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In this paper, finite-time consensus control of double-integrator multi-agent systems is presented. A new adap-
tive-terminal sliding mode control is proposed to satisfy the goal within a finite time by considering distur-
bances and input saturation. The agents are subjected to disturbances with unknown upper bounds and input 
saturation. The control inputs are designed based on terminal sliding mode technique to achieve the consensus 
purpose within the finite time to reduce the settling and reaching times. Then, a fast terminal sliding mode 
control is applied and the control inputs are modified to reduce the high dependency of reaching times to ini-
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tial speeds. To handle the disturbance with unknown upper bounds, the control laws are adopted by an adap-
tive-terminal sliding mode method. The upper bounds of disturbances are estimated in the finite time. In the 
proposed method, the maximum control efforts are always adjusted to be less than the saturation boundary by 
adaptive estimation method. The proposed method efficiency is verified by numerical simulation.
KEYWORDS:  Adaptive terminal sliding mode control, finite-time consensus control, multi-agent systems, in-
put saturation, unknown disturbance.

1. Introduction
In recent decades, studying multi-agent control has 
received more attention because of their enormous 
system applicability [1, 5, 18, 22, 32]. In many differ-
ent articles, a variety of control objectives are speci-
fied and studied for multi-agent systems [6, 10, 11, 19, 
21, 25, 37, 38, 41] that among them, the consensus ap-
proach has gained more publicity because of its appli-
cability [40, 45]. Consensus refers to a group of agents 
which reach a state agreement based upon local infor-
mation exchange. Satisfying the consensus goal needs 
each agent to produce its control input with using its 
neighbor’s local data. In order to achieve the men-
tioned agreement, consensus control purposes can be 
divided into asymptotic and finite time consensuses. 
For asymptotic consensuses [4, 36] the agreement be-
tween agents is implemented within the infinite time, 
whereas for finite time consensus [7, 33] the afore-
mentioned agreement is achieved in the specified ad-
justable and flexible finite time. In comparison with 
asymptotic consensus, the finite time consensus has 
some outstanding benefits such as faster transient 
response, high-precision tracking performance and 
much better convergence rate [9, 17]. 
Conventional convenient finite-time stabilization 
methods to achieve nonlinear system finite time con-
sensus are as follows; Lyapunov-like method [14], geo-
metric homogeneity based strategy [20], and terminal 
sliding mode control technique [2, 29- 31]. The finite 
time consensus can be satisfied by using the TSMC 
technique [16, 43-44], which is based on the typical 
sliding mode control approach [3, 10] and is robust 
versus disturbances and uncertainties [26-27].
Introducing new control methods in the presence 
of uncertainty and disturbance is one of the attrac-
tive study objectives [8, 15, 23, 34-35]. In respect to 
consensus problem, two important issue including 
agent disturbances and actuator saturation must be 
considered. If these two issues are not considered in 

multi-agent system consensus problems, some cru-
cial undesirable problems such as convergence rate 
and tracking accuracy and even divergence/instabil-
ity will appear. The finite time consensus for a typical 
multi-agent system with disturbance and actuator 
saturation agents is investigated in [20, 24]. The finite 
time consensus problem of disturbed multi-agent 
systems with agents without saturation actuators are 
considered in [16, 43-44]. Asymptotic consensus for 
multi-agent system in the presence of agents’ distur-
bance is discussed and solved in [13, 45]. Furthermore 
the finite time consensus issue of disturbed multi-
agent systems with agents without saturation actu-
ators are discussed in [16, 43-44]. As a result of the 
importance of the these reviewed problems, including 
finite time consensus, agent disturbances and actua-
tor saturation of each agent, a new robust approach is 
proposed and generalized in this paper to satisfy the 
consensus control goal.
In this part we discussed the finite-time consensus 
control problem for a usual multi-agent system hav-
ing double integrator agents and a fixed speed leader. 
Each system agent is subjected simultaneously to 
the control input saturation and disturbances. We 
assumed that the with control inputs saturations 
are unknown but constant. In addition to that, agent 
disturbance are supposed to be limited, while their 
upper bounds are unknown. A new adaptive ATSMC 
method is proposed in order to estimate these upper 
bounds in finite time and also to solve the multi-
agent system finite time consensus problem. Fur-
thermore, the global dynamic finite-time stability 
of tracking errors are proved in several theorems in 
this article.
Further, mathematical preliminaries are presented in 
Section 2. Section 3 evaluates the fast finite-time con-
sensus tracking problem. Finally, numerical results 
and conclusions are shown in Sections 4 and 5.
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0lim ( , ) 0
t T x

x t x
→

=  and ( )0, 0x t x = for

( )0t T x∀ ≥ . 
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Lemma 1 [42]. Consider the nonlinear system (1). Assume that 
there exist a 1C  positive function ( ) 0:V x U →  , real 
constants 0c > , and 0 1α< <  such that 
( ) ( ) { }00,  \ 0V x cV x x Uα+ ≤ ∀ ∈  is satisfied. Then, the 

equilibrium point 0x = of system (1) is locally finite-time 
stable. Furthermore, the convergence time ( )0T x satisfies the 
following inequality. 

( ) ( )( ) ( )1 1
0 01T x c V x αα

− −≤ − . (2) 

Moreover, if 0
nU =  , then 0x = is globally finite-time stable. 

Lemma 2 [12]. Consider the nonlinear system (1). Suppose 
there exist a 1C  positive function ( ) 0:V x U →  and real 
numbers 1 2, 0c c >  and 0 1α< <  such that 

( ) ( ) ( ) { }2 1 0 00, \ 0V x c V x cV x x Uα+ + ≤ ∀ ∈  is satisfied. 

Then, the convergence time ( )0T x is given by the following 
inequality. 

( )( ) ( )( )( )( )1 1
2 2 1 11 ln 0 lnT c c V x c cαα

− −≤ − + − .         (3) 

1.3 Finite-Time Consensus Tracking 
The dynamic models of N agents are assumed to be: 

i i

i i i

x v
v u d

=
= +





, 1, ,i N=  , (4) 

where ix  and iv  are the  thi agent position and velocity, 
respectively. iu and id  denote the control input and bounded 
disturbance satisfying the inequality i id l< , 1, ,i N=  . It is 
assumed that il  is an unknown constant and the control input 
of each agent is subjected to saturation such that sΥiu < . It is 
worth noting that the saturation bound sΥ  is unknown. 
The leader dynamic is defined as 

0 0

0

,  
0.

x v
v

=
=





 (5) 

Based on finite-time consensus tracking, positions and 
velocities of all agents should converge to the position and 
velocity of the leader in a specific adjustable finite time. This 
goal can be defined mathematically as  

lim 0 , 0 ,  

lim 0 ,  0 ,
i it T

i it T

x x t T

v v t T
→

→

 → = ∀ >


→ = ∀ >

 

 

, 1, ,i N=  , (6) 

where T is the required finite time for achieving the defined 
goal. Tracking errors ix  and iv  are defined as, 

0

0

i i

i i

x x x
v v v

= −
 = −





, 1, ,i N=  . (7) 

Assumption 1. In the multi-agent system of (4), it is assumed 
that each agent is connected to the leader independently or 
through other agents. To clarify this assumption 
mathematically, matrix 𝐵𝐵𝐵𝐵  has defined. ib is the thi  element of 
the matrix [ ]1 2, , , nB b b b=  . 1ib =  if the thi  agent have 
access to the leader independently, otherwise 0ib = . 
 
2. Finite-Time Consensus with Unknown 

Bounded Disturbance and Saturation 
To achieve the described consensus problem, a TSMC is 
designed. The terminal sliding surfaces is , 1, ,i N=  are 
suggested as 

0

t

i i is v dφ τ= − ∫ , 1, ,i N=   (8) 

in which iφ  is defined as 

and real numbers 1 2, 0c c >  and 0 1α< <  such that 
( ) ( ) ( ) { }2 1 0 00, \ 0V x c V x cV x x Uα+ + ≤ ∀ ∈  is sat-

isfied. Then, the convergence time ( )0T x  is given by 
the following inequality.

( )( ) ( )( )( )( )1 1
2 2 1 11 ln 0 lnT c c V x c cαα

− −≤ − + − . (3)

2.3. Finite-Time Consensus Tracking

The dynamic models of N agents are assumed to be:

 

 

problem. Furthermore, the global dynamic finite-time stability 
of tracking errors are proved in several theorems in this article. 

Further, mathematical preliminaries are presented in Section 
2. Section 3 evaluates the fast finite-time consensus tracking 
problem. Finally, numerical results and conclusions are shown 
in Sections 4 and 5. 
 
1. Mathematical Preliminaries 

1.1 Graph theory 
A graph defined by ( ), ,G E A=   is composed of a vertex set

{ }1 2, , , Nv v v= … , an edge set E ⊆ ×  , and an adjacency 

matrix A . Each edge 𝑒𝑒𝑒𝑒𝑘𝑘𝑘𝑘 is defined by a pair of vertices ( ),i jv v

. Matrix N N
ijA a × = ∈   shows the connections between 

vertices, so that 1ija =  if ( ),j iv v E∈ and 0ija = . Else, if 
matrix A is symmetric, the graph G is known as undirected. A 
path is a sequence of edges from vertex i to vertex j . G is 
called connected if there exist at least one path between any two 
arbitrary separate vertices. 

1.2 Finite-Time Stability 

The main finite-time stability definition and two effective 
lemmas are introduced in this section .These definitions are 
used throughout this research. 
Definition 1 [42]. Suppose a nonlinear time invariant system 
like 

( ) ( ) 0,       0 0,    nx f x f x U= = ∈ ⊂  , (1) 

where 0: nf U →  is a continuous vector function on an open 
neighborhood 0U  of the origin 0x = . The equilibrium point 

0x = of system (1) is called locally finite-time stable if the 
following conditions hold. 
(i) It should be finite-time convergent in 0Û , namely, there is 
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a convergence time ( ) { } )0 0:   \ 0ˆ 0 ,T x U ∞→  that 

satisfies 
( )0

0lim ( , ) 0
t T x

x t x
→

=  and ( )0, 0x t x = for

( )0t T x∀ ≥ . 

(ii) It should be Lyapunov stable in an open neighborhood 0Û  
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According to the definition of iφ  and by referring to Theorem 
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iλ and iγ , 1, ,i N=  are arbitrary parameters that satisfy
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According to the definition of iφ  and by referring to Theorem 
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Proof. Assume that the sliding mode dynamic 0i is s= =  has 
been achieved for the thi  agent (input control for the thi  agent 
will be designed later to guarantee sliding motion existence
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the sliding mode dynamics (sliding motions) 0i is s= = , 
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exactly converge to zero in the finite settling time, sT . 
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According to the definition of iφ  and by referring to Theorem 
1 [12], it can be demonstrated that there exist a sT  such that ix  
and iv  in (10) become zero for times larger than sT . 
Consequently, sliding motions 0i is s= = , 1, ,i N=  are 
globally finite-time stable. This completes the proof. □ 
The control inputs are designed to assure the existence of

0i is s= = , 1, ,i N=  in the finite reaching time, rT , for all 
agents. 
Here, it is assumed that the upper disturbance bounds il , 

1, ,i N=  are constant but unknown. The control law for the 
thi  agent is proposed as 

( ) ( )sgn sgˆ ˆni i i i i i iu k s l sφ δ= − − − , 1, ,i N=  , (11) 
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iλ and iγ , 1, ,i N=  are arbitrary parameters that satisfy
1, 1i iλ γ> > . By considering Lemma 1 in [28], it can be shown 
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Therefore, *
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1 2, i i i i i il l η γ γ η= + = +  in which 1 0iη >  and 2 0iη >  are an 

arbitrary number. 
The finite time stability proof of 0i is s= = , 1, ,i N=  are 
similar to that in Theorem 1. In Theorem 4, the existence of

0i is s= = , 1, ,i N=  for rt T≥ will be shown by applying 
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According to the definition of iφ  and by referring to Theorem 
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0i is s= = , 1, ,i N=  in the finite reaching time, rT , for all 
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1, ,i N=  are constant but unknown. The control law for the 
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iλ and iγ , 1, ,i N=  are arbitrary parameters that satisfy
1, 1i iλ γ> > . By considering Lemma 1 in [28], it can be shown 
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upper bound estimations iδ  that is the error caused by input 
saturation 

( )

( )

˙

˙

,   0 0,  1, , .

,   0 0,

ˆ ˆ

 1, , .ˆ ˆ

i i i i

i i i i

s i N

l s l i N

δ γ δ

λ


= > =


 = > =





         (12) 

iλ and iγ , 1, ,i N=  are arbitrary parameters that satisfy
1, 1i iλ γ> > . By considering Lemma 1 in [28], it can be shown 

that * *0 , 0ˆ ˆi i i il l γ γ≤ ≤ ≤ ≤ , in which the constants *
il and *

iγ  are 
not necessarily equal to the nominal value of il  and iγ . 
Therefore, *

il and *
iγ  can be assumed to be 

* *
1 2, i i i i i il l η γ γ η= + = +  in which 1 0iη >  and 2 0iη >  are an 

arbitrary number. 
The finite time stability proof of 0i is s= = , 1, ,i N=  are 
similar to that in Theorem 1. In Theorem 4, the existence of

0i is s= = , 1, ,i N=  for rt T≥ will be shown by applying 
(11) and (12). 
Theorem 2. Consider (4) with unknown bounded disturbances. 
By employing (11) and (12), 0i is s= = , 1, ,i N=  are 
achieved for rt T≥ where rT  is determined by 

( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( )( )

2 22 * *
1 1 1

0 0 0 0 0

min min 1 ),mi

ˆ ˆ

n 1 γ ),    min

N N N
i i i i ii i i

r

i i i i i i ii

s l l
T

s s k

δ δ

λ

= = =
+ − + −

≤
− −

∑ ∑ ∑

(13) 
Proof. By considering the candidate Lyapunov function 

2 2 2

1 1 1

0.5 0.5 0.5
N N N

i i i
i i i

V s l δ
= = =

= + +∑ ∑ ∑  where *ˆ 0i i il l l= − <  and

*ˆ 0i i iδ δ δ= − < . The sliding surface time derivative is
˙

ii is v φ= −  . Now, by replacing 
˙

iv  from (7) and iu  from (11), 

is is obtained as 

( ) ( )ˆsgn  sgni i i i i i is k s l s d δ= − − + + ,. (14) 

By substituting (12) and (14) in
˙ ˙

1 1 1

N N N

i i i i i i
i i i

V s s l l δ δ
= = =

= + +∑ ∑ ∑   

 , 

the following relation is obtained. 

1 1 1 1

1 1 1

ˆ

ˆ

N N N N

i i i i i i i i i
i i i i

N N N

i i i i i i i
i i i

V k s l s d s l s

s s s

λ

δ δ δ γ

= = = =

= = =

= − − + +

− + +

∑ ∑ ∑ ∑

∑ ∑ ∑






 (15) 

By considering ( )minm ii
k k=  and *

1 1

N N

i i i i
i i

d s l s
= =

≤∑ ∑ , 

*

1 1

N N

i i i i
i i

s sδ δ
= =

≤∑ ∑ , V  becomes 

( ) ( )m
1 1 1

1 1
N N N

i i i i i i i
i i i

V k s l s sλ γ δ
= = =

≤ − − − − −∑ ∑ ∑  . (16) 

By defining ( )( )1Ω min 1 )i i isλ= − , ( )( )2Ω min 1 )i i isγ= −  

and ( )1 2 mmin Ω ,Ω ,kθ = , (16) is simplified as 

1 1 1

N N N

i i i
i i i

V s lθ δ
= = =

 
≤ − + + 

 
∑ ∑ ∑  . (17) 

By adopting the well-known inequality i i
i i

y y 
< 

 
∑ ∑ , 

(17) is converted to
1
22V Vθ≤ − . Finally, by setting 2c θ= , 

0.5a = , and applying Lemma 1, it is proven that 0i is s= = , 
1, ,i N=  are always fulfilled for rt T≥ where rT  is estimated 

by (13). This ends the proof. 
 □ 
3. Numerical Simulations 

, (16) is simplified as

1 1 1

N N N

i i i
i i i

V s lθ δ
= = =

 
≤ − + + 

 
∑ ∑ ∑  . (17)

By adopting the well-known inequality

i i
i i

y y 
< 

 
∑ ∑ , (17) is converted to to

1
22V Vθ≤− . 

Finally, by setting 2c θ= , 0.5a = , and applying 
Lemma 1, it is proven that 0i is s= = , 1, ,i N=   are 
always fulfilled for rt T≥  where rT  is estimated by 
(13). This ends the proof.

3. Numerical Simulations
A multi-agent system consists of five agents and one 
leader is simulated in this part of the article and the 
related results are discussed respectively. Notice that 
matrices A and B  are supposed as follows;
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1 0 1 0 1
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A B

 
 
 
 = =
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The initial agent positions and velocities are cho-
sen arbitrarily as ( ) [ ]0 200 50  50 1 50  200 Tx = − −  and

( ) [ ]0 200 1 20 1 80 160  200 Tv = − − , respectively. The 
initial leader position and velocity are assumed to be 

( )0 0 150x =  and ( )0 0 5v = , respectively. Disturbances 
are selected as ( )1 cos 0.2d t= , ( )2 0.7sin 0.4 / 5d t π= + , 

( )3 0.5sin 2d t= , ( )4 0.6cos 3 / 4d t π= + . The fifth dis-
turbance 5d , (30), is assumed to be time variant [39].
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In terms of selected disturbances, the upper 
bound disturbance vectors are calculated as

[ ]1 0.7 0.5 0.6 0.3 Tl = . In all calculations, the op-
tional fractional power 1α , applied in iφ  (9), is chosen 
as 1 0.5α = . Further, the control inputs are assumed 

27± . Hence, sΥ  is determined as s 27Υ = . Also, 1.1iλ =  
and ( )ˆ 0 0.2iγ = , 1, ,5i =   are assumed, respectively. 
The tuning parameters are selected as 20ik =  and 

1.01iλ =  for 1, , 5i =  . The upper bound estimation 
initial values are chosen as ( )ˆ 0 0.2il =  for 1, , 5i =  . 
Agent Positions, velocities and errors in the pres-
ence of unknown bounded disturbances by applying 
(11) are shown in Figures 1-4. Agent control signals is 
shown in Figure 5.
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Figure 5 
Agent Control Signals

Figure 4 
Agent velocity error by applying (11)
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4. Conclusion  
 
In this research we discussed finite-time consensus problem for 
multi-agent systems with leader in the presence of bounded 
disturbances and saturation constraints on control inputs. In 
order to handle the problem, control inputs were designed by 
considering disturbance with unknown upper bounds. For 
satisfying the finite-time consensus aim, the control inputs and 
the finite-time estimation laws were designed by applying 
adaptive TSMC method. Mathematical analysis clearly shows 
that all proposed control inputs could satisfy the finite-time 
consensus goal within the total adjustable finite-time. Finally in 
order to validate the theoretical results, numerical simulations 
were depicted. 
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disturbance with unknown upper bounds. For satisfy-
ing the finite-time consensus aim, the control inputs 

and the finite-time estimation laws were designed 
by applying adaptive TSMC method. Mathemati-
cal analysis clearly shows that all proposed control 
inputs could satisfy the finite-time consensus goal 
within the total adjustable finite-time. Finally in or-
der to validate the theoretical results, numerical sim-
ulations were depicted.
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