus, for m pieces of information, there are 
m corresponding closed convex sets iC H∈ , and 

1,2, ,i m=  , 0 1
m
i iu C C=∈ =  , provided that the inter-

section 0C  is nonempty. Given the constraint sets iC  
and their respective projection operators iP , the se-
quence generated by 

1 1 1 , 0,1,k m m kf T T T f k+ −= =  (1)

where the relaxed projection operator iT =
( )1 ik kI Pλ λ− + , 0 2kλ< < , and 0f  means an initial 
estimation of u. It can be get that kf  converges weak-
ly to a feasible solution in the intersection 0C  of the 
consistent with the prior constraints, and therefore, a 
feasible solution satisfied the constraints can be ap-
proximated by efficient iteration. 

2.2.1. Image as a Linear System
The image function can be represented as a linear 
combination of Dirac pulses at each point ( ),a b   cov-
ering the entire image plane.

( ) ( ) ( )2
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R
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where h is the shift-varying impulse response of L.

2.2.2. POCS-based Reconstruction
When f is a 1 2M M×  high-resolution image, and 
( )1 2,S n n  denotes the HR image support area of LR 

pixel point ( )1 2,n n , including the observation noise v, 
one pixel value ( )1 2,g n n  of low-resolution image can 
be expressed as [16]
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Assume that the statistical characteristics of the 
noise process are known, then introduce following 
closed, convex constrain sets (one for each observed 
blurred image pixel)
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where 0δ  is an a prior bound reflecting the statisti-
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It is easy to design an efficient algorithm solving above 
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the reconstructed image because the steep and fast 
changes are treated as the plain region. The constraint 

threshold is set fixed and the difference of the image 
locals are ignored, so it can be found that important 
image details are lost or there is insufficient denoising. 
Aiming at these problems, an improved POCS-based 
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In order to reduce the artifacts and improve the result, 
this paper proposes a novel reconstruction model with 
better suppression to the error fluctuation of the 
estimation on neighbor pixels. Firstly, gradient-based 
compound convex sets are introduced as follows. 
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A gradient-based compound convex set can be de-
fined as
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and Gδ  means the gradient threshold.

3.2. Alternating Direction Projection

After above gradient-based convex sets are defined, the 
new projection operator corresponding to the convex set 
can be denoted as follows.
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Assume µi  is a real pixel value, and iz  means the 
estimation. Here we will illustrate that Pr( k− <  

)z kµ− <i i  is bigger in Cnew  than C.
Both traditional POCS methods and improved POCS 
method limit the value of i i ir z µ= − .
As shown in Figure 4, the red area represents the 
truncated part, with a cumulative probability of 0. 
The blue area is the change in probability for the rest 
part. It can be seen that their distribution is more con-
centrated. In other words, gradient-based compound 
convex sets can reduce the noise fluctuation, thus re-
ducing the probability of gray scale jump change.
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and Gδ  means the gradient threshold. 

3.2 Alternating Direction Projection 
After above gradient-based convex sets are defined, the 
new projection operator corresponding to the convex 
set can be denoted as follows. 
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Both traditional POCS methods and improved POCS 
method limit the value of i i ir z µ= − . 
As shown in Figure 4, the red area represents the 
truncated part, with a cumulative probability of 0. The 
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can reduce the noise fluctuation, thus reducing the 
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3.3 Local Adaptive Thresholds 
When estimated image f approximates to the actual 
image, ( )fr are identical to the residual between 
observation and the simulation observation. Hence, the 
bound 0δ  is determined from the statistics of the noise 
process so that the actual image is a member of the set 
with in a certain statistical confidence. 
In traditional POCS algorithms, 0δ is constant, ignoring 
the distinction between the global noise and the local 
noise, using the same 0δ  to each pixel points. 
In general, a larger 0δ  means that fewer points need to 
be corrected, causing some points that should be 
corrected to be ignored. On the contrary, smaller 0δ  
means that more pixel points need to be corrected, 
which will often lead to destroying feature points. 
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3.3 Local Adaptive Thresholds 
When estimated image f approximates to the actual 
image, ( )fr are identical to the residual between 
observation and the simulation observation. Hence, the 
bound 0δ  is determined from the statistics of the noise 
process so that the actual image is a member of the set 
with in a certain statistical confidence. 
In traditional POCS algorithms, 0δ is constant, ignoring 
the distinction between the global noise and the local 
noise, using the same 0δ  to each pixel points. 
In general, a larger 0δ  means that fewer points need to 
be corrected, causing some points that should be 
corrected to be ignored. On the contrary, smaller 0δ  
means that more pixel points need to be corrected, 
which will often lead to destroying feature points. 

3.3. Local Adaptive Thresholds
When estimated image f approximates to the actual 
image, ( )fr  are identical to the residual between ob-
servation and the simulation observation. Hence, the 
bound 0δ  is determined from the statistics of the noise 
process so that the actual image is a member of the set 
with in a certain statistical confidence.
In traditional POCS algorithms, 0δ is constant, ignor-
ing the distinction between the global noise and the 
local noise, using the same 0δ  to each pixel points.
In general, a larger 0δ  means that fewer points need 
to be corrected, causing some points that should be 
corrected to be ignored. On the contrary, smaller 0δ  
means that more pixel points need to be corrected, 
which will often lead to destroying feature points.
The threshold 0δ  should be replaced by an adaptive 
version. Due to the local smoothness of natural im-
ages, the gray values of pixels belonging to the same 
structure are usually at the same level [11, 27]. There-
fore, the standard deviation of these gray values can 
be approximated as the standard deviation of noise.
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A proper neighborhood can be determined by local to-
tal variation statistics. The radius d can be optimized 
by
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where ( )1 2, ;d U m m dΩ =  denotes the neighborhood of 
point ( )1 2,m m  with radius d. MTV denotes the mean 
of local total variation statistics. If the local homoge-
neous region is approximated by dΩ , then the standard 
deviation σ  can be used to a confidential set 0 3δ σ= .

3.4. Dynamic Relax Factor

At the beginning of traditional POCS, the convergence 
speed is fast, and as the iterations go, the convergence 
speed is slower and slower. A relax factor can be used 
to accelerate the iteration and maintain accuracy.
When iλ  approaches 0, iT  is approximately equal to 
I, the projection essentially stagnant. When iλ  is set 
to be greater than 1, the projection will be accelerated.  

1iλ =  means unrelaxed projection.
According to our requirements, a dynamic relax fac-
tor can be used

1 .i
i eλ −= + (14)

It accelerates at the beginning of the iteration, slows 
down in the middle, and adapts to the high require-
ments for precision in the later stage.

Figure 5 
Effects of fixed threshold
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where ( )1 2, ;d U m m dΩ =  denotes the neighborhood 
of point ( )1 2,m m  with radius d. MTV denotes the 
mean of local total variation statistics. If the local 
homogeneous region is approximated by dΩ , then the 
standard deviation σ  can be used to a confidential set 
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3.4 Dynamic Relax Factor 
At the beginning of traditional POCS, the convergence 
speed is fast, and as the iterations go, the convergence 
speed is slower and slower. A relax factor can be used 
to accelerate the iteration and maintain accuracy. 
When iλ  approaches 0, iT  is approximately equal to 
I, the projection essentially stagnant. When iλ  is set 
to be greater than 1, the projection will be accelerated.  
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It accelerates at the beginning of the iteration, slows 
down in the middle, and adapts to the high 
requirements for precision in the later stage. 
 
 
 

 

4 The Proposed Algorithm and 
Numerical Experiments 
4.1 Algorithm 

 
Figure 6 Full flow charts. 

Based on Section 3, an alternating direction projections 
algorithm can be presented as follows. 
Step 1. Compute the initial estimation 0f by 
interpolating on the LR image. 
Step 2. Perform motion estimation and compensation 
on the LR image sequence ( ){ }ng . 
Step 3. Determine the adaptive thresholds by local 
noise estimation. 
Step 4. Compute the gradient-based convex sets and 
alternative projection on them until stop condition 
satisfied. 
The full flow charts for the proposed algorithm is 
shown in Figure 6. For convenience of representation, 
symbols that do not appear in the text are used. ( ){ }ng   
is the LR image sequence, γ  is the upper limit of the 
number of cycles, ε  is a parameter and N is the 
number of pixels in lg . 

4. The Proposed Algorithm and 
Numerical Experiments
4.1. Algorithm

Figure 6 
Full flow charts

Based on Section 3, an alternating direction projec-
tions algorithm can be presented as follows.
Step 1. Compute the initial estimation 0f by interpo-
lating on the LR image.
Step 2. Perform motion estimation and compensa-
tion on the LR image sequence ( ){ }ng .
Step 3. Determine the adaptive thresholds by local 
noise estimation.
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Step 4. Compute the gradient-based convex sets and 
alternative projection on them until stop condition 
satisfied.
The full flow charts for the proposed algorithm is 
shown in Figure 6. For convenience of representation, 
symbols that do not appear in the text are used. ( ){ }ng   
is the LR image sequence, γ  is the upper limit of the 
number of cycles, å  is a parameter and N is the num-
ber of pixels in lg .

4.2. Experiments
To verify the performance of the proposed method, 
real image as a reference is necessary, but in practice 
it is unknown. To simulate the imaging process in re-
ality to some extent, an image of size 256 256×  is af-
fected by a linear shift-varying system and down-sam-
pling with an interval of 1, generate a LR image.
Figure 7 shows the reconstruction results computed 
from the LR peppers image. The first row is the origi-

nal image and the second row means an initial inter-
polation of the LR image. The third row and the last 
one show the traditional POCS reconstruction result 
and our result. The details of the image are restored 
to a certain extent, which is clearer than the initial in-
terpolation, but there are some artifacts at the edges 
of the image, and smaller details are lost. Compared 
with it, the detail of our result is improved, and the ar-
tifact of the edge is reduced. A comparison of pixels on 
the blue line is also shown in the figure.
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Figure 7 Peppers image reconstruction 
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The experimental results show that the proposed 
method is better than the traditional method in the 
aspect of visual effect. Two similar experimental 
results with other image are given in Figures 8 and 9. 
In addition, in order to observe the performance of the 
algorithm under some special circumstances, we chose 
a remote sensing image RSimg for the experiment. 
Figure 10 gives the reconstruction results. 
To achieve convincing evaluation of reconstruction 
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The experimental results show that the proposed 
method is better than the traditional method in the 
aspect of visual effect. Two similar experimental re-
sults with other image are given in Figures 8 and 9. 
In addition, in order to observe the performance of 
the algorithm under some special circumstances, we 
chose a remote sensing image RSimg for the experi-
ment. Figure 10 gives the reconstruction results.
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Figure 9 
Clock image reconstruction

(1) Image                        (2) Local region    (3) Horizon pixel
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results, we calculated the structure similarity (SSIM) 
and peak signal to noise ratio (PSNR) of different re-
sults as shown in Table 1.
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results, we calculated the structure similarity (SSIM) 
and peak signal to noise ratio (PSNR) of different 
results as shown in Table 1. 
Table 1 Evaluation of four images reconstruction 
Evaluation Image Interpolation POCS Proposed 

PSNR 

Peppers 23.54 26.61 28.26 
House 26.28 29.07 31.02 
Clock 26.39 28.98 31.03 
RSimg 20.02 21.41 22.42 

SSIM 

Peppers 0.5187 0.6067 0.6717 
House 0.3412 0.4022 0.4730 
Clock 0.5563 0.6741 0.7344 
RSimg 0.3375 0.4820 0.5279 

To verify the robust of proposed method, we apply the 
proposed method to peppers image with different 
Gaussian noise. The PSNR results are shown in Table 
2. 
Table 2 Peppers image reconstruction with different 
noise level 

Noise level Interpolation POCS Proposed 
20db 23.40 26.02 27.45 
25db 23.50 26.42 27.98 
30db 23.52 26.55 28.18 
35db 23.53 26.59 28.23 
40db 23.54 26.61 28.26 
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Figure 10 Remote Sensing image reconstruction 

As an additional extension, we apply the proposed 
method to a color peppers image. Through the super-
resolution reconstruction of each channel of the color 
image, we can get a reconstruction result as shown in 
Figure 11. The first row is the original image and the 
second is the interpolation of LR image, traditional 
POCS result and our result are shown in last two rows. 
Table 3 Evaluation of the color peppers image 
reconstruction 
Evaluation Interpolation POCS Proposed 

PSNR 25.10 29.04 30.81 
SSIM 0.5658 0.6543 0.7132 

The experimental results show some advantages of the 
proposed method in some color images reconstruction 
cases. Gradient-based convex sets and local adaptive 
constraint thresholds are helpful to relief the over-
smoothing in reconstruction images, well reconstruct 
the image details (such as textures) and suppress the 
artifact near the edge to some extent. As shown in 
Table 3, some evaluations such as PSNR and SSIM can 
be significantly improved by proposed method than the 
traditional POCS method. 
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Figure 11 Color peppers image reconstruction 

 

5. Conclusion 
This paper proposes an improved POCS-based super 
resolution reconstruction method. In this method, 
gradient-based convex sets and alternating direction 
projection are applied in the iterative reconstruction. 
Local adaptive constraint thresholds can improve the 
accuracy of the method. Experimental results and two 
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Table 1 
Evaluation of four images reconstruction

Evaluation Image Interpolation POCS Proposed

PSNR

Peppers 23.54 26.61 28.26

House 26.28 29.07 31.02

Clock 26.39 28.98 31.03

RSimg 20.02 21.41 22.42

SSIM

Peppers 0.5187 0.6067 0.6717

House 0.3412 0.4022 0.4730

Clock 0.5563 0.6741 0.7344

RSimg 0.3375 0.4820 0.5279

Noise level Interpolation POCS Proposed

20db 23.40 26.02 27.45

25db 23.50 26.42 27.98

30db 23.52 26.55 28.18

35db 23.53 26.59 28.23

40db 23.54 26.61 28.26

Table 2 
Peppers image reconstruction with different noise level

To verify the robust of proposed method, we apply 
the proposed method to peppers image with different 
Gaussian noise. The PSNR results are shown in Table 2.
As an additional extension, we apply the proposed meth-
od to a color peppers image. Through the super-resolu-
tion reconstruction of each channel of the color image, 
we can get a reconstruction result as shown in Figure 
11. The first row is the original image and the second is 
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the interpolation of LR image, traditional POCS result 
and our result are shown in last two rows.
The experimental results show some advantages of 
the proposed method in some color images recon-
struction cases. Gradient-based convex sets and local 
adaptive constraint thresholds are helpful to relief 
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Figure 10 Remote Sensing image reconstruction 

As an additional extension, we apply the proposed 
method to a color peppers image. Through the super-
resolution reconstruction of each channel of the color 
image, we can get a reconstruction result as shown in 
Figure 11. The first row is the original image and the 
second is the interpolation of LR image, traditional 
POCS result and our result are shown in last two rows. 
Table 3 Evaluation of the color peppers image 
reconstruction 
Evaluation Interpolation POCS Proposed 

PSNR 25.10 29.04 30.81 
SSIM 0.5658 0.6543 0.7132 

The experimental results show some advantages of the 
proposed method in some color images reconstruction 
cases. Gradient-based convex sets and local adaptive 
constraint thresholds are helpful to relief the over-
smoothing in reconstruction images, well reconstruct 
the image details (such as textures) and suppress the 
artifact near the edge to some extent. As shown in 
Table 3, some evaluations such as PSNR and SSIM can 
be significantly improved by proposed method than the 
traditional POCS method. 
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Figure 11 Color peppers image reconstruction 

 

5. Conclusion 
This paper proposes an improved POCS-based super 
resolution reconstruction method. In this method, 
gradient-based convex sets and alternating direction 
projection are applied in the iterative reconstruction. 
Local adaptive constraint thresholds can improve the 
accuracy of the method. Experimental results and two 

Figure 11 
Color peppers image reconstruction

Table 3 
Evaluation of the color peppers image reconstruction

Evaluation Interpolation POCS Proposed

PSNR 25.10 29.04 30.81

SSIM 0.5658 0.6543 0.7132

the over-smoothing in reconstruction images, well 
reconstruct the image details (such as textures) and 
suppress the artifact near the edge to some extent. 
As shown in Table 3, some evaluations such as PSNR 
and SSIM can be significantly improved by proposed 
method than the traditional POCS method.

5. Conclusion
This paper proposes an improved POCS-based super 
resolution reconstruction method. In this method, 
gradient-based convex sets and alternating direction 
projection are applied in the iterative reconstruction. 
Local adaptive constraint thresholds can improve the 
accuracy of the method. Experimental results and two 
evaluations (PSNR and SSIM) show that the improved 
method can achieve better reconstruction result, well 
suppress the artifacts and relief the over-smoothing in 
some cases. In the future work, we will continue to work 
on the mechanism of artifact formation, and more effi-
cient reconstruction based on feature information.
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