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Most of existing particle filtering-based video target tracking algorithms are in Euclidean space, when object 
posture and scale size changes, and to track high dimensional system, it is difficult to guarantee the tracking 
effect. This paper describes the covariance descriptor to represent the object image region, the geometric de-
formation of the object image region can be realized by an affine transformation, and the affine transformation 
matrix is one element of the Lie group. Then particle filter algorithm based on lie group of manifold is proposed, 
the video tracking system state lies directly on a low dimensional manifold, state samples are drawn moving on 
the manifold geodesics, thus state space of intrinsic geometrical characteristic can be in full use, which pro-
vides a new idea for improving the tracking efficiency and robustness. Simulation results show that object in 
the case of geometric deformation including scale size changes, rotating, etc. The proposed manifold particle 
filtering algorithm can still realize target tracking well and improve the real-time performance.
KEYWORDS: Target tracking, particle filtering, covariance matrix, Lie group.

1. Introduction
Video tracking combines advanced technologies in 
several areas such as image processing, pattern recog-
nition, artificial intelligence, automatic control, and 

computer science. Video tracking is a key technology 
for intelligent monitoring. It is widely used in military 
vision guidance, video surveillance, robot vision navi-
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gation, medical diagnosis and meteorological analysis 
[16, 10].
At present, common video tracking methods can be 
generally divided into five types: tracking based on 
region, tracking based on dynamic contour, tracking 
based on feature, tracking based on model, and track-
ing based on motion estimation. The most common 
method is to establish geometric parameter models 
for motion of target in image, such as affine models 
and projection models. After establishing the mod-
el, the Lucas-Kanade tracker [1] and the mean drift 
tracker [15] are applied to obtain the model param-
eters by minimizing the deviation between the tem-
plate and the current image region. The process of 
minimization is mostly achieved by the gradient de-
scent method. However, these methods tend to con-
verge to local minimum values and are sensitive to 
background interference, clutter, occlusion, fast mov-
ing and other factors.
Target tracking based on motion estimation can 
transform the target tracking problem into a Bayesian 
estimation problem. Because it is not limited by the 
prior distribution and the state transition model, the 
target scale can be easily estimated. Therefore, par-
ticle filter has been widely used in visual tracking in 
recent years, and it has become one of the important 
researches in video target tracking [17, 2]. Particle fil-
tering can be applied to all nonlinear non-Gaussian 
systems and is not limited by the nature of the noise. 
However, when it is used in a high-dimensional sys-
tem, it will also encounter the “dimensionality disas-
ter” problem.
In video target tracking, the covariance of the ob-
served noise is likely to be unknown and will change 
according to time. When the covariance matrix is used 
to represent the target area [3, 7, 12, 8] in the image or 
to match the image, it is necessary to calculate the dif-
ference between covariance matrices of two images. 
Since the covariance is a positive definite matrix, all 
positive definite matrices form a Riemannian mani-
fold, so the tracking method in Euclidean space is no 
longer suitable [5]. A more efficient algorithm must 
be constructed by using the spatial differential geom-
etry of positive definite matrices. Therefore, how to 
make full use of the intrinsic geometry of the target 
motion feature. How to apply the manifold method in 
differential geometry to the particle filter tracking al-
gorithm [4, 11], and how to continuously improve the 

speed and robustness of the algorithm are a topic wor-
thy of further study.

2. Manifold Particle Filter Algorithm 
on Lie Group
In this paper, the projective transformation is used 
to represent the expansion, translation, deformation 
and other changes of the image in visual target track-
ing. This paper also applies the differential geometry 
math tool to construct the projective transformation 
of the image into a matrix Lie group [5, 13]. The projec-
tive transformation parameters of the target are used 
as state variables, and the state transition model on 
the Lie group is established. The Particle Filter algo-
rithm based on the Lie group is analyzed, and the state 
samples are extracted along the geodesic. The Parti-
cle Filter algorithm needs to estimate the mean of the 
weighted particles when estimating the state. Due to 
the change of the spatial geometry and the metric, the 
method of solving the mean value in the European 
space is no longer suitable for Lie group [9]. The pro-
cess of solving the problem can be transformed into 
a constrained optimization problem on the manifold. 
The intrinsic mean of the manifold is obtained by ap-
plying the optimization algorithm on the manifold, 
and finally the state estimation is realized.

2.1. Representing Projective Transformation 
as Lie Group
In visual target tracking, the target template is usu-
ally used to represent the target of interest. If the 
target in the image frame is tracked by matching the 
target template, the geometric deformation of the 
target image region can be represented as a projec-
tive transformation. The 2-dimensional projective 
transformation matrix is an element of the Lie group, 
instead of a vector space. Figure 1 shows the geomet-
ric deformation of the target in the video image cor-
responding to the basic elements of each Lie algebra 
in the 2-dimensional affine group. E1 represents com-
pression or stretching of the image, E2 represents im-
age stretching, E3 represents image rotation left and 
right, E4 represents image deformation, E5 represents 
image translation up and down, E6 represents image 
translation left and right, and the base vector of Lie 
algebra SL(3, R) is
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(1)

The matrix expression of the projective transforma-
tion model of the moving target is 

1v
 
 
 

A t . There 

are 8 parameters in total, where A is a second-order 
reversible matrix, which represents the deformation 
of the target E1 -- E6. t is the translation vector. [ ]1 Tv  
is the projection of the infinity line. In this paper, the 
projective transformation group is regularized so that 
its determinant value is unity, and a special linear 
group SL(3, R) or a subgroup of Lie group G can be ob-
tained.

Figure 1 
Schematic diagram of geometric deformation of a target in 
a video image corresponding to the basic elements of each 
Lie algebra in a 2-dimensional affine group
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2.2 State Model 

Figure 2 shows a 2-dimensional 
manifold G  embedded in a 3-
dimensional European space. In the 

figure, xT  represents the tangent 

space, which is the tangent plane at 
point x  on the manifold. The cut 
space can be seen as a set of allowable 
velocities in which the points on the 
manifold move over the manifold. The 
straight arrow   represents the 
tangent at point x .  The distance 
between the two points on the 
manifold is represented by the length 
of the curve between the two points. 
The curve with the shortest distance is 
the geodesic on the manifold, and the 
length of the geodesic is the intrinsic 

distance. For each tangent  xT ,  

there is a unique geodesic with an 
initial velocity   starting at point x

.  The exponential map expx  maps   

to the endpoint of the geodesic on the 
manifold. 

2.2. State Model
Figure 2 shows a 2-dimensional manifold G embed-
ded in a 3-dimensional European space. In the figure,  
Tx represents the tangent space, which is the tangent 

plane at point x on the manifold. The cut space can 
be seen as a set of allowable velocities in which the 
points on the manifold move over the manifold. The 
straight arrow ∆ represents the tangent at point x. 
The distance between the two points on the manifold 
is represented by the length of the curve between the 
two points. The curve with the shortest distance is the 
geodesic on the manifold, and the length of the geode-
sic is the intrinsic distance. For each tangent ∆ ∈ xT , 
there is a unique geodesic with an initial velocity ∆ 
starting at point  x. The exponential map expx  maps 
∆ to the endpoint of the geodesic on the manifold.

Figure 2 
Manifold and its tangent plane at the point x

  

Figure 2  

Manifold and its tangent plane at the point x  

 

 

Select the projective transformation 
parameter of the target as the state of the 

system, and use kx  to represent the state 

vector of the target at time k . 

1: 1 2{ , , }k k Z Z Z Z  represents the 

observed sequence of images until time k .  
In order to obtain the system dynamic model 
on the Lie group manifold, according to the 
diagram given in Figure 2, the state vector 
should be the left invariant vector(the vector 
in the tangent space) on the Lie group G .  

kv  represents the moving speed (movement 

of the image) between the observed image 

1kZ  at time 1k   and the observed image 

kZ  at time k ,  and the state transition 

model can be expressed by the following 
formula. 
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where 1k  represents random noise. 

2.3 Observation Model 

The measurement process between moving 

image frames is shown in Figure 3. 
The projective transformation model 
of the moving target is represented by 

1v
 
 
 

A t
.  The covariance descriptor is 

used to represent the target area in the 
image. For a 2-dimensional image, 
assume that the target area size in the 
image is M N ,  and each pixel point 
generates a d -dimensional feature 

vector  Tk x y Eh ,  

1, 2 .k M N   ,x y  is the position 

coordinate of the pixel.
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 r   represents the polar coordinate 

of each pixel. I  represents the gray 

level of the pixel, and , , ,x y xx yyI I I I  

represents the first-order and second-
step degrees of the image respectively. 
Thus, the covariance matrix of the 
target region can be determined by the 
following formula. 
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 h .  The likelihood 

function of the observed model is 
obtained by calculating the 
correlation between the covariance 
matrix of the template region and the 
covariance matrix of the real-time 
image frame target region. 
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where 1k −η  represents random noise.

2.3. Observation Model
The measurement process between moving image 
frames is shown in Figure 3. The projective trans-
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formation model of the moving target is represent-
ed by 
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A t . The covariance descriptor is used to 

represent the target area in the image. For a 2-di-
mensional image, assume that the target area size 
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resents the gray level of the pixel, and , , ,x y xx yyI I I I  
represents the first-order and second-step degrees of 
the image respectively. Thus, the covariance matrix of 
the target region can be determined by the following 
formula.
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3. Specific Steps of Particle 
Filter Algorithm on Lie Group 
Manifold  

According to the observed image sequence, 
the particle filter algorithm is applied to 
estimate the projective parameters (state 
vector) of the moving target. 

Step1: Initialization: The particle set 0 1{ } sNi
ix  

is generated by the prior probability 0( )p x ,  

and all the particle weights are 
1
sN

;  

Step 2: Prediction: Figure 4 shows a 
schematic diagram of sampling along the 

geodesic. kv  is given, the sample 
1k

i

v  is 

sampled in the left invariant vector space 
(cut space) of the Lie group manifold. Then 

according to the dynamic model of the 
system, the exponential map 
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x x v  is applied, and the 
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x .  Thus, a 

geodesic on the manifold is obtained. 

The geodesic starts from 
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is the endpoint of the line. Finally, the 
samples are obtained from the 
manifold geodesic. 

Figure 4  

Schematic diagram of sampling on a 

geodesic on a manifold 
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Step3: Importance weight calculation: 
Calculate the particle weight 
according to the likelihood function of 
the observation model and normalize 
it;  

Step4: Resample if necessary. In this 
paper, resample again every 10 filters.  

 

Step 5: Calculate the mean of the 
weighted particles and obtain the 
state estimation of the system. 
According to the differential 
geometry knowledge, the intrinsic 
mean calculation of the Lie group 
manifold can be expressed by the 

(4)

where 0C  represents the covariance matrix of the 
template region, and ( )i

kC  represents the covariance 
matrix of the target region of the real-time image 
frame.

Figure 3 
Image measurement process in the video target area
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In order to illustrate the superiority of LPF
,  this paper selects Rubik's cube as the 
tracking target. The experimenter moves the 
target cube from far to near in the video. In 
the process of moving, the Rubik's cube is 
also rotated. Five representative trace 
results are selected, which are 28th, 127th, 
174th, 209th and 238th frames respectively. 
The left side of Figure 5 is the tracking result 

of LPF  algorithm, and the right side is the 

tracking result of  VPF  algorithm. The 

28th frame of the Rubik's cube has just 
begun to move, the deformation is small, 
and both algorithms can achieve accurate 
tracking. However, in the 127th and 238th 
frames, the video object rotates, and the 

yellow box indicates that LPF  can achieve 

steady and accurate tracking. The VPF  

indicated by the red box does not reflect the 
real situation of the target boundary. When 
the target in the 174th frame and the 209th 

frame is deformed, the VPF  indicated by 

the red box also loses the accuracy of the 

target size. This shows the fact that 

the VPF  algorithm takes the 

parameter space as a whole. 

As can be seen from the tracking 

results in the left graph, the LPF  
algorithm combines the geometry of 
the parameter space, and uses the 
parameters between the previously 
consecutive frames to establish the Lie 
group space structure. It improves the 
tracking accuracy and robustness of 
the algorithm. 

To further illustrate the superiority of 
the particle filter tracking algorithm 
on the manifold, Table 1 and Table 2 
give a comparison data of the tracking 
error and tracking time of the two 
algorithms. 

Table 1  

Tracking performance comparison 

between LPF  and VPF  in the cases of 

the same number of particles 

N 
Err.  Time 

LPF VPF LPF VPF 

200 5.6268 30.3762 0.2038 0.4193 

400 5.4954 21.0041 0.487 0.8643 

600 5.0332 14.8350 0.620 1.247 

Table 2  

Tracking performance comparison 

between   LPF and VPF  in the cases of 

the same tracking errors 

Err.  
N. Time 

LPF VPF LPF VPF 

  

(c)Frame 174 

 

(d)Frame 209 

 

(e)Frame238 

In order to illustrate the superiority of LPF
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LPF VPF LPF VPF 

frames respectively. The left side of Figure 5 is the 
tracking result of LPF algorithm, and the right side is 
the tracking result of VPF algorithm. The 28th frame 
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of the Rubik’s cube has just begun to move, the de-
formation is small, and both algorithms can achieve 
accurate tracking. However, in the 127th and 238th 
frames, the video object rotates, and the yellow box 
indicates that  LPF  can achieve steady and accurate 
tracking. The VPF indicated by the red box does not 
reflect the real situation of the target boundary. When 
the target in the 174th frame and the 209th frame is 
deformed, the VPF indicated by the red box also los-
es the accuracy of the target size. This shows the fact 
that the VPF algorithm takes the parameter space as 
a whole.
As can be seen from the tracking results in the left 
graph, the LPF algorithm combines the geometry of 
the parameter space, and uses the parameters be-
tween the previously consecutive frames to establish 
the Lie group space structure. It improves the track-
ing accuracy and robustness of the algorithm.
To further illustrate the superiority of the particle 
filter tracking algorithm on the manifold, Table 1 and 
Table 2 give a comparison data of the tracking error 
and tracking time of the two algorithms.

Table 1 
Tracking performance comparison between LPF and VPF  
in the cases of the same number of particles

Table 2 
Tracking performance comparison between  LPF and VPF 
in the cases of the same tracking errors

N
Err. Time

LPF VPF LPF VPF

200 5.6268 30.3762 0.2038 0.4193

400 5.4954 21.0041 0.487 0.8643

600 5.0332 14.8350 0.620 1.247

Err.
N. Time

LPF VPF LPF VPF

3 1100 2300 1.135 4.913

5 600 910 0.620 1.501

10 100 750 0.106 1.251

N is the number of particles, Err. represents the mean 
error, and Time represents the average match time 
per frame, in seconds. It can be seen from Table 1 that 
when N=200, the mean error of VPF is six times that 

of LPF. However, as the number of selected particles 
increases, when N=600, the average matching time 
per frame of LPF is twice as slow as that of VPF. It can 
be seen from Table 2 that LPF needs fewer particles 
and less computing time than VPF when the Err. is 
the same. The advantage of VPF is that it can achieve 
higher filtering accuracy with fewer particles. In the 
case of the same filtering error, VPF requires fewer 
particles and less computing time, so the tracking 
speed is faster than LPF. VPF achieves better com-
prehensive performance between filtering accuracy 
and tracking speed. VPF improves the tracking accu-
racy and computing speed by controlling the number 
of particles.

5. Conclusion
In this paper, the application of popular particle filter 
algorithm in video target tracking is proposed. The se-
quential Monte Carlo method is used to realize state 
sampling directly on low-dimensional manifolds by 
using the affine Lie group and making full use of the 
Lie group structure of the projective transformation 
parameters. The dimension of the target tracking sys-
tem is reduced, and the real-time and robustness of 
particle filtering is improved. In this paper, the mean 
value of the sample is calculated on the manifold, 
and the state estimation of the system is obtained. 
This can reduce the influence of the noise statistical 
characteristics of the European space on the weight 
variance, help solve the particle degradation problem, 
and improve the tracking accuracy and robustness of 
the algorithm. By comparing with the particle filter 
algorithm of European vector space, the theoretical 
data is used to analyze the superiority of the proposed 
algorithm. The effectiveness of the method is verified 
by experiments.
Highlight: This paper considers directly establishing 
the state model of the video tracking system on the 
manifold. This paper also introduces metrics relat-
ed to the geometry of the state space in the equation 
of state of the system. At the same time, the particle 
filter algorithm on the manifold is analyzed, and the 
intrinsic geometric properties of the state space are 
fully utilized to provide a new idea for improving the 
efficiency and robustness of the tracking algorithm. 
The algorithm proposed in this paper can still achieve 
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tracking well under the conditions of target scale 
change, geometric deformation such as rotation and 
multi-target.
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