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Multicast is a process, which sends data to many objects. Multicast routing is an important challenging task 
in group communication in Wireless Sensor Network (WSN). Reliable multicasting is necessary for efficient 
group communication in WSN. In this paper, an efficient algorithm Minimum Connected Dominating Set 
(MCDS) is used to form a virtual backbone (Forwarding Group) of the network. The MCDS aims to minimiz-
ing the number of nodes, where few nodes are participating in forwarding the multicast data. Random Linear 
Network Coding (RLNC) has a great potential to improve the throughput and reliability by reducing the multi-
ple transmissions in wireless network. The objective of this paper is to propose an efficient reliable multicast 
routing protocol named as RLNMCDS-ODMRP (Random Linear Network Coding over Minimum Connected 
Dominating Set in On-Demand Multicast Routing Protocol) by using two state-of-arts techniques MCDS and 
RLNC in ODMRP for WSN. Experimental results and performance analysis show that the proposed protocol 
delivers multicast data in high reliable and outperforms the classical ODMRP that use MCDS or RLNC.
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1. Introduction
Wireless Sensor Network is a type of wireless network, 
which consist number of sensor nodes to measure a 
physical quantity and monitor the environmental or 
physical conditions [3]. WSN has many applications 
such as military application, traffic surveillance, envi-
ronment monitoring, building structures monitoring, 
habitat monitoring, information gathering, pollution 
monitoring and wildfire detection [3]. Multicasting is 
an efficient method of sending a data to many receiv-
ers at a same time, which has many applications such 
as multimedia conference meetings and in battle field 
for multicast tactical messages [8].
In this paper, reactive and on demand [37] multicast 
routing protocol called ODMRP [27] is chosen for 
multicasting data in WSN. Reliability is an important 
issue to prove end-to-end successful delivery of data 
in WSN, since there is a possibility to failure of data 
and unstable of network. It is important to develop 
high reliable multicast routing protocol. Also, net-
work backbone formation and channel capacity are 
some issues [45] to improve the reliability, To solve 
these issues two most popular techniques were used, 
they are, MCDS and RLNC. 
In Connected Dominating Set (CDS), dominating 
nodes are connected to form a virtual backbone (For-
warding Group) and reduce the redundant trans-
mission in the network [44]. Dominating Set (DS) 
nodes are realying the messages, maintain routing 
tables,reduce the communication cost, reduce the re-
dundant traffic, localize the routing information, save 
storage space and it provides reliable connectivity be-
tween the nodes. The MCDS is also a connected dom-
inating set with minimum number of elements [9], 
which is NP-Hard to find a minimum sized connect-
ed dominating set [13]. In real time environment, the 
virtual backbone of the network as small as possible, 
in order to decrease the protocol overhead, to save life 
time, energy consumption and cost of construction 
etc. Hence, it is required to form a minimum sized 
CDS. In WSN, constructing minimum sized CDS is 
an important issue because it reduces unnecessary 
multicast message transmission. Finding MCDS of 
the network is a promising approach. MCDS is con-
structed based on computation of Convex Hull (CH) 
in Unit Disk Graph (UD Graph) [36]. Limited number 
of sensor nodes are participated for  multicast trans-

mission in MCDS, which improves the reliability in 
the network. 
Network Coding (NC) is a technique which improves 
throughput and reliability  by reducing the number 
of transmissions and save the bandwidth in wireless 
network [2]. RLNC is also a type of network coding 
where forwarding nodes add some packets with origi-
nal data using mathematical operations [35]. 

1.1. Motivation and Justification
Recently, some researchers have constructed virtu-
al backbone by using MCDS alone for multicast op-
eration and to improve performance of network [4, 
7, 38]. In general, MCDS can be constructed in two 
ways  either in global or local information of network 
and centralized or distributed way respectively. Due 
to the characteristics of WSN, it is hard to obtain and 
maintain global information of network, Moreover, 
MCDS construction is inefficient for a  single  node 
[30]. Therefore, MCDS is constructed based on local 
information and distributed way in the proposed pro-
tocol RLNMCDS-ODMRP. 
Javad, A.T. et al. [45] proposed Weighted Steiner 
Connected Dominating Set (WSCDS) for multicast 
routing in MANET. Shuai Wang et al. [48] explored 
broadcast protocols in energy minimal for wireless 
ad hoc networks by using network coding over con-
nected dominating set (CDS). Zhao Zhang et al. [52] 
introduced polynomial time approximation scheme 
(PTAS) to improve the running time and for min-
imum CDS in WSN. Hongwei Du et al. [9] reduced 
routing cost and improved the load balance by PTAS 
for MCDS in WSN. Xiaoyan Kui et al. [26] investi-
gated energy balanced CDS problem in constructing 
network backbone in WSN. Dennis Lisiecki et al. [33] 
enhanced the energy efficiency by exploiting connect-
ed dominating to reduce the nubmer of transmissions 
in WSN. Xuemei Sun et al. [42] proposed an algorithm 
to solve maximum independent set (MIS) to expand 
the dominating point in MCDS. Xin Bai et al. [6] con-
sidered the upper bounds of MIS to design an MCDS 
algorithm for 3D heterogeneous ad hoc networks. Md. 
Sadiqur Rahman Sohel et al. [41] developed conten-
tion aware connected dominant set (CACDS) algo-
rithm also provided mathematical analysis of conten-
tion for connected Internet of Things (IoT) devices. 
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Using routing, the multicast data cannot be commu-
nicated to destination nodes at a time. However, if the 
member nodes are performing linear network coding 
operations in addition to routing, the multicast data 
can be communicated to destination nodes at a time 
and achieves the maximum capacity of multicast net-
work [11]. Ahlswede [2] illustrated this through fa-
mous “butterfly network”. Therefore, RLNC is essen-
tial to communicate a sender to multiple receivers at 
same time. Most of the researchers has been applied 
RLNC alone for various multicast applications and 
increases the capacity of the network in MANET and 
Wireless Mesh Network (WMN) [43, 51, 24, 31, 46, 
32]. In which, RLNC has great potential for improving 
performance in throughput, reliability and minimize 
the transmission delay in MANET.
Kerim Fouli et al. [16] described both block and slid-
ing window RLNC for reliable data transport. Evgeny 
Tsimbalo et al. [47] addressed the performance anal-
ysis of successful decoding at nodes under RLNC. 
Arash Ghafouri et al. [12] improving the ODMRP pro-
tocol performance using power-based method. Mal-
lapur, S.V. et al. [34] proposed to build a reliable path 
between  nodes to recover lost packets during com-
munication. WSN differ from the MANET in terms of 
network topology, performance metrics, clustering, 
traffic patterns, hardware, mobility, communication 
technology and their amount of available memory. 
These differences are considered in RLNC and dif-
ferent approaches have been proposed by researchers 
for WSN [23, 14, 39, 48, 29].  RLNC provides loss re-
covery in low quality wireless links and economical 
path diversity in WSN [20].
S. Katti et al. [22] proposed a new architecture (COPE) 
to forward and mix the packets by XOR operation to 
increase throughput. Tracey Ho et al. [17] presented a 
distributed RLNC for multicast in wireless networks. 

Rout, RR et al. [39] attempted to improve the network 
lifetime in WSN by considering duty cycle and net-
work coding. Zhu et al. [53] proposed distributed and 
novel method to construct a 2-reduandant multicast 
graph by applying network coding. Dumitrescu et al. 
[10] proposed a layered multicast schemes using net-
work coding. Jaggi et al. [19] presented a determinis-
tic polynomial time algorithm to design linear codes 
for directed acyclic graphs. 
The proposed protocol RLNMCDS-ODMRP aims 
to develop efficient and high reliable multicast rout-
ing protocol. WSN protocols must be simple for both 
computation and communication overhead. Also, 
it should be implemented easily, scalable, efficient, 
adaptive and should be reduced redundant trans-
missions in various situations. The efficient proto-
col shoud achieve maximum throughput, reliability, 
packet delivery ratio, minimum end-to-end delay, 
security and energy efficiency, therefore all the afore-
mentioned conditions are considered in the proposed 
protocol. So far, there is no work on ODMRP with 
RLNC over MCDS for WSN. Thus, the proposed pro-
tocol is essential to develop efficient multicast rout-
ing protocol.

1.2. Outline of the Paper
This paper first presents comprehensive investiga-
tion of MCDS and RLNC, also discusses their oper-
ations in detail. Second, describes implementation 
of the proposed protocol, which has two phases as 
shown in Figure 1. In the first phase, source node 
discovers the route and constructs the MCDS using 
convex hull, the source node transmitting the data 
by applying RLNC through the constructed MCDS in 
ODMRP to its receivers in the second phase. At the 
end of this research work, performance of proposed 
protocol is evaluated.

Figure 1 
Outline of the Paper
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1.3. Organization of the Paper
The residual paper is organized as follows: Proposed 
methodology is given in Section 2. Section 3 convers-
es about the experimental results. Finally, conclusion 
about the proposed approach is given in Section 4.

2. Proposed Methodology
In this paper, two most popular techniques were used, 
they are, (1) Minimum Connected Dominating Set, 
(2) Random Linear Network Coding.

2.1. Construction of Minimum Connected 
Dominating Set
The concept of the MCDS derived from graph theory 
[50]. The set of nodes are connected for a given graph 
(network) is called as CDS [45, 9, 13, 4, 7, 26, 33, 41] is 
shown in Figure 2, which shows that the  nodes in blue 
connected through blue bold lines and form a MCDS, 
which is backbone of the network. Remaining nodes 
are marked in white and green node (receiver) can 
be reached by the blue nodes in the MCDS to reduce 
the redundant transmissions of multicast data [40]. 
MCDS is constructed from CDS using convex hull in 
the following steps as shown in the Figure 3.
STEP 1:  Find the minimum degree vertex in CDS. De-
gree of vertex C is 3, Degree of vertex E is 4, Degree 
of vertex G is 3, Degree of vertex F is 5 and Degree of 
vertex D is 4. Now consider the minimum degree ver-
tex C.
STEP 2: Calculate convex hull of N[C] ([ ] - closed 
neighborhood, ( ) – open neighborhood) as shown in 
Figure 4.  CH(N[C]) is {E,C,D}
STEP 3: Calculate convex hull of N[i] as shown in Fig-
ure 5.
STEP 4: Check if convex hull of N[C] is contained 
in 

i
iNCH ])[(  where i ϵ N(C) = {E, B, D} as shown in  

Figure 6.
STEP 5:  If Step 4 is true, then remove the vertex C 
from CDS and go to step1
STEP 6: Select the next minimum degree vertex i.e. G 
and repeat the process from step1 to step5. By above 
process, remove the vertex G and go to step 1
STEP 7: Select the next minimum degree vertex i.e. D

STEP 8:  Calculate CH(N[D]) and Convex hull of N[D] 
is CFJ CH (N[D]) `¢ 
STEP 9:  Calculate CH(N[i]) for all i ϵ N(D) = {B,F,C,J}
STEP 10:  Convex Hull (N[D]) is not belongs to 
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2.2.1. On-demand Multicast 
Routing Protocol 
ODMRP is a state-of-art, mesh based 
and a source initiated protocol, 
where forwarding group concept 
and soft state approach is used to 
establish and maintain a mesh 
structure, respectively, in a given 
network [27]. 
 
2.2.2. Minimum Connected 
Dominating Set based Multicast 
Recently, MCDS is used to construct 
virtual backbone for multicasting in 
many wireless networks. MCDS 

based multicast routing is not only 
applied for proactive routing, it can 
also be applied to reactive routing, 
where routes are computed in on-
demand. In this paper, reactive 
multicast routing protocol, ODMRP 
is considered. Figure 8 shows MCDS 
network with ODMRP. In the MCDS 
network, each dominating node 
keeps following information: 
Dominating node’s membership list, 
routing table and forwarding node 
table. Adjacent node of dominating 
node is called as membership list. 
Routing table includes next-hop 
information of a shortest path and 
the distance to the specified MCDS 
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Figure 7
Constructed MCDS Network

2.2. Multicast Routing Protocol
In this work, the selected simple and scalable reactive 
or on-demand routing protocol is ODMRP. Because, 
most of the researchers show that reactive method 
is better than the proactive method in many aspects 
such as nodes movement, network life time, self-or-
ganizing network model [27].

2.2.1. On-demand Multicast Routing Protocol
ODMRP is a state-of-art, mesh based and a source ini-

tiated protocol, where forwarding group concept and 
soft state approach is used to establish and maintain a 
mesh structure, respectively, in a given network [27].

2.2.2. Minimum Connected Dominating Set based 
Multicast
Recently, MCDS is used to construct virtual backbone 
for multicasting in many wireless networks. MCDS 
based multicast routing is not only applied for proac-
tive routing, it can also be applied to reactive routing, 
where routes are computed in on-demand. In this 
paper, reactive multicast routing protocol, ODMRP 
is considered. Figure 8 shows MCDS network with 
ODMRP. In the MCDS network, each dominating 
node keeps following information: Dominating node’s 
membership list, routing table and forwarding node 
table. Adjacent node of dominating node is called as 
membership list. Routing table includes next-hop in-
formation of a shortest path and the distance to the 
specified MCDS destination. This work extends the 
ODMRP algorithm by adding further routing infor-
mation as shown in Figure 8 (b) to be sent between 
MCDS nodes to a quite selective multicast process.
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(b) Multicast Routing information

(a) Multicast data transmission through MCDS

Figure 8

2.3. Random Linear Network Coding
Recently, RLNC is emerged promising technique for 
various applications in wireless networks, which is 
used to increase the throughput of the network and 
reduce the multicast traffic in wireless network.

2.3.1. Random Linear Network coding for Unicast
In RLNC, Output data of each node is in the form of 
linear combination of input message. The coefficients 
selected for this linear combination are completely 
random in nature. The forwarding node adds its own 
packets with original packets and sends outgoing cod-
ed packets. Typically, RLNC performs three different 
operations [21], they are 1. Encoding, 2. Re-encoding, 
3. Decoding.
From the Figure 9, the encoding process can be done at 
source node of the network. Re-encoding process can 
be done at forwarding node, which is almost similar 
to encoding process but the coefficients are complete-
ly newly generated. Finally, decoding process can be 
done at destination nodes. The encoding, re-encoding 
and decoding operations are implemented via matrix 
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operations. First, consider the 
unicast network, when there is a 
single-source single-destination 
capacity (max-flow) is achievable by 
min-cut max-flow [33].The basic idea 
of RLNC for unicast communication 
can be illustrated in the Figures 10-
13. 
Figure 10  

A Simple example of RLNC for unicast in WSN 

 
 
 
 
 

 

Figure 11  

Encoder at Source node 

 

 

 

 

 

 

Figure 12  

Re-encoder at intermediate node 

 

 

 

 

 

 

Figure 13  

Decoder 

 
 

 
 

The data X1, X2 and X3 are given to 
node V1 as input then node (V2) 
received two coded packets: aX1+ 
bX2+ cX3 and dX1+ eX2+ fX3 as 
output of node V1. In order to 
perform the re-encoding operation 
on the two received coded packets, 
the node (V2) generates two random 
coefficients (g, h) for the two coded 
packets to be re-encoded. The 
coding vector of the new re-encoded 
packet can be calculated as 
following: g (aX1+ bX2+ cX3) + h 
(dX1+ eX2+ fX3) = (ga+hd) X1 + 
(gb+he) X2 + (gc + hf) X3 where, 
(ga+hd), (gb+he) and (gc+hf) are the 
new coefficients of the re-encoded 
packet. The decoding operation is 
performed at the node V4 by 
collecting the coded packets. The 
coded packets are decoded by 
forming a matrix from linear 
coefficients. The matrix is referred to 
as decoding matrix or transfer 
matrix [21]. 
2.3.2. Random Linear Network 
Coding for Multicast 
In this section, multicast network is 
considered with multiple 
independent messages, RLNC 
process for multicast is depicted in 
the Figure 15. The basic idea of 
RLNC for multicast communication 
can be illustrated in the Figure 17 
[28, 1]. 
Multicast network G= (V, E) is 
depicted in the Figure 14, where V is 
the set of nodes   and E is the set of 
edges. The source node V1 sending 
packets to nodes V4 and V5 with the 
help of forwarding nodes V2 and 
V3, the source node V1 observing 
three source packets X1, X2 and X3 
also called native packets and 
randomly chosen coefficients α, β, 
and γ from finite field for encoding, 
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operations. First, consider the unicast network, when 
there is a single-source single-destination capacity 
(max-flow) is achievable by min-cut max-flow [33].
The basic idea of RLNC for unicast communication 
can be illustrated in the Figures 10-13.
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The data X1, X2 and X3 are given to node V1 as input 
then node (V2) received two coded packets: aX1+ 
bX2+ cX3 and dX1+ eX2+ fX3 as output of node V1. 
In order to perform the re-encoding operation on the 
two received coded packets, the node (V2) generates 
two random coefficients (g, h) for the two coded pack-
ets to be re-encoded. The coding vector of the new 
re-encoded packet can be calculated as following:  
g (aX1+ bX2+ cX3) + h (dX1+ eX2+ fX3) = (ga+hd) X1 
+ (gb+he) X2 + (gc + hf ) X3 where, (ga+hd), (gb+he) 
and (gc+hf ) are the new coefficients of the re-encod-
ed packet. The decoding operation is performed at the 
node V4 by collecting the coded packets. The coded 
packets are decoded by forming a matrix from linear 
coefficients. The matrix is referred to as decoding ma-
trix or transfer matrix [21].

2.3.2. Random Linear Network Coding for 
Multicast
In this section, multicast network is considered with 
multiple independent messages, RLNC process for 
multicast is depicted in the Figure 15. The basic idea 
of RLNC for multicast communication can be illus-
trated in the Figure 17 [28, 1].
Multicast network G= (V, E) is depicted in the Figure 
14, where V is the set of nodes   and E is the set of edges. 
The source node V1 sending packets to nodes V4 and 
V5 with the help of forwarding nodes V2 and V3, the 
source node V1 observing three source packets X1, X2 
and X3 also called native packets and randomly cho-
sen coefficients α, β, and γ from finite field for encod-
ing, there are three paths from V1 to V4 and another 
three paths from V1 to V5. Forwarding nodes V2 and 
V3 performs the re-encoding operation on the two 
received coded packets with the random coefficients, 
the coding vector of the new re-encoded packet can be 
given as input to the node V4 and V5. Decoding opera-
tion is performed at the node V4 and V5 by collecting 
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the coded packets. These packets form linear equa-
tions and can be solved by forming a matrix which is 
referred as decoding matrix or transfer matrix. RLNC 
operations for multicasting is illustrated through the 
following equations, the information through the edg-
es i.e e1, e2, e3 can be calculated by Equation (1),
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Figure 15  

Flowchart for RLNC for multicast 
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Destination node V5 recover the 
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re-encoded packets [y(e8), y(e9), 
y(e10)]T and obtain, 

)()()()1,( 101,91,81,5 1098
eYeYeYvZ eee γγγ ++=    

(13) 

)()()()2,( 102,92,82,5 1098
eYeYeYvZ eee γγγ ++=   (14) 

)()()()3,( 103,93,83,5 1098
eYeYeYvZ eee γγγ ++=    (15) 

Now, the original multicast data at 
destination node V4 is decoded from 
equations (10) – (12), similarly, 
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By applying equation (6) in above 
expression and obtain the following, 
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and y(e2) pass through edge e4, 
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enough for V5 from V1. 
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By applying equation (6) in above 
expression and obtain the following, 
because, both coded packets y(e1) 
and y(e2) pass through edge e4, 
therefore, disjoint paths are not 
enough for V5 from V1. 
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Destination node V5 recover the 
original packets from the received 
re-encoded packets [y(e8), y(e9), 
y(e10)]T and obtain, 
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Now, the original multicast data at 
destination node V4 is decoded from 
equations (10) – (12), similarly, 
destination node V5 is decoded from 
equations (13)-(15), by solving the 
relation between x and z ,   

Mxz ⋅=      (16) 
where x  and z   are input and ouput 
process vectors respectively, M is the 
transfer matrix, which is obtained 
from solving the following matrix, 
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For the destination node V5, Re-encoded data on edges 
e8, e9 and e10 denoted by Y(e8), Y(e9) and Y(e10). They are 
linear combinations of Y(e3) and Y(e4) and can be ex-
pressed as,
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By applying equation (6) in above 
expression and obtain the following, 
because, both coded packets y(e1) 
and y(e2) pass through edge e4, 
therefore, disjoint paths are not 
enough for V5 from V1. 
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Destination node V5 recover the 
original packets from the received 
re-encoded packets [y(e8), y(e9), 
y(e10)]T and obtain, 

)()()()1,( 101,91,81,5 1098
eYeYeYvZ eee γγγ ++=    

(13) 

)()()()2,( 102,92,82,5 1098
eYeYeYvZ eee γγγ ++=   (14) 

)()()()3,( 103,93,83,5 1098
eYeYeYvZ eee γγγ ++=    (15) 

Now, the original multicast data at 
destination node V4 is decoded from 
equations (10) – (12), similarly, 
destination node V5 is decoded from 
equations (13)-(15), by solving the 
relation between x and z ,   

Mxz ⋅=      (16) 
where x  and z   are input and ouput 
process vectors respectively, M is the 
transfer matrix, which is obtained 
from solving the following matrix, 
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The square matrices β′.α and κ. α are 
invertible and unicoding is possible.  
Each destination node wants to 
decode the vector data z . This 
implies that det(β.α) ≠ 0 and det(κ. 
α) ≠ 0 det(Mi) ≠ 0 ∀ i , therefore the 
product of determinant is non-zero. 
Determinant is non-zero means that 
it has some data for the particular 
destination node. 
 
2.3.3. Operations of Proposed 
Protocol RLNMCDS-ODMRP 
Implementation of the proposed 
protocol has two phases as shown in 
Figures 19 and 20. First, source node 
discovers route and constructs 
MCDS using convex hull, Second, 
source node transmitting data by 
applying RLNC through constructed 
MCDS in ODMRP to its receivers. 
The first phase is shown in Figure 
16, where source node broadcasting 
join request packet JOIN_REQUEST 
as route construction process, source 

BAM

eeee

eeeeeeeeee

eeeeeeeeee

⋅



















⋅=

7363

7442644252

7441644151

,,

,,,,,

,,,,,

0 ββ

βββββ

βββββ



















=

3,2,1,

3,2,1,

3,2,1,

777

666

555

eee

eee

eee

B

εεε

εεε

εεε



















=

321

321

321

,3,3,3

,2,2,2

,1,1,1

eee

eee

eee

A

ααα

ααα

ααα

By applying equation (6) in above expression and ob-
tain the following, because, both coded packets y(e1) 
and y(e2) pass through edge e4, therefore, disjoint 
paths are not enough for V5 from V1.
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For the destination node V5, Re-
encoded data on edges e8, e9 and e10 
denoted by Y(e8), Y(e9) and Y(e10). 
They are linear combinations of Y(e3) 
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By applying equation (6) in above 
expression and obtain the following, 
because, both coded packets y(e1) 
and y(e2) pass through edge e4, 
therefore, disjoint paths are not 
enough for V5 from V1. 
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Further, [Y(e1) Y(e2) Y(e3)]T  can be 
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Destination node V5 recover the 
original packets from the received 
re-encoded packets [y(e8), y(e9), 
y(e10)]T and obtain, 

)()()()1,( 101,91,81,5 1098
eYeYeYvZ eee γγγ ++=    

(13) 

)()()()2,( 102,92,82,5 1098
eYeYeYvZ eee γγγ ++=   (14) 

)()()()3,( 103,93,83,5 1098
eYeYeYvZ eee γγγ ++=    (15) 

Now, the original multicast data at 
destination node V4 is decoded from 
equations (10) – (12), similarly, 
destination node V5 is decoded from 
equations (13)-(15), by solving the 
relation between x and z ,   

Mxz ⋅=      (16) 
where x  and z   are input and ouput 
process vectors respectively, M is the 
transfer matrix, which is obtained 
from solving the following matrix, 
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where, 
 
 

 
The square matrices β′.α and κ. α are 
invertible and unicoding is possible.  
Each destination node wants to 
decode the vector data z . This 
implies that det(β.α) ≠ 0 and det(κ. 
α) ≠ 0 det(Mi) ≠ 0 ∀ i , therefore the 
product of determinant is non-zero. 
Determinant is non-zero means that 
it has some data for the particular 
destination node. 
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discovers route and constructs 
MCDS using convex hull, Second, 
source node transmitting data by 
applying RLNC through constructed 
MCDS in ODMRP to its receivers. 
The first phase is shown in Figure 
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Further, [Y(e1) Y(e2) Y(e3)]T  can be represented in 
terms of [X(v,1) X(v,2) X(v,3)]T and denote the above 
matrix by κ , which share the common coefficients of 
y(e1) and y(e2). Then,
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(10) 
)()()()2,( 72,62,52,4 765

eYeYeYvZ eee εεε ++=    
(11) 

)()()()3,( 73,63,53,4 765
eYeYeYvZ eee εεε ++= .   (12) 

For the destination node V5, Re-
encoded data on edges e8, e9 and e10 
denoted by Y(e8), Y(e9) and Y(e10). 
They are linear combinations of Y(e3) 
and Y(e4) and can be expressed as, 
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By applying equation (6) in above 
expression and obtain the following, 
because, both coded packets y(e1) 
and y(e2) pass through edge e4, 
therefore, disjoint paths are not 
enough for V5 from V1. 
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Further, [Y(e1) Y(e2) Y(e3)]T  can be 
represented in terms of [X(v,1) 
X(v,2) X(v,3)]T and denote the above 
matrix by κ , which share the 
common coefficients of y(e1) and 
y(e2). Then, 

















)(
)(
)(

10

9

8

eZ
eZ
eZ

= κ. α. 
















)3,(
)2,(
)1,(

vx
vx
vx

 .  

Destination node V5 recover the 
original packets from the received 
re-encoded packets [y(e8), y(e9), 
y(e10)]T and obtain, 

)()()()1,( 101,91,81,5 1098
eYeYeYvZ eee γγγ ++=    

(13) 

)()()()2,( 102,92,82,5 1098
eYeYeYvZ eee γγγ ++=   (14) 

)()()()3,( 103,93,83,5 1098
eYeYeYvZ eee γγγ ++=    (15) 

Now, the original multicast data at 
destination node V4 is decoded from 
equations (10) – (12), similarly, 
destination node V5 is decoded from 
equations (13)-(15), by solving the 
relation between x and z ,   

Mxz ⋅=      (16) 
where x  and z   are input and ouput 
process vectors respectively, M is the 
transfer matrix, which is obtained 
from solving the following matrix, 
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where, 
 
 

 
The square matrices β′.α and κ. α are 
invertible and unicoding is possible.  
Each destination node wants to 
decode the vector data z . This 
implies that det(β.α) ≠ 0 and det(κ. 
α) ≠ 0 det(Mi) ≠ 0 ∀ i , therefore the 
product of determinant is non-zero. 
Determinant is non-zero means that 
it has some data for the particular 
destination node. 
 
2.3.3. Operations of Proposed 
Protocol RLNMCDS-ODMRP 
Implementation of the proposed 
protocol has two phases as shown in 
Figures 19 and 20. First, source node 
discovers route and constructs 
MCDS using convex hull, Second, 
source node transmitting data by 
applying RLNC through constructed 
MCDS in ODMRP to its receivers. 
The first phase is shown in Figure 
16, where source node broadcasting 
join request packet JOIN_REQUEST 
as route construction process, source 
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Destination node V5 recover the original packets from 
the received re-encoded packets [y(e8), y(e9), y(e10)]T 
and obtain,
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(10) 
)()()()2,( 72,62,52,4 765

eYeYeYvZ eee εεε ++=    
(11) 

)()()()3,( 73,63,53,4 765
eYeYeYvZ eee εεε ++= .   (12) 

For the destination node V5, Re-
encoded data on edges e8, e9 and e10 
denoted by Y(e8), Y(e9) and Y(e10). 
They are linear combinations of Y(e3) 
and Y(e4) and can be expressed as, 
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By applying equation (6) in above 
expression and obtain the following, 
because, both coded packets y(e1) 
and y(e2) pass through edge e4, 
therefore, disjoint paths are not 
enough for V5 from V1. 
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Further, [Y(e1) Y(e2) Y(e3)]T  can be 
represented in terms of [X(v,1) 
X(v,2) X(v,3)]T and denote the above 
matrix by κ , which share the 
common coefficients of y(e1) and 
y(e2). Then, 
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Destination node V5 recover the 
original packets from the received 
re-encoded packets [y(e8), y(e9), 
y(e10)]T and obtain, 

)()()()1,( 101,91,81,5 1098
eYeYeYvZ eee γγγ ++=    

(13) 

)()()()2,( 102,92,82,5 1098
eYeYeYvZ eee γγγ ++=   (14) 

)()()()3,( 103,93,83,5 1098
eYeYeYvZ eee γγγ ++=    (15) 

Now, the original multicast data at 
destination node V4 is decoded from 
equations (10) – (12), similarly, 
destination node V5 is decoded from 
equations (13)-(15), by solving the 
relation between x and z ,   

Mxz ⋅=      (16) 
where x  and z   are input and ouput 
process vectors respectively, M is the 
transfer matrix, which is obtained 
from solving the following matrix, 
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where, 
 
 

 
The square matrices β′.α and κ. α are 
invertible and unicoding is possible.  
Each destination node wants to 
decode the vector data z . This 
implies that det(β.α) ≠ 0 and det(κ. 
α) ≠ 0 det(Mi) ≠ 0 ∀ i , therefore the 
product of determinant is non-zero. 
Determinant is non-zero means that 
it has some data for the particular 
destination node. 
 
2.3.3. Operations of Proposed 
Protocol RLNMCDS-ODMRP 
Implementation of the proposed 
protocol has two phases as shown in 
Figures 19 and 20. First, source node 
discovers route and constructs 
MCDS using convex hull, Second, 
source node transmitting data by 
applying RLNC through constructed 
MCDS in ODMRP to its receivers. 
The first phase is shown in Figure 
16, where source node broadcasting 
join request packet JOIN_REQUEST 
as route construction process, source 
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(10) 
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(11) 

)()()()3,( 73,63,53,4 765
eYeYeYvZ eee εεε ++= .   (12) 

For the destination node V5, Re-
encoded data on edges e8, e9 and e10 
denoted by Y(e8), Y(e9) and Y(e10). 
They are linear combinations of Y(e3) 
and Y(e4) and can be expressed as, 
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By applying equation (6) in above 
expression and obtain the following, 
because, both coded packets y(e1) 
and y(e2) pass through edge e4, 
therefore, disjoint paths are not 
enough for V5 from V1. 
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Further, [Y(e1) Y(e2) Y(e3)]T  can be 
represented in terms of [X(v,1) 
X(v,2) X(v,3)]T and denote the above 
matrix by κ , which share the 
common coefficients of y(e1) and 
y(e2). Then, 
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Destination node V5 recover the 
original packets from the received 
re-encoded packets [y(e8), y(e9), 
y(e10)]T and obtain, 

)()()()1,( 101,91,81,5 1098
eYeYeYvZ eee γγγ ++=    

(13) 

)()()()2,( 102,92,82,5 1098
eYeYeYvZ eee γγγ ++=   (14) 

)()()()3,( 103,93,83,5 1098
eYeYeYvZ eee γγγ ++=    (15) 

Now, the original multicast data at 
destination node V4 is decoded from 
equations (10) – (12), similarly, 
destination node V5 is decoded from 
equations (13)-(15), by solving the 
relation between x and z ,   

Mxz ⋅=      (16) 
where x  and z   are input and ouput 
process vectors respectively, M is the 
transfer matrix, which is obtained 
from solving the following matrix, 
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where, 
 
 

 
The square matrices β′.α and κ. α are 
invertible and unicoding is possible.  
Each destination node wants to 
decode the vector data z . This 
implies that det(β.α) ≠ 0 and det(κ. 
α) ≠ 0 det(Mi) ≠ 0 ∀ i , therefore the 
product of determinant is non-zero. 
Determinant is non-zero means that 
it has some data for the particular 
destination node. 
 
2.3.3. Operations of Proposed 
Protocol RLNMCDS-ODMRP 
Implementation of the proposed 
protocol has two phases as shown in 
Figures 19 and 20. First, source node 
discovers route and constructs 
MCDS using convex hull, Second, 
source node transmitting data by 
applying RLNC through constructed 
MCDS in ODMRP to its receivers. 
The first phase is shown in Figure 
16, where source node broadcasting 
join request packet JOIN_REQUEST 
as route construction process, source 

BAM

eeee

eeeeeeeeee

eeeeeeeeee

⋅



















⋅=

7363

7442644252

7441644151

,,

,,,,,

,,,,,

0 ββ

βββββ

βββββ



















=

3,2,1,

3,2,1,

3,2,1,

777

666

555

eee

eee

eee

B

εεε

εεε

εεε



















=

321

321

321

,3,3,3

,2,2,2

,1,1,1

eee

eee

eee

A

ααα

ααα

ααα

(14)

 
 

 

)()()()1,( 71,61,51,4 765
eYeYeYvZ eee εεε ++=     

(10) 
)()()()2,( 72,62,52,4 765

eYeYeYvZ eee εεε ++=    
(11) 

)()()()3,( 73,63,53,4 765
eYeYeYvZ eee εεε ++= .   (12) 

For the destination node V5, Re-
encoded data on edges e8, e9 and e10 
denoted by Y(e8), Y(e9) and Y(e10). 
They are linear combinations of Y(e3) 
and Y(e4) and can be expressed as, 

















)(
)(
)(

10

9

8

eZ
eZ
eZ

 = 
















104103

9493

8483

eeee
eeee
eeee

γγ
γγ
γγ









)(
)(

4

3
eY
eY  

  
By applying equation (6) in above 
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















)(
)(
)(

10

9

8

eZ
eZ
eZ

 = 

















1034210441104

9342944194

8342844184

eeeeeeeeee
eeeeeeeeee
eeeeeeeeee

γβγβγ
γβγβγ
γβγβγ

















)(
)(
)(

3

2

1

eY
eY
eY

.
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Destination node V5 recover the 
original packets from the received 
re-encoded packets [y(e8), y(e9), 
y(e10)]T and obtain, 
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Now, the original multicast data at 
destination node V4 is decoded from 
equations (10) – (12), similarly, 
destination node V5 is decoded from 
equations (13)-(15), by solving the 
relation between x and z ,   

Mxz ⋅=      (16) 
where x  and z   are input and ouput 
process vectors respectively, M is the 
transfer matrix, which is obtained 
from solving the following matrix, 
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(15), by solving the relation between x and z ,  

 
 

 

)()()()1,( 71,61,51,4 765
eYeYeYvZ eee εεε ++=     

(10) 
)()()()2,( 72,62,52,4 765

eYeYeYvZ eee εεε ++=    
(11) 

)()()()3,( 73,63,53,4 765
eYeYeYvZ eee εεε ++= .   (12) 

For the destination node V5, Re-
encoded data on edges e8, e9 and e10 
denoted by Y(e8), Y(e9) and Y(e10). 
They are linear combinations of Y(e3) 
and Y(e4) and can be expressed as, 

















)(
)(
)(

10

9

8

eZ
eZ
eZ

 = 
















104103

9493

8483

eeee
eeee
eeee

γγ
γγ
γγ









)(
)(

4

3
eY
eY  

  
By applying equation (6) in above 
expression and obtain the following, 
because, both coded packets y(e1) 
and y(e2) pass through edge e4, 
therefore, disjoint paths are not 
enough for V5 from V1. 
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Destination node V5 recover the 
original packets from the received 
re-encoded packets [y(e8), y(e9), 
y(e10)]T and obtain, 

)()()()1,( 101,91,81,5 1098
eYeYeYvZ eee γγγ ++=    

(13) 

)()()()2,( 102,92,82,5 1098
eYeYeYvZ eee γγγ ++=   (14) 

)()()()3,( 103,93,83,5 1098
eYeYeYvZ eee γγγ ++=    (15) 

Now, the original multicast data at 
destination node V4 is decoded from 
equations (10) – (12), similarly, 
destination node V5 is decoded from 
equations (13)-(15), by solving the 
relation between x and z ,   

Mxz ⋅=      (16) 
where x  and z   are input and ouput 
process vectors respectively, M is the 
transfer matrix, which is obtained 
from solving the following matrix, 
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where x  and z  are input and ouput process vectors 
respectively, M is the transfer matrix, which is ob-
tained from solving the following matrix,
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By applying equation (6) in above 
expression and obtain the following, 
because, both coded packets y(e1) 
and y(e2) pass through edge e4, 
therefore, disjoint paths are not 
enough for V5 from V1. 
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Destination node V5 recover the 
original packets from the received 
re-encoded packets [y(e8), y(e9), 
y(e10)]T and obtain, 
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Now, the original multicast data at 
destination node V4 is decoded from 
equations (10) – (12), similarly, 
destination node V5 is decoded from 
equations (13)-(15), by solving the 
relation between x and z ,   

Mxz ⋅=      (16) 
where x  and z   are input and ouput 
process vectors respectively, M is the 
transfer matrix, which is obtained 
from solving the following matrix, 
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By applying equation (6) in above 
expression and obtain the following, 
because, both coded packets y(e1) 
and y(e2) pass through edge e4, 
therefore, disjoint paths are not 
enough for V5 from V1. 
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Destination node V5 recover the 
original packets from the received 
re-encoded packets [y(e8), y(e9), 
y(e10)]T and obtain, 
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Now, the original multicast data at 
destination node V4 is decoded from 
equations (10) – (12), similarly, 
destination node V5 is decoded from 
equations (13)-(15), by solving the 
relation between x and z ,   

Mxz ⋅=      (16) 
where x  and z   are input and ouput 
process vectors respectively, M is the 
transfer matrix, which is obtained 
from solving the following matrix, 
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The square matrices β′.α and κ. α are invertible and 
unicoding is possible. Each destination node wants 
to decode the vector data z . This implies that de-
t(β.α) ≠ 0 and det(κ. α) ≠ 0 det(Mi) ≠ 0 ∀ i, therefore 
the product of determinant is non-zero. Determinant 
is non-zero means that it has some data for the partic-
ular destination node.

2.3.3. Operations of Proposed Protocol 
RLNMCDS-ODMRP
Implementation of the proposed protocol has two 
phases as shown in Figures 19 and 20. First, source 
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node discovers route and constructs MCDS using 
convex hull, Second, source node transmitting data by 
applying RLNC through constructed MCDS in ODM-
RP to its receivers.
The first phase is shown in Figure 16, where source 
node broadcasting join request packet JOIN_RE-
QUEST as route construction process, source node 
check whether it is a source gateway host, if so, which 
act as a new source and check this node belong to 
network or adjacent to source node, if yes, mark the 
selected node as dominating node, otherwise select 
the another routing path to find dominating node as 
above steps, then the dominating node collect neigh-
bor information of its neighbor node and member list. 
Based on the neighborhood information and member 
list, the dominating node rebroadcast the JOIN_RE-
QUEST packet to its neighbor, then the neighbor 
node checks the above condition to find dominating 
node, finally check whether the selected node is des-
tination gateway, if so, it construct and forward join 
reply packet JOIN_REPLY to source node through 
dominating nodes. In the second phase as shown in 
Figure 17, Source node multicast encoded data pack-
ets to its receivers through the dominating node (for-
warding node) of MCDS, based on the neighborhood 
information it checks whether it’s entire neighbor 
already have received coded packet, if yes, it simply 
stops the forwarding packet and checks whether it is 
a native packet. If yes, coded packets are sends direct-
ly to its neighboring dominating node. If not, domi-
nating node forward the re-encoded packet by adding 
co-efficient to its adjacent dominating node and the 
re-encoded packets are buffered for a threshold time 
T before transmit. 

Figure 16 
Route Discovery and Route reply through MCDS

Figure 17 
Multicast Data Transmission by applying RLNC
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When buffer time for the encoded packet exceeds the 
threshold time T send the encoded packet to its desti-
nation node. If the receiving node is destination node, 
which save and decodes original multicast data. Then 
acknowledgement is send to the source node through 
connected dominating nodes. Otherwise, forward 
the re-encoded packet to its neighbor node until the 
re-encoded packet reached to its destination node, 
now the source node is ready to multicast next packet 
to its receivers.

3. Simulation Environment and 
Performance Evaluation
3.1. Random Linear Network Coding

Nodes were positioned evenly at indiscriminate plac-
es over an area of 500 m × 500 m in the simulation ex-
periment. The multicast traffic is Constant Bit Rate 
(CBR) having 250 bytes data packet. The simulation 
set-ups are generated using the set dest network 
simulator-2 (NS-2) with simulation time of 200 sec-
onds. Mobility model employs a random waypoint in 
a rectangular field. At this time, 1-to-many multicast 
approach was considered, i.e., Sender is sticked to be 
one, then receiver may change in span of 9 and 99. The 
least and greatest speed range between 0 and 20 m/s, 
correspondingly in pause time interval is 1 simulation 
seconds, that relates to steady motion as well as trans-
mission rate is 128 Kbps, transmission range is 50 m 
for all nodes. The simulation parameters are summa-
rized in Table 1.
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Table 1
Simulation Parameters

S.No Parameters Particulars

1. Routing protocol ODMRP

2. Simulator NS-2

3. No.of nodes 100

4. Simulation time 200 secs

5. Simulation area 500 m × 500 m to  
1200 m × 1200 m

6. Node movement Random way point

7. Sender & Receiver Sender-1 
Recevier-09-99

8. Pause time 1 sec

9. Traffic CBR

10. CBR Packet size 250 bytes

11. Traffic Load  5 pkts/sec

12. Arrival Rate 10 kbps-100 kbps

13. Routing Metric Success Probability 
Product (SPP)

14. Mobility speed 0,5,10,15,20 m/s

15. Transmission rate 128 Kbps

16. Transmission range 50 m

17. Topology Multi-hop

18. Methods MCDS and RLNC

3.2. Performance Metrics
3.2.1. Reliability
The ability of successful end-to-end data delivery ra-
tio is called as reliability [25, 5].
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3.2.2. Experimental Results and 
Analysis 
Experimental results and analysis of 
the proposed approach (RLNMCDS-
ODMRP) for the performance metric 
of reliability are elaborated in this 
section. RLNMCDS-ODMRP is 
simulated and its performance is 
analyzed by the following four 
scenarios: i) By varying terrain size, 
ii) By varying arrival rate, iii) By 
varying number of nodes and iv) By 
varying mobility speed. The 
following graphs show that 
performance comparison between 
proposed protocol RLNMCDS-
ODMRP, ODMRP with RLNC, 
ODMRP with MCDS and normal 
ODMRP. 
Scenario-I – By varying terrain size 
In the scenario-I, the performance of 
proposed protocol is measured for 
the reliability considered in this 
paper by varying the terrain size 
from 500m × 500m to 1200m × 1200m 
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Experimental results and analysis of the proposed 
approach (RLNMCDS-ODMRP) for the performance 

metric of reliability are elaborated in this section. 
RLNMCDS-ODMRP is simulated and its perfor-
mance is analyzed by the following four scenarios: i) 
By varying terrain size, ii) By varying arrival rate, iii) 
By varying number of nodes and iv) By varying mo-
bility speed. The following graphs show that perfor-
mance comparison between proposed protocol RLN-
MCDS-ODMRP, ODMRP with RLNC, ODMRP with 
MCDS and normal ODMRP.
Scenario-I – By varying terrain size
In the scenario-I, the performance of proposed proto-
col is measured for the reliability considered in this 
paper by varying the terrain size from 500m × 500m 
to 1200m × 1200m for the fixed 20 nodes, which are 
uniformly deployed in the network coverage area at 
minimum speed of 0 m/s, selected routing metric is 
SPP, arrival rate is set to 10 kbps and traffic load is 
fixed as 5pkts/sec and equally distributed among all 
senders. Transmission range of a sensor node is fixed 
at 50m. It is shown in Figure 18.
After node deployment, maintenance of node is a dif-
ficult process. For this reason, all nodes must adapt 
their behaviors to the environmental changes. Sensor 
nodes are having the static feature and it knows the 
coordinates of their location. The location co-ordi-
nates for the sensors are allocated at the beginning 
itself. In this method nodes are deployed in Unit Disk 
(UD) model.
Scenario-II – By varying arrival rate
In the scenario-II, the performance of proposed pro-
tocol is measured for the reliability considered in this 
work by varying the multicast messages arrival rate 
from 10 kbps to 100 kbps for a static speed of 0 m/s 
and for the fixed 20 nodes network coverage area, se-
lected routing metric is SPP, terrain size is fixed as 
500 m × 500 m, traffic load is fixed as 5 pkts/sec and 
equally distributed among all senders.
Message arrival rate is expressed as average number 
of multicast messages arrived during unit of time, 
which affects protocol performance. A sender gener-
ated multicast traffic based on a deterministic model 
of one-active arrival pattern, multicasting nodes are 
started their multicasting at 0.5s after joining the 
group and continued for a period of 10s for a given ar-
rival rate. 
Figure 19 shows the reliability vs message arriv-
al rate (kbps). First, the proposed protocol RLN-
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MCDS-ODMRP delivers high reliability for low ar-
rival rate, which states that the proposed protocol 
is able to recover lost messages for low arrival rate. 
RLNC-ODMRP gives slightly higher reliability than 
MCDS-ODMRP under low arrival rate. Second, re-
liability starts decreasing significantly when arrival 
rate or network congestion is increased after a thresh-
old for other protocols, because which consumes sig-
nificantly larger bandwidth. 
Scenario-III – By varying number of nodes
In the third scenario, the performance of proposed 
protocol is measured for the reliability considered in 
this work by increasing number of nodes from 09 to 
99 nodes for a static speed of 0 m/s in network cov-
erage area and selected routing metric is SPP. Arriv-
al rate is set to 10 kbps, terrain size is fixed as 500 m 
× 500 m, traffic load is fixed as 5pkts/sec and equally 
distributed among all senders. 
Reliability should be high for better performance of 
the network. Reliable protocol consumes less band-
width by reducing the retransmission and acknowl-
edgement of participating nodes in a network. As 
described in the Figure 20, efficient techniques can 
be used to improve the reliability. To achieve certain 
reliability, limited number of transmission, neighbor-
hood nodes estimation and channel quality link be-
tween source and destination node is important. 
In the single source multicasting, collisions between 
multicast packets are very rare under low load there-
fore, reliability increases for all protocol. From Fig-
ure 21, it is observed that, when number of nodes 
are getting increased, the proposed protocol RLN-
MCDS-ODMRP provides good reliability when com-
pare to other multicast protocols because, it reduces 
packet error rate in end-to-end in dynamic environ-
ment. ODMRP with RLNC offers average reliability 
because of communication overhead. As nodes are 
strongly connected in ODMRP with MCDS, the reli-
ability is improved than Normal_ODMRP.
Scenario-IV – By varying speed of the nodes
In the Scenario-IV, the performance of proposed 
protocol is measured for the reliability considered 
in this work. It is computed by enlarging the speed of 
the nodes from 0 to 20 m/s for the static 20 nodes in 
network coverage area and selected routing metric is 
SPP. Arrival rate is set to 10 kbps, terrain size is fixed 
as 500 m × 500 m, traffic load is fixed as 5pkts/sec and 
equally distributed among all senders.

Figure 18 
Terrain size (m) vs Reliability

Figure 19 
Arrival rate (kbps) vs Reliability

Figure 20 
Mobility speed (m/s) vs Reliability
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estimation and channel quality link 
between source and destination 
node is important.  
In the single source multicasting, 
collisions between multicast packets 
are very rare under low load 
therefore, reliability increases for all 
protocol. From Figure 21, it is 
observed that, when number of 
nodes are getting increased, the 
proposed protocol RLNMCDS-
ODMRP provides good reliability 
when compare to other multicast 
protocols because, it reduces packet 
error rate in end-to-end in dynamic 
environment. ODMRP with RLNC 
offers average reliability because of 
communication overhead. As nodes 
are strongly connected in ODMRP 
with MCDS, the reliability is 
improved than Normal_ODMRP. 
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When nodes are moving in a coverage area at different 
speed, it constructs multiple independent paths from 
source to destinations dynamically. This ensures that 
reliability of a network. Non-acknowledged virtual 
backbone multicasting is improving the reliability of 
network. Figure 21 shows that the reliability versus 
mobility speed (m/s).

It is observed that, on improving the speed of nodes, 
the proposed protocol RLNCDS-ODMRP provides 
good reliability since the transmission delay is very 
low. On the other hand, ODMRP with RLNC, ODMRP 
with MCDS and normal ODMRP has less reliability 
since the delay is high.

4. Conclusion
In this paper, Random Linear Network Coding over 
Minimum Connected Dominating Set in ODMRP 
(RLNMCDS-ODMRP) is proposed to improve the re-
liability in multicast routing protocol for WSN. Based 
on the experiments, it is concluded that the proposed 
protocol RLNMCDS-ODMRP has following advan-
tages, (1) consumes less time to construct multicast 
topology than normal ODMRP, (2) reliability is en-
hanced 12 times of its conventional ODMRP, (3) 
achieves 95% of the theoretical maximum multicast 
capacity which is several times of ODMRP’s, mean-
while only with about 15% extra bandwidth consump-
tion compared with ODMRP. 
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