
Information Technology and Control 2020/2/49206

An API-first Methodology for
Designing a Microservice-based
Backend as a Service Platform

ITC 2/49
Information Technology
and Control
Vol. 49 / No. 2 / 2020
pp. 206-223
DOI 10.5755/j01.itc.49.2.23757

An API-first Methodology for Designing a Microservice-based
Backend as a Service Platform

Received 2019/07/02 Accepted after revision 2020/01/27

 http://dx.doi.org/10.5755/j01.itc.49.2.23757

HOW TO CITE: Dudjak, M., Martinović, G. (2020). An API-first Methodology for Designing a Microservice-based Backend as a Service
Platform. Information Technology and Control, 49(2), 206-223. https://doi.org/10.5755/j01.itc.49.2.23757

Corresponding author: mario.dudjak@ferit.hr

Mario Dudjak, Goran Martinović
Faculty of Electrical Engineering, Computer Science and Information Technology; J. J. Strossmayer University
of Osijek; Kneza Trpimira 2B, 31000, Osijek, Croatia;
phone: +385 95 828 3101; e-mails: {mario.dudjak, goran.martinovic}@ferit.hr

Over the last several years, cloud computing has grown into a major paradigm in software development by pro-
viding computer resources over the Internet. Among various cloud service models, Backend as a Service (BaaS)
stands out as a model that targets the specific needs of web and mobile developers. By providing the backend for
applications, it facilitates and expedites the software development process. In order to prevent major problems
with the use of third-party BaaS providers, this paper advocates building your own BaaS platform, as well as
several works ahead of it. However, the development of a BaaS platform carries various challenges regarding ar-
chitecture and design. This paper strives to define the core service offerings of a BaaS platform and to propose a
method for providing an architectural design of a BaaS platform based on a microservice architecture. Micros-
ervice architecture is the preferred architectural style for cloud solutions since it promotes loose coupling, ease
of scaling and integration with third-party services, which are fundamental stipulations of BaaS platforms. The
methodology adopted in designing a microservice-based BaaS platform was formed in accordance with an Ap-
plication Programming Interface (API)-first approach, which strives to design a suitable, representative API of
the platform. To the best of authors’ knowledge, this paper proposes the lowest-level design of a BaaS platform
so far, describing the entity relations, integration patterns, and communication styles. Ultimately, the proposed
design was implemented and tested for its functional requirements. In that regard, specific test cases that mirror
the actual workflow of the BaaS platform were constructed.
KEYWORDS: API-first approach, API testing, Backend as a Service (BaaS), cloud computing, microservice ar-
chitecture.

mailto:obodovskiy58@gmail.com

207Information Technology and Control 2020/2/49

1. Introduction
Cloud computing is becoming mainstream in the area
of Information Technology (IT) infrastructures, of-
fering many diverse services that effectuate IT- relat-
ed tasks for enterprises. One of the reasons why each
generation of IT infrastructures appeared was the
need for increased speed to market [35]. Within the
cloud computing paradigm, the emergence of novel
cloud service models introduces additional layers of
abstraction to facilitate and expedite IT-related tasks.
In the domain of web and mobile application devel-
opment, the latest cloud service model which tends
to increase speed to market is Backend as a Service
(BaaS). BaaS allows developers to focus on applica-
tion features by replacing backend development with
connecting to an Application Programming Inter-
face (API). In this decade, the BaaS market has been
grown considerably as more and more developers
adopt BaaS services. Demand for rapid deployment
and development is one of the major drivers responsi-
ble for the growth of the BaaS market [23].
On the other hand, the utilization of a BaaS platform in
application development can result in major problems.
Use of third-party services carries drawbacks such as
questionable security, vendor lock- in, and platform
shutdown. Although the BaaS cloud service model has
only recently been introduced, several major providers
have already announced the shutdown of their plat-
form. The earliest BaaS platform provider, Parse, shut
down its platform in 2017 and thus jeopardized busi-
nesses that based their applications on the platform
[27]. Likewise, another major BaaS platform provider,
Apigee, announced the end of life for its platform in the
middle of 2019 [4]. Considering that a small number
of key vendors hold most of the BaaS market, closing
any of them could cause the downfall of the BaaS cloud
service model, regardless of its undisputed advantages.
Overall, in order for small businesses to take advantage
of such a model, they must develop their own platform.
Development of your own BaaS platform eliminates
the pointed drawbacks and at the same time enables all
benefits of that service model. However, unlike writing
an application-specific backend, BaaS services must be
uniform and reusable, which requires a set of specific
design patterns.
Typically, the BaaS platform consists of several in-
dependent service offerings [9, 10] and the main ar-

chitectural issue is to design a mechanism for their
communication and synchronization. Given that a
particular service acts as data storage for the overall
platform, application-specific models and relations
need to be abstracted in order to be used from other
services. Recent propositions of the BaaS platform
design are made up of either single service offering
[10], or a number of services coupled in monolithic ar-
chitectural style [9]. The former does not address the
complication of data context sharing while the latter
is troublesome to extend in case of adding new service
offerings. This paper proposes the appropriate archi-
tectural design of a BaaS platform. Considered design
patterns originate from a microservice architecture
which is justified as the most suitable architecture
pattern for the cloud solutions due to the promotion
of loose coupling between services and independent
scaling capabilities. Nonetheless, studied patterns
need to be adjusted to the BaaS domain. The proposed
design patterns define data sharing, messaging, and
orchestration processes.
Overall, researchers have not treated the design of a
BaaS platform in much detail. For instance, the BaaS
cloud service model constitutes the foundation of
the recently proposed frameworks in healthcare [18],
wildlife conservation [8], mobile banking [20],
education [42] and smart city domains [1, 15]. How-
ever, in all proposed solutions the mere introduction
of a BaaS platform is considered as a contribution,
regardless of the architecture and the way of imple-
menting such a platform. On the other hand, authors
in [38], found that mobile applications largely depend
on platform-specific APIs, and concluded that the
extent of dependence on obscure platforms may be
an indicator of poor software quality. The objective
of this paper is three-fold: (1) a review and definition
of the core service offerings of a BaaS platform, (2)
a method for providing an architectural design of a
BaaS platform based on a microservice architecture,
and (3) the platform implementation and the design
of test cases that mirror the actual functional work-
flow of the platform. The contribution of the paper is
a proposal for the architecture and design of the BaaS
cloud service model which consists of three common
service offerings, in the hope of helping small busi-
nesses in developing their own BaaS platform. The

Information Technology and Control 2020/2/49208

novelty of this work is that it follows an API-first
approach, by first comparing the offerings of com-
mercial BaaS platforms and identifying key services,
then designing suitable APIs, and ultimately propos-
ing a design- supporting architecture. In addition, the
platform consists of as many as three services, unlike
most previous works that only exhibited one.
The remaining part of this paper has been divided
into four parts. Section 2 begins with establishing
foundations of the BaaS platform and a microservice
architecture. Section 3 is concerned with the meth-
odology used for the design of a BaaS platform. In
Section 4, the functionality of the designed platform
is evaluated by performing API testing and the client-
level comparison was conducted. Finally, some con-
clusions are drawn in Section 5.

2. Foundations
2.1. Backend as a Service
Backend as a Service (BaaS) is a cloud service mod-
el which provides a way of connecting mobile and
web applications with cloud-based backend services
[21]. The most prevalent such services are data stor-
age, user management, file storage, geolocation, push
notifications, social integration, and analytics. BaaS
delivers an infrastructure that can be automatically
scaled and optimized, linked with a set of backend
services. Therefore, BaaS represents an extension of
the Platform as a Service (PaaS) model, specialized in
simplifying the development of mobile and web ap-
plications. The abstraction of infrastructure manage-
ment in such a way enables developers to focus only
on building application features. For this reason, the
main benefits of BaaS are increased speed to market,
lower development cost, and higher scalability.
The early leader in providing cloud-based backend
services in the form of a platform was Parse, which
was later acquired by Facebook and ultimately shut
down. Some of the largest BaaS platforms that have
appeared after Parse are Google Firebase, Kinvey, Ap-
pcelerator Cloud and Backendless. Each of the above
providers offers distinct advantages over others, al-
though most of them possess the equivalent set of
service offerings. At its core, BaaS eases linking appli-
cations to backend cloud storage and pairs it with the
administration and authentication tools. That being
the case, data storage, user and application manage-

ment services can be defined as the core service offer-
ings of a BaaS platform. Tan et. al [40], conducted a
study on three mobile BaaS (mBaaS) providers (Kin-
vey, App42 and Backendless), evaluating five different
metrics, with an emphasis on data storage, user man-
agement and push notifications. The requirements
set for each individual service during this study, have
been taken into account when defining functional re-
quirements of core service offerings in this paper. The
five evaluated metrics were availability, processing
services, computing services, portability, and recon-
figuration, which were considered both quantitative-
ly and qualitatively. Performed comparative study has
shown that all three services are quite similar. More-
over, Colombo- Mendoza et. al [12] extended the PaaS
cloud service model over a mobile ecosystem in the
form of the novel platform. The proposed platform
was then validated by performing qualitative-com-
parative evaluation and measuring three metrics -
ease of learning, ease of use as well as current knowl-
edge and skills of developers. In a similar fashion, this
paper proposes the lowest-level design of a BaaS plat-
form so far and validates it quantitatively by measur-
ing commonly used metrics in object-oriented design.
Very little was found in the literature on the question
of designing a BaaS platform. Thus far, few studies
have suggested that such a platform ought to be dis-
tributed in accordance with its service offerings.
However, what they lack is a proposition of design
patterns used for solving common design challenges
specific to BaaS, on top of the proposed architecture.
In his exploration of the concepts of a BaaS platform,
Carter [10] defined, architected and designed het-
erogeneous micro-applications based platform. De-
signed platform acted as an API gateway and each
micro-application was implemented as a Represen-
tational State Transfer (REST) API. Unlike the large
commercial platforms that offer a wide range of ser-
vices, this platform consists of a data storage service
only. Given that the platform consisted only of data
storage service offering, the research did not inform
on means of communication, integration and shar-
ing data context with forthcoming services. As men-
tioned in the future state section of the paper, BaaS
platform should be composed of applications on dif-
ferent platforms, which signified the transition from
micro-applications to microservice architecture.
Carranza-García et al. [9] introduced a framework
intended to facilitate the development of BaaS plat-

209Information Technology and Control 2020/2/49

forms that target various Internet of Things (IoT)
systems. The introduced framework enables develop-
ers to specify the behavior of desired web services and
automatically generates compatible models, commu-
nication services and documentation. Unlike work in
[10], the proposed framework contains a set of pre-
defined services that are most common in BaaS ser-
vice models, such as data storage, user management,
and file storage. However, the framework is based on
prototypical service-oriented architecture (SOA 2.0),
which is increasingly being replaced with microser-
vice architecture when building cloud solutions. The
proposed framework was implemented as a Web plat-
form, making it difficult to add new services. Although
it enables the defining of custom services, their archi-
tecture is limited within the default technologies and
specifications of the platform design. Gropengießer et
al. [16], presented core components required for im-
plementing Database Backend as a Service model in
a cloud and introduced the overall framework based
on model-driven software development techniques.
As in [10], the only system component is data storage,
which is also implemented as an independent service
with its own database, Object-Relational Mapping
(ORM) framework and REST interface. The paper de-
scribes deployment and monitoring patterns in much
more detail but use relational database for storing
user-specified conceptual schema. By infrastructure,
the proposed DBaaS platform is most similar to the
Alibaba Cloud DBaaS service, which only facilitates
database hosting and maintenance. Unlike the work
in [10], this paper swaps relational for non-relational
database, introduces two additional services and pro-
poses integration patterns as well as communication
styles for both internal and external communication.
The main drawback of previous works on the topic
of BaaS platform design is that they propose a single-
service platform, although they state that such plat-
forms must be heterogeneous and extensible. The only
multi-service platform is the one proposed in [9], but it
is based on the SOA architecture and implemented as
a web platform, making it difficult to expand with new
services. Furthermore, the DBaaS platform proposed
in [16] provides exclusively structured data storage,
with the developer still having to define the data rela-
tionships himself. This paper proposes a new method
for designing a BaaS platform that employs an API-
first approach. The API-first approach is used in this
paper to establish the design of a BaaS platform that

provides the most significant service offerings of com-
mercial platforms, which architectures and designs
are difficult to obtain. In addition, the designed BaaS
platform is based on a microservice architecture that
allows for the easy addition of new technology-inde-
pendent services. Unlike previous works, this method
proposes integration and communication patterns for
the consolidated operation of microservices.

2.2. Microservice Architecture
Microservice architecture has turned out to be a sig-
nificant architectural style for building distributed
applications. In a microservice architecture, a single
application is built as a collection of small services,
each operating in its own process and communicat-
ing with various mechanisms [41]. Moreover, such an
architecture promotes loose coupling, i.e. minimiz-
ing the dependencies between two or more services.
Considering that cloud computing solutions require
a loosely coupled architecture [19], microservice ar-
chitecture is the preferred architectural style for the
cloud. In a traditional monolithic architectural style,
an application is built as a single component in which
the slightest change requires rebuilding and re- de-
ployment to make changes come into effect. In re-
sponse to a growing amount of the work, monolithic
applications can be scaled horizontally by replicating
an entire application on multiple servers. On the oth-
er hand, due to the separation of application function-
alities into services, microservice architecture scales
by distributing services across servers, recreating as
required. Villamizar et al. [43] evaluated the implica-
tions of using microservice architecture by compar-
ing performance tests executed on two equivalent
applications developed on monolithic and microser-
vice architecture, respectively. They concluded that
microservice architecture did not considerably im-
pact the latency of responses due to the use of more
hosts and suggested that microservices should be uti-
lized in applications with hundreds of thousands or
millions of users because each microservice can scale
independently using different policies. Furthermore,
microservice architecture is often misinterpreted as
service oriented architecture (SOA), which is com-
monly utilized in maintenance systems in communi-
cation networks [22, 34]. Nonetheless, services in a
microservice architecture can operate independent-
ly of other services, unlike in SOA, which makes new
services easier to deploy and scale.

Information Technology and Control 2020/2/49210

Several systematic reviews of microservice architec-
ture have been undertaken. In their systematic map-
ping study, Taibi et. al. [39] extracted common pat-
terns and principles employed in the adoption of the
microservice architectural style. Extracted patterns
were classified into three subsections: orchestration,
data storage, and deployment patterns. In his discus-
sion on the design of microservices, Sill [36] pointed
out that putting a microservice architecture in prac-
tice, requires proper addressing of issues such as data
exchange, messaging and orchestration. Further-
more, he referred to existing standards that provide
the basis for resolving mentioned issues. Together
these studies provide important insights into the typ-
ical design patterns for a microservice architecture.
Those insights have been taken into considerations in
this paper when integrating microservices that arose
from an API-first approach.

3. Proposed Method
The methodology adopted in designing a microser-
vice-based BaaS platform was formed in accordance
with an API-first approach. This approach suggests
that the software development process ought to start
with designing and implementing appurtenant APIs
[7]. An API-first approach facilitates decomposing of
an application into autonomous microservices and is
therefore exceptionally helpful for applications that
require loose coupling [33]. As a result, each micro-
service is represented with a unique API but can be
efficiently developed for various devices. The method
proposed for designing a microservice-based BaaS
platform decomposes the API into individual services
and integrates them into a microservice architecture.
The proposed method consists of four steps, which
are described in more detail below.
Step  1: A design of a BaaS platform is required to be
coherent and extensible in case of adding new ser-
vice offerings. Therefore, only core service offerings
were selected to be provided by a proposed platform.
As mentioned in Section 2, core service offerings of a
BaaS platform are data storage, user management, and
app management. In this step, a comparison of core
service offerings between major existing platforms,
Firebase, Kinvey, Backendless, and Alibaba Cloud,
was drawn. Backendless is a platform most similar

in concept to the BaaS cloud model, and all platform
services can be classified into 2 categories: user man-
agement and data storage. User management service
enables user registration, login, logout and password
recovery functionalities, while data storage service
provides both SQL-driven relations and NoSQL sche-
ma management. Security of the Backendless plat-
form is role-based, where every single role has a set of
permissions of each API. Alibaba Cloud and Firebase
platforms provide a comprehensive infrastructure
of global cloud computing services, some of which
are common services of the BaaS platform. Alibaba
Cloud platform provides various cloud computing
models such as IaaS, PaaS, DBaaS, and SaaS, which
can be managed from the administration dashboard
of the platform. Of the models mentioned, the closest
to the BaaS model is DBaaS which only facilitates da-
tabase hosting and maintenance. On the other hand,
Firebase provides backend that facilitates storing
and syncing data between users using a cloud-hosted
NoSQL database, managing user authentication and
storing and sharing user-generated files.
During the comparison, mutual functional require-
ments were derived. Considering the huge heteroge-
neous user population of a BaaS platform, detailed
specification of requirements is of great relevance in
order to develop this type of system [2].
As a result, Table 1 presents the functional require-
ments of each core service offering that must be ful-
filled.
Table 1
Functional requirements of service offerings

Service
offering Functional requirements

Data storage

 _ CRUD operations and filtering on
collections

 _ Defining validation rules for entities in a
collection

 _ CRUD operations on arbitrary data

User
management

 _ CRUD operations on user resource:
register, login, password recovery, logout

 _ Managing user access by defining roles
and permissions

 _ CRUD operations on roles
 _ CRUD operations on permissions

App
management

 _ Registering new application
 _ CRUD operations on application resource

211Information Technology and Control 2020/2/49

Step  2: Throughout this step, functional require-
ments of service offerings were mapped into API ca-
pabilities which were then turned into API contracts.
Each of the corresponding contracts was designed as
REST API, considering its ease of connection with
mobile and web applications. While developing the
API contracts, a methodology called spec-driven de-
velopment was employed. API specification provides
a thorough insight into API behavior and its linkage
with other APIs [37]. Such specification consists of
design specifications for three different concepts of
an API: resources, actions, and security. For the pur-
pose of writing an API specification, SwaggerHub tool
and Swagger 2.0 specification language were used.
The relationships between the resources of the BaaS
platform are shown in Figure 1. Each resource belongs
to a particular application. The basic unit of data
storage is an entity, and entities of the same type are
organized in collections. In addition, one user can be
linked to many entities, which are created by that user.
In the user management service, every resource has a
many-to-many relationship with others, which is the
foundation for role-based security.

Figure 1
Relationships between resources of the BaaS platform

Data storage User management

App management

App1-
Collection1

App2-
Collection1

Application

Role

User

Permission

Entity

**

*

*

** * *

1
1 1

1

1

1

* *

* *

EntityEntityEntity

Table 2 shows the design of role-based security of the
BaaS platform, in terms of authorization and authen-
tication styles. BaaS platform manages application
users and may group them into roles based on securi-
ty permissions they share. Permissions provide users
with access to perform actions on specific resources.
Roles and permissions are managed by application
admins. Therefore, the platform supports two levels
of authentication: application user and application

Table 2
Security design of the BaaS platform

Security design

A
ut

ho
ri

za
tio

n

Authorization type OAuth2

Access control
entities

 _ Permissions – holding defi-
nition of access rules speci-
fied by API endpoint

 _ Roles – a group of permis-
sions associated with a user

A
ut

he
nt

ic
at

io
n

Authentication
type

 _ Bearer token in Autho-
rization header of the request

Authentication
levels

 _ Application user – user ac-
cess on application resourc-
es, based on permissions and
roles

 _ Application admin – full ac-
cess to application resources

admin. Application user has access to data storage
and user management services, as regulated by per-
mission rules. Application admin has full access to
application-related resources and to the application
management service.
Each service offering contains resource models,
which define how data is stored within a service, but
also how data is transferred between services of the
BaaS platform. Given the REST architectural style
of each service offering, resources were modeled as
JavaScript Object Notation (JSON) objects. In that
way, resources are technology agnostic and avail-
able through Hypertext Transfer Protocol (HTTP)
requests. Data storage service allows saving arbi-
trary data, modeled as JSON objects, in the property
named data of an entity resource. Entity resource also
contains user_id property, which binds it to a user.
Knowing which resources belong to which user is of
great importance when a user wants to update his
model or perform bulk actions on his entities. Col-
lection resource holds schema property, which de-
termines whether the platform should validate the
creation and updating of entities and discard them
if they do not comply with the schema. Besides enti-
ty, each model contains application property, which
is used to distinct resources on the application level.
Application resource incorporates publicKey and pri-
vateKey properties, which are used to compose HTTP
requests and manage application data, respectively.

Information Technology and Control 2020/2/49212

Table 3 presents an overview of actions from each
service offering of the BaaS platform. In accordance
with functional requirements, each API provides cre-

ate, read, update and delete (CRUD) operations for
predetermined resources. In this respect, the BaaS
platform differs from a backend framework, cover-

Table 3
Designed actions of the BaaS platform

API Endpoint HTTP Method Semantics

D
at

a
st

or
ag

e

/data
GET Retrieve all collections

POST Create a collection

/data?searchQuery={searchQuery} GET Query collections

/data{id}

GET Get the collection by id

PUT Update the collection

DELETE Delete the collection

/data{coll_name}
GET Retrieve all entities from the collection

POST Create an entity in the collection

/data/{coll_
name}?searchQuery={searchQuery} GET Query entities in the collection

/data/{coll_name}/{id}

GET Get the entity by id

PUT Update the entity

DELETE Delete the entity

U
se

r m
an

ag
em

en
t

/users
GET Retrieve all users

POST Create a user

/users/login POST Login a user

/users/password-recovery POST Initiates a password recover process for the user

/users/{id}

GET Get the user by id

PUT Update the user

DELETE Delete the user

/roles
GET Retrieve all roles

POST Create a role

/roles/{id} DELETE Delete the role

/roles/{id}/users
GET Get users in the role

POST Add a user to the role

/roles/{id}/users/{user_id} DELETE Delete the user from the role

/roles/{id}/permissions

GET Get permissions in the role

POST Add permission in the role

DELETE Delete permission to the role

Ap
p m

an
ag

em
en

t /management/apps POST Create an application

/management/apps/{id}

GET Get the application by id

PUT Update the application

213Information Technology and Control 2020/2/49

ing most of the configuration process of the backend
services. In contrast to backend framework where
developers have to create tables, define relationships
and develop interfaces, the BaaS platform requires
only resource models to be provided through the pre-
defined interfaces and the platform automatically
generates relationships between them and takes ac-
count of scalability. The provided operations were de-
signed as asynchronous, to avoid blocking client ap-
plications. All stated API endpoints are relative to the
API entry point: /{app_key}. Thereby, each request is
application-specific.
According to [30], not all BaaS providers offer sepa-
rate access for application developers and users, thus
leaving end user’ data at risk and application vulner-
able for data manipulation, exploitation, and misuse.
Actions of managing users, collections and appli-
cations only need to be taken by developers through
separate access channels, or in the proposed design,
through the application admin authentication level.
Step 3: Upon the design of API contracts, a further
step was to decompose those contracts into micros-
ervices. Many different languages and frameworks for
the implementation of each individual microservice

were available. As a starting point in this step, API
implementation stubs for ASP.NET Core 2.0 platform
were generated by utilizing SwaggerHub tool. Gen-
erated stubs consisted only of methods that do not
contain any programming logic. Thereafter, each ser-
vice offering was implemented individually as a web
API service on the selected platform. Depending on
the defined requirements, each web API service was
composed of various architecture patterns and tech-
nologies, which ultimately leads to having a polyglot
microservice architecture.
Figure 2 presents the multi-architectural patterns
of implemented microservices. A non-relational
(NoSQL) database is selected for the data storage
microservice, given that this service ought to enable
storing arbitrary data of a flexible structure. Even
though the main advantage of NoSQL databases is
horizontal scaling, the database design was conduct-
ed bearing in mind that the BaaS platform can be si-
multaneously used by multiple applications. For the
sake of business requirements, the platform cannot
employ a single collection to store data coming from
different applications. Developers on top of the BaaS
platform have the ability to define validation schemes

Web API
- CRUD design
- Entity and
Collection controllers
with async methods

JSON media-
type formatter

Repository
pattern

JSON Schema
validation

NoSQL
Database

Data storage
microservice

Web API
- CRUD design
- Membership
system with async
methods

Role-based
authorization

JWT Bearer
middleware

OAuth2
authorization

server

SQL
Database

User management
microservice

Web API
- CRUD design
- Application
controller with
async methods

Public-key
encryption

SQL
Database

Application management
microservice

Web API
- CRUD design
- Entity and
Collection controllers
with async methods

JSON media-
type formatter

Repository
pattern

JSON Schema
validation

NoSQL
Database

Data storage
microservice

Web API
- CRUD design
- Membership
system with async
methods

Role-based
authorization

JWT Bearer
middleware

OAuth2
authorization

server

SQL
Database

User management
microservice

Web API
- CRUD design
- Application
controller with
async methods

Public-key
encryption

SQL
Database

Application management
microservice

Web API
- CRUD design
- Entity and
Collection controllers
with async methods

JSON media-
type formatter

Repository
pattern

JSON Schema
validation

NoSQL
Database

Data storage
microservice

Web API
- CRUD design
- Membership
system with async
methods

Role-based
authorization

JWT Bearer
middleware

OAuth2
authorization

server

SQL
Database

User management
microservice

Web API
- CRUD design
- Application
controller with
async methods

Public-key
encryption

SQL
Database

Application management
microservice

Figure 2
The internal architectural patterns of the implemented microservices

Information Technology and Control 2020/2/49214

for their collections, and the platform should not al-
low the imposition of the same validation rules in
another application. Therefore, each client has the
ability to create collections and store data at his own
choice. User management microservice provides the
developers with the basic authentication, authoriza-
tion and user management methods in the form of a
membership system. The service act as both resource
and authorization server, according to Open Authori-
zation (OAuth2) protocol terminology. Finally, appli-
cation management microservice allows application
management to anyone with an application private
key, which is produced by performing public-key en-
cryption of a client-defined public key. The technol-
ogy selection should not in any means disrupt the
proposed design method, as long as stated implemen-
tation requirements are fulfilled.
Step 4: Integration of microservices is indispensable
for their consolidated work and is considered as the
most important aspect of a microservice architecture
[27]. In the previous steps, the business modeling of
the autonomous microservices was carried out by
mapping them to the service offerings. The obtained
degrees of cohesiveness and coupling are the conse-
quences of the previous steps. In this step, design pat-
terns for different styles of microservices integration
were customized to the domain of the designed BaaS
platform. Prior to customization, the design patterns
were derived from the studied literature. In order to
select the appropriate style of the microservices inte-
gration, two presumptions stemming from the previ-
ous design steps were set out:
1 Data of each microservice are kept private to that

service, i.e. architecture implements database per
service pattern.

2 Each microservice communicates with client ap-
plications and other microservices asynchronously.

These underlying presumptions inevitably point to
a certain style of integration. The microservices of
BaaS platform were integrated by combining the two
integration styles. Business processes were managed
by a choreography system while an orchestrator sys-
tem supported cross-cutting concerns, such as au-
thentication.
A microservice architecture differentiates between
two types of communication: client-to-service and
inter-service. In the case of internal communication
between the microservices of the BaaS platform, the
event-based style of collaboration was employed. Ow-
ing to the prior microservices modeling, strong data
consistency in the BaaS platform is not required. Of
all BaaS platform business processes, only the pro-
cess of deleting a user span across the boundary of the
associated microservice. Figure 3 shows the imple-
mentation of an event-based communication for the
DeleteUser operation. After deleting a user, the user
management service publishes the DeleteUser event,
and data storage service must subscribe to that event
to delete related entities. The publish and subscribe
system is performed on an event bus. Since the op-
eration of deleting a user is not tightly coupled with
the operation of deleting related entities, there is no
need to block the former while waiting on the latter.
Therefore, by employing an event-based style of col-
laboration, loose coupling between the microservices
was preserved.
In the case of client-to-microservice communication,
the request-response style of collaboration was em-
ployed. Given the asynchronous way of communica-

Figure 3
Event-based communication for the DeleteUser operation

User
management
API service

Database

DB delete

Event bus
DeleteUser

event

Data
storage

API
serviceDeleteUser

event

Delete
related
entities

Database

DB delete

DeleteUser
operation

215Information Technology and Control 2020/2/49

Figure 4
Authentication process in the BaaS platform

API gateway User management
API service

BaaS
microservice

Client
application

Login -
Request

access token Request
token

Response token
Response

token

Client request
with access

token

Validate token

Token validation
response Authenticated

client request

Resource response
Requested
resource

tion, client application dispatches a request and reg-
isters for a callback which notifies the client when
the request has completed. To minimize the latency
which occurs by a client sending multiple requests
directly to microservices, the unique entry point for
client requests in the form of an API gateway was
implemented. API gateway of the BaaS platform ef-
ficiently aggregates responses of the overall backend
services, by handling cross-cutting concerns. Figure
4 presents the authentication process in the BaaS
platform that takes place through the API gateway.
The user management microservice was defined
as the identity service in the API gateway and it is
invoked to perform the authentication and autho-
rization process. To maintain statelessness, token
authentication system was implemented. Upon
successful login, the user obtains a JSON Web To-
ken (JWT) that must be attached on subsequent re-
quests. In this way, the API gateway establishes the
user’s identity and permissions.
Another advantage of using the API gateway design
pattern is that it allows the distribution of platform
interaction with clients, depending on the type of
client application. For example, processing APIs
from web and mobile applications may result in dif-

ferent performance indicators [6]. This is mainly
because mobile applications present the same data
less elaborate than web applications, given their
physical limitations in screen size. Network perfor-
mance is another aspect of the difference between
the two types of applications, with the mobile net-
work typically being much slower and having a much
higher delay than the non-mobile network [32]. An
additional backend in the form of the BaaS platform
can preprocess API responses and provide custom-
ized, highly optimized protocols and data formats
for communication with the mobile device. This
demonstrates the need for different API gateways
of one BaaS platform tailored for different types of
clients. The proposed platform design contains only
one gateway for all devices, but due to the use of this
design pattern, the platform can easily be extended
with additional gateways.
The overall architecture is presented in Figure 5.
API gateway serves as an access point for all client
requests returning the responses asynchronously. It
routes requests to the individual microservices, call-
ing the user management microservice to determine
identity. The microservices interact with each other
through the event bus.

Information Technology and Control 2020/2/49216

Figure 5
The architecture of the designed BaaS platform

CLIENT

Asynchronous request-response

APPLICATION
MANAGEMENT
MICROSERVICE

USER
MANAGEMENT
MICROSERVICE

DATA STORAGE
MICROSERVICE

SQL
DB

SQL
DB

NoSQL
DB

API GATEWAY
Authentication

levels
Role-based security

Request routing

EVENT BUS

Request-response

Request-response
Request-response

Ev
en

t-b
as

ed

Ev
en

t-b
as

ed

Ev
en

t-b
as

ed

4. Testing and Analysis
As was stated in the beginning, the main part of the
paper is the design of a microservice-based BaaS
platform. Considering that the API-first approach
was employed in the design of the BaaS platform,
proposed design method was proven by performing
API testing. Unlike traditional software testing, API
testing is performed without the use of GUI based li-
braries but using API client libraries that directly test
APIs in isolation [31]. More importantly, being a part
of integration testing, API testing is more suitable for
testing backend services associated with a microser-
vice architecture. Among many types of API testing,
functional testing verifies the functional correctness
of the system and was therefore selected for the eval-
uation of the BaaS platform functionality.
Furthermore, this section evaluates the impact of us-
ing a developed BaaS platform in developing a client
web application. As a mediator between the BaaS and

the web application, the Software Development Kit
(SDK) was developed for a widely- used JavaScript
framework Angular. The developed SDK eases a con-
nection between a web application and the BaaS plat-
form and hides the platform’s internal structure from
the end user. In order to assess the obtained speed and
simplicity of development, a simple web application
was developed in two ways:
1 Without BaaS platform.
2 On top of the designed BaaS platform.
In each of these modes of development, certain quali-
ty measurements, commonly used in object-oriented
design to quantify the complexity or quality of web
application, were conducted. The goal of this anal-
ysis is to determine the share of backend services in
the developed web application to clarify the speed in-
crease and complexity decrease of a web development
process.

217Information Technology and Control 2020/2/49

4.1. Implementation
The first prototype of the BaaS platform was imple-
mented using the technologies listed in Table 4. Prior
to the development of the autonomous microservices,
SwaggerHub tool was used to generate the empty
server stubs for ASP.NET Core framework. The other
technologies were selected as supplementary to the
framework, which results in facilitated integration.

Table 4
The implementation details of the BaaS platform

Subsystem Software
framework

Database
mapping

framework
Database

Data storage
microservice

ASP. NET
Core 2.0

MongoDB
ODM

MongoDB
4.0

User
management
microservice

ASP.NET
Core 2.0 Entity

Framework
Core

SQL
Server

2017
ASP.NET

Core
Identity

App
management
microservice

ASP. NET
Core 2.0

Entity
Framework

Core

SQL
Server

2017

API
gateway Ocelot - -

Event bus RabbitMQ - -

The client web application used for assessment of
the impact of BaaS platform is developed in Angular
6 framework and represents a web gallery-like appli-
cation. The developed web gallery meets the basic re-
quirements of an application of this type, such as the
ability to register users, create and differentiate user
albums, upload photos, update album and photo in-
formation, and more. The developed application con-
sists of four Angular components and of 15 functions.
More implementation details and insights into appli-
cation user interfaces can be found in [14], which is
the author’s previous work on the use of the BaaS sys-
tem when developing web applications.

4.2. Test Cases
The first step of API testing was setting up a testing
environment, i.e. setting up software and hardware
required to execute test cases. The API testing was

conducted using Postman – a complete API devel-
opment environment. Test cases were created as
collections in Postman, given that they were com-
posed of multiple requests. By writing pre-request
and test scripts for each request in a collection, re-
quests can be chained together thus creating a col-
lection workflow. Responses from some requests
were set in environment variables that other re-
quests use in their URL, body or test scripts. Test
scripts in Postman environment were written in Ja-
vaScript scripting language.
To evaluate platform functionality, two different test
cases that mirror an actual workflow for both admins
and users were defined. Admin’s workflow consists of
operations that an admin must perform to initialize
the application. Upon registering, an admin needs to
create an application, select a desired application pub-
lic key and define application roles and collections.
Actions of managing users, collections and applica-
tions are inherent only to the admins. User’s workflow
consists of nearly all platform operations that the user
has access to, organized in a logical sequence. After
setting up an account, the user manages his entities by
performing various CRUD operations on an entity re-
source. Firstly, a user accesses an application through
the application user level and enters desired account
information. After that, he is immediately redirected
to the login, upon which the user_id and access token
are stored as environment variables. If the login pro-
cess has passed successfully, the user can create, re-
trieve, update and delete the entities he owns.

4.3. Traditional Complexity Metrics of Web
Application
The analysis of the developed web gallery application
intends to determine the distribution of backend and
frontend services in the entire application. Deter-
mining the share of background services in the web
application can provide insight into how much the
development process accelerates and how much its
complexity decreases if an application is developed on
top of the BaaS platform. The first step in web gallery
analysis is to define the complexity metrics that sim-
plify the way to determine the complexity and size of a
web application. The metrics observed in this paper
stem from work in [25], which proposes a set of met-
rics for size and complexity of web application de-
rived from traditional object-oriented metrics.

Information Technology and Control 2020/2/49218

In the conducted analysis, the following three metrics
were selected to evaluate the complexity and size of
the developed web application:
 _ Lines of Code (LOC) – the number of lines of code

in a given class or file [6].
 _ Response for Class (RFC) – the number of methods

that are called when a certain operation within a
class is invoked [11].

 _ McCabe Cyclomatic Complexity Model (CCN) –
the number of distinct paths through which a code
segment can run [24].

Selected metrics help to determine the level of com-
plexity and size of a web application, as well as nor-
malize other measurements. For example, the very
high cyclomatic complexity of a method suggests a
high complexity of that method, but only if the meth-
od has a lower LOC value than other methods in the
class. This is one of the reasons why it is important
to collect measurements of all these metrics. The
measurement was performed using the Visual Studio
Code editor which features a Code Metrics Tool that
in a simple way eases measurement of the aforemen-
tioned metrics. Measurement was performed both
on file and function level for the corresponding func-
tions in both backend and frontend code segments.
The comparison of measured metrics is performed
in such a way that each function of the web gallery is
compared to the function of the BaaS platform that
it calls. If some function of the web interface calls
multiple BaaS functions, then the measurements for
those functions are added.

4.4. Cognitive Complexity Metrics of Web
Application
The traditional complexity measures listed are the
most widely used complexity metrics for object- ori-
ented software [29]. However, these metrics do not
fully demonstrate the complexity of modern appli-
cations. The traditional complexity metrics are gen-
erally criticized for their utilization of mathematical
models that do not take into account the relative com-
plexity of certain code sequences from a program-
mer’s perspective. Although they provide the mea-
surements required to evaluate the software, they
fail to indicate the reasons behind the obtained com-
plexity. For this reason, Wang [44] introduces a new
set of complexity metrics called cognitive complex-

ity metrics that use human judgment to assess how
structures should be scored. In order to determine
the complexity ratio of the BaaS platform and the web
application from a cognitive complexity standpoint,
several suitable metrics were selected. The cogitive
complexity metrics observed in this paper are derived
from the work in [26], which proposes a metric suite
for evaluating the cognitive complexity of object- ori-
ented software. In such metrics, specific weight is de-
fined for each basic control sequence, indicating the
complexity of its implementation.
In the analysis performed, the following three metrics
were selected to evaluate the cognitive complexity of
the developed web application:
 _ Attribute Complexity (AC) - the total number of

attributes associated with a class [17].
 _ Method Complexity (MC) - the sum of cognitive

weights of basic control sequences in a method.
In the analysis, this metric is observed at the
class level, so that the weights of all methods are
summarized [13].

 _ Class Complexity (CLC) - the sum of the attribute
complexity and all method complexities of a class [3].

All three metrics of cognitive complexity were mea-
sured at the class level. In the case of a developed
web gallery, the class represents an individual Angu-
lar module or component. Given that in modern web
applications, frontend development also stems from
object-oriented principles, it is feasible to compare
classes of web gallery and BaaS platform in this anal-
ysis. On the other hand, a class of the BaaS platform
consists of one microservice, which is in fact a web
API, and all the functions from the lower layers that
class invokes. The metrics are compared by compar-
ing each class of the web gallery with the class of BaaS
platform that performs apposite backend operations.
The SDK services are considered as function calls
from the frontend part of the application.

4.5. Discussion of Results
The conducted functional API testing yielded results
structured as a set of returned status code, duration,
and size of each HTTP request in the defined work-
flows. All the operations returned the expected status
codes, which means that the workflow was not com-
promised and that the designed platform was func-
tional. Given the fact that the requests were chained

219Information Technology and Control 2020/2/49

in a single workflow, failure of one request would
indicate that either the failed request is inadequate-
ly constructed, or the previous requests failed to
set the required environment variables. Therefore,
in the conducted API functional testing, only the
status codes were verified knowing in advance the
structure of the status codes foreseen to be returned
by the platform. By stating that all requests returned
the expected status codes, it can be concluded that
all requests were properly constructed and that they
set the required environment variables. Taken to-
gether, these results demonstrate that the designed
platform provides the ability to easily and quick-
ly set up the backend of mobile or web application
through several actions that the application admin
must take. After that, an application user can config-
ure his account and perform basic CRUD operations
on his own resources through a client application, all
supported by the BaaS platform.
Since the developers are the ultimate users of the
BaaS platform, the purpose of this analysis was to
take their stand in trying to determine how much
these platforms contribute to the development pro-
cess. Figure 6 displays the measurements of the se-
lected software complexity metrics for both backend
and frontend of the developed web gallery, where the
backend is constituted with the services of the BaaS
platform. The letter F denotes the frontend part of
the developed application while B stands for the
backend. Measurement comparison for the corre-
sponding BaaS platform functions and web appli-
cation functions can to a certain extent determine
their complexity and the size ratio. The ratio of the
measured quantity between the application back-
end and frontend is calculated for each metric. The
first metric of importance is the LOC in a particular
method. By observing the total sum of all code lines,
it can be concluded that the share of backend code
needed for web gallery to work is about 61% of the
total code. Similarly applies to the RFC (54%) and
CCN (59%) metrics. It is important to note that a
certain part of the backend-specific code is replaced
with the general uniform functions of the BaaS plat-
form. Likewise, a certain code segment of the fron-
tend is formed by invoking the services of the BaaS
platform in the correct manner and in the appro-
priate order. The given RFC ratio of the total code
indicates that a slightly larger number of methods

can be invoked from backend classes, thus the utili-
zation of the BaaS platform could obviate more than
half of debugging and testing efforts. Moreover, the
calculated ratio of the CCN metric also indicates the
possibility of halving the required number of tests by
developing on top of the BaaS platform.
Figure 7 demonstrates the measurements of the se-
lected cognitive complexity metrics for both back-
end and frontend of the developed web gallery. The
web application consists of four separate compo-
nents: authentication, album create, photo upload
and album update component, as described in [14].
The ratios of cognitive complexity metrics are cal-
culated at the class level, with the four components
consisting of the functions shown in Figure 6 and
additional functions. The ratios of values of cogni-
tive complexity metrics are slightly different from
those of traditional metrics. According to the cogni-
tive complexity metrics, three of the four frontend
components are more complex than the correspond-
ing backend classes. One reason for this may be that
some of the frontend functions operate solely on
the client- side and do not perform function calls of
BaaS services. On the other hand, these results in-
dicate that the frontend components have multiple
attributes and that their functions are composed of
basic control sequences of higher weights. However,
an album update component that incorporates more
complex data storage logic results in higher values of
MC and CLC metrics for the backend side.
It is very important to emphasize here that the re-
sults obtained depend largely on the implementa-
tion of the functions and classes presented. Howev-
er, object- oriented standards were adhered to when
implementing the web gallery, and efforts were
made to develop features that resemble CRUD op-
erations as closely as possible. From the results of
traditional complexity metrics presented, it can be
concluded that the backend part of the application
is larger and more complex than the frontend part.
However, in terms of the development effort from a
programmer’s perspective, the frontend part of the
application has evinced to be more complex. These
results support the stated benefits of a BaaS plat-
form that seeks to reduce the superfluous backend
that is recurring in most applications while allow-
ing developers to focus on the development of fron-
tend features.

Information Technology and Control 2020/2/49220

Figure 6. Ratio of complexity metrics for BaaS platform and web gallery application

Ra
tio

 o
f f

ro
nt

en
d/

ba
ck

en
d

co
m

pl
ex

ity
 m

ea
su

re
 in

 o
ve

ra
ll

fu
nc

tio
na

lit
y

Figure 7. Ratio of cognitive complexity metrics for BaaS platform and web gallery application

221Information Technology and Control 2020/2/49

5. Conclusion
The aim of this paper was to propose a method for
designing a microservice-based BaaS platform. By
analyzing several platforms of major BaaS provid-
ers, it was concluded that most of them possess the
equivalent set of service offerings. However, very
little was found in the literature on the question of
designing a BaaS platform. Several previous works
proposed a high-level design, focusing mainly on
data storage service offering without defining a
proper integration and communication styles. To
the best of authors’ knowledge, this paper proposes
the lowest- level design of a BaaS platform so far,
describing the entity relations, integration patterns,
and communication styles.
Microservice architecture proved to be a natural
choice for the architecture of a BaaS platform be-
cause each service offering fits an individual micro-
service. In this way, microservices can be scaled in-
dividually, depending on clients’ needs. Additionally,
a new service offering can be added as a new micro-
service in the platform, without affecting the exist-
ing architecture. That is why the designed platform
consists only of core service offerings that are pres-
ent in each such platform. Results of the function-
al API testing indicated that the designed platform
performs requested functionalities, designed specif-
ically to mirror the admin and user ways of using the
platform. The constructed test cases can be used to
test future designs of a BaaS platform. This kind of
BaaS platform testing has not yet been carried out in
the literature, mainly due to the diversity of services
provided by such platforms and could therefore be
identified as a future research problem. In order for
the design platform to be fully compared with the ex-
isting commercial platforms, a similar study should
be carried out as described in Section 2, but this goes
beyond the scope of this work. The emphasis here
was solely on the low-level design of a functional
platform. The proposed method contributes to the
problem of designing a BaaS platform and provide
a basis for adding new service offerings in existing
architecture.
The final analysis of the size and complexity of the
client web application shown that utilization of the
proposed BaaS platform considerably facilitates and
accelerates the web development process. About

60% of the developed web application is constitut-
ed by its backend. On the other hand, when looking
at cognitive complexity, it can be concluded that the
frontend part of the application is more complex in
terms of development effort from a programmer’s
perspective. It is important to note that the acquired
results depend majorly on the context of the web de-
velopment process, which consists of the application
domain, functionalities, development frameworks,
languages, and other development tools. The terms
in which the results of the conducted client-level
comparison may be considered relevant for a future
research imply a client-like application of similar
functionality and program code such as a developed
web photo gallery. The analysis carried out may be
a reference for testing the advantages of the BaaS
system, but the performer of the evaluation must be
able to assess the weight of the influence of said de-
velopment parameters on the results of the analysis.
This study is limited by the lack of information on
the architecture of the major platforms of the BaaS
market. Notwithstanding these limitations, the pro-
posed method may be a suitable starting point for
small businesses that want to take advantage of a
BaaS model while avoiding the risks of vendor lock-
in and platform shutdown. Since this method begins
by defining the backend features and then gives a
detailed list of steps all independent of the choice of
technology, it can be recommended for all those sys-
tems that depend on the third-party BaaS platform,
to avoid potential vendor lock-in whilst acquiring
trustworthy backend for future use. This research
has thrown up many questions in need of further in-
vestigation. A further study could assess the adapta-
tion of additional design patterns for a microservice
architecture to achieve increased performance and
scalability of a BaaS platform. Likewise, further re-
search might explore novel service offerings, such as
machine learning features for mobile and web use
cases.

Acknowledgment
This work was supported by the Europe-
an Regional Development Fund under the
grants KK.01.1.1.01.0009 (DATACROSS), and
KK.01.2.1.01.0127.

Information Technology and Control 2020/2/49222

References
1. Abir, H., Khaled, R. A Smart City System Using Back-

end as a Service Approach: Biskra City Case Study.
Proceedings of 5th International Symposium on Inno-
vation in Information and Communication Technology
(ISIICT), Jordan, India, October 31 - November 1, 2018,
1-7. https://doi.org/10.1109/ISIICT.2018.8613725

2. Aguilar, J. A., Garrigos, I., Mazon, J. N. Requirements
Engineering in the Development Process of Web Sys-
tems: A Systematic Literature Review. Acta Poly-
technica Hungarica, 2016, 13(3), 61-80. https://doi.
org/10.12700/APH.13.3.2016.3.4

3. Akbarinasaji, S., Soltanifar, B., Çağlayan, B., Bener, A.B.,
Miranskyy, A., Filiz, A., Kramer, B.M., Tosun, A. A Met-
ric Suite Proposal for Logical Dependency. Proceedings
of the 7th International Workshop on Emerging Trends
in Software Metrics, Austin, Texas,USA, May 14, 2016,
57-63. https://doi.org/10.1145/2897695.2897704

4. Apigee. API BaaS Deprecation and End of Life. https://
docs.apigee.com/release/notes/api-baas-eol. Accessed
on June 19, 2019.

5. Basili, V. R., Perricone, B. T. Software Errors and Com-
plexity: An Empirical Investigation, 1983. https://
dl.acm.org/doi/10.1145/69605.2085

6. Bermbach, D., Wittern, E. Benchmarking Web API Qual-
ity. Proceedings of the International Conference on Web
Engineering, Lugano, Switzerland, June 6-9, 2016, 188-
206.https://doi.org/10.1007/978-3-319-38791-8_11

7. Bloch, J. How to Design a Good API and Why It Mat-
ters. Proceedings of Companion to the 21st ACM SIG-
PLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, Portland Ore-
gon, USA, October 22-26, 2006, 506-507. https://doi.
org/10.1145/1176617.1176622

8. Bonacic, C., Neyem, A., Vasquez, A. Live ANDES: Mo-
bile-cloud Shared Workspace for Citizen Science and
Wildlife Conservation. Proceedings of IEEE 11th In-
ternational Conference on e-Science, Munich, Germa-
ny, August 31 - September 4, 2017, 29-30. https://doi.
org/10.1109/eScience.2015.64

9. Carranza-García, F., Rodríguez-Domínguez, C., Garri-
do, J. L., Guerrero-Contreras, G. BaaS-4US: A Frame-
work to Develop Standard Backends as a Service for
Ubiquitous Applications. Proceedings of 15th Interna-
tional Conference on Ubiquitous Computing and Com-
munications and 2016 International Symposium on
Cyberspace and Security (IUCC-CSS), Granada, Spain,
December 14-16, 2016. https://doi.org/10.1109/IUCC-
CSS.2016.012

10. Carter, B. Grow Your Own Backends-as-a-Service
(BaaS) Platform. Proceedings of the GOCICT Confer-
ence College of Information & Computer Technology,
Sullivan University, Louisville, USA, 2015.

11. Chidamber, S.R., Kemerer, C.F. Towards a metrics suite
for object oriented design. Proceedings of the Confer-
ence on Object-oriented programming systems, lan-
guages, and applications, Phoenix Arizona, USA, No-
vember, 1991. https://doi.org/10.1145/117954.117970

12. Colombo-Mendoza, L. O, Alor-Hernández, G., Rodrí-
guez-González, A., Valencia-García, R. MobiCloUP!:
A PaaS for Cloud Services-based Mobile Applications.
Automated Software Engineering, 2014, 21(3), 391-437.
https://doi.org/10.1007/s10515-014-0143-5

13. Crasso, M., Mateos, C., Zunino, A., Misra, S., Polvorín,
P. Assessing Cognitive Complexity in Java-based Ob-
ject-oriented Systems: Metrics and Tool Support. Com-
puting and Informatics, 2016, 35(3), 497-527.

14. Dudjak, M. Development of BaaS (Backend as a Service)
System for Web Applications. Master thesis, Josip Ju-
raj Strossymayer University of Osijek, Faculty of Elec-
trical Engineering, Computer Science and Information
Technology Osijek, Department of Software Engineer-
ing, 2018.

15. Fornaia, A., Napoli, C., Tramontana, E. Cloud Services
for On-Demand Vehicles Management. Information
Technology and Control, 2017, 46(4), 484-498. https://
doi.org/10.5755/j01.itc.46.4.17331

16. Gropengießer, F., Sattler, K. U. Database Backend as a
Service: Automatic Generation, Deployment, and Man-
agement of Database Backends for Mobile Applica-
tions. Datenbank-Spektrum, 2014, 14(2), 85-95. https://
doi.org/10.1007/s13222-014-0157-y

17. Husein, S., Oxley, A. A Coupling and Cohesion Met-
rics Suite for Object-oriented Software. Proceedings
of International Conference on Computer Technol-
ogy and Development, Kota Kinalabu, Malaysia, No-
vember 13- 15, 2009, 421-425. https://doi.org/10.1109/
ICCTD.2009.209

18. Kato, T., Tanaka, T., Sugihara, S., Shimizu, K., Kudo, N.
Trial Operation of a Cloud Service-based Three- di-
mensional Virtual Reality Tele-rehabilitation System
for Stroke Patients. Proceedings of 11th Internation-
al Conference on Computer Science & Education
(ICCSE), Nagoya, Japan, August 23-25, 2016, 285-290.
https://doi.org/10.1109/ICCSE.2016.7581595

https://doi.org/10.1109/ISIICT.2018.8613725
https://doi.org/10.1145/2897695.2897704
https://doi.org/10.1007/978-3-319-38791-8_11
https://doi.org/10.1145/1176617.1176622
https://doi.org/10.1145/1176617.1176622
https://doi.org/10.1109/eScience.2015.64
https://doi.org/10.1109/eScience.2015.64
https://doi.org/10.1109/IUCC-CSS.2016.012
https://doi.org/10.1109/IUCC-CSS.2016.012
https://doi.org/10.1145/117954.117970
https://doi.org/10.1007/s10515-014-0143-5
https://doi.org/10.5755/j01.itc.46.4.17331
https://doi.org/10.5755/j01.itc.46.4.17331
https://doi.org/10.1007/s13222-014-0157-y
https://doi.org/10.1007/s13222-014-0157-y
https://doi.org/10.1109/ICCTD.2009.209
https://doi.org/10.1109/ICCTD.2009.209
https://doi.org/10.1109/ICCSE.2016.7581595

223Information Technology and Control 2020/2/49

19. Kavis, M. J. Architecting the Cloud: Design Deci-
sions for Cloud Computing Service Models (SaaS,
PaaS, and IaaS). John Wiley & Sons, 2014. https://doi.
org/10.1002/9781118691779

20. Kumar, P.J., Sundaram, S. M. Enabling Cloud Adoption
Based Secured Mobile Banking through Backend as a
Service. Proceedings of the International Conference
on Security in Cloud Computing ICSCC, 2017, 29-30.

21. Lane, K. Overview of the Backend as a Service (BaaS)
Space. API Evangelist, 2015.

22. Lojka, T., Bundzel, M., Zolotová, I. Service-oriented
Architecture and Cloud Manufacturing. Acta Poly-
technica Hungarica, 2016, 13(6), 25-44. https://doi.
org/10.12700/APH.13.6.2016.6.2

23. MarketsandMarkets. Backend as a Service (BaaS)
Market worth 28. 10 Billion USD by 2020. http://www.
marketsandmarkets.com/PressReleases/baas.asp. Ac-
cessed on June 19, 2019.

24. McCabe, T. J. A Complexity Measure. IEEE Transac-
tions on Software Engineering, 1976, SE-2(4), 308-320.
https://doi.org/10.1109/TSE.1976.233837

25. McNinch, CA. Measuring and Quantifying Web Appli-
cation Design. 2012.

26. Misra, S., Adewumi, A., Fernandez-Sanz, L., Damasevi-
cius, R. A Suite of Object-oriented Cognitive Complex-
ity Metrics. IEEE Access, 2018, 6, 8782-8796. https://
doi.org/10.1109/ACCESS.2018.2791344

27. Newman, S. Building Microservices: Designing Fine-
grained Systems. O’Reilly Media, Inc., 2015.

28. Nguyen, P. Mobile Backend as a Service: The Pros and
Cons of Parse, 2016.

29. Pressman, R. S. Software Engineering: A Practitioner’s
Approach. Palgrave Macmillan, 2005.

30. Rasthofer, S., Arzt, S., Hahn, R., Kolhagen, M., Bodden,
E. (In)Security of Backend-as-a-Service. 2015.

31. Richardson A. Automating & Testing a REST API. Com-
pendium Developments. Great Britain, 2017.

32. Richardson, C. Microservices Patterns. Shelter Island:
Manning Publications, 2018.

33. Rivero, J. M., Heil, S., Grigera, J., Gaedke, M., Rossi, G.
MockAPI: An Agile Approach Supporting API-first
Web Application Development. Proceedings of Interna-
tional Conference on Web Engineering, Berlin Heidel-
berg, July 8-12, 2013, 7-21.https://doi.org/10.1007/978-
3-642-39200-9_4

34. Rodriguez-Martinez, L. C, Duran-Limon, H. A., Mora,
M., Rodriguez, F.A. SOCA-DSEM: A Well-structured

SOCA Development Systems Engineering Methodolo-
gy. Computer Science and Information Systems, 2019,
16(1), 19-44. https://doi.org/10.2298/CSIS170703035R

35. Sareen, P. Cloud Computing: Types, Architecture, Ap-
plications, Concerns, Virtualization and Role of IT Gov-
ernance in Cloud. International Journal of Advanced
Research in Computer Science and Software Engineer-
ing, 2013, 3(3).

36. Sill, A. The Design and Architecture of Microservices.
IEEE Cloud Computing, 2016, 3(5), 76-80. https://doi.
org/10.1109/MCC.2016.111

37. Stowe, M. Undisturbed REST: A Guide to Designing the
Perfect API. Lulu.com, 2015.

38. Syer, M. D., Nagappan, M., Adams, B., Hassan, A. E.
Studying the Relationship Between Source Code Qual-
ity and Mobile Platform Dependence. Software Quality
Journal, 2015, 23(4), 485-508.https://doi.org/10.1007/
s11219-014-9238-2

39. Taibi, D., Lenarduzzi, V., Pahl, C. Architectural Patterns
for Microservices: A Systematic Mapping Study. Pro-
ceedings of the 8th International Conference on Cloud
Computing and Services Science (CLOSER 2018), Ma-
deira, Portugal, March 19-21, 2018, 221-232. https://doi.
org/10.5220/0006798302210232

40. Tan, D. J., Tzi, G. Y., Lau, S. L. A Study on Cloud-based
Backend for Crowd-sourced Sensor Data Collection Apps.
IEEE Conference on e-Learning, e-Management and e-
Services (IC3e), Langkawi, Malaysia, October 10-12, 2016,
46-51. https://doi.org/10.1109/IC3e.2016.8009038

41. Thönes, J. Microservices. IEEE Software, 2016, 32(1),
116-116. https://doi.org/10.1109/MS.2015.11

42. Vásquez-Ramírez, R., Bustos-Lopez, M., Alor- Hernán-
dez, G., Sanchez-Ramírez, C., García-Alcaraz, J.L. Ath-
enaCloud: A Cloud-based Platform for Multi- device
Educational Software Generation. Computer Science
and Information Systems, 2016, 13(3), 957-981. https://
doi.org/10.2298/CSIS160807037V

43. Villamizar, M., Garcés, O., Castro, H., Verano, M., Sal-
amanca, L., Casallas, R., Gil, S. Evaluating the Mono-
lithic and Microservice Architecture Pattern to Deploy
Web Applications in the Cloud. Proceedings of the 10th
Computing Colombian Conference (10CCC), Bogota,
Colombia, November 23, 2015. https://doi.org/10.1109/
ColumbianCC.2015.7333476

44. Wang, Y. On the Cognitive Informatics Foundations
of Software Engineering. Proceedings of the 3rd IEEE
International Conference on Cognitive Informatics,
Victoria, Canada, August 17, 2004, 22-31.https://doi.
org/10.1109/COGINF.2004.1327456

https://doi.org/10.1002/9781118691779
https://doi.org/10.1002/9781118691779
https://doi.org/10.12700/APH.13.6.2016.6.2
https://doi.org/10.12700/APH.13.6.2016.6.2
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/ACCESS.2018.2791344
https://doi.org/10.1109/ACCESS.2018.2791344
https://doi.org/10.1007/978-3-642-39200-9_4
https://doi.org/10.1007/978-3-642-39200-9_4
https://doi.org/10.2298/CSIS170703035R
https://doi.org/10.1109/MCC.2016.111
https://doi.org/10.1109/MCC.2016.111
https://doi.org/10.1007/s11219-014-9238-2
https://doi.org/10.1007/s11219-014-9238-2
https://doi.org/10.5220/0006798302210232
https://doi.org/10.5220/0006798302210232
https://doi.org/10.1109/IC3e.2016.8009038
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.2298/CSIS160807037V
https://doi.org/10.2298/CSIS160807037V
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.1109/COGINF.2004.1327456
https://doi.org/10.1109/COGINF.2004.1327456

