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We propose a meminductor-based chaotic system. Theoretical analysis and numerical simulations reveal com-
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1. Introduction
The memristor was theoretically postulated by Profes-
sor Leon Chua as the 4th basic circuit element in 1971 
[5]. In 2008, successful development of its physical 
model by researchers in Hewlett Packard labs [24] at-
tracted much attention all over the world [6, 23, 4, 12, 2, 
10, 29, 19]. In 2009, the memcapacitor and the memin-
ductor, which extended the memristor, were proposed 
by Di Ventra et al. [8]. Memristor, meminductor, and 
memcapacitor are nonlinear circuit elements and can 
be used to generate chaotic signals [3, 21, 27, 11, 15, 22, 
31, 26, 28]. Recently, researchers are beginning to real-
ize the potential applications of these nonlinear circuit 
elements in computer memories, programmable ana-
log circuits, and neural systems. 
Compared to memristor-based systems, investiga-
tions on meminductor-based chaotic circuits are just 
at the beginning. The meminductor is not a physical 
nonlinear circuit element. Therefore, off-the-shelf 
electronic circuit elements are needed to implement 
the meminductor. Sah et al. [21] proposed a method 
to build an expandable architecture of memcapaci-
tor emulator based on memristor emulator. Yang et 
al. [11] reported a memristor emulator for memris-
tor circuit applications with off-the-shelf solid-state 
devices. Various features of the memristor emulator 
are tested via experiments. Liang et al. [15] reported a 
floating flux-controlled emulator of the meminductor 
that was implemented without using the memristor. 
Sanchez-Lopez et al. [22] introduced a new floating 
memristor emulator circuit based on second-genera-
tion current conveyors and passive elements. A math-
ematical model to characterize the memristor be-
havior was derived, showing a good accuracy among 
PSPICE simulations and experimental results. Wang 
et al. [31, 26] put forward a novel meminductor real-
ized by off-the-shelf electronic components and ex-
plored its characteristics and equivalent circuit.
In this paper, a meminductor chaotic circuit with only 
three circuit elements consisting of a linear capaci-
tor, a linear resistor, and a meminductor is proposed. 
Compared with other meminductor chaotic circuits 
[26, 28], this chaotic system possesses five equilibri-
um points and three different attractors in its phase 
trajectory. This system is symmetrical about the 
original point. It is known that symmetric systems 

generally possess coexisting attractors [13, 14]. In 
Section 2, the basic model of the meminductor-based 
chaotic circuit is analyzed. Its equilibrium points, 
stability, symmetry, and dissipativity are calculated. 
The dynamical behaviors of this system are analyzed 
using Lyapunov exponent spectrum and bifurcation. 
Dynamical behaviors and circuit parameters are re-
ported in Section 3. In Section 4, the numerical ex-
periments are performed to investigate the coexisting 
bifurcations and coexisting attractors of the system. 
In Section 5, an appropriate electrical circuit for a 
simple meminductor chaotic system is designed and 
implemented in PSPICE. PSPICE simulation results 
show a good agreement with the theoretical analysis. 
Finally, conclusion is given.

2. A Simple Chaotic Circuit with 
Meminductor
2.1. Model of the Meminductor 
Meminductor is a nonlinear circuit element. Defining 
a flux-controlled model of the meminductor as φ, the 
state variables of the meminductor can be described 
as [4]

1( , , )ρ ϕ ϕ−=Mi L t (1)

( , , )f tρ ρ ϕ= , (2)

L-1 is the inverse meminctance, and ρ is the internal 
state variable of the meminductor and denotes the ti-
me-domain integral of the flux linkage φ. If we define

1 2( , ) ( 1),L ρ ϕ β ρ− = − ( , , )f t d cρ ϕ ϕ ρ ϕρ= − − + 2eϕ+ , 
the proposed meminductor model is expressed as:

2

2

( 1)β ρ ϕ

ρ ϕ ρ ϕ ρ ϕ

 = −


= − − + +

M M

M M M

i
d c e

, (3)

where , ,d cβ  and e are real constants.

2.2. Chaotic Circuit Based on Simple 
Meminductor
The chaotic circuit with meminductor is shown in 
Figure 1. It comprises of a linear passive capacitor, 
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a linear resistor, and a nonlinear flux-controlled me-
minductor. This electronic circuit can be described 
by the set of three differential equations given in  
Eq. (4):

2
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 = − +

 = − + − +
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d u
dt
du uc i t
dt R

d c d e
dt

,
(4)

Let , ,ϕ ρ= = =M cx u y z , β = a
c

 and 1 b
RC

= , Eq. 
(4) becomes

Figure 1 
A chaotic circuit with meminductor
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Assuming a = 1.1, b = 0.5, c = 0.06, d = 0.6 and 
initial values in Eq. (5) as (0.1, 0.1, 0.1), the 
Lyapunov exponents and dimension of each 
chaotic attractor with different e values can be 
calculated as shown in Table 1. With different e 
values, three types of chaotic attractors can be 
obtained as shown in Figs. 2, 3, and 4. As shown, 
these chaotic attractors change with different e 
values. 
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Table 1 
Lyapunov exponents and Lyapunov dimensions of each 
chaotic attractor

Type e Lyapunov 
exponents

Lyapunov 
dimension

Ⅰ 0.06 0.2009, 0, -1.1575 2.1736

Ⅱ 0.6 0.1736, 0, -1.2349 2.1406

Ⅲ 1.2 0.12, 0, -1.0993 2.1092
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Figure 4 
Meminductor-based chaotic attractors of the type III for e = 1.2.

2.3. Equilibrium Point, Stability, Symmetry 
and Dissipativity
The equilibrium of the chaotic system given in Eq. (5) 
can be calculated by solving 0x y z= = =   . Hence, we 
obtain five equilibria: one zero equilibrium and four 
nonzero equilibria given in Eq. (6).

Figure 3 
Meminductor-based chaotic attractors of the type II for e = 0.5

(a) x-z phase diagram
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When a = 1.1, b = 0.5, c = 0.06, d = 0.6, e is a variable 
parameter, the five equilibria are 1 (0,0,0)o = ; 

2
1.06 1.1236 2.4( ,0, 1)

2
+ −

= −
eo

e
; 

3
1.06 1.1236 2.4( ,0, 1)

2
− −
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eo

e
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4
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2
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=
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e
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According to the values of the circuit parameter e, there 

exist three situations as follow: 
(1) When e = 0.06, it corresponds to the type I. 
The equilibria of the system are at 1 (0,0,0)o = ; 

2 (17.1,0, 1)= −o ; 3 (2.21,0, 1)= −o ; 

4 (16.3,0,1)=o ; 5 ( 0.73,0,1)= −o ; so the system 
have five equilibria. 
(2) When e = 0.6, it corresponds to the type Ⅱ. The 
equilibria of the system are at 1 (0,0,0)o = ; 

2 (0.883 0.4687 ,0, 1)= + −o i ; 

3 (0.883 0.4687 ,0, 1)= − −o i ; 4 (2.053,0,1)=o ; 

5 ( 0.487,0,1)= −o . As we can see, there are two 
complex equilibria, o2 and o3, in the system. In the 
real system, these two complex equilibria are 
nonexistent, and as such, there are only three 
equilibria in the system. 
(3) When e = 1.2, it corresponds to the type Ⅲ. 
The equilibria of the system are at 1 (0,0,0)o = ; 

2 (0.44 0.55 ,0, 1)= + −o i ; 
3 (0.44 0.55 ,0, 1)= − −o i ; 

4 (1.2,0,1)=o ; 
5 ( 0.417,0,1)= −o , so the system has 

three equilibria. 
In Table 2, the eigenvalues of the Jacobian 
matrices of type I at different equilibria are 
calculated. As shown, the eigenvalues of 
equilibrium o1 are all real numbers, two of which 
are negative, and one is a positive, and the 
equilibrium point is the saddle point of index 1. 
The equilibria o2, o4  and o5 are unstable saddle-
foci nodes of index 1. The equilibrium o3 is 
unstable saddle-foci nodes of index 2. It is worth 
noting that the transformation: (x, y, z) ⇔ (-x, -y, 
-z) and let system in Eq. (5) be invariant. 
Correspondingly, if (x, y, z) is a set of solution of 
system in Eq. (5) for a given set of parameters, 
then (-x, -y, -z) is also the solution for the same 
parameters set. It means that the system is 
symmetrical about the original point. It is known 
that symmetric systems generally have coexisting 
attractors [13, 14]. 
Table 2 Eigenvalue of the Jacobian matrices for the 
equilibria 
λ  

1o  2o  3o  4o  5o  

1λ  
-0.6 -1.7706+ 

2.9984i 
0.1237+ 
0.8031i 

-1.6403+ 
2.7354i 

-0.9466+ 
0.9244i 

2λ  -1.328 -1.7706- 
2.9984i 

0.1237- 
0.8031i 

-1.6403- 
2.7354i 

-0.9466- 
0.9244i 

3λ  0.346 3.4672  -1.3834 3.1585 0.7565 

To ensure that the system given in Eq. (5) is 
chaotic, the divergence of Eq.(5) is expressed as 

( ) 0x y zV b d
x y z
∂ ∂ ∂

∇ = + + = − + <
∂ ∂ ∂
   . Because of 

0>b , 0>d  , the system is dissipative, and the 
attractor should be chaotic. 
 
3. Dynamical Behavior and Circuit Parameter 

3.1 Dynamics with Different Type Chaotic 
Attractor 

(b) y-z phase diagram

 
 

 

 
   (a) x-z phase diagram,          (b) y-z phase diagram 

         Figure 3 Meminductor-based chaotic attractors of the type II for e = 0.5. 

 
         (a) x-z phase diagram            (b) y-z phase diagram. 

               Figure  4 Meminductor-based chaotic attractors of the type III for e = 1.2.  
         Table 1: Lyapunov exponents and Lyapunov dimensions of each chaotic 

attractor 
Type e Lyapunov 

exponents 
Lyapunov 
dimension 

Ⅰ 0.06 0.2009, 0, -1.1575 2.1736 

Ⅱ 0.6 0.1736, 0, -1.2349 2.1406 
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2.3 Equilibrium Point, Stability, Symmetry and 
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. Hence, we 
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calculated. As shown, the eigenvalues of 
equilibrium o1 are all real numbers, two of which 
are negative, and one is a positive, and the 
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When a = 1.1, b = 0.5, c = 0.06, d = 0.6, e is a variable pa-
rameter, the five equilibria are 1 (0,0,0)o = ;
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According to the values of the circuit parameter e, 
there exist three situations as follow:
1 When e = 0.06, it corresponds to the type I. 

The equilibria of the system are at 1 (0,0,0)o = ; 
2 (17.1,0, 1)= −o ; 3 (2.21,0, 1)= −o ; 4 (16.3,0,1)=o ;
5 ( 0.73,0,1)= −o ; so the system have five equilibria.

2 When e = 0.6, it corresponds to the type Ⅱ. The 
equilibria of the system are at 1 (0,0,0)o = ; 

2 (0.883 0.4687 ,0, 1)= + −o i ; 
3 (0.883 0.4687 ,0, 1)= − −o i ; 

4 (2.053,0,1)=o ; 5 ( 0.487,0,1)= −o . As we can see, 
there are two complex equilibria, o2 and o3, in the 
system. In the real system, these two complex equi-
libria are nonexistent, and as such, there are only 
three equilibria in the system.

3 When e = 1.2, it corresponds to the type Ⅲ. 
The equilibria of the system are at 1 (0,0,0)o = ; 

2 (0.44 0.55 ,0, 1)= + −o i ; 
3 (0.44 0.55 ,0, 1)= − −o i ; 4 (1.2,0,1)=o  

4 (1.2,0,1)=o ; 
5 ( 0.417,0,1)= −o , so the system has three 

equilibria.

In Table 2, the eigenvalues of the Jacobian matrices of 
type I at different equilibria are calculated. As shown, 
the eigenvalues of equilibrium o1 are all real numbers, 
two of which are negative, and one is a positive, and 
the equilibrium point is the saddle point of index 1. 
The equilibria o2, o4  and o5 are unstable saddle-foci 
nodes of index 1. The equilibrium o3 is unstable sad-
dle-foci nodes of index 2. It is worth noting that the 
transformation: (x, y, z) ⇔ (-x, -y, -z) and let system 
in Eq. (5) be invariant. Correspondingly, if (x, y, z) is 
a set of solution of system in Eq. (5) for a given set 
of parameters, then (-x, -y, -z) is also the solution for 
the same parameters set. It means that the system is 

symmetrical about the original point. It is known that 
symmetric systems generally have coexisting attrac-
tors [13, 14].

Table 2 
Eigenvalue of the Jacobian matrices for the equilibria

λ 1o 2o 3o 4o 5o

1λ -0.6 -1.7706+ 
2.9984i

0.1237+ 
0.8031i

-1.6403+ 
2.7354i

-0.9466+
0.9244i

2λ -1.328 -1.7706- 
2.9984i

0.1237- 
0.8031i

-1.6403- 
2.7354i

-0.9466-
0.9244i

3λ 0.346 3.4672 -1.3834 3.1585 0.7565

To ensure that the system given in Eq. (5) is cha-
otic, the divergence of Eq.(5) is expressed as 

( ) 0x y zV b d
x y z
∂ ∂ ∂

∇ = + + = − + <
∂ ∂ ∂
   . Because of 0>b , 0>d , 

the system is dissipative, and the attractor should be 
chaotic.

3. Dynamical Behavior and Circuit 
Parameter

3.1. Dynamics with Different Type Chaotic 
Attractor
To explore the complex dynamical behaviors of chaot-
ic system of Eq. (5), the Lyapunov exponent spectrum 
and the bifurcation diagram are calculated. When a = 
1.1, b = 0.5, d = 0.6 and c increases from 0 to 1, with the 
initial values of (0.1, 0.1, 0.1) and time step of 0.01, the 
Lyapunov exponent spectra of types I, II, and III along 
with their bifurcation diagrams are shown in Figures. 
5, 6, and 7. It can be seen that the stable and unstable re-
gions described by these bifurcation diagrams coincid-
ed well with those in the Lyapunov exponent spectra.
1 For type I, the chaotic system given in Eq. (5) ex-

hibits a complex dynamical behavior with increas-
ing c values. Different types of chaotic attractors, 
periodic orbits, and quasi periodic orbit can be gen-
erated through numerical simulations as shown in 
Figure 8. When [0,0.5] [0.72,0.81]∈ c , the system is 
chaotic since one Lyapunov exponent is > 0; when

[0.5,0.72]∈c , the system is periodic since one Lya-
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Figure 5
(a) Lyapunov exponent and (b) bifurcation diagram of type I as a function of parameter c

Figure 6 
(a) Lyapunov exponent and (b) bifurcation diagram of type II as a function of parameter c

(b) bifurcation diagram

Figure 7
(a) Lyapunov exponent and (b) bifurcation diagram of type III as a function of parameter c

(a) Lyapunov exponent

  

To explore the complex dynamical behaviors of chaotic 
system of Eq. (5), the Lyapunov exponent spectrum and 
the bifurcation diagram are calculated. When a = 1.1, b 
= 0.5, d = 0.6 and c increases from 0 to 1, with the 
initial values of (0.1, 0.1, 0.1) and time step of 0.01, the 
Lyapunov exponent spectra of types I, II, and III along 
with their bifurcation diagrams are shown in Figures. 5, 
6, and 7. It can be seen that the stable and unstable 
regions described by these bifurcation diagrams 
coincided well with those in the Lyapunov exponent 
spectra. 

 
(a) Lyapunov exponent          (b) bifurcation diagram 

Figure 5 (a) Lyapunov exponent and (b) bifurcation diagram of type I 
as a function of parameter c. 

 
(a) Lyapunov exponent           (b) bifurcation diagram 

Figure 6 (a) Lyapunov exponent and (b) bifurcation diagram of type II 
as a function of parameter c 

 
(a) Lyapunov exponent     (b) bifurcation diagram 

Figure 7 (a) Lyapunov exponent and (b) bifurcation diagram of type 
III as a function of parameter c 

(1) For type I, the chaotic system given in Eq. (5) 
exhibits a complex dynamical behavior with increasing 
c values. Different types of chaotic attractors, periodic 
orbits, and quasi periodic orbit can be generated through 
numerical simulations as shown in Figure 8. 
When [0,0.5] [0.72,0.81]∈ c , the system is chaotic since 
one Lyapunov exponent is > 0; when [0.5,0.72]∈c , the 
system is periodic since one Lyapunov exponent is 0; 
and when [0.72,1]∈c , the system is fixed at a point. 

(2) For type II, when the circuit parameter c increases, 
the chaotic system exhibits a complex dynamical 
behavior when [0,0.38]∈c . In addition to existence of 
two periodic windows [0.203,0222] [0.33,0.35]∈ c , the 
system presents a chaotic state in the entire parameter 
range. For other c, the system is periodic. 

(3) For type III, when the circuit parameter [0,0.13]∈c , 

the system is chaotic; when 
[018,0.19] [0.34,0.36]∈ c , the system is quasi-

periodic since two Lyapunov exponents are 0. For 
all other c, the system is periodic. 
Figure 8(a) shows the phase portraits of type I 
with different c values to illustrate their chaotic (c 
= 0.06), quasi-periodic (c = 0.518), and periodic 
behaviors (c = 0.6) while Figure 8(b) and Figure 
8(c) illustrate the phase portraits of types II and 
III. 

 
c = 0.06           c = 0.518           c = 0.6 

(a) Type Ⅰ 

 
c = 0.06              c = 0.21            c = 0.9 

(b) Type Ⅱ 

 
c = 0.06          c = 0.35              c = 0.7 

(c) Type Ⅲ 

Figure 8 (a) Phase portraits of the type I (a), type II (b) 
and type III (c) with different c values. 
 
3.2 Dynamic Behaviors of System with 
Parameters E 
Letting a = 0.5, b = 1.1, d = 0.6, c = 0.06, 
keeping initial value and the time step the same as 
mentioned above while varying e from 0 to 1, the 
Lyapunov exponent spectrum and the bifurcation 
diagram are given in Figure 9. With e = 0.001, the 
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punov exponent is 0; and when [0.72,1]∈c , the sys-
tem is fixed at a point.

2 For type II, when the circuit parameter c in-
creases, the chaotic system exhibits a complex 
dynamical behavior when [0,0.38]∈c . In ad-
dition to existence of two periodic windows

[0.203,0222] [0.33,0.35]∈ c , the system presents 
a chaotic state in the entire parameter range. For 
other c, the system is periodic.

3 For type III, when the circuit parameter [0,0.13]∈c , 
the system is chaotic; when [018,0.19] [0.34,0.36]∈ c  

[018,0.19] [0.34,0.36]∈ c , the system is quasi-periodic since two 
Lyapunov exponents are 0. For all other c, the sys-
tem is periodic.

Figure 8(a) shows the phase portraits of type I with 
different c values to illustrate their chaotic (c = 0.06), 
quasi-periodic (c = 0.518), and periodic behaviors (c 
= 0.6) while Figure 8(b) and Figure 8(c) illustrate the 
phase portraits of types II and III.

Figure 8 
(a) Phase portraits of the type I (a), type II (b) and type III (c) with different c values

(a) Type Ⅰ
c = 0.06                                                                               c = 0.518                                                                       c = 0.6

(b) Type Ⅱ
c = 0.06                                                                             c = 0.21                                                                              c = 0.9

(c) Type Ⅲ
c = 0.06                                                                                c = 0.35                                                                           c = 0.7
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3.2. Dynamic Behaviors of System with 
Parameters E

Letting a = 0.5, b = 1.1, d = 0.6, c = 0.06, keeping initial 
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complicated. The bifurcation diagram represents 
plots of local maxima of the coordinate x in terms of 
the control parameter e from 0 to 3. From the bifur-
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unstable regions are covered when [0.005,1.35]e∈ . 
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When all the equilibrium points are unstable, local spa-
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to chaotic behavior. When system trajectory transits 
from one unstable region to another, this phenomenon, 
which produces different types of chaotic attractors, is 
caused by stretching and folding of system trajectories.
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(5) has chaotic and point attractors coexisted as shown 
in Figure 12(b). When c = 0.8 and c = 0.4, system in Eq. 
(5) has chaotic attractors coexisted as shown in Figs. 
12(c). For c = 0.55, system in Eq. (5) has periodic attrac-
tors coexisted as shown in Figure 12(d).
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Figure 15 
Circuit of meminductor chaotic system
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precisely, trajectory of the system undergoes a series of 
period doubling bifurcation leading to chaos when the 
control resistor R11 is decreased from 30kΩ to 1.67 kΩ. 
As shown in Figure 16, the types of chaotic attractors 
changed when the R11 decreased further. Comparing 
these phase portraits to those of Matlab simulation 
shown in Figures 10(a) to (e), the simulation results 
verify the meminductor-based chaotic circuit. The time 
domain waveforms of y (red waveform) and z (green 
waveform) show that the trajectory of three different 
types chaotic attractors on the time axis when R11 value 
is changed. This demonstrates that by changing the 
value of R11, different chaotic attractors can be 
generated. 

R1

10kΩ
R2

100kΩ R3

10kΩ

C1

10nF
IC=0.1V

R4

10kΩ

R13

10kΩ

U3
U2

U1

0
0

32

0

1

4 5
6

y

x
x−

R

R
R

R7

1kΩ

R8

20kΩ

R9

10kΩ

R10

10kΩ

R11

10kΩ

R12

10kΩ C3

10nF
IC=0.1V

R14

200Ω

A3

1 V/V 0 V 

Y

X

A6

1 V/V 0 V 

Y

X U6
U5

U4 13

0

12

0

11

0

10
9814

15 7

x

y−

y−
y

z
x−

A1 A2

3

R4

R3

R5
R

R

R

R6

x R6

1kΩ

R4

20kΩ

R8

10kΩ

R9

10kΩ

R

10kΩ

R3

10kΩ C3

10nF
IC=0.1V

R5

120Ω

A1

0.1 V/V 0 V 

Y

X

A2

0.1 V/V 0 V 

Y

X 17 U1
13

0

3U2

0

10
4

U3
9

0

1

8−y
−x

−y
y

z

x
z

x

−z
z

−z

−x R6

167kΩ

R7

10kΩ

C2

10nF
IC=0.1VR15

16.7kΩ
R16

1.67kΩ

R17

10kΩ

R

10kΩ R19

10kΩ

R20

10kΩ

A2

0.1 V/V 0 V 

Y

X

A3

0.1 V/V 0 V 

Y

X

7

6

2

0

1
U8

12
3

0

U9
5

4

0

U7

R8

R

R

R9

R10

R11

A3

A4

 Figure 15 Circuit of meminductor chaotic system. 

0 5 10 15-5-10

10

20

-10

-20

v/v

 

5 10 15-5-10

10

0

-10

-20

20

v/v

 
(a)                          (b) 

5

10

-5

-10

0 20 40 60-20-40-60

v/v

y,z/t

 
(c) 

00 2 4-2-4

-0.5

0.5

1

-1

v/v

y,z/t

 
(d) 

0 2 4-2-4

0.5

1

-0.5

v/v

 
 

 

1

2

26 6 6

5 3 4

27 7 7 7

8 9 10 11

10

10 10
10

10
10 100


=




= − + −



= − − + +








RX Y
R
R R RY Z X X Y
R R R

R R R RZ X Z XZ X
R R R R

    (6) 

compared with Eq. (5), 1

2

10 1=R
R

, 6

510
=

R a
R

, 6

3

10
=

R a
R

, 

6

4

10
=

R b
R

, 7

8

1=R
R

, 7

9

10
=

R d
R

, 7

1010
=

R c
R

 and 7

11100
=

R e
R

, 

the values of all electronic circuit components are 
chosen as shown in Figure 15. All amplifiers are of the 
type 74LF347 whose power supply voltages are VCC = 
12 V and VEE = -12V. A1, A2, A3 and A4 are analog 
multipliers of the type AD633. In this circuit, amplifiers 
are used to realize the basic operation of integration, 
inversion, and addition, respectively. Adopting an 
appropriate time scaling, the simulator outputs can 
directly be visualized on an oscilloscope by feeding the 
output voltage of y to the X input and the output voltage 
of z to the Y input [9]. 
With all circuit parameters fixed and by changing the 
value of R11, the different y–z planes are shown in 
Figure 16. The complex dynamic behaviors of the 
meminductor chaotic system can be seen by switching 
from three different trajectories of the system. More 
precisely, trajectory of the system undergoes a series of 
period doubling bifurcation leading to chaos when the 
control resistor R11 is decreased from 30kΩ to 1.67 kΩ. 
As shown in Figure 16, the types of chaotic attractors 
changed when the R11 decreased further. Comparing 
these phase portraits to those of Matlab simulation 
shown in Figures 10(a) to (e), the simulation results 
verify the meminductor-based chaotic circuit. The time 
domain waveforms of y (red waveform) and z (green 
waveform) show that the trajectory of three different 
types chaotic attractors on the time axis when R11 value 
is changed. This demonstrates that by changing the 
value of R11, different chaotic attractors can be 
generated. 
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Figure 16 
Chaotic attractors obtained by circuit simulation. (a) R11 = 30kΩ, y–z plane, (b) R11 = 18kΩ, y–z plane, (c) R11 = 1.67kΩ, 
y–z plane, time domain waveform of y(red), z(green)-t, (d) R11 = 900Ω, y–z plane and time domain waveform of y(red), 
z(green)-t, (e) R11 = 600Ω, y–z plane and time domain waveform of y(red), z(green)-t
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the values of all electronic circuit components are 
chosen as shown in Figure 15. All amplifiers are of the 
type 74LF347 whose power supply voltages are VCC = 
12 V and VEE = -12V. A1, A2, A3 and A4 are analog 
multipliers of the type AD633. In this circuit, amplifiers 
are used to realize the basic operation of integration, 
inversion, and addition, respectively. Adopting an 
appropriate time scaling, the simulator outputs can 
directly be visualized on an oscilloscope by feeding the 
output voltage of y to the X input and the output voltage 
of z to the Y input [9]. 
With all circuit parameters fixed and by changing the 
value of R11, the different y–z planes are shown in 
Figure 16. The complex dynamic behaviors of the 
meminductor chaotic system can be seen by switching 
from three different trajectories of the system. More 
precisely, trajectory of the system undergoes a series of 
period doubling bifurcation leading to chaos when the 
control resistor R11 is decreased from 30kΩ to 1.67 kΩ. 
As shown in Figure 16, the types of chaotic attractors 
changed when the R11 decreased further. Comparing 
these phase portraits to those of Matlab simulation 
shown in Figures 10(a) to (e), the simulation results 
verify the meminductor-based chaotic circuit. The time 
domain waveforms of y (red waveform) and z (green 
waveform) show that the trajectory of three different 
types chaotic attractors on the time axis when R11 value 
is changed. This demonstrates that by changing the 
value of R11, different chaotic attractors can be 
generated. 
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the values of all electronic circuit components are 
chosen as shown in Figure 15. All amplifiers are of the 
type 74LF347 whose power supply voltages are VCC = 
12 V and VEE = -12V. A1, A2, A3 and A4 are analog 
multipliers of the type AD633. In this circuit, amplifiers 
are used to realize the basic operation of integration, 
inversion, and addition, respectively. Adopting an 
appropriate time scaling, the simulator outputs can 
directly be visualized on an oscilloscope by feeding the 
output voltage of y to the X input and the output voltage 
of z to the Y input [9]. 
With all circuit parameters fixed and by changing the 
value of R11, the different y–z planes are shown in 
Figure 16. The complex dynamic behaviors of the 
meminductor chaotic system can be seen by switching 
from three different trajectories of the system. More 
precisely, trajectory of the system undergoes a series of 
period doubling bifurcation leading to chaos when the 
control resistor R11 is decreased from 30kΩ to 1.67 kΩ. 
As shown in Figure 16, the types of chaotic attractors 
changed when the R11 decreased further. Comparing 
these phase portraits to those of Matlab simulation 
shown in Figures 10(a) to (e), the simulation results 
verify the meminductor-based chaotic circuit. The time 
domain waveforms of y (red waveform) and z (green 
waveform) show that the trajectory of three different 
types chaotic attractors on the time axis when R11 value 
is changed. This demonstrates that by changing the 
value of R11, different chaotic attractors can be 
generated. 
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the values of all electronic circuit components are 
chosen as shown in Figure 15. All amplifiers are of the 
type 74LF347 whose power supply voltages are VCC = 
12 V and VEE = -12V. A1, A2, A3 and A4 are analog 
multipliers of the type AD633. In this circuit, amplifiers 
are used to realize the basic operation of integration, 
inversion, and addition, respectively. Adopting an 
appropriate time scaling, the simulator outputs can 
directly be visualized on an oscilloscope by feeding the 
output voltage of y to the X input and the output voltage 
of z to the Y input [9]. 
With all circuit parameters fixed and by changing the 
value of R11, the different y–z planes are shown in 
Figure 16. The complex dynamic behaviors of the 
meminductor chaotic system can be seen by switching 
from three different trajectories of the system. More 
precisely, trajectory of the system undergoes a series of 
period doubling bifurcation leading to chaos when the 
control resistor R11 is decreased from 30kΩ to 1.67 kΩ. 
As shown in Figure 16, the types of chaotic attractors 
changed when the R11 decreased further. Comparing 
these phase portraits to those of Matlab simulation 
shown in Figures 10(a) to (e), the simulation results 
verify the meminductor-based chaotic circuit. The time 
domain waveforms of y (red waveform) and z (green 
waveform) show that the trajectory of three different 
types chaotic attractors on the time axis when R11 value 
is changed. This demonstrates that by changing the 
value of R11, different chaotic attractors can be 
generated. 
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the values of all electronic circuit components are 
chosen as shown in Figure 15. All amplifiers are of the 
type 74LF347 whose power supply voltages are VCC = 
12 V and VEE = -12V. A1, A2, A3 and A4 are analog 
multipliers of the type AD633. In this circuit, amplifiers 
are used to realize the basic operation of integration, 
inversion, and addition, respectively. Adopting an 
appropriate time scaling, the simulator outputs can 
directly be visualized on an oscilloscope by feeding the 
output voltage of y to the X input and the output voltage 
of z to the Y input [9]. 
With all circuit parameters fixed and by changing the 
value of R11, the different y–z planes are shown in 
Figure 16. The complex dynamic behaviors of the 
meminductor chaotic system can be seen by switching 
from three different trajectories of the system. More 
precisely, trajectory of the system undergoes a series of 
period doubling bifurcation leading to chaos when the 
control resistor R11 is decreased from 30kΩ to 1.67 kΩ. 
As shown in Figure 16, the types of chaotic attractors 
changed when the R11 decreased further. Comparing 
these phase portraits to those of Matlab simulation 
shown in Figures 10(a) to (e), the simulation results 
verify the meminductor-based chaotic circuit. The time 
domain waveforms of y (red waveform) and z (green 
waveform) show that the trajectory of three different 
types chaotic attractors on the time axis when R11 value 
is changed. This demonstrates that by changing the 
value of R11, different chaotic attractors can be 
generated. 
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the values of all electronic circuit components are 
chosen as shown in Figure 15. All amplifiers are of the 
type 74LF347 whose power supply voltages are VCC = 
12 V and VEE = -12V. A1, A2, A3 and A4 are analog 
multipliers of the type AD633. In this circuit, amplifiers 
are used to realize the basic operation of integration, 
inversion, and addition, respectively. Adopting an 
appropriate time scaling, the simulator outputs can 
directly be visualized on an oscilloscope by feeding the 
output voltage of y to the X input and the output voltage 
of z to the Y input [9]. 
With all circuit parameters fixed and by changing the 
value of R11, the different y–z planes are shown in 
Figure 16. The complex dynamic behaviors of the 
meminductor chaotic system can be seen by switching 
from three different trajectories of the system. More 
precisely, trajectory of the system undergoes a series of 
period doubling bifurcation leading to chaos when the 
control resistor R11 is decreased from 30kΩ to 1.67 kΩ. 
As shown in Figure 16, the types of chaotic attractors 
changed when the R11 decreased further. Comparing 
these phase portraits to those of Matlab simulation 
shown in Figures 10(a) to (e), the simulation results 
verify the meminductor-based chaotic circuit. The time 
domain waveforms of y (red waveform) and z (green 
waveform) show that the trajectory of three different 
types chaotic attractors on the time axis when R11 value 
is changed. This demonstrates that by changing the 
value of R11, different chaotic attractors can be 
generated. 
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the values of all electronic circuit components are 
chosen as shown in Figure 15. All amplifiers are of the 
type 74LF347 whose power supply voltages are VCC = 
12 V and VEE = -12V. A1, A2, A3 and A4 are analog 
multipliers of the type AD633. In this circuit, amplifiers 
are used to realize the basic operation of integration, 
inversion, and addition, respectively. Adopting an 
appropriate time scaling, the simulator outputs can 
directly be visualized on an oscilloscope by feeding the 
output voltage of y to the X input and the output voltage 
of z to the Y input [9]. 
With all circuit parameters fixed and by changing the 
value of R11, the different y–z planes are shown in 
Figure 16. The complex dynamic behaviors of the 
meminductor chaotic system can be seen by switching 
from three different trajectories of the system. More 
precisely, trajectory of the system undergoes a series of 
period doubling bifurcation leading to chaos when the 
control resistor R11 is decreased from 30kΩ to 1.67 kΩ. 
As shown in Figure 16, the types of chaotic attractors 
changed when the R11 decreased further. Comparing 
these phase portraits to those of Matlab simulation 
shown in Figures 10(a) to (e), the simulation results 
verify the meminductor-based chaotic circuit. The time 
domain waveforms of y (red waveform) and z (green 
waveform) show that the trajectory of three different 
types chaotic attractors on the time axis when R11 value 
is changed. This demonstrates that by changing the 
value of R11, different chaotic attractors can be 
generated. 
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Figure 16 Chaotic attractors obtained by circuit simulation. (a) R11 = 
30kΩ, y–z plane, (b) R11 = 18kΩ, y–z plane, (c) R11 = 1.67kΩ, y–z 
plane, time domain waveform of y(red), z(green)-t, (d) R11 = 900Ω，
y–z plane and time domain waveform of y(red), z(green)-t, (e) R11 = 
600Ω, y–z plane and time domain waveform of y(red), z(green)-t. 

 
6. Conclusions 
We proposed a novel simple chaotic system based on 
meminductor. Through numerical simulation, it is found 
that the system exhibits complex dynamic behavior and 
coexisting attractor. Lyapunov exponent and bifurcation 
diagrams prove the existence of chaotic attractor. Its 
phase portraits can be transformed into different chaotic 
attractors by adjusting the system parameter e while the 
initial states and other parameters are held constant. 
Detailed investigation of the coexisting chaotic 
attractors, coexisting chaotic and point attractors, 
coexisting periodic and point attractors, coexisting 
periodic attractors in the system are theoretically and 
numerically presented. The meminductor-based chaotic 
system was implemented using analog electronic 
components. Simulation results show that the dynamic 
characteristics of this system are different from the other 
traditional chaotic systems with distinct dynamic 
behaviors. The complex chaotic signal generated by the 
simple meminductor chaotic system can be used in 
information encryption [20], analysis of physiological 
signals [7, 18, 25], communication security [1, 30, 16, 
17, 32] and other fields. 
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of period doubling bifurcation leading to chaos when 
the control resistor R11 is decreased from 30kΩ to 
1.67 kΩ. As shown in Figure 16, the types of chaotic 
attractors changed when the R11 decreased further. 
Comparing these phase portraits to those of Matlab 
simulation shown in Figures 10(a) to (e), the simu-
lation results verify the meminductor-based chaotic 
circuit. The time domain waveforms of y (red wave-
form) and z (green waveform) show that the trajec-
tory of three different types chaotic attractors on the 
time axis when R11 value is changed. This demonstra-
tes that by changing the value of R11, different chaotic 
attractors can be generated.

6. Conclusions
We proposed a novel simple chaotic system based 
on meminductor. Through numerical simulation, it 
is found that the system exhibits complex dynamic 
behavior and coexisting attractor. Lyapunov expo-
nent and bifurcation diagrams prove the existence 
of chaotic attractor. Its phase portraits can be trans-
formed into different chaotic attractors by adjusting 

the system parameter e while the initial states and 
other parameters are held constant. Detailed investi-
gation of the coexisting chaotic attractors, coexisting 
chaotic and point attractors, coexisting periodic and 
point attractors, coexisting periodic attractors in the 
system are theoretically and numerically presented. 
The meminductor-based chaotic system was imple-
mented using analog electronic components. Simu-
lation results show that the dynamic characteristics 
of this system are different from the other tradition-
al chaotic systems with distinct dynamic behaviors. 
The complex chaotic signal generated by the simple 
meminductor chaotic system can be used in informa-
tion encryption [20], analysis of physiological signals 
[7, 18, 25], communication security [1, 30, 16, 17, 32] 
and other fields.
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