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In order to solve the problem of traditional K-Means clustering algorithm in dealing with large-scale data set, a 
Hadoop K-Means (referred to HKM) clustering algorithm is proposed. Firstly, according to the sample density, 
the algorithm eliminates the effects of noise points in the data set. Secondly, it optimizes the selection of the ini-
tial center point using the thought of the max-min distance. Finally, it uses a MapReduce programming model 
to realize the parallelization. Experimental results show that the proposed algorithm not only has high accuracy 
and stability in clustering results, but can also solve the problems of scalability encountered by traditional clus-
tering algorithms in dealing with large scale data.
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1. Introduction
Clustering analysis is one of the most important 
methods for data mining and analysis. It aims at 
partitioning a data set into clusters such that the ob-
jects in a cluster have high similarity and the objects 
in different clusters are low similarity. Namely, the 
higher the similarity among the objects, the greater 
the probability that the objects are divided into the 
same cluster. Due to the simplicity and effectiveness, 
K-Means clustering algorithm is widely used to solve 
various problems in real applications, such as text 
evolutionary analysis, image clustering, community 
detection, etc. [30] Clustering analysis algorithms 
can be roughly divided into partition-based methods, 
hierarchical-based methods, density-based methods, 
grid-based methods, and model-based methods [9]. 
K-Means is one of the most widely used clustering 
algorithms, which are based on partitioning. The tra-
ditional K-Means algorithm is efficient and simple, 
however, it has three problems: clustering results 
are susceptible to isolated or noise points; clustering 
results depend on the selection of initial points; and 
there are algorithm scalability issues when dealing 
with large data sets.
In order to improve these deficiencies, some scholars 
have proposed a series of improvements from dif-
ferent perspectives. Junfeng proposed an improved 
K-Means algorithm based on density, which intro-
duces information entropy and weighted distance, 
starting from the neighborhood density, removes 
the influence of isolated points on the algorithm, 
and then determines the initial clustering center, 
and therefore clustering center is relatively stable 
[14]. Yan proposed a PK-Means clustering algorithm 
based on multi-subgroups particle swarm optimiza-
tion and pseudo means, which not only avoids empty 
clustering class, but also has well global convergence 
and local optimization, and also has a great effect on 
isolated data [20]. Jieling proposed an efficient clus-
tering algorithm, which uses SDPCA (Space Division 
Preliminary Clustering Algorithm) to pre-cluster 
the dataset, and then uses OCANC (Optimized Clus-
tering Algorithm based on Neighboring clusters) to 
optimize pre-clustering results and obtain the final 
clustering results [31]. Qian proposed a robust clus-
tering center optimal algorithm based on weighted 
neighborhood distance, which focuses the clustering 

centers on data dense areas, overcoming problems of 
K-Means algorithm including poor stability [15]. Ping 
proposed a K-Means algorithm based on optimization 
of attribute weight using Lagrange multiplier meth-
od, which uses the weight value for each attribute 
to determine the importance of that attribute while 
computing the distance between an instance and the 
centroid of a cluster. In each iteration of clustering, it 
computes the optimal weight of attributes according 
to the change of centroid vector which minimizes the 
sum of distance between each instance and the cen-
troid [28]. Xiaohui proposed a novel K-Means type 
method (a weighting K-Means clustering approach 
by integrating intra-cluster and inter-cluster distanc-
es, KICIC), which is able to integrate intra-cluster 
compactness and inter-cluster separation to solve 
the clustering problem of high-dimensional data [8]. 
Jiyong proposed a K-Means clustering algorithm 
based on distance threshold and weighted sample. It 
selects the sample mean as the first initial clustering 
center, and then dynamically determines clustering 
center and clustering number according to distance 
threshold, and finally uses weighted sample to reduce 
the influence of the clustering result [1]. Fei proposed 
a framework based on data stream, and based this 
framework, proposes an efficient K-Means algorithm, 
which uses an improved algorithm based on sampling 
to confirm clustering center for load balance and re-
ducing iteration [24].
In view of the problems existing in the traditional 
K-Means algorithm, this paper makes the following 
improvements. 
1 Data cleaning
This paper uses sample density as a criterion for de-
termining outliers or noise points, finds outliers or 
noise points from the source dataset, and then re-
moves them.
2 Selection of the initial clustering center
This paper uses “max-min distance” algorithm to de-
termine the location of the initial centers, which is 
more representative.
3 Algorithm scalability
In order to effectively solve the K-Means clustering 
problem of large-scale data sets, this paper uses Ma-
pReduce to realize the parallelization of the algorithm.
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2. Traditional K-Means Algorithm 
K-Means algorithm is the most classical parti-
tion-based clustering method. Its basic ideas are 
as follows: randomly select k data objects from the 
source data set as the initial clustering center, and 
divide the remaining objects in the dataset into the 
nearest cluster based on their distance from each 
clustering center, then recalculate the mean of each 
cluster and update the value of the clustering cen-
ter. Repeat the process until the standard criterion 
function converges [10]. Usually,  the sum of squared 
errors is used as the clustering criterion function, 
which is defined as:
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In Equation (1), E is the sum of the squared 
differences between the dataset object and the 
clustering center it is located, the larger its 
value, the greater the distance between the 
objects in the cluster and the clustering center, 
and the lower the similarity within the cluster. 
Otherwise, the higher the similarity within the 
cluster; k is the number of clusters; d is a data 
object within a cluster; D_i represents the i-th 
cluster, O_i is the clustering center of the i-th 
cluster. 

The process of K-Means algorithm is given in 
literature [1]: 

(1)

In Equation (1), E is the sum of the squared differ-
ences between the dataset object and the clustering 
center it is located, the larger its value, the greater the 
distance between the objects in the cluster and the 
clustering center, and the lower the similarity within 
the cluster. Otherwise, the higher the similarity with-
in the cluster; k is the number of clusters; d is a data 
object within a cluster; D_i represents the i-th cluster, 
O_i is the clustering center of the i-th cluster.
The process of K-Means algorithm is given in litera-
ture [1]:
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Output: k clusters with the smallest variance.
Process flow:
1 Randomly select k data objects as the initial clus-

tering centers, recorded as O_1,O_2,⋯,O_k.
2 Calculate the distance of each object in the sample 

set from these clustering centers, and then assign it 
to the nearest cluster.

3 Recalculate the mean of each cluster and adjust the 
clustering center, the calculation formula is:
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In Equation (2), n  is the number of samples in the 
i-th cluster, di  is a sample in the i-th cluster, 0i  is 
the clustering center of the i-th cluster. 

4) Repeat steps 2) and 3) until the clustering 
centers don not change, which indicates that the 
clustering criterion function converges. 

K-Means algorithm is simple and fast, and high in 
efficiency for large data sets. On the other hand, it 
has many disadvantages: 

1) The value of k needs to be specified by the user, 
but it is difficult. 

2) Algorithm is highly dependent on the initial 
clustering center, which tends to increase the 
number of iterations and fall into local optimum. 

3) Noise data has a large impact on the algorithm. 

 
 

3. K-Means Algorithm 
Optimization 
3.1 The Idea of Algorithm Optimization 

The data objects in the low-density area are called 
isolated points or noise points when clustering 

[29]. In order to avoid the error caused by the noise 
data, we need to clean the data set to eliminate 
these noise data. This paper uses the Euclidean 
distance between samples as as a measure of 
similarity. First calculate the Euclidean distance 
between each sample in the dataset, and then 
delete the noise data. The cleaned data is in the 
high-density region, which can well reflect the 
distribution of data samples, thus eliminating the 
error caused by the noise data on the clustering 
results and improving the accuracy of the 
clustering results. When selecting k initial 
clustering centers, the traditional K-Means 
algorithm does not examine their effectiveness and 

representativeness [36]. When the k clustering 
centers belong to k different clusters, the 
algorithm can converge quickly and obtain 
better clustering results. However, when some 
of the k centers belong to the same cluster, it is 
easy to forcibly divide those data belonging to 
the same cluster into other clusters. Therefore, 
the clustering result of the traditional K-
Means algorithm depends on the selection of 
the initial clustering centers [35]. This paper 
uses the "max-min distance" algorithm to 
optimize, that is, select k data samples that are 
the farthest distance from each other as the 
initial clustering center. The optimized 
algorithm still uses Equation (1) as the 
criterion function. 

3.2 Defining Relevant Parameters 

1) Sample density: d is a sample in data set D, 
taking it as the center of the sphere, r as the 
radius to form a spherical area. Then the 
number of samples contained in this spherical 
region is called the sample density, recorded 
as Dens(x) [6].  
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In Equation (3), Dist(d,p) represents the 
Euclidean distance between sample d and p. 

2) Isolated point (noise point): d is a sample in 
data set D. Calculate the average distance 
from it to the adjacent points [32], the equation 
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If the average distance between two adjacent 
samples is greater than a certain threshold, it 
will be discriminated as an isolated point and 
deleted from data set D. 

3.3 Algorithm Description 

Input: number of clusters (k), source data set. 

Output: k clustering results that cause the 
criterion function to converge. 

The algorithm implementation process is 
divided into the following eleven steps: 

1) Calculate the Euclidean distance between 
two adjacent samples. 

2) Calculate the average distance from each 
sample to the adjacent points according to 
formula (4), then delete those data objects 
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In Equation (2), n is the number of samples in the 
i-th cluster, di is a sample in the i-th cluster, 0i is 

the clustering center of the i-th cluster.
4 Repeat steps 2) and 3) until the clustering centers 

don not change, which indicates that the clustering 
criterion function converges.

K-Means algorithm is simple and fast, and high in ef-
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it is difficult.
2 Algorithm is highly dependent on the initial clus-

tering center, which tends to increase the number 
of iterations and fall into local optimum.

3 Noise data has a large impact on the algorithm.

3. K-Means Algorithm Optimization
3.1. The Idea of Algorithm Optimization
The data objects in the low-density area are called 
isolated points or noise points when clustering [29]. 
In order to avoid the error caused by the noise data, 
we need to clean the data set to eliminate these noise 
data. This paper uses the Euclidean distance be-
tween samples as as a measure of similarity. First 
calculate the Euclidean distance between each sam-
ple in the dataset, and then delete the noise data. The 
cleaned data is in the high-density region, which can 
well reflect the distribution of data samples, thus 
eliminating the error caused by the noise data on 
the clustering results and improving the accuracy 
of the clustering results. When selecting k initial 
clustering centers, the traditional K-Means algo-
rithm does not examine their effectiveness and rep-
resentativeness [36]. When the k clustering centers 
belong to k different clusters, the algorithm can con-
verge quickly and obtain better clustering results. 
However, when some of the k centers belong to the 
same cluster, it is easy to forcibly divide those data 
belonging to the same cluster into other clusters. 
Therefore, the clustering result of the traditional 
K-Means algorithm depends on the selection of the 
initial clustering centers [35]. This paper uses the 
“max-min distance” algorithm to optimize, that is, 
select k data samples that are the farthest distance 
from each other as the initial clustering center. The 
optimized algorithm still uses Equation (1) as the 
criterion function.
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1) Calculate the Euclidean distance between 
two adjacent samples. 
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sample to the adjacent points according to 
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If the average distance between two adjacent sam-
ples is greater than a certain threshold, it will be 
discriminated as an isolated point and deleted 
from data set D.

3.3. Algorithm Description
Input: number of clusters (k), source data set.
Output: k clustering results that cause the criterion 
function to converge.
The algorithm implementation process is divided 
into the following eleven steps:
1 Calculate the Euclidean distance between two ad-

jacent samples.
2 Calculate the average distance from each sample to 

the adjacent points according to formula (4), then 
delete those data objects determined as isolated 
points, thereby obtaining a sample set in high den-
sity area.

3 Randomly select an object from cleaned data set, 
such as x1, as the first clustering center Z1.

4 Find the object furthest away from Z1 in the data 
set as the second clustering center Z2.

5 For each object remaining in the data collection, 
such as x1, calculate its distance to Z1 and Z2, re-
corded as di1 and di2, and the smaller one is repre-
sented by (min di1, di2).

6 Calculate the maximum of all min(di1, di2), record-
ed as max(min(di1, di2)), and the corresponding ob-
ject is marked as xj. 

7 If the following conditions are met:
max(min(di1, di2))> m × |Z2 –Z1| (m is the test pa-
rameter, 1

2  ≤ m < 1),
then use  xj as the third clustering center.

8 Repeat steps 5), 6) and 7), until finding k clustering 
centers.

9 Calculate the distances from each sample in the 
data set to the k cluster centers.

10 Assign each sample to the closest cluster based on 
distance, then recalculate the mean of all samples 
in each cluster and update the clustering center.

11 Repeat steps 9) and 10) until the criterion func-
tion converges.

4. Parallel Implementation
The optimization algorithm proposed above solves 
two problems of the traditional K-Means algorithm: 
the randomly selected initial cluster center is not 
representative, and the noise point has an adverse ef-
fect on the clustering result. However, there are still 
problems with efficiency and scalability when dealing 
with large-scale data.
The core of K-Means clustering is to calculate the dis-
tance between the sample and the clustering center, 
and assign the sample to the nearest clustering cen-
ter. The operations are independent of each other, so 
they can be executed in parallel. This paper uses Ma-
pReduce to parallelize the K-Means algorithm to im-
prove operating efficiency.

4.1. MapReduce Framework
MapReduce is a parallel programming framework 
proposed by Google for parallel analysis and opera-
tion of massive data sets. It can automatically paral-
lelize programs and provide data segmentation and 
task scheduling, thus achieving high parallelism and 
scalability for various tasks  [23, 13, 17]. 
Figure 1 shows the process of MapReduce process-
ing large data sets. A MapReduce operation is divided 
into two phases: Mapping and Reducing. In the map-
ping phase, MapReduce framework splits the source 
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data into M splits, corresponding to M Map tasks. The 
input to each Map task is a set of key-value pairs con-
verted from the split. The Map task calls a function 
named Map, and output a set of intermediate key-val-
ue pairs, and then sorts the output data according to 
the value of the intermediate keys, finally divides the 
set of intermediate key-value pairs into R fragments. 
In the reducing phase, the input to each Reduce task 
is output of the Map tasks. The Reduce task calls a Re-
duce function, and outputs the final result.
Hadoop is an open source distributed computing plat-
form provided by AFS (Apache Software Foundation), 
which can be deployed in a cheap computer cluster 
[7]. The core of Hadoop is HDFS and MapReduce. 
HDFS is an open source implementation of GFS 
(Google File System) with high access speed, fault tol-
erance and scalability, and supports distributed stor-
age of large-scale data [34, 19, 16]. MapReduce is an 
open source implementation for Google MapReduce, 
which allows users to develop parallel applications 
without knowing the underlying details of the distrib-
uted system [33, 5, 26, 25, 18, 22, 21, 10, 11]. This paper 
uses Hadoop MapReduce to implement the optimized 
algorithm, called HKM(Hadoop K-Means).

4.2. Algorithm Implementation
The implementation of HKM contains three Ma-
pReduce processes: the first MapReduce task is to se-
lect k initial clustering centers, the second is to clean 
the source data set, and the third is clustering.

Figure1
The process of MapReduce

1 Determining initial clustering centers
The task of the mapping phase is to read the source 
dataset file, parse it into a set of key-value pairs 
(which is expressed as <key, value>, key describes the 
offset of the current sample from file start, value is the 
string consisting of dimension coordinates of the cur-
rent sample), and iteratively calculate the Euclidean 
distance between each sample and the clustering cen-
ter, and then select the smallest of all the distances as 
the output of the mapping phase.
The pseudo code of the map function is as follows:

Map(<key, value>, <key1, value1>)
define variables: mindist, index
index ← hashMap.size()
define array: dis, its size is the value 

of index
for(i=0; i<index; i++)

 dis[i] ← distance between the current 
sample and i-th clustering center

for(i=0; i<index; i++)
   if (dis[i] < mindist)

       mindist ← dis[i]
output<key1,value1>, key1=index, 

value1=mindist+sample

The task of the reduction phase is to to use max-min 
distance algorithm to select the maximum from all 
the minimum distances output by the Map function, 
and output the data sample corresponding to the max-
imum value as the next clustering center.
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The pseudo code of the reduce function is as follows:
Reduce(<key2, value2>, <key3, value3>)

define variables: instance, dist, maxDist
while (value2.hasNext())

dist←the minimum distance analyzed 
from value2

if (dist > maxDist)
  maxDist ← dist
  instance ← sample

output<key3,value3>, k3=maxDist, value3 
is a string consisted of the coordinates of 
instance

2 Cleaning data
The task of the mapping phase is to iteratively calcu-
late the Euclidean distance between each sample and 
k initial center points, and selects the minimum dis-
tance as the output of the map phase.
The pseudo code of the map function is as follows:

Map(<key, value>, <key1, value1>)
define variables: minDist, distance
for(i=0; i<k; i++)

distance ← Euclidean distance between 
the current sample and i-th clustering center

if (distance < minDist)
       minDist ← distance

output<key1,value1>, k1=key, 
value1=minDist+value

The task of the reduction phase is to find out the noise 
points and delete them. The pseudo code of the re-
duce function is as follows:

Reduce(<key2, value2>, <key3, value3>)
define variables: maxDist, distance
while (value2.hasNext())

distance ←the minimum Euclidean 
distance analyzed from value2

if (distance > maxDist/k)
mark the current sample as a noise point

output key-value pairs without noise points 
<key3,value3>

3 Clustering
The task at this phase is to aggregate the source data 
set into k clusters.
The pseudo code of the map function is as follows:
Map(<key, value>, <key1, value1>)

define variables: minDist, dist, index
for(i=0; i<k; i++)

dist ← Euclidean distance between the 
current sample and i-th clustering center

if (dist < minDist)
       minDist ← dist
       index ← index of the current 
cluster, which can be obtained from the 
configuration file

output<key1,value1>, k1=index, value1= 
value

The pseudo code of the reduce function is as follows:

Reduce(<key2, value2>, <key3, value3>)
define variable: num
define arrary: temp
num ← the number of samples parsed from 

value2
while (value2.hasNext())

temp ← dimension coordinates of each 
sample

num ← num+1
calculate the coordinates of each clustering 

center
output <key3,value3>, key3=key2, value3 is 

a string consisted of new clustering center 
coordinates

5. Experimental Results and Analysis
The experiment configures Hadoop cluster on 7 nodes, 
configures the Name-Node service on the machines 
01 and 02 and the Resource -Manager service on the 
machine 03, configures Data-Node and Node-Man-
ager services on the other four machines, which are 
used as storage nodes of HDFS and compute nodes 
of MapReduce. The configuration of each machine is 
as follows: CPU: Inter(R) Core(TM) i5-3470; Memo-
ry: 4GB; Hadoop version: 2.4.1; Linux system version: 
CentOS-6.6.
The source data set used in the experiment is the 
data randomly generated by the program. In order to 
test the performance of the algorithm, four different 
data sets are generated, which are 200MB, 400MB, 
600MB and 800MB.
In order to verify the validity of the initial center se-
lection, the experiment selected 200MB data as the 
source data set, and performed 5 tests using traditional 
K-Means and HKM, the results are shown in Table 1.
The experimental results show that HKM has a rel-
ative advantage in the accuracy and stability of the 
clustering results.
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In order to test the performance of the algorithm, the 
experiment selected, this paper uses size-up, speed-
up and scale-up as evaluation criteria. The method 
of testing size-up is to keep the number of computing 
nodes unchanged and continuously increase the data 
size. Figure 2 shows the size-up of HKM under the 
Hadoop platform with different number of comput-
ing nodes.

testing speed-up is to keep the data size unchanged 
and continuously increase the computing nodes.
In this paper, four data sets (200MB, 400MB, 600MB, 
800MB) are used, and the number of computing 
nodes is gradually increased from 1 to 6. We recorded 
the time that the HKM algorithm runs on a cluster of 
different nodes, and finally calculated the speed-up. 
The result is shown in Figure 3.

Table 1 
The results of two clustering algorithms

Serial 
number

Traditional K-Means HKM

initial 
center

validity /
(%)

initial 
center

validity /
(%)

1 106,37 85.31 57,136 84.96

2 128,46 83.39 57,136 84.96

3 34,185 57.72 57,136 84.96

4 167,84 79.58 57,136 84.96

5 62,141 89.75 57,136 84.96

Average 79.15 84.96

Figure 2 
The test results of the size-up performance

 

The experimental results show that as the data scale 
continues to increase, the scaling rate is also increas-
ing. Therefore, the HKM algorithm can solve the scal-
ability problem faced by traditional K-Means when 
dealing with large-scale data.
Speed-up is used to measure the performance of par-
allel programs or system parallelism, which is the run-
ning time ratio of the same task in a single processor 
system and pa rallel processor system. The method of 

Figure 3 
The test results of speed-up performance

Figure 4 
The test results of scale-up performance

 

The experimental results show that as the data size 
and computing nodes increase, the speed-up perfor-
mance of the algorithm continues to increase.
The way of testing the scale-up is to increase com-
puting nodes while increas ing the size of the data. In 
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this paper, four data sets (200MB, 400MB, 600MB, 
800MB) are used, and the number of computing 
nodes is gradually increased from 1 to 6. We recorded 
the running time under different conditions, and fi-
nally calculated the scale-up. The experimental result 
is shown in Figure 4. The results show that the HKM 
algorithm has better scalability when dealing with 
large-scale data sets.

6. Conclusion
This paper analyzes the problems of traditional 
K-Means, and then proposes the HKM algorithm, 
which uses the sample density method to eliminate 
the noise data in the data set, and select the initial 

clustering center according to “max-min distance” al-
gorithm, and finally uses MapReduce Implement this 
algorithm in parallel. The experimental results show 
that the HKM algorithm can not only improve the ac-
curacy of clustering results, but can also be effectively 
applied to data mining and analysis of large-scale data.
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