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1. Introduction
Control theory is frequently used in modelling and 
analysis of operational systems in production plan-
ning and logistics. Moreover, there can be found nu-
merous applications to supply chain engineering and 
management. In the last decades, Lie methods have 
been applied successfully in the study of controllabili-
ty of optimal control problems. Brocket [6] has proved 
the connection between the Lie theory and optimal 
control. In his book, Sontag [27] studied   nonlinear 
controllability via Lie-algebraic methods. Agrachev 

and Sachkov [1] presented some methods of the math-
ematical control theory treated from the geometric 
point of view. LaValle [17] gave an unified treatment 
of control theory including control affine systems and 
Popescu [22] used the framework of Lie algebroids in 
the study of driftless control affine systems. One of the 
motivations for this work is the study of Lagrangian 
systems with some external constraints. These sys-
tems have a wide application in many different areas 
as optimal control theory, econometrics, cybernetics 
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or operational research  (see, for instance, Arrow [2], 
Seierstad and Sydsater [23], Sethi and Thompson 
[26], Caputo [7], Weber [30], Hermosilla,Vinter and 
Zidani [12], Varjani, Shamsi and Malek [29], Milo-
sz et al. [19]). The present paper is organized as fol-
lows. In the second section, an overview of earlier 
research concerning optimal control theory applica-
tions in production economics is given. In Section 3, 
the known results about optimal control theory for 
control affine systems are presented, including the 
controllability problems in the driftless case and in-
volutive distributions. In Section 4, an application 
of optimal control to a problem of inventory and pro-
duction planning is given. In Section 5, two numerical 
examples are presented. The Pontryagin Maximum 
Principle will be used in order to find the optimal 
solution. The case of one single product studied by 
Kamien and  Schwartz in [15] is extended. Moreover, 
it is shown that the distribution generated by the vec-
tor fields is involutive and it determines a foliation in 
the state space. It is proved that the economic system 
is not controllable, in the sense that it is not possible 
to reach any final stock quantity.  In the last part of the 
paper the complete solution of the problem is found, 
using a convenient change of variables for the sys-
tem of differential equations generated by Pontryagin 
Maximum Principle. Finally, two numerical examples 
in the particular cases 3=n and 4=n are presented.

2. Optimal Control and Pontryagin 
Maximum Principle
A large class of control theory applications to business 
and economics can be explained by a rigorous quan-
titative foundation including stability of controlled 
processes and non-linear systems, controllability and 
observability (Pontryagin et al. [21], Lee and Markus 
[18], Bellman [4], Sethi [25], Sethi and Thompson 
[26]). Optimal control problems belong to the class 
of extremum optimization theory, i.e., minimization 
or maximization of some functions equipped with 
some external constraints. This theory extends clas-
sical calculus variation theory that is based on control 
variations of a continuous trajectory developed by 
Euler, Lagrange, Hamilton, Jacobi et al. In the 20th 
century, two computational fundamentals of optimal 
control theory, the maximum principle (Pontryagin et 

al., [21]) and the dynamic programming method (Bell-
mann [4]) were developed. One of the most important 
methods in the analysis of solutions for the optimal 
control problems is provided by Pontryagin’s Maxi-
mum Principle. A curve c(t)=(x(t),u(t)) is an optimal 
trajectory if there exists a lifting of x(t) to the dual 
space (x(t),p(t)) satisfying the Hamilton-Jacobi-Bell-
man equations. However, finding a complete solution 
to an optimal control problem remains extremely 
difficult for several reasons. Firstly, the problem of 
integrating a Hamiltonian system, which is general-
ly difficult to integrate, except for particular dynam-
ics and costs is approached. Secondly, even though 
all solutions are found, there remains the problem of 
selecting optimal solutions from them. The article 
by Hwang, Fan and Erikson [13] determined the use 
of optimal control action for production planning 
and the corresponding trajectory of state variables  
by means of the Maximum Principle subject to the 
minimization of costs. In this paper, the solution of a 
problem of optimization and production planning us-
ing the optimal control techniques and Pontryagin’s 
Maximum Principle is found. 
A mathematical model of an economic problem is pro-
posed in order to find an optimal plan of production 
for n products and to ensure the required quantity at 
specified delivery data at minimum cost of inventory 
and production. Some percentages from the quantities 
of n-1 products are used in the manufacture of the last 
product. Such type of production problems with differ-
ent constraints are intensely studied. Thus, Sethi [25] 
applied the Maximum Principle to some problems of 
production and inventory. Axsäter [3] gave an overview 
of earlier research concerning control theory applica-
tions in production and inventory control. Feichtinger 
and Hartl [9] studied the problem of simultaneously 
determining the optimal price policy and production 
rate over a given planning horizon. Gaimon [10] con-
sidered a profit maximizing firm that derives the opti-
mal price for its output, level of output, level of inven-
tory and composition of productive capacity over time. 
Kogan and Khmelnitsky [16] presented an optimal 
control model for continuous time production and set-
up scheduling.  Ortega and Lin [20]  presented a review 
of control theory applications to the production-in-
ventory problem. Benjaafar, Gayon and Tepe [5] con-
sidered the control of a production–inventory system 
with impatient customers. Dolgui et al. [8] presented 
some of the existing literature of supply planning tools 
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under uncertainty of lead times. Schwartz and Rivera 
[28] gave a practical approach for applying control-the-
oretic principles to tactical inventory management 
problem in a production-inventory system, the basic 
unit in a supply chain. Janušauskaitė [14] investigated 
two mathematical models of multistage inventory con-
trol processes with continuous and discrete density 
functions of demands. Gayon, Vercraene and Flapper 
[11] studied optimal control of a production-inventory 
system wih product returns. 

3. Preliminaries on Optimal Control
Let M be a smooth n-dimensional space, usually a 
subset of .nR  The main goal is to study a control sys-
tem given by differential equations in the form 
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      The optimal solutions starting from the initial point 

(0,...,0) to endpoint ),...,( 1 nss are sought. The 
distribution },...,{ 11 −=∆ nXXspan  generated by 
the vector  fields 11,..., −nXX  has constant 
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     and it results that the distribution ∆ is involutive.  

Using the Frobenius theorem, it results that the 
distribution is integrable and as a consequence, it 
determines a foliation on state space .nR+  
Consequently, two points can be joined by an 
optimal trajectory if and only if they are situated on 
the same leaf. It results that the economical system 
is not controllable, in the sense that it is not 
possible to manufacture any quantity required. 
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which are the hipersurfaces in nR+ , which determine 
a foliation. In the three-dimensional case, the 
foliation is generated by surfaces which are elliptic 
paraboloids.  
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Using the Frobenius theorem, it results that the 
distribution is integrable and as a consequence, it 
determines a foliation on state space .nR+  
Consequently, two points can be joined by an 
optimal trajectory if and only if they are situated on 
the same leaf. It results that the economical system 
is not controllable, in the sense that it is not 
possible to manufacture any quantity required. 
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are positive constants and the total cost of production 
is obtained
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     and it results that the distribution ∆ is involutive.  

Using the Frobenius theorem, it results that the 
distribution is integrable and as a consequence, it 
determines a foliation on state space .nR+  
Consequently, two points can be joined by an 
optimal trajectory if and only if they are situated on 
the same leaf. It results that the economical system 
is not controllable, in the sense that it is not 
possible to manufacture any quantity required. 
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It results that the total cost, including the costs of 
holding inventory is given by
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A plan of production with minimum cost
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Proof. The Pontryagin Maximum Principle will be used 
in order to find the optimal solution. The Hamiltonian 
function on dual space is given by 
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that is a linear nonhomogeneous second order 
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The optimal solutions of control system are given 
by the relations (7) and are shown in Figures 1-4. 
The optimal control variables are given by the 
relations (9) and are represented in Figures 5-6. 
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5. Numerical Examples
First example:
The following numerical example in three dimen-
sional case n = 3 is given by:
 _ fixed period of time is T = 1,
 _ final stock quantities from products P1, P2, P3 are 

given by s1 = 4, s2 = 6, s3 = 13,
 _ storage costs are β1= 4, β2= 3, β3= 2 and the 

coefficients α1= 0.5, α2= 0.5, k1 = 0.5, k2 = 0.5.    
This economical system is controllable, because the 
final quantities satisfy the condition
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The optimal solutions of control system are given by 
the relations (7) and are shown in Figures 1-4. The op-
timal control variables are given by the relations (9) 
and are represented in Figures 5-6.
It should be noted that the optimal solutions satisfy 
the initial stock conditions 

,0)0(1 =x ,0)0(2 =x ,0)0(3 =x  and final stock condi-
tions ,4)1(1 =x ,6)1(2 =x .13)1(3 =x  13
The quantities of products 321 ,, PPP  increase in time 
as shown in Figures 1-4.
Moreover, the production rate for the second product 
is higher than for the first product, a fact which also 
results from the Figures 5-6.
Second example: 
The following numerical example for the case of four 
products n=4 is given by:
 _ fixed period of time is T=2,
 _ final stock quantities from products P1, P2, P3, P4 are  

given by s1 = 10, s2 = 12, s3 = 15, s4 = 70, 
 _ storage costs are β1= 2, β2= 1, β3= 2, β4= 3, and the 

coefficients α1= 0.1, α2= 0.2, α2= 0.5, k1 = 0.1, k2 = 0.5, 
k3 = 0.2.

This system is not controllable, because 

  

                     

                                Figure 6.  
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It should be noted that the optimal solutions satisfy the 
initial stock conditions  

,0)0(1 =x ,0)0(2 =x ,0)0(3 =x  and final stock 

conditions ,4)1(1 =x ,6)1(2 =x .13)1(3 =x  
The quantities of products 321 ,, PPP  increase in time as 
shown in Figures 1-4. 
Moreover, the production rate for the second product is 
higher than for the first product, a fact which also results 
from the Figures 5-6. 
 
Second example:  
The following numerical example for the case of four 
products n=4 is given by: 
- fixed period of time is T=2, 

             - final stock quantities from products 4321 ,,, PPPP    are  
given by ,101 =s ,122 =s ,153 =s ,704 =s  

             - storage costs are   ,21 =β ,12 =β ,23 =β  ,34 =β   
             and the coefficients 

,1.01 =α  ,2.02 =α  ,5.03 =α  
,1.01 =k  ,5.02 =k .2.03 =k  

This system is not controllable, because  
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The final stock for the products 321 ,, PPP    given by

,101 =s ,122 =s  153 =s  can be obtained, with 
solution  from (7), but the final stock for 4P  can not be 
touched. The system is controllable if .5.634 =s  

             
6. Conclusions 
 

In this paper a mathematical model for an economic 
problem is proposed, that consists in manufacturing a 
number of n products at a specified date so that the 
production and storage costs are minimal. The paper 
incorporates the problem into an optimal control model 
and applies the Pontryagin Maximum Principle to find 
the optimal solutions. In order to solve the system of 
differential equations, a convenient change of variables is 

considered. It is interesting to see that the economic 
system is not controllable, in the sense that it is not 
possible to reach any final stock quantity. Finally, 
two numerical examples are given. 
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The final stock for the products P1, P2, P3 given by s1 = 
10, s2 = 12, s3 = 15  can be obtained, with solution  from 
(7), but the final stock for P4 can not be touched. The 
system is controllable if s4 = 63.5.

Figure 1 
Optimal solution x1(t), t Î[0, 1] 

Figure 2 
Optimal solution x2(t), t Î[0, 1]  

Figure 3 
Optimal solution x3(t), t Î[0, 1] 
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Figure 4 
Optimal solutions (x1(t), x2(t), x3(t)) t Î[0, 1] 

Figure 5
Optimal control variable u1(t), t Î[0, 1]

Figure 6 
Optimal control variable u2(t), t Î[0, 1] 
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It should be noted that the optimal solutions satisfy the 
initial stock conditions  

,0)0(1 =x ,0)0(2 =x ,0)0(3 =x  and final stock 

conditions ,4)1(1 =x ,6)1(2 =x .13)1(3 =x  
The quantities of products 321 ,, PPP  increase in time as 
shown in Figures 1-4. 
Moreover, the production rate for the second product is 
higher than for the first product, a fact which also results 
from the Figures 5-6. 
 
Second example:  
The following numerical example for the case of four 
products n=4 is given by: 
- fixed period of time is T=2, 

             - final stock quantities from products 4321 ,,, PPPP    are  
given by ,101 =s ,122 =s ,153 =s ,704 =s  

             - storage costs are   ,21 =β ,12 =β ,23 =β  ,34 =β   
             and the coefficients 

,1.01 =α  ,2.02 =α  ,5.03 =α  
,1.01 =k  ,5.02 =k .2.03 =k  

This system is not controllable, because  
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The final stock for the products 321 ,, PPP    given by

,101 =s ,122 =s  153 =s  can be obtained, with 
solution  from (7), but the final stock for 4P  can not be 
touched. The system is controllable if .5.634 =s  

             
6. Conclusions 
 

In this paper a mathematical model for an economic 
problem is proposed, that consists in manufacturing a 
number of n products at a specified date so that the 
production and storage costs are minimal. The paper 
incorporates the problem into an optimal control model 
and applies the Pontryagin Maximum Principle to find 
the optimal solutions. In order to solve the system of 
differential equations, a convenient change of variables is 

considered. It is interesting to see that the economic 
system is not controllable, in the sense that it is not 
possible to reach any final stock quantity. Finally, 
two numerical examples are given. 
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6. Conclusions
In this paper a mathematical model for an economic 
problem is proposed, that consists in manufacturing 
a number of n products at a specified date so that the 
production and storage costs are minimal. The pa-
per incorporates the problem into an optimal control 
model and applies the Pontryagin Maximum Princi-

ple to find the optimal solutions. In order to solve the 
system of differential equations, a convenient change 
of variables is considered. It is interesting to see that 
the economic system is not controllable, in the sense 
that it is not possible to reach any final stock quantity. 
Finally, two numerical examples are given.
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