
673Information Technology and Control 2019/4/48

Parallel Implementation of
Improved K-Means Based on a
Cloud Platform

ITC 4/48
Information Technology
and Control
Vol. 48 / No. 4 / 2019
pp. 673-681
DOI 10.5755/j01.itc.48.4.23881

Parallel Implementation of Improved K-Means
Based on a Cloud Platform

Received 2019/07/23 Accepted after revision 2019/11/07

 http://dx.doi.org/10.5755/j01.itc.48.4.23881

Corresponding author: chxb@qq.com

Shufen Zhang
College of Sciences, North China University of Science and Technology, Tangshan 063210, China
Hebei Key Laboratory of Data Science and Application

Xuebin Chen
College of Sciences, North China University of Science and Technology, Tangshan 063210, China
Hebei Key Laboratory of Data Science and Application
Tangshan Key Laboratory of Data Science

Zhiyu Liu
College of Sciences, North China University of Science and Technology, Tangshan 063210, China
Hebei Key Laboratory of Data Science and Application

Changyin Luo
College of Sciences, North China University of Science and Technology, Tangshan 063210, China
Hebei Key Laboratory of Data Science and Application

In order to solve the problem of traditional K-Means clustering algorithm in dealing with large-scale data set, a
Hadoop K-Means (referred to HKM) clustering algorithm is proposed. Firstly, according to the sample density,
the algorithm eliminates the effects of noise points in the data set. Secondly, it optimizes the selection of the ini-
tial center point using the thought of the max-min distance. Finally, it uses a MapReduce programming model
to realize the parallelization. Experimental results show that the proposed algorithm not only has high accuracy
and stability in clustering results, but can also solve the problems of scalability encountered by traditional clus-
tering algorithms in dealing with large scale data.
KEYWORDS: K-Means; MapReduce; Sample Density; Max-Min Distance.

mailto:obodovskiy58@gmail.com

Information Technology and Control 2019/4/48674

1. Introduction
Clustering analysis is one of the most important
methods for data mining and analysis. It aims at
partitioning a data set into clusters such that the ob-
jects in a cluster have high similarity and the objects
in different clusters are low similarity. Namely, the
higher the similarity among the objects, the greater
the probability that the objects are divided into the
same cluster. Due to the simplicity and effectiveness,
K-Means clustering algorithm is widely used to solve
various problems in real applications, such as text
evolutionary analysis, image clustering, community
detection, etc. [30] Clustering analysis algorithms
can be roughly divided into partition-based methods,
hierarchical-based methods, density-based methods,
grid-based methods, and model-based methods [9].
K-Means is one of the most widely used clustering
algorithms, which are based on partitioning. The tra-
ditional K-Means algorithm is efficient and simple,
however, it has three problems: clustering results
are susceptible to isolated or noise points; clustering
results depend on the selection of initial points; and
there are algorithm scalability issues when dealing
with large data sets.
In order to improve these deficiencies, some scholars
have proposed a series of improvements from dif-
ferent perspectives. Junfeng proposed an improved
K-Means algorithm based on density, which intro-
duces information entropy and weighted distance,
starting from the neighborhood density, removes
the influence of isolated points on the algorithm,
and then determines the initial clustering center,
and therefore clustering center is relatively stable
[14]. Yan proposed a PK-Means clustering algorithm
based on multi-subgroups particle swarm optimiza-
tion and pseudo means, which not only avoids empty
clustering class, but also has well global convergence
and local optimization, and also has a great effect on
isolated data [20]. Jieling proposed an efficient clus-
tering algorithm, which uses SDPCA (Space Division
Preliminary Clustering Algorithm) to pre-cluster
the dataset, and then uses OCANC (Optimized Clus-
tering Algorithm based on Neighboring clusters) to
optimize pre-clustering results and obtain the final
clustering results [31]. Qian proposed a robust clus-
tering center optimal algorithm based on weighted
neighborhood distance, which focuses the clustering

centers on data dense areas, overcoming problems of
K-Means algorithm including poor stability [15]. Ping
proposed a K-Means algorithm based on optimization
of attribute weight using Lagrange multiplier meth-
od, which uses the weight value for each attribute
to determine the importance of that attribute while
computing the distance between an instance and the
centroid of a cluster. In each iteration of clustering, it
computes the optimal weight of attributes according
to the change of centroid vector which minimizes the
sum of distance between each instance and the cen-
troid [28]. Xiaohui proposed a novel K-Means type
method (a weighting K-Means clustering approach
by integrating intra-cluster and inter-cluster distanc-
es, KICIC), which is able to integrate intra-cluster
compactness and inter-cluster separation to solve
the clustering problem of high-dimensional data [8].
Jiyong proposed a K-Means clustering algorithm
based on distance threshold and weighted sample. It
selects the sample mean as the first initial clustering
center, and then dynamically determines clustering
center and clustering number according to distance
threshold, and finally uses weighted sample to reduce
the influence of the clustering result [1]. Fei proposed
a framework based on data stream, and based this
framework, proposes an efficient K-Means algorithm,
which uses an improved algorithm based on sampling
to confirm clustering center for load balance and re-
ducing iteration [24].
In view of the problems existing in the traditional
K-Means algorithm, this paper makes the following
improvements.
1 Data cleaning
This paper uses sample density as a criterion for de-
termining outliers or noise points, finds outliers or
noise points from the source dataset, and then re-
moves them.
2 Selection of the initial clustering center
This paper uses “max-min distance” algorithm to de-
termine the location of the initial centers, which is
more representative.
3 Algorithm scalability
In order to effectively solve the K-Means clustering
problem of large-scale data sets, this paper uses Ma-
pReduce to realize the parallelization of the algorithm.

675Information Technology and Control 2019/4/48

2. Traditional K-Means Algorithm
K-Means algorithm is the most classical parti-
tion-based clustering method. Its basic ideas are
as follows: randomly select k data objects from the
source data set as the initial clustering center, and
divide the remaining objects in the dataset into the
nearest cluster based on their distance from each
clustering center, then recalculate the mean of each
cluster and update the value of the clustering cen-
ter. Repeat the process until the standard criterion
function converges [10]. Usually, the sum of squared
errors is used as the clustering criterion function,
which is defined as:

different perspectives. Junfeng proposed an improved K-Means algorithm based on density, which
introduces information entropy and weighted distance, starting from the neighborhood density, removes
the influence of isolated points on the algorithm, and then determines the initial clustering center, and
therefore clustering center is relatively stable [14]. Yan proposed a PK-Means clustering algorithm based
on multi-subgroups particle swarm optimization and pseudo means, which not only avoids empty
clustering class, but also has well global convergence and local optimization, and also has a great effect on
isolated data [20]. Jieling proposed an efficient clustering algorithm, which uses SDPCA (Space Division
Preliminary Clustering Algorithm) to pre-cluster the dataset, and then uses OCANC (Optimized Clustering
Algorithm based on Neighboring clusters) to optimize pre-clustering results and obtain the final clustering
results [31]. Qian proposed a robust clustering center optimal algorithm based on weighted neighborhood
distance, which focuses the clustering centers on data dense areas, overcoming problems of K-Means
algorithm including poor stability [15]. Ping proposed a K-Means algorithm based on optimization of
attribute weight using Lagrange multiplier method, which uses the weight value for each attribute to
determine the importance of that attribute while computing the distance between an instance and the
centroid of a cluster. In each iteration of clustering, it computes the optimal weight of attributes according
to the change of centroid vector which minimizes the sum of distance between each instance and the
centroid [28]. Xiaohui proposed a novel K-Means type method (a weighting K-Means clustering approach
by integrating intra-cluster and inter-cluster distances, KICIC), which is able to integrate intra-cluster
compactness and inter-cluster separation to solve the clustering problem of high-dimensional data [8].
Jiyong proposed a K-Means clustering algorithm based on distance threshold and weighted sample. It
selects the sample mean as the first initial clustering center, and then dynamically determines clustering
center and clustering number according to distance threshold, and finally uses weighted sample to reduce
the influence of the clustering result [1]. Fei proposed a framework based on data stream, and based this
framework, proposes an efficient K-Means algorithm, which uses an improved algorithm based on
sampling to confirm clustering center for load balance and reducing iteration [24].

In view of the problems existing in the traditional K-Means algorithm, this paper makes the following
improvements.

1) Data cleaning

This paper uses sample density as a criterion for determining outliers or noise points, finds outliers or noise
points from the source dataset, and then removes them.

2) Selection of the initial clustering center

This paper uses “max-min distance” algorithm to determine the location of the initial centers, which is more
representative.

3) Algorithm scalability

In order to effectively solve the K-Means clustering problem of large-scale data sets, this paper uses
MapReduce to realize the parallelization of the algorithm.

2. Traditional K-Means Algorithm
K-Means algorithm is the most classical partition-
based clustering method. Its basic ideas are as
follows: randomly select k data objects from the
source data set as the initial clustering center, and
divide the remaining objects in the dataset into the
nearest cluster based on their distance from each
clustering center, then recalculate the mean of each
cluster and update the value of the clustering
center. Repeat the process until the standard
criterion function converges [10]. Usually, the sum
of squared errors is used as the clustering criterion
function, which is defined as:

In Equation (1), E is the sum of the squared
differences between the dataset object and the
clustering center it is located, the larger its
value, the greater the distance between the
objects in the cluster and the clustering center,
and the lower the similarity within the cluster.
Otherwise, the higher the similarity within the
cluster; k is the number of clusters; d is a data
object within a cluster; D_i represents the i-th
cluster, O_i is the clustering center of the i-th
cluster.

The process of K-Means algorithm is given in
literature [1]:

(1)

In Equation (1), E is the sum of the squared differ-
ences between the dataset object and the clustering
center it is located, the larger its value, the greater the
distance between the objects in the cluster and the
clustering center, and the lower the similarity within
the cluster. Otherwise, the higher the similarity with-
in the cluster; k is the number of clusters; d is a data
object within a cluster; D_i represents the i-th cluster,
O_i is the clustering center of the i-th cluster.
The process of K-Means algorithm is given in litera-
ture [1]:
Input: the number of clusters (k), a sample set con-
taining n data objects.
Output: k clusters with the smallest variance.
Process flow:
1 Randomly select k data objects as the initial clus-

tering centers, recorded as O_1,O_2,⋯,O_k.
2 Calculate the distance of each object in the sample

set from these clustering centers, and then assign it
to the nearest cluster.

3 Recalculate the mean of each cluster and adjust the
clustering center, the calculation formula is:

Input: the number of clusters (k), a sample set
containing n data objects.

Output: k clusters with the smallest variance.

Process flow:

1) Randomly select k data objects as the initial
clustering centers, recorded as O_1,O_2,⋯,O_k.

2) Calculate the distance of each object in the
sample set from these clustering centers, and then
assign it to the nearest cluster.

3) Recalculate the mean of each cluster and adjust
the clustering center, the calculation formula is:

1

1 , 1, 2, , . (2)
n

i i
i

O d i n
n 

  

In Equation (2), n is the number of samples in the
i-th cluster, di is a sample in the i-th cluster, 0i is
the clustering center of the i-th cluster.

4) Repeat steps 2) and 3) until the clustering
centers don not change, which indicates that the
clustering criterion function converges.

K-Means algorithm is simple and fast, and high in
efficiency for large data sets. On the other hand, it
has many disadvantages:

1) The value of k needs to be specified by the user,
but it is difficult.

2) Algorithm is highly dependent on the initial
clustering center, which tends to increase the
number of iterations and fall into local optimum.

3) Noise data has a large impact on the algorithm.

3. K-Means Algorithm
Optimization
3.1 The Idea of Algorithm Optimization

The data objects in the low-density area are called
isolated points or noise points when clustering

[29]. In order to avoid the error caused by the noise
data, we need to clean the data set to eliminate
these noise data. This paper uses the Euclidean
distance between samples as as a measure of
similarity. First calculate the Euclidean distance
between each sample in the dataset, and then
delete the noise data. The cleaned data is in the
high-density region, which can well reflect the
distribution of data samples, thus eliminating the
error caused by the noise data on the clustering
results and improving the accuracy of the
clustering results. When selecting k initial
clustering centers, the traditional K-Means
algorithm does not examine their effectiveness and

representativeness [36]. When the k clustering
centers belong to k different clusters, the
algorithm can converge quickly and obtain
better clustering results. However, when some
of the k centers belong to the same cluster, it is
easy to forcibly divide those data belonging to
the same cluster into other clusters. Therefore,
the clustering result of the traditional K-
Means algorithm depends on the selection of
the initial clustering centers [35]. This paper
uses the "max-min distance" algorithm to
optimize, that is, select k data samples that are
the farthest distance from each other as the
initial clustering center. The optimized
algorithm still uses Equation (1) as the
criterion function.

3.2 Defining Relevant Parameters

1) Sample density: d is a sample in data set D,
taking it as the center of the sphere, r as the
radius to form a spherical area. Then the
number of samples contained in this spherical
region is called the sample density, recorded
as Dens(x) [6].

1

(,).
1

n
i

i

Dist d xMDens
n




() |{ || (,) , }| .Dens x p Dist d p r p D   (3)

In Equation (3), Dist(d,p) represents the
Euclidean distance between sample d and p.

2) Isolated point (noise point): d is a sample in
data set D. Calculate the average distance
from it to the adjacent points [32], the equation
is as follows:

1

(,).
1

n
i

i

Dist d xMDens
n


 (4)

If the average distance between two adjacent
samples is greater than a certain threshold, it
will be discriminated as an isolated point and
deleted from data set D.

3.3 Algorithm Description

Input: number of clusters (k), source data set.

Output: k clustering results that cause the
criterion function to converge.

The algorithm implementation process is
divided into the following eleven steps:

1) Calculate the Euclidean distance between
two adjacent samples.

2) Calculate the average distance from each
sample to the adjacent points according to
formula (4), then delete those data objects

(2)

In Equation (2), n is the number of samples in the
i-th cluster, di is a sample in the i-th cluster, 0i is

the clustering center of the i-th cluster.
4 Repeat steps 2) and 3) until the clustering centers

don not change, which indicates that the clustering
criterion function converges.

K-Means algorithm is simple and fast, and high in ef-
ficiency for large data sets. On the other hand, it has
many disadvantages:
1 The value of k needs to be specified by the user, but

it is difficult.
2 Algorithm is highly dependent on the initial clus-

tering center, which tends to increase the number
of iterations and fall into local optimum.

3 Noise data has a large impact on the algorithm.

3. K-Means Algorithm Optimization
3.1. The Idea of Algorithm Optimization
The data objects in the low-density area are called
isolated points or noise points when clustering [29].
In order to avoid the error caused by the noise data,
we need to clean the data set to eliminate these noise
data. This paper uses the Euclidean distance be-
tween samples as as a measure of similarity. First
calculate the Euclidean distance between each sam-
ple in the dataset, and then delete the noise data. The
cleaned data is in the high-density region, which can
well reflect the distribution of data samples, thus
eliminating the error caused by the noise data on
the clustering results and improving the accuracy
of the clustering results. When selecting k initial
clustering centers, the traditional K-Means algo-
rithm does not examine their effectiveness and rep-
resentativeness [36]. When the k clustering centers
belong to k different clusters, the algorithm can con-
verge quickly and obtain better clustering results.
However, when some of the k centers belong to the
same cluster, it is easy to forcibly divide those data
belonging to the same cluster into other clusters.
Therefore, the clustering result of the traditional
K-Means algorithm depends on the selection of the
initial clustering centers [35]. This paper uses the
“max-min distance” algorithm to optimize, that is,
select k data samples that are the farthest distance
from each other as the initial clustering center. The
optimized algorithm still uses Equation (1) as the
criterion function.

Information Technology and Control 2019/4/48676

3.2. Defining Relevant Parameters
1 Sample density: d is a sample in data set D, taking

it as the center of the sphere, r as the radius to form
a spherical area. Then the number of samples con-
tained in this spherical region is called the sample
density, recorded as Dens(x) [6].

Input: the number of clusters (k), a sample set
containing n data objects.

Output: k clusters with the smallest variance.

Process flow:

1) Randomly select k data objects as the initial
clustering centers, recorded as O_1,O_2,⋯,O_k.

2) Calculate the distance of each object in the
sample set from these clustering centers, and then
assign it to the nearest cluster.

3) Recalculate the mean of each cluster and adjust
the clustering center, the calculation formula is:

1

1 , 1, 2, , . (2)
n

i i
i

O d i n
n 

  

In Equation (2), n is the number of samples in the
i-th cluster, di is a sample in the i-th cluster, 0i is
the clustering center of the i-th cluster.

4) Repeat steps 2) and 3) until the clustering
centers don not change, which indicates that the
clustering criterion function converges.

K-Means algorithm is simple and fast, and high in
efficiency for large data sets. On the other hand, it
has many disadvantages:

1) The value of k needs to be specified by the user,
but it is difficult.

2) Algorithm is highly dependent on the initial
clustering center, which tends to increase the
number of iterations and fall into local optimum.

3) Noise data has a large impact on the algorithm.

3. K-Means Algorithm
Optimization
3.1 The Idea of Algorithm Optimization

The data objects in the low-density area are called
isolated points or noise points when clustering

[29]. In order to avoid the error caused by the noise
data, we need to clean the data set to eliminate
these noise data. This paper uses the Euclidean
distance between samples as as a measure of
similarity. First calculate the Euclidean distance
between each sample in the dataset, and then
delete the noise data. The cleaned data is in the
high-density region, which can well reflect the
distribution of data samples, thus eliminating the
error caused by the noise data on the clustering
results and improving the accuracy of the
clustering results. When selecting k initial
clustering centers, the traditional K-Means
algorithm does not examine their effectiveness and

representativeness [36]. When the k clustering
centers belong to k different clusters, the
algorithm can converge quickly and obtain
better clustering results. However, when some
of the k centers belong to the same cluster, it is
easy to forcibly divide those data belonging to
the same cluster into other clusters. Therefore,
the clustering result of the traditional K-
Means algorithm depends on the selection of
the initial clustering centers [35]. This paper
uses the "max-min distance" algorithm to
optimize, that is, select k data samples that are
the farthest distance from each other as the
initial clustering center. The optimized
algorithm still uses Equation (1) as the
criterion function.

3.2 Defining Relevant Parameters

1) Sample density: d is a sample in data set D,
taking it as the center of the sphere, r as the
radius to form a spherical area. Then the
number of samples contained in this spherical
region is called the sample density, recorded
as Dens(x) [6].

1

(,).
1

n
i

i

Dist d xMDens
n




() |{ || (,) , }| .Dens x p Dist d p r p D   (3)

In Equation (3), Dist(d,p) represents the
Euclidean distance between sample d and p.

2) Isolated point (noise point): d is a sample in
data set D. Calculate the average distance
from it to the adjacent points [32], the equation
is as follows:

1

(,).
1

n
i

i

Dist d xMDens
n


 (4)

If the average distance between two adjacent
samples is greater than a certain threshold, it
will be discriminated as an isolated point and
deleted from data set D.

3.3 Algorithm Description

Input: number of clusters (k), source data set.

Output: k clustering results that cause the
criterion function to converge.

The algorithm implementation process is
divided into the following eleven steps:

1) Calculate the Euclidean distance between
two adjacent samples.

2) Calculate the average distance from each
sample to the adjacent points according to
formula (4), then delete those data objects

(3)

In Equation (3), Dist(d,p) represents the Euclidean
distance between sample d and p.

3 Isolated point (noise point): d is a sample in data
set D. Calculate the average distance from it to the
adjacent points [32], the equation is as follows:

Input: the number of clusters (k), a sample set
containing n data objects.

Output: k clusters with the smallest variance.

Process flow:

1) Randomly select k data objects as the initial
clustering centers, recorded as O_1,O_2,⋯,O_k.

2) Calculate the distance of each object in the
sample set from these clustering centers, and then
assign it to the nearest cluster.

3) Recalculate the mean of each cluster and adjust
the clustering center, the calculation formula is:

1

1 , 1, 2, , . (2)
n

i i
i

O d i n
n 

  

In Equation (2), n is the number of samples in the
i-th cluster, di is a sample in the i-th cluster, 0i is
the clustering center of the i-th cluster.

4) Repeat steps 2) and 3) until the clustering
centers don not change, which indicates that the
clustering criterion function converges.

K-Means algorithm is simple and fast, and high in
efficiency for large data sets. On the other hand, it
has many disadvantages:

1) The value of k needs to be specified by the user,
but it is difficult.

2) Algorithm is highly dependent on the initial
clustering center, which tends to increase the
number of iterations and fall into local optimum.

3) Noise data has a large impact on the algorithm.

3. K-Means Algorithm
Optimization
3.1 The Idea of Algorithm Optimization

The data objects in the low-density area are called
isolated points or noise points when clustering

[29]. In order to avoid the error caused by the noise
data, we need to clean the data set to eliminate
these noise data. This paper uses the Euclidean
distance between samples as as a measure of
similarity. First calculate the Euclidean distance
between each sample in the dataset, and then
delete the noise data. The cleaned data is in the
high-density region, which can well reflect the
distribution of data samples, thus eliminating the
error caused by the noise data on the clustering
results and improving the accuracy of the
clustering results. When selecting k initial
clustering centers, the traditional K-Means
algorithm does not examine their effectiveness and

representativeness [36]. When the k clustering
centers belong to k different clusters, the
algorithm can converge quickly and obtain
better clustering results. However, when some
of the k centers belong to the same cluster, it is
easy to forcibly divide those data belonging to
the same cluster into other clusters. Therefore,
the clustering result of the traditional K-
Means algorithm depends on the selection of
the initial clustering centers [35]. This paper
uses the "max-min distance" algorithm to
optimize, that is, select k data samples that are
the farthest distance from each other as the
initial clustering center. The optimized
algorithm still uses Equation (1) as the
criterion function.

3.2 Defining Relevant Parameters

1) Sample density: d is a sample in data set D,
taking it as the center of the sphere, r as the
radius to form a spherical area. Then the
number of samples contained in this spherical
region is called the sample density, recorded
as Dens(x) [6].

1

(,).
1

n
i

i

Dist d xMDens
n




() |{ || (,) , }| .Dens x p Dist d p r p D   (3)

In Equation (3), Dist(d,p) represents the
Euclidean distance between sample d and p.

2) Isolated point (noise point): d is a sample in
data set D. Calculate the average distance
from it to the adjacent points [32], the equation
is as follows:

1

(,).
1

n
i

i

Dist d xMDens
n


 (4)

If the average distance between two adjacent
samples is greater than a certain threshold, it
will be discriminated as an isolated point and
deleted from data set D.

3.3 Algorithm Description

Input: number of clusters (k), source data set.

Output: k clustering results that cause the
criterion function to converge.

The algorithm implementation process is
divided into the following eleven steps:

1) Calculate the Euclidean distance between
two adjacent samples.

2) Calculate the average distance from each
sample to the adjacent points according to
formula (4), then delete those data objects

(4)

If the average distance between two adjacent sam-
ples is greater than a certain threshold, it will be
discriminated as an isolated point and deleted
from data set D.

3.3. Algorithm Description
Input: number of clusters (k), source data set.
Output: k clustering results that cause the criterion
function to converge.
The algorithm implementation process is divided
into the following eleven steps:
1 Calculate the Euclidean distance between two ad-

jacent samples.
2 Calculate the average distance from each sample to

the adjacent points according to formula (4), then
delete those data objects determined as isolated
points, thereby obtaining a sample set in high den-
sity area.

3 Randomly select an object from cleaned data set,
such as x1, as the first clustering center Z1.

4 Find the object furthest away from Z1 in the data
set as the second clustering center Z2.

5 For each object remaining in the data collection,
such as x1, calculate its distance to Z1 and Z2, re-
corded as di1 and di2, and the smaller one is repre-
sented by (min di1, di2).

6 Calculate the maximum of all min(di1, di2), record-
ed as max(min(di1, di2)), and the corresponding ob-
ject is marked as xj.

7 If the following conditions are met:
max(min(di1, di2))> m × |Z2 –Z1| (m is the test pa-
rameter, 1

2 ≤ m < 1),
then use xj as the third clustering center.

8 Repeat steps 5), 6) and 7), until finding k clustering
centers.

9 Calculate the distances from each sample in the
data set to the k cluster centers.

10 Assign each sample to the closest cluster based on
distance, then recalculate the mean of all samples
in each cluster and update the clustering center.

11 Repeat steps 9) and 10) until the criterion func-
tion converges.

4. Parallel Implementation
The optimization algorithm proposed above solves
two problems of the traditional K-Means algorithm:
the randomly selected initial cluster center is not
representative, and the noise point has an adverse ef-
fect on the clustering result. However, there are still
problems with efficiency and scalability when dealing
with large-scale data.
The core of K-Means clustering is to calculate the dis-
tance between the sample and the clustering center,
and assign the sample to the nearest clustering cen-
ter. The operations are independent of each other, so
they can be executed in parallel. This paper uses Ma-
pReduce to parallelize the K-Means algorithm to im-
prove operating efficiency.

4.1. MapReduce Framework
MapReduce is a parallel programming framework
proposed by Google for parallel analysis and opera-
tion of massive data sets. It can automatically paral-
lelize programs and provide data segmentation and
task scheduling, thus achieving high parallelism and
scalability for various tasks [23, 13, 17].
Figure 1 shows the process of MapReduce process-
ing large data sets. A MapReduce operation is divided
into two phases: Mapping and Reducing. In the map-
ping phase, MapReduce framework splits the source

677Information Technology and Control 2019/4/48

data into M splits, corresponding to M Map tasks. The
input to each Map task is a set of key-value pairs con-
verted from the split. The Map task calls a function
named Map, and output a set of intermediate key-val-
ue pairs, and then sorts the output data according to
the value of the intermediate keys, finally divides the
set of intermediate key-value pairs into R fragments.
In the reducing phase, the input to each Reduce task
is output of the Map tasks. The Reduce task calls a Re-
duce function, and outputs the final result.
Hadoop is an open source distributed computing plat-
form provided by AFS (Apache Software Foundation),
which can be deployed in a cheap computer cluster
[7]. The core of Hadoop is HDFS and MapReduce.
HDFS is an open source implementation of GFS
(Google File System) with high access speed, fault tol-
erance and scalability, and supports distributed stor-
age of large-scale data [34, 19, 16]. MapReduce is an
open source implementation for Google MapReduce,
which allows users to develop parallel applications
without knowing the underlying details of the distrib-
uted system [33, 5, 26, 25, 18, 22, 21, 10, 11]. This paper
uses Hadoop MapReduce to implement the optimized
algorithm, called HKM(Hadoop K-Means).

4.2. Algorithm Implementation
The implementation of HKM contains three Ma-
pReduce processes: the first MapReduce task is to se-
lect k initial clustering centers, the second is to clean
the source data set, and the third is clustering.

Figure1
The process of MapReduce

1 Determining initial clustering centers
The task of the mapping phase is to read the source
dataset file, parse it into a set of key-value pairs
(which is expressed as <key, value>, key describes the
offset of the current sample from file start, value is the
string consisting of dimension coordinates of the cur-
rent sample), and iteratively calculate the Euclidean
distance between each sample and the clustering cen-
ter, and then select the smallest of all the distances as
the output of the mapping phase.
The pseudo code of the map function is as follows:

Map(<key, value>, <key1, value1>)
define variables: mindist, index
index ← hashMap.size()
define array: dis, its size is the value

of index
for(i=0; i<index; i++)

 dis[i] ← distance between the current
sample and i-th clustering center

for(i=0; i<index; i++)
 if (dis[i] < mindist)

 mindist ← dis[i]
output<key1,value1>, key1=index,

value1=mindist+sample

The task of the reduction phase is to to use max-min
distance algorithm to select the maximum from all
the minimum distances output by the Map function,
and output the data sample corresponding to the max-
imum value as the next clustering center.

Split 0

Split 1

Split 2

Split 3

Split M-1

Result 0

Result 1

Result 2

Result R-1

…… ……
……

Input M Map tasks R Reduce tasks Output

Information Technology and Control 2019/4/48678

The pseudo code of the reduce function is as follows:
Reduce(<key2, value2>, <key3, value3>)

define variables: instance, dist, maxDist
while (value2.hasNext())

dist←the minimum distance analyzed
from value2

if (dist > maxDist)
 maxDist ← dist
 instance ← sample

output<key3,value3>, k3=maxDist, value3
is a string consisted of the coordinates of
instance

2 Cleaning data
The task of the mapping phase is to iteratively calcu-
late the Euclidean distance between each sample and
k initial center points, and selects the minimum dis-
tance as the output of the map phase.
The pseudo code of the map function is as follows:

Map(<key, value>, <key1, value1>)
define variables: minDist, distance
for(i=0; i<k; i++)

distance ← Euclidean distance between
the current sample and i-th clustering center

if (distance < minDist)
 minDist ← distance

output<key1,value1>, k1=key,
value1=minDist+value

The task of the reduction phase is to find out the noise
points and delete them. The pseudo code of the re-
duce function is as follows:

Reduce(<key2, value2>, <key3, value3>)
define variables: maxDist, distance
while (value2.hasNext())

distance ←the minimum Euclidean
distance analyzed from value2

if (distance > maxDist/k)
mark the current sample as a noise point

output key-value pairs without noise points
<key3,value3>

3 Clustering
The task at this phase is to aggregate the source data
set into k clusters.
The pseudo code of the map function is as follows:
Map(<key, value>, <key1, value1>)

define variables: minDist, dist, index
for(i=0; i<k; i++)

dist ← Euclidean distance between the
current sample and i-th clustering center

if (dist < minDist)
 minDist ← dist
 index ← index of the current
cluster, which can be obtained from the
configuration file

output<key1,value1>, k1=index, value1=
value

The pseudo code of the reduce function is as follows:

Reduce(<key2, value2>, <key3, value3>)
define variable: num
define arrary: temp
num ← the number of samples parsed from

value2
while (value2.hasNext())

temp ← dimension coordinates of each
sample

num ← num+1
calculate the coordinates of each clustering

center
output <key3,value3>, key3=key2, value3 is

a string consisted of new clustering center
coordinates

5. Experimental Results and Analysis
The experiment configures Hadoop cluster on 7 nodes,
configures the Name-Node service on the machines
01 and 02 and the Resource -Manager service on the
machine 03, configures Data-Node and Node-Man-
ager services on the other four machines, which are
used as storage nodes of HDFS and compute nodes
of MapReduce. The configuration of each machine is
as follows: CPU: Inter(R) Core(TM) i5-3470; Memo-
ry: 4GB; Hadoop version: 2.4.1; Linux system version:
CentOS-6.6.
The source data set used in the experiment is the
data randomly generated by the program. In order to
test the performance of the algorithm, four different
data sets are generated, which are 200MB, 400MB,
600MB and 800MB.
In order to verify the validity of the initial center se-
lection, the experiment selected 200MB data as the
source data set, and performed 5 tests using traditional
K-Means and HKM, the results are shown in Table 1.
The experimental results show that HKM has a rel-
ative advantage in the accuracy and stability of the
clustering results.

679Information Technology and Control 2019/4/48

In order to test the performance of the algorithm, the
experiment selected, this paper uses size-up, speed-
up and scale-up as evaluation criteria. The method
of testing size-up is to keep the number of computing
nodes unchanged and continuously increase the data
size. Figure 2 shows the size-up of HKM under the
Hadoop platform with different number of comput-
ing nodes.

testing speed-up is to keep the data size unchanged
and continuously increase the computing nodes.
In this paper, four data sets (200MB, 400MB, 600MB,
800MB) are used, and the number of computing
nodes is gradually increased from 1 to 6. We recorded
the time that the HKM algorithm runs on a cluster of
different nodes, and finally calculated the speed-up.
The result is shown in Figure 3.

Table 1
The results of two clustering algorithms

Serial
number

Traditional K-Means HKM

initial
center

validity /
(%)

initial
center

validity /
(%)

1 106,37 85.31 57,136 84.96

2 128,46 83.39 57,136 84.96

3 34,185 57.72 57,136 84.96

4 167,84 79.58 57,136 84.96

5 62,141 89.75 57,136 84.96

Average 79.15 84.96

Figure 2
The test results of the size-up performance

The experimental results show that as the data scale
continues to increase, the scaling rate is also increas-
ing. Therefore, the HKM algorithm can solve the scal-
ability problem faced by traditional K-Means when
dealing with large-scale data.
Speed-up is used to measure the performance of par-
allel programs or system parallelism, which is the run-
ning time ratio of the same task in a single processor
system and pa rallel processor system. The method of

Figure 3
The test results of speed-up performance

Figure 4
The test results of scale-up performance

The experimental results show that as the data size
and computing nodes increase, the speed-up perfor-
mance of the algorithm continues to increase.
The way of testing the scale-up is to increase com-
puting nodes while increas ing the size of the data. In

Information Technology and Control 2019/4/48680

this paper, four data sets (200MB, 400MB, 600MB,
800MB) are used, and the number of computing
nodes is gradually increased from 1 to 6. We recorded
the running time under different conditions, and fi-
nally calculated the scale-up. The experimental result
is shown in Figure 4. The results show that the HKM
algorithm has better scalability when dealing with
large-scale data sets.

6. Conclusion
This paper analyzes the problems of traditional
K-Means, and then proposes the HKM algorithm,
which uses the sample density method to eliminate
the noise data in the data set, and select the initial

clustering center according to “max-min distance” al-
gorithm, and finally uses MapReduce Implement this
algorithm in parallel. The experimental results show
that the HKM algorithm can not only improve the ac-
curacy of clustering results, but can also be effectively
applied to data mining and analysis of large-scale data.

Acknowledgments
This work is supported by the National Natural Sci-
ence Foundation of China (No. 61702091), the Key
Research and Development Program of Shaanxi
Province (No. 2018ZDXM-GY-036), the Fundamen-
tal Research Funds for the Central Universities (No.
2572018BH06) and Scientific Research Program
Funded by Shaanxi Provincial Education Department
(Program No. 2013JK1139).

References
1. An, J. Y, Yan, Z. J., Zhai, J. X. K-Means Clustering Al-

gorithm Based on Distance Threshold and Sample
Weighting. Microelectronics and Computer Science,
2015(8), 135-138.

2. Behera, R., Rath, S., Misra, S., Damaševičius, R., Maske-
liūnas, R. Large Scale Community Detection Using a
Small World Model. Applied Sciences, 2017, 7(11), 1173.
https://doi.org/10.3390/app7111173

3. Capizzi, G., Lo Sciuto, G., Woźniak, M., Damaševicius,
R. A Clustering Based System for Automated Oil Spill
Detection by Satellite Remote Sensing. In Artificial In-
telligence and Soft Computing, 2016, 613-623. https://
doi.org/10.1007/978-3-319-39384-1_54

4. Chen, X. S., W, X. S., Wan, W. X. A K-Means Initial Clus-
tering Center Optimization Algorithm Based on Fea-
ture Relevance. Journal of Sichuan University (Natural
Science Edition), 2015, 47(1), 13-19.

5. Fan, X., Song, H., Wang, H. Video Tamper Detection
Based on Multi-Scale Mutual Information. Multi-
media Tools & Applications, 2017, 1-18. https://doi.
org/10.1007/s11042-017-5083-1

6. Fu, B. L, Zhan, A. K. A K-Means Clustering Text Mining
Method Based on Mean Density Center Estimation. Jour-
nal of Chongqing University of Posts and Telecommunica-
tions (Natural Science Edition), 2014, 26(1), 111-116.

7. Han, W., Zhang, X., Chen, Y. MapReduce Based Image
Classification Approach. Journal of Computer Applica-
tions, 2014.

8. Huan, X., Wan, C., Xion, L., Zen, H. A Weighting K-Means
Clustering Approach by Integrating Intra-cluster and
Inter-Cluster Distances. Chinese Journal of Comput-
ers, 21(7), 683. https://doi.org/10.3390/e21070683

9. Ji, Z., Pi, H., Wei, W., Xiong, B., Wozniak, M., Damase-
vicius, R. Recommendation Based on Review Texts and
Social Communities: A Hybrid Model. IEEE Access,
2019, 7, 40416-40427. https://doi.org/10.1109/AC-
CESS.2019.2897586

10. Ke, Q., Zhang, J., Song, H., Wan, Y. Big Data Analytics
Enabled by Feature Extraction Based on Partial Inde-
pendence. Neurocomputing, 2017, 288, 3-10. https://doi.
org/10.1016/j.neucom.2017.07.072

11. Lakshmanaprabu, S. K., Shankar, K., Khanna, A., Gupta,
D., Rodrigues, J. J. P. C., Pinheiro, P. R., De Albuquerque,
V. H. C. Effective Features to Classify Big Data Using
Social Internet of Things. IEEE Access, 2018, 6, 24196-
24204. https://doi.org/10.1109/ACCESS.2018.2830651

12. Li, J., Gu, H. S. Optimization Method of K-Means Clus-
tering Center in Cloud Computing. Bulletin of Science
and Technology, 2015, 31(10), 100-102.

13. Li, X., Men, Z., Xu, C. A Practical Performance Model for
Hadoop MapReduce. IEEE International Conference
on CLUSTER Computing Workshops. IEEE Computer
Society, 2015, 231-239.

14. Lu, J. F., Su, Z. H. A Clustering Algorithm Based on Den-
sity for K-Means. Microelectronics and Computer Sci-
ence, 2014(10), 28-31.

https://doi.org/10.3390/app7111173
https://doi.org/10.1007/978-3-319-39384-1_54
https://doi.org/10.1007/978-3-319-39384-1_54
https://doi.org/10.1007/s11042-017-5083-1
https://doi.org/10.1007/s11042-017-5083-1
https://doi.org/10.3390/e21070683
https://doi.org/10.1109/ACCESS.2019.2897586
https://doi.org/10.1109/ACCESS.2019.2897586
https://doi.org/10.1016/j.neucom.2017.07.072
https://doi.org/10.1016/j.neucom.2017.07.072
https://doi.org/10.1109/ACCESS.2018.2830651

681Information Technology and Control 2019/4/48

15. Lu, Q. Robust Optimization Algorithm for K-Means
Clustering Centers. Computer Engineering and Design,
2015, 36(9), 2395-2400.

16. Ma, H. D., Ha, X. Y, Ma, R. Q. Implementation of Web
Log Mining Based on Hadoop’s Parallel PSO - K-Means
Algorithm. Computer Science, 2015, 42(s1).

17. Odia, T., Misra, S., Adewumi, A. Evaluation of Hadoop/
Mapreduce Framework Migration Tools. In IEEE
Asia-Pacific World Congress on Computer Science
and Engineering, 2014. https://doi.org/10.1109/APW-
CCSE.2014.7053870

18. Qiang, Y., Zhang, J. A Bijection Between Lattice-Valued
Filters and Lattice-Valued Congruences in Residuated
Lattices. Mathematical Problems in Engineering, 2013,
36(8), 4218-4229. https://doi.org/10.1155/2013/908623

19. Rao, B. T., Reddy, L. S. S. Survey on Improved Sched-
uling in Hadoop MapReduce in Cloud Environments.
Computer Science, 2015, 34(9), 29-33.

20. Shen, Y., Yu, D., Hua, W. H. L. An Improved K-Means
Clustering Algorithm for Particle Swarm Optimization.
Computer Engineering and Applications, 2014, 50(21),
125-128.

21. Shua, L., Wenji, L., Dingzh, D. Fractal Intelligent Pri-
vacy Protection in Online Social Network Using Attri-
bute-Based Encryption Schemes. IEEE Transactions
on Computational Social Systems, 2018, 5(3), 736-747.
https://doi.org/10.1109/TCSS.2018.2855047

22. Srivastava, H. M., Zhang, Y., Wang, L., Shen, P., Zhang, J.
A Local Fractional Integral Inequality on Fractal Space
Analogous to Anderson’s Inequality. Abstract and Ap-
plied Analysis, 2014, 46(8), 5218-5229.

23. Tia, B. J., Du, X. J., Yang, H. Y., Su, Y. L. Research of Hy-
brid Collaborative Filtering Optimized Technology in
Cloud Computing. Application Research of Computers,
2018, 35(7), 2079-2083.

24. Wan, F., Qin, X. L, Liu, L. Clustering Algorithm Based on
Data Flow in Cloud Environment. Computer Science,
2015, 42(11), 235-239.

25. Wei, W., Yang X.-L., Shen, P. Y., Zhou, B. Holes Detection
in Anisotropic Sensornets: Topological Methods. Inter-

national Journal of Distributed Sensor Networks, 2012,
8(10), 135054. https://doi.org/10.1155/2012/135054

26. Wei, W., Yang, X.-L., Zhou, B., Feng, J., Shen, P.-Y. Com-
bined Energy Minimization for Image Reconstruction
from Few Views. Mathematical Problems in Engineer-
ing, 2012, 154630. https://doi.org/10.1155/2012/154630

27. Xing, C. Z., Gu, H. A K-Means Algorithm for Initial Clus-
tering Center Optimization Based on Average Density.
Computer Engineering and Applications, 2014, 50(20),
135-138.

28. Xiong, P., Gu, X. K-Means Clustering Algorithm Based
on Attribute Weight Optimization. Microelectronics
and Computer Science, 2014(4), 40-43.

29. Yang, Z., Luo, K. An Improved Clustering Algorithm
Based on Particle Swarm Optimization. Journal of
Computer Applications, 2014, 31(9), 2597-2599.

30. Zhang, J., Zhuo, L., Zhu, Y. X. Improvement and Appli-
cation of K-Means Clustering Algorithm. Application of
Electronic Technique, 2015, 41(1), 125-128.

31. Zhang, J. L, Bai, Q. Y. An Efficient K-Means Clustering
Algorithm. Journal of Fuzhou University (Natural Sci-
ence Edition), 2014, 42(4), 537-542.

32. Zhang, W. J, Jiang, L. H. Parallel Computation Algo-
rithm for Big Data Clustering Based on MapReduce.
Application Research of Computers, 2018, 37(1).

33. Zhao, W. Z., Ma, H. F., Fu, Y. X. Research on Parallel
K-Means Clustering Algorithm Based on Cloud Com-
puting Platform Hadoop. Computer Science, 2011,
38(10), 166-168.

34. Zhou, R. W., Li, Z. Y., Chen, S. M. Parallel Optimal Sam-
pling Clustering K-Means Algorithm for Large Data.
Computer Application, 2016, 36(2), 311-315.

35. Zhou, W. B., Shi, Y. X. An Optimization Algorithm of
K-Means Clustering Center Selection Based on Densi-
ty. Computer Application Research, 2012, 29(5), 1726-
1728.

36. Zhu, Y. X., Li, Y. L., Cun, M. T. CARDBK Clustering Al-
gorithm with Improved K-Means Algorithm. Computer
Science, 2015, 42(3), 201-205.

https://doi.org/10.1109/APWCCSE.2014.7053870
https://doi.org/10.1109/APWCCSE.2014.7053870
https://doi.org/10.1155/2013/908623
https://doi.org/10.1109/TCSS.2018.2855047
https://doi.org/10.1155/2012/135054
https://doi.org/10.1155/2012/154630

