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1. Introduction
Control theory is frequently used in modelling and 
analysis of operational systems in production plan-
ning and logistics. Moreover, there can be found nu-
merous applications to supply chain engineering and 
management. In the last decades, Lie methods have 
been applied successfully in the study of controllabili-
ty of optimal control problems. Brocket [6] has proved 
the connection between the Lie theory and optimal 
control. In his book, Sontag [27] studied   nonlinear 
controllability via Lie-algebraic methods. Agrachev 

and Sachkov [1] presented some methods of the math-
ematical control theory treated from the geometric 
point of view. LaValle [17] gave an unified treatment 
of control theory including control affine systems and 
Popescu [22] used the framework of Lie algebroids in 
the study of driftless control affine systems. One of the 
motivations for this work is the study of Lagrangian 
systems with some external constraints. These sys-
tems have a wide application in many different areas 
as optimal control theory, econometrics, cybernetics 
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or operational research  (see, for instance, Arrow [2], 
Seierstad and Sydsater [23], Sethi and Thompson 
[26], Caputo [7], Weber [30], Hermosilla,Vinter and 
Zidani [12], Varjani, Shamsi and Malek [29], Milo-
sz et al. [19]). The present paper is organized as fol-
lows. In the second section, an overview of earlier 
research concerning optimal control theory applica-
tions in production economics is given. In Section 3, 
the known results about optimal control theory for 
control affine systems are presented, including the 
controllability problems in the driftless case and in-
volutive distributions. In Section 4, an application 
of optimal control to a problem of inventory and pro-
duction planning is given. In Section 5, two numerical 
examples are presented. The Pontryagin Maximum 
Principle will be used in order to find the optimal 
solution. The case of one single product studied by 
Kamien and  Schwartz in [15] is extended. Moreover, 
it is shown that the distribution generated by the vec-
tor fields is involutive and it determines a foliation in 
the state space. It is proved that the economic system 
is not controllable, in the sense that it is not possible 
to reach any final stock quantity.  In the last part of the 
paper the complete solution of the problem is found, 
using a convenient change of variables for the sys-
tem of differential equations generated by Pontryagin 
Maximum Principle. Finally, two numerical examples 
in the particular cases 3=n and 4=n are presented.

2. Optimal Control and Pontryagin 
Maximum Principle
A large class of control theory applications to business 
and economics can be explained by a rigorous quan-
titative foundation including stability of controlled 
processes and non-linear systems, controllability and 
observability (Pontryagin et al. [21], Lee and Markus 
[18], Bellman [4], Sethi [25], Sethi and Thompson 
[26]). Optimal control problems belong to the class 
of extremum optimization theory, i.e., minimization 
or maximization of some functions equipped with 
some external constraints. This theory extends clas-
sical calculus variation theory that is based on control 
variations of a continuous trajectory developed by 
Euler, Lagrange, Hamilton, Jacobi et al. In the 20th 
century, two computational fundamentals of optimal 
control theory, the maximum principle (Pontryagin et 

al., [21]) and the dynamic programming method (Bell-
mann [4]) were developed. One of the most important 
methods in the analysis of solutions for the optimal 
control problems is provided by Pontryagin’s Maxi-
mum Principle. A curve c(t)=(x(t),u(t)) is an optimal 
trajectory if there exists a lifting of x(t) to the dual 
space (x(t),p(t)) satisfying the Hamilton-Jacobi-Bell-
man equations. However, finding a complete solution 
to an optimal control problem remains extremely 
difficult for several reasons. Firstly, the problem of 
integrating a Hamiltonian system, which is general-
ly difficult to integrate, except for particular dynam-
ics and costs is approached. Secondly, even though 
all solutions are found, there remains the problem of 
selecting optimal solutions from them. The article 
by Hwang, Fan and Erikson [13] determined the use 
of optimal control action for production planning 
and the corresponding trajectory of state variables  
by means of the Maximum Principle subject to the 
minimization of costs. In this paper, the solution of a 
problem of optimization and production planning us-
ing the optimal control techniques and Pontryagin’s 
Maximum Principle is found. 
A mathematical model of an economic problem is pro-
posed in order to find an optimal plan of production 
for n products and to ensure the required quantity at 
specified delivery data at minimum cost of inventory 
and production. Some percentages from the quantities 
of n-1 products are used in the manufacture of the last 
product. Such type of production problems with differ-
ent constraints are intensely studied. Thus, Sethi [25] 
applied the Maximum Principle to some problems of 
production and inventory. Axsäter [3] gave an overview 
of earlier research concerning control theory applica-
tions in production and inventory control. Feichtinger 
and Hartl [9] studied the problem of simultaneously 
determining the optimal price policy and production 
rate over a given planning horizon. Gaimon [10] con-
sidered a profit maximizing firm that derives the opti-
mal price for its output, level of output, level of inven-
tory and composition of productive capacity over time. 
Kogan and Khmelnitsky [16] presented an optimal 
control model for continuous time production and set-
up scheduling.  Ortega and Lin [20]  presented a review 
of control theory applications to the production-in-
ventory problem. Benjaafar, Gayon and Tepe [5] con-
sidered the control of a production–inventory system 
with impatient customers. Dolgui et al. [8] presented 
some of the existing literature of supply planning tools 
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under uncertainty of lead times. Schwartz and Rivera 
[28] gave a practical approach for applying control-the-
oretic principles to tactical inventory management 
problem in a production-inventory system, the basic 
unit in a supply chain. Janušauskaitė [14] investigated 
two mathematical models of multistage inventory con-
trol processes with continuous and discrete density 
functions of demands. Gayon, Vercraene and Flapper 
[11] studied optimal control of a production-inventory 
system wih product returns. 

3. Preliminaries on Optimal Control
Let M be a smooth n-dimensional space, usually a 
subset of .nR  The main goal is to study a control sys-
tem given by differential equations in the form 

  

system is not controllable, in the sense that it is not 
possible to reach any final stock quantity.  In the last 
part of the paper the complete solution of the problem is 
found, using a convenient change of variables for the 
system of differential equations generated by Pontryagin 
Maximum Principle. Finally, two numerical examples in 
the particular cases 3=n and 4=n are presented. 

 
2. Optimal Control and Pontryagin 

Maximum Principle 
A large class of control theory applications to business 
and economics can be explained by a rigorous 
quantitative foundation including stability of controlled 
processes and non-linear systems, controllability and 
observability (Pontryagin et al. [21], Lee and Markus 
[18], Bellman [4], Sethi [25], Sethi and Thompson 
[26]). Optimal control problems belong to the class of 
extremum optimization theory, i.e., minimization or 
maximization of some functions equipped with some 
external constraints. This theory extends classical 
calculus variation theory that is based on control 
variations of a continuous trajectory developed by 
Euler, Lagrange, Hamilton, Jacobi et al. In the 20th 
century, two computational fundamentals of optimal 
control theory, the maximum principle (Pontryagin et 
al., [21]) and the dynamic programming method 
(Bellmann [4]) were developed. One of the most 
important methods in the analysis of solutions for the 
optimal control problems is provided by Pontryagin's 
Maximum Principle. A curve c(t)=(x(t),u(t)) is an 
optimal trajectory if there exists a lifting of x(t) to the 
dual space (x(t),p(t)) satisfying the Hamilton-Jacobi-
Bellman equations. However, finding a complete 
solution to an optimal control problem remains 
extremely difficult for several reasons. Firstly, the 
problem of integrating a Hamiltonian system, which is 
generally difficult to integrate, except for particular 
dynamics and costs is approached. Secondly, even 
though all solutions are found, there remains the 
problem of selecting optimal solutions from them. The 
article by Hwang, Fan and Erikson [13] determined the 
use of optimal control action for production planning 
and the corresponding trajectory of state variables  by 
means of the Maximum Principle subject to the 
minimization of costs. In this paper, the solution of a 
problem of optimization and production planning using 
the optimal control techniques and Pontryagin’s 
Maximum Principle is found.  
A mathematical model of an economic problem is 
proposed in order to find an optimal plan of production 
for n products and to ensure the required quantity at 
specified delivery data at minimum cost of inventory 
and production. Some percentages from the quantities 
of n-1 products are used in the manufacture of the last 
product. Such type of production problems with 
different constraints are intensely studied. Thus, Sethi 
[25] applied the Maximum Principle to some problems 
of production and inventory. Axsäter [3] gave an 
overview of earlier research concerning control theory 
applications in production and inventory control. 
Feichtinger and Hartl [9] studied the problem of 
simultaneously determining the optimal price policy 
and production rate over a given planning horizon. 

Gaimon [10] considered a profit maximizing firm 
that derives the optimal price for its output, level 
of output, level of inventory and composition of 
productive capacity over time. Kogan and 
Khmelnitsky [16] presented an optimal control 
model for continuous time production and setup 
scheduling.  Ortega and Lin [20]  presented a 
review of control theory applications to the 
production-inventory problem. Benjaafar, Gayon 
and Tepe [5] considered the control of a 
production–inventory system with impatient 
customers. Dolgui et al. [8] presented some of the 
existing literature of supply planning tools under 
uncertainty of lead times. Schwartz and Rivera 
[28] gave a practical approach for applying 
control-theoretic principles to tactical inventory 
management problem in a production-inventory 
system, the basic unit in a supply chain. 
Janušauskaitė [14] investigated two mathematical 
models of multistage inventory control processes 
with continuous and discrete density functions of 
demands. Gayon, Vercraene and Flapper [11] 
studied optimal control of a production-inventory 
system wih product returns.  

 
3. Preliminaries on Optimal Control 
    Let M be a smooth n-dimensional space, usually a 

subset of .nR  The main goal is to study a control 
system given by differential equations in the form  

              
,,1,),( niuxf

dt
dx i

i

==
 

where Mxxx n ∈= ),...,( 1 represents the state of 

the system and mRUu ⊂∈
 

represents the 
controls )( nm ≤ . A control system means a 
dynamical system evolving in state space and that 
can be controlled by the user. An optimal control 
problem consists of finding the trajectories of the 
control system which connects two states of the 
system 0x

 
and 1x

 
and minimizing the functional 

 ,)(,)0(,))(),((min 100
xTxxxdttutxL

T

u
==∫  

where L is the Lagrangian or running cost 
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evolution can be influenced by some external 
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distribution is integrable and as a consequence, it 
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Consequently, two points can be joined by an 
optimal trajectory if and only if they are situated on 
the same leaf. It results that the economical system 
is not controllable, in the sense that it is not 
possible to manufacture any quantity required. 
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Using the Frobenius theorem, it results that the 
distribution is integrable and as a consequence, it 
determines a foliation on state space .nR+  
Consequently, two points can be joined by an 
optimal trajectory if and only if they are situated on 
the same leaf. It results that the economical system 
is not controllable, in the sense that it is not 
possible to manufacture any quantity required. 
Indeed, by using Equation (4), the following is 
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Using the Frobenius theorem, it results that the 
distribution is integrable and as a consequence, it 
determines a foliation on state space .nR+  
Consequently, two points can be joined by an 
optimal trajectory if and only if they are situated on 
the same leaf. It results that the economical system 
is not controllable, in the sense that it is not 
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Using the Frobenius theorem, it results that the 
distribution is integrable and as a consequence, it 
determines a foliation on state space .nR+  
Consequently, two points can be joined by an 
optimal trajectory if and only if they are situated on 
the same leaf. It results that the economical system 
is not controllable, in the sense that it is not 
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is not controllable, in the sense that it is not 
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A plan of production with minimum cost
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Using the Frobenius theorem, it results that the 
distribution is integrable and as a consequence, it 
determines a foliation on state space .nR+  
Consequently, two points can be joined by an 
optimal trajectory if and only if they are situated on 
the same leaf. It results that the economical system 
is not controllable, in the sense that it is not 
possible to manufacture any quantity required. 
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determines a foliation on state space .nR+  
Consequently, two points can be joined by an 
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the same leaf. It results that the economical system 
is not controllable, in the sense that it is not 
possible to manufacture any quantity required. 
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Using the Frobenius theorem, it results that the 
distribution is integrable and as a consequence, it 
determines a foliation on state space .nR+  
Consequently, two points can be joined by an 
optimal trajectory if and only if they are situated on 
the same leaf. It results that the economical system 
is not controllable, in the sense that it is not 
possible to manufacture any quantity required. 
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distribution is integrable and as a consequence, it 
determines a foliation on state space .nR+  
Consequently, two points can be joined by an 
optimal trajectory if and only if they are situated on 
the same leaf. It results that the economical system 
is not controllable, in the sense that it is not 
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5. Numerical Examples
First example:
The following numerical example in three dimen-
sional case n = 3 is given by:
 _ fixed period of time is T = 1,
 _ final stock quantities from products P1, P2, P3 are 

given by s1 = 4, s2 = 6, s3 = 13,
 _ storage costs are β1= 4, β2= 3, β3= 2 and the 

coefficients α1= 0.5, α2= 0.5, k1 = 0.5, k2 = 0.5.    
This economical system is controllable, because the 
final quantities satisfy the condition
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The optimal solutions of control system are given by 
the relations (7) and are shown in Figures 1-4. The op-
timal control variables are given by the relations (9) 
and are represented in Figures 5-6.
It should be noted that the optimal solutions satisfy 
the initial stock conditions 

,0)0(1 =x ,0)0(2 =x ,0)0(3 =x  and final stock condi-
tions ,4)1(1 =x ,6)1(2 =x .13)1(3 =x  13
The quantities of products 321 ,, PPP  increase in time 
as shown in Figures 1-4.
Moreover, the production rate for the second product 
is higher than for the first product, a fact which also 
results from the Figures 5-6.
Second example: 
The following numerical example for the case of four 
products n=4 is given by:
 _ fixed period of time is T=2,
 _ final stock quantities from products P1, P2, P3, P4 are  

given by s1 = 10, s2 = 12, s3 = 15, s4 = 70, 
 _ storage costs are β1= 2, β2= 1, β3= 2, β4= 3, and the 

coefficients α1= 0.1, α2= 0.2, α2= 0.5, k1 = 0.1, k2 = 0.5, 
k3 = 0.2.

This system is not controllable, because 
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The final stock for the products 321 ,, PPP    given by

,101 =s ,122 =s  153 =s  can be obtained, with 
solution  from (7), but the final stock for 4P  can not be 
touched. The system is controllable if .5.634 =s  

             
6. Conclusions 
 

In this paper a mathematical model for an economic 
problem is proposed, that consists in manufacturing a 
number of n products at a specified date so that the 
production and storage costs are minimal. The paper 
incorporates the problem into an optimal control model 
and applies the Pontryagin Maximum Principle to find 
the optimal solutions. In order to solve the system of 
differential equations, a convenient change of variables is 

considered. It is interesting to see that the economic 
system is not controllable, in the sense that it is not 
possible to reach any final stock quantity. Finally, 
two numerical examples are given. 
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The final stock for the products P1, P2, P3 given by s1 = 
10, s2 = 12, s3 = 15  can be obtained, with solution  from 
(7), but the final stock for P4 can not be touched. The 
system is controllable if s4 = 63.5.

Figure 1 
Optimal solution x1(t), t Î[0, 1] 

Figure 2 
Optimal solution x2(t), t Î[0, 1]  

Figure 3 
Optimal solution x3(t), t Î[0, 1] 
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Figure 4 
Optimal solutions (x1(t), x2(t), x3(t)) t Î[0, 1] 

Figure 5
Optimal control variable u1(t), t Î[0, 1]

Figure 6 
Optimal control variable u2(t), t Î[0, 1] 
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It should be noted that the optimal solutions satisfy the 
initial stock conditions  

,0)0(1 =x ,0)0(2 =x ,0)0(3 =x  and final stock 

conditions ,4)1(1 =x ,6)1(2 =x .13)1(3 =x  
The quantities of products 321 ,, PPP  increase in time as 
shown in Figures 1-4. 
Moreover, the production rate for the second product is 
higher than for the first product, a fact which also results 
from the Figures 5-6. 
 
Second example:  
The following numerical example for the case of four 
products n=4 is given by: 
- fixed period of time is T=2, 

             - final stock quantities from products 4321 ,,, PPPP    are  
given by ,101 =s ,122 =s ,153 =s ,704 =s  

             - storage costs are   ,21 =β ,12 =β ,23 =β  ,34 =β   
             and the coefficients 

,1.01 =α  ,2.02 =α  ,5.03 =α  
,1.01 =k  ,5.02 =k .2.03 =k  

This system is not controllable, because  
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The final stock for the products 321 ,, PPP    given by

,101 =s ,122 =s  153 =s  can be obtained, with 
solution  from (7), but the final stock for 4P  can not be 
touched. The system is controllable if .5.634 =s  

             
6. Conclusions 
 

In this paper a mathematical model for an economic 
problem is proposed, that consists in manufacturing a 
number of n products at a specified date so that the 
production and storage costs are minimal. The paper 
incorporates the problem into an optimal control model 
and applies the Pontryagin Maximum Principle to find 
the optimal solutions. In order to solve the system of 
differential equations, a convenient change of variables is 

considered. It is interesting to see that the economic 
system is not controllable, in the sense that it is not 
possible to reach any final stock quantity. Finally, 
two numerical examples are given. 
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6. Conclusions
In this paper a mathematical model for an economic 
problem is proposed, that consists in manufacturing 
a number of n products at a specified date so that the 
production and storage costs are minimal. The pa-
per incorporates the problem into an optimal control 
model and applies the Pontryagin Maximum Princi-

ple to find the optimal solutions. In order to solve the 
system of differential equations, a convenient change 
of variables is considered. It is interesting to see that 
the economic system is not controllable, in the sense 
that it is not possible to reach any final stock quantity. 
Finally, two numerical examples are given.
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