
487Information Technology and Control 2019/3/48

The Analysis of Energy
Performance in Use Parallel
Merge Sort Algorithms

ITC 3/48
Journal of Information Technology
and Control
Vol. 48 / No. 3 / 2019
pp. 487-498
DOI 10.5755/j01.itc.48.3.23696

The Analysis of Energy Performance in Use Parallel
Merge Sort Algorithms

Received 2019/06/26 Accepted after revision 2019/08/30

 http://dx.doi.org/10.5755/j01.itc.48.3.23696

Corresponding author: zbigniew.marszalek@polsl.pl

Zbigniew Marszałek
Institute of Mathematics, Silesian University of Technology, ul. Kaszubska 23, 44-100 Gliwice, Poland

The issue of productivity and energy is an important objective of the optimization of parallel applications. The
size of the problem for a large number of data on multiprocessor platforms forces the use of parallel algorithms.
Efficient management of large memories using modern processors in Big data processing requires innovative
techniques and efficient algorithms. For years have found the results of tests conducted on methods for use
in various computing environments and improvements. This article shows the energy consumption analysis
by parallel sorting algorithms. Sort algorithms are used in information systems and databases, to select and
organize the information. The subject of this article is research into energy consumption and computational
complexity for parallel sorting methods by merging compared to classic methods. The tests carried out confirm
the reduction of energy consumption by using parallel sorting algorithms. The presented parallel fast sort and
parallel modified merge sort for large task dimensions have less power consumption than classic methods and
can be used successfully in NoSQL databases.
KEYWORDS: power-aware testing, functional power component, parallel algorithm, data sorting, data min-
ing, analysis of computer algorithms.

1. Introduction
Analysis of energy consumption by algorithms is an
important element taken into account in the design of
computer systems. Power analysis can be performed
by using the measurement methods or based on sim-
ulation. In the case of computer algorithms it is more
convenient to perform a simulation of energy con-

sumption. Simulators processor down-level and esti-
mated average power consumption were presented in
[4, 5, 10].
Information technology is growing every year. Data
processing systems in the NoSQL databases requi-
re efficient sorting algorithms with low energy con-

mailto:obodovskiy58@gmail.com

Information Technology and Control 2019/3/48488

sumption. Basic sorting algorithms, such as quick
sort, sorting through packing and sorting by merging
have been described in many works, among other
things in [3, 13, 19]. Parallelized algorithm for fast sort
[16] and parallelized merge sort algorithm [17] play a
special role in increasing the efficiency of the orde-
ring data sets, and reducing the energy consumed by
the processors. Most of the work on energy efficiency
[1, 9, 12, 18] assumes that energy consumption is inde-
pendent of the size of the problem. In [15], an analysis
of the memory impact on the energy efficiency of par-
allel computation is presented. This article attempts
to determine the power consumption of parallel sort-
ing methods by merging. The analysis carried out
shows the cost-effectiveness of using parallel sorting
methods for large task dimensions.
To compare the energy efficiency of the parallel sor-
ting methods, a classic fast sorting algorithm, a tri-
geminal heap algorithm, and a non-recursive merge
sorting algorithm were taken. The quick sort algori-
thm divides the sorted string into two substrings and
moves the elements of the string so that the first subs-
tring is less than or equal to the middle element and
the elements in the second substring are larger than
the midpoint. The recursive split process is executed
for the ordering of the string. The introduction of a
median value for divisions exchange was presented in
[21]. This method was tested on various architectu-
res in [22]. Heap sort uses the three level structure of
data storage, where introduced relations between the
following levels influence the speed of sorting. Each
change in the structure requires the procedure to
insert elements into the heap. Mathematical models
of the relations between levels of the heap were dis-
cussed in [2, 8]. The non-recursive version of the sort
algorithm iterates through the string elements, enlar-
ges the size of the merged string in each iteration twi-
ce. Sublinear merging was presented in [3]. Parallel
computing issues and their use are described in [20].
The Parallel Fast Sort Algorithms and Parallel Modi-
fied Merge Sort Algorithm [16, 17] methods are shown
to reduce the energy consumption of large data sets.

2. Materials and Methods
Work on reducing the power consumption of micro-
processors has been carried out for many years [4, 5,

10]. Gupta [10] shows a method of measuring the power
consumption by means of voltage measurement during
instructions by the microprocessor and defines the en-
ergy usage in the clock cycle by
. In this method, the voltage is measured on the resi-
stors in the power circuit. Similarly, Chen [4] determi-
nes the maximum energy consumption of a processor
in a measurement cycle. To improve performance and
to reduce power consumption in cloud computing in-
frastructures at work, [18] apples the parallel bi-ob-
jective genetic algorithm. The computation cost of a
task and the parameter decision-making that spec-
ifies the processor power consumption is a function of
the . The optimization of scientific workflows in
heterogeneous computing environments and energy
consumption is subject to study at work [9]. The ener-
gy consumption model used the clock frequency of the
main module. Heuristic algorithm [1] in the calculation
of energy efficiency in the data center resources reallo-
cated to Quality of Service (QoS) takes into account the
number of virtual machines and clock frequency. This
work in the energy consumption model of data colla-
tions using the described algorithms assumes the fre-
quency of the main processor and the number of cycles
needed to complete the task. Research on the relation-
ship between memory accesses, bank conflicts, thread
multiplicity, and instruction-level parallelism in com-
parison-based sorting algorithms for Graphics Pro-
cessing Units (GPUs) are described in [11]. In [6], the
implementation of image transformation algorithm
on mobile devices using the approximate computation
methods is described. The proposed algorithm allows
to save 6% of energy when transforming the greyscale
images using the Twirl effect. The efficiency of ener-
gy consumption function hash is the subject of tests
[7]. Research shows that the most efficient algorithm
for cryptographic applications is SVI and crc16 for
non-cryptographic applications. The proposed solu-
tions allow to save up to 29% of energy on hashing op-
erations.
Commonly used method in information systems to
organize data sets is called quick sort. However, this
method is sensitive to the critical settings of the sort-
ed string and is not easily performed on many proces-
sors available on modern computers. Alternatively,
for sorting large data sets the sort method is used by
the merge described in [3, 19]. This paper will com-
pare the power consumption of the processor to the

489Information Technology and Control 2019/3/48

classic sorting methods: quick sort, trigeminal heap
sort and merge sort with parallel methods: fast sort
[16] and modified merge sort [17].

2.1. Parallel Random Access Machine
For the analysis of parallel sorting algorithm it is con-
venient to use the parallel machine model the PRAM
(parallel random access machine) as shown in Figure 1.

cient details to allow others to observe some features
of A, and let a– be arithmetic mean of these results

Depending on the processor's access method, four types
of PRAM machines are specified in memory:

1. Exclusive read exclusive write (EREW)
2. Concurrent read exclusive write (CREW)
3. Exclusive read concurrent write (ERCW)
4. Concurrent read concurrent write (CRCW)

The first type of machine the PRAM allows to read
write memory only one processor. The second type
provides reading memory through any processor, but
wringing at the same time can run only one processor.
The third type allows to read every memory cell by
only one processor and multiple processors can read a
memory cell at the same time. The third type of PRAM
machine is not intended to be practical and is not
considered in theory.The fourth type allows to access
memory using any processor. The second of the
presented models reflects the architecture of the modern
computer and is practically possible to implement.

2.2 Statistical Research on Algorithm
Performance
Let denote disordered number of
distributed results of methods should be described with
sufficient details to allow others to observe some
features of , and let be arithmetic mean of these
results

Standard deviation describes the formula

where is the number of elements in the sample,

 are values of the random variable in the
sample and is the arithmetic mean of the sample. In
order to find the most efficient algorithm is an analysis
of average time for sufficiently large set of data. The
analysis for sorting time was carried out in 100
benchmark tests for each of the fixed dimension of the
task on the input. The stability of the algorithm is best
described on the basis of the coefficient of variation.
The coefficient of variation is a measure that allows to
determine value of diversity in the examined
population. It is determined by the formula

where is the arithmetic mean (1) and is the standard
deviation (2). The coefficient of variation reflects the
stability of the method in a statistical sense. Benchmark
tests of the newly proposed method for sorting sets
were taken for 100, 1.000, 10.000, 100.000, 1.000.000,
10.000.000 and 100.000.000 elements on the input. The

results are presented in graphs and discussed in
the following sections.

3. Parallel Fast Sort Algorithm

Sorting large data sets requires high-speed
parallel methods of low complexity. In [16], the
parallel sorting method that allows the use of
high-capacity modern processors is described.
Consider parallelization of the fast sort algorithm.
Each string sort step merges all three ordered
numeric strings into one sorted numeral string in
Figure 2. In the first stage, the first two pairs of
strings are merged into the temporary array, and
then the string stored in the temporary array with
the third string written to the input array is
merged. In the first step, independently
working processors merge each pair of strings,
where is the dimension of the sort tasks. In the
next steps, the number of independently working
processors decreases three times, and only one
processor is involved in the last step.
Theorem 1. Parallel Fast Sort Algorithm using

 processors has time complexity

PROOF
The proof is conducted for the , where

 .
Due to the fact that three ordered t-elements can
merge into one sorted string by doing no more
than comparisons, then for in the
first step each processors will perform no
more than comparisons. All string
merge time is a single processor operation time.
In each step , the algorithm using
processors will merge the three element
strings by doing no more than than
comparisons. The sum of all comparisons
performed by the algorithm is

(1)

Standard deviation describes the formula

Depending on the processor's access method, four types
of PRAM machines are specified in memory:

1. Exclusive read exclusive write (EREW)
2. Concurrent read exclusive write (CREW)
3. Exclusive read concurrent write (ERCW)
4. Concurrent read concurrent write (CRCW)

The first type of machine the PRAM allows to read
write memory only one processor. The second type
provides reading memory through any processor, but
wringing at the same time can run only one processor.
The third type allows to read every memory cell by
only one processor and multiple processors can read a
memory cell at the same time. The third type of PRAM
machine is not intended to be practical and is not
considered in theory.The fourth type allows to access
memory using any processor. The second of the
presented models reflects the architecture of the modern
computer and is practically possible to implement.

2.2 Statistical Research on Algorithm
Performance
Let denote disordered number of
distributed results of methods should be described with
sufficient details to allow others to observe some
features of , and let be arithmetic mean of these
results

Standard deviation describes the formula

where is the number of elements in the sample,

 are values of the random variable in the
sample and is the arithmetic mean of the sample. In
order to find the most efficient algorithm is an analysis
of average time for sufficiently large set of data. The
analysis for sorting time was carried out in 100
benchmark tests for each of the fixed dimension of the
task on the input. The stability of the algorithm is best
described on the basis of the coefficient of variation.
The coefficient of variation is a measure that allows to
determine value of diversity in the examined
population. It is determined by the formula

where is the arithmetic mean (1) and is the standard
deviation (2). The coefficient of variation reflects the
stability of the method in a statistical sense. Benchmark
tests of the newly proposed method for sorting sets
were taken for 100, 1.000, 10.000, 100.000, 1.000.000,
10.000.000 and 100.000.000 elements on the input. The

results are presented in graphs and discussed in
the following sections.

3. Parallel Fast Sort Algorithm

Sorting large data sets requires high-speed
parallel methods of low complexity. In [16], the
parallel sorting method that allows the use of
high-capacity modern processors is described.
Consider parallelization of the fast sort algorithm.
Each string sort step merges all three ordered
numeric strings into one sorted numeral string in
Figure 2. In the first stage, the first two pairs of
strings are merged into the temporary array, and
then the string stored in the temporary array with
the third string written to the input array is
merged. In the first step, independently
working processors merge each pair of strings,
where is the dimension of the sort tasks. In the
next steps, the number of independently working
processors decreases three times, and only one
processor is involved in the last step.
Theorem 1. Parallel Fast Sort Algorithm using

 processors has time complexity

PROOF
The proof is conducted for the , where

 .
Due to the fact that three ordered t-elements can
merge into one sorted string by doing no more
than comparisons, then for in the
first step each processors will perform no
more than comparisons. All string
merge time is a single processor operation time.
In each step , the algorithm using
processors will merge the three element
strings by doing no more than than
comparisons. The sum of all comparisons
performed by the algorithm is

(2)

where n is the number of elements in the sample,
a1, a2, ..., an are values of the random variable in the
sample and a– is the arithmetic mean of the sample. In
order to find the most efficient algorithm is an anal-
ysis of average time for sufficiently large set of data.
The analysis for sorting time was carried out in 100
benchmark tests for each of the fixed dimension of the
task on the input. The stability of the algorithm is best
described on the basis of the coefficient of variation.
The coefficient of variation is a measure that allows
to determine value of diversity in the examined popu-
lation. It is determined by the formula

(3)

where a– is the arithmetic mean (1) and σ is the stan-
dard deviation (2). The coefficient of variation re-
flects the stability of the method in a statistical sense.
Benchmark tests of the newly proposed method for
sorting sets were taken for 100, 1.000, 10.000, 100.000,
1.000.000, 10.000.000 and 100.000.000 elements on
the input. The results are presented in graphs and dis-
cussed in the following sections.

3. Parallel Fast Sort Algorithm
Sorting large data sets requires high-speed parallel
methods of low complexity. In [16], the parallel sorting
method that allows the use of high-capacity modern
processors is described. Consider parallelization of
the fast sort algorithm. Each string sort step merges
all three ordered numeric strings into one sorted nu-
meral string in Figure 2. In the first stage, the first two
pairs of strings are merged into the temporary array,
and then the string stored in the temporary array with
the third string written to the input array is merged. In

Figure 1
A sample schema of the Parallel Random Access Machine

 Figure 1
 A sample schema of the Parallel Random Access Machine

 Figure 2
 Parallel fast sort algorithm

 Figure 3
 Pseudocode parallel fast sort algorithm
 Start
 Load table a
 Load dimension of table a into n
 Create an array of b of dimension n
 Set options for parallelism to use all
 processors of the system
 Set the size of the merged string to one
 and remember in tt
 While tt is less than n then do
 Begin
 Calculate the number of three consecutive
 merged strings and remember in it
 Parallel for each processor j at index
 greater or equal 0 and less than it do
 Begin parallel for
 Merge three consecutive strings
 allocated for the processor J
 using an array of b
 End of the parallel for
 Multiply variable tt by three
 End
 Stop

Depending on the processor’s access method, four
types of PRAM machines are specified in memory:
1 Exclusive read exclusive write (EREW)
2 Concurrent read exclusive write (CREW)
3 Exclusive read concurrent write (ERCW)
4 Concurrent read concurrent write (CRCW)
The first type of machine the PRAM allows to read wri-
te memory only one processor. The second type provi-
des reading memory through any processor, but wrin-
ging at the same time can run only one processor. The
third type allows to read every memory cell by only one
processor and multiple processors can read a memory
cell at the same time. The third type of PRAM machine
is not intended to be practical and is not considered in
theory.The fourth type allows to access memory using
any processor. The second of the presented models re-
flects the architecture of the modern computer and is
practically possible to implement.

2.2. Statistical Research on Algorithm
Performance
Let a1, a2, ..., andenote disordered number of distribut-
ed results of methods should be described with suffi-

Information Technology and Control 2019/3/48490

the first step, n/3 independently working processors
merge each pair of strings, where n is the dimension
of the sort tasks. In the next steps, the number of inde-
pendently working processors decreases three times,
and only one processor is involved in the last step.
Theorem 1. Parallel Fast Sort Algorithm using n/3
processors has time complexity

(4)

PROOF
The proof is conducted for the n = 3k, where k = 1, 2,
Due to the fact that three ordered t-elements can
merge into one sorted string by doing no more than
5t – 2 comparisons, then for t = 1 in the first step each
n/3 processors will perform no more than 5 ⋅ 1 – 2 = 3
comparisons. All string merge time is a single proces-
sor operation time. In each step t, the algorithm using

n/3t processors will merge the three 3t–1 element
strings by doing no more than than 5 ⋅ 3t–1–2 compar-
isons. The sum of all comparisons performed by the
algorithm is

(5)

(6)

(7)

(8)

(9)

(10)

Figure 2
Parallel fast sort algorithm

 Figure 1
 A sample schema of the Parallel Random Access Machine

 Figure 2
 Parallel fast sort a

 Figure 3
 Pseudocode parallel fast sort algorithm
 Start
 Load table a
 Load dimension of table a into n
 Create an array of b of dimension n
 Set options for parallelism to use all
 processors of the system
 Set the size of the merged string to one
 and remember in tt
 While tt is less than n then do
 Begin
 Calculate the number of three consecutive
 merged strings and remember in it
 Parallel for each processor j at index
 greater or equal 0 and less than it do
 Begin parallel for
 Merge three consecutive strings
 allocated for the processor J
 using an array of b
 End of the parallel for
 Multiply variable tt by three
 End
 Stop

491Information Technology and Control 2019/3/48

Linear time complexity of the algorithm is the re-
sult of separate work processors in each iteration
of the merge strings. The number of possible to use
processors merging strings reduces in each iteration
and only one processor can be used in the last step.
To increase the number of processors participating
in the calculation would use a parallel merge algori-
thm, which is the subject of research. The algorithm
presented in Figure 3 uses the maximum number of
processors available on the system.
The presented method was implemented in C# Vi-
sual Studio Ultimate 2013. The algorithm uses a par-
allel loop, which reduces the created program code,
because there is no need to create separate tasks, run
them, and wait for them to finish. The study was con-
ducted on 100 input samples randomly generated for
each dimension of the task. Tests were carried out on
Intel i7-7700HQ as describes in Table 1.
The purpose of analysis and comparison is to reveal
how the parallel calculations affect the CPU power
consumption of sorting large data sets. For the bench-
mark, input samples of 100, 1.000, 10.000, 100.000,
1.000.000, 10.000.000 and 100.000.000 elements
were applied.
Two types of energy consumption are distinguished,
namely, static and dynamic energy consumption.

Figure 3
Pseudocode parallel fast sort algorithm

 Figure 1
 A sample schema of the Parallel Random Access Machine

 Figure 2
 Parallel fast sort algorithm

 Figure 3
 Pseudocode parallel fast sort algorithm
 Start
 Load table a
 Load dimension of table a into n
 Create an array of b of dimension n
 Set options for parallelism to use all
 processors of the system
 Set the size of the merged string to one
 and remember in tt
 While tt is less than n then do
 Begin
 Calculate the number of three consecutive
 merged strings and remember in it
 Parallel for each processor j at index
 greater or equal 0 and less than it do
 Begin parallel for
 Merge three consecutive strings
 allocated for the processor J
 using an array of b
 End of the parallel for
 Multiply variable tt by three
 End
 Stop

Linear time complexity of the algorithm is the result of
separate work processors in each iteration of the merge
strings. The number of possible to use processors
merging strings reduces in each iteration and only one
processor can be used in the last step. To increase the
number of processors participating in the calculation
would use a parallel merge algorithm, which is the
subject of research. The algorithm presented in Figure 3
uses the maximum number of processors available on
the system
The presented method was implemented in C# Visual
Studio Ultimate 2013. The algorithm uses a parallel
loop, which reduces the created program code, because
there is no need to create separate tasks, run them, and
wait for them to finish. The study was conducted on
100 input samples randomly generated for each
dimension of the task. Tests were carried out on Intel
i7-7700HQ as describes in Table 1.

Table 1. The specification of the Intel Core i7-7700HQ
Processor

The purpose of analysis and comparison is to reveal
how the parallel calculations affect the CPU power
consumption of sorting large data sets. For the
benchmark, input samples of 100, 1.000, 10.000,
100.000, 1.000.000, 10.000.000 and 100.000.000
elements were applied.
Two types of energy consumption are distinguished,
namely, static and dynamic energy consumption. Static
power consumption is the result of Microsoft
optimizing the application. Dynamic energy
consumption is calculated by subtracting from the total
energy consumption of the static energy processor. It is
noted that the total power consumption of the processor
reflects the energy consumption of the constant and can
be taken to compare algorithms.
The sorting algorithms have a time complexity of
or , where is the number of

algorithm runs with linear time complexity. For a
linear algorithm, the power consumption of the
processor is constant and the number of CPU
cycles needed to perform Algorithm determines
energy consumption.
Each sorting operation by examined methods was
measured in time [ms]. The average power
dissipated in the high complexity workload of all
cores (Thermal Design Power) for the i7-7700HQ
processor is 45W. The Configurable TDP-down
power dissipation for processor i7-7700HQ
defined by Intel is 35 W. The use of Configurable
TDP-down is typically executed by the system
Microsoft to optimize power and performance,
and TPD-down has been accepted for calculation.
These results are averaged for 100 sorting
samples. The benchmark comparison for parallel
fast sort algorithm is described in Table 2, and
Figures 4 and 6. The analysis of the results
confirms the hypothesis that adding each
successive processor reduces energy
consumption. More visible changes are seen
between 2 and 4 processors usage. With each
processor added to the system, the power
consumption decreases. This confirms the
theoretical time complexity of the algorithm in
Theorem 1.
An analysis of the variation coefficients shows the
stability of the parallel method of fast sort for
large data sets. Some variations in stability of the
algorithm for small inputs are due to the fact that
the system exceed sorting algorithm.

4. Parallel Modified Merge Sort
Algorithm

A parallel modified sorting algorithm by merging
four strings is presented in [17]. To merge four
strings, logical indexing of the processors
participating in the sort has been applied. In each
step, sorting methods that independently operate
the processors merge all ordered pairs of strings
saved from the input array and write the result
into a temporary array. It then merged all ordered
pairs from the temporary array into the input
array. The index of merged string shall be the
same as the index of the first element of the first
string. The entire proses merge all pairs of
numeric strings by the parallel loop by
independently working processors is the end of
the merge cycle both in a temporary array and in
the input array. The duration of the parallel loop

Table 1
The specification of the Intel Core i7-7700HQ Processor

Static power consumption is the result of Microsoft
optimizing the application. Dynamic energy con-
sumption is calculated by subtracting from the total
energy consumption of the static energy processor.
It is noted that the total power consumption of the
processor reflects the energy consumption of the con-
stant and can be taken to compare algorithms.
The sorting algorithms have a time complexity of
0(n) or 0(n log2 n), where log2 n is the number of algo-
rithm runs with linear time complexity. For a linear
algorithm, the power consumption of the processor
is constant and the number of CPU cycles needed to
perform Algorithm determines energy consumption.
Each sorting operation by examined methods was
measured in time [ms]. The average power dissipated
in the high complexity workload of all cores (Thermal
Design Power) for the i7-7700HQ processor is 45W.
The Configurable TDP-down power dissipation for
processor i7-7700HQ defined by Intel is 35 W. The
use of Configurable TDP-down is typically executed
by the system Microsoft to optimize power and per-
formance, and TPD-down has been accepted for cal-
culation.
These results are averaged for 100 sorting samples.
The benchmark comparison for parallel fast sort al-
gorithm is described in Table 2, and Figures 4 and 6.
The analysis of the results confirms the hypothesis
that adding each successive processor reduces energy
consumption. More visible changes are seen between
2 and 4 processors usage. With each processor add-
ed to the system, the power consumption decreases.
This confirms the theoretical time complexity of the
algorithm in Theorem 1.
An analysis of the variation coefficients shows the
stability of the parallel method of fast sort for large

Information Technology and Control 2019/3/48492

data sets. Some variations in stability of the algorithm
for small inputs are due to the fact that the system ex-
ceed sorting algorithm.

4. Parallel Modified Merge Sort
Algorithm
A parallel modified sorting algorithm by merging four
strings is presented in [17]. To merge four strings,
logical indexing of the processors participating in the
sort has been applied. In each step, sorting methods
that independently operate the processors merge all
ordered pairs of strings saved from the input array
and write the result into a temporary array. It then

Table 2
Energy consumption parallel fast sort algorithm in [Ws]

Figure 4
Comparison of energy consumption for parallel fast sort algorithms [Ws]

Figure 5
A comparison of the efficiency of the method in power consumption, using multiple

 Table 2. Energy consumption parallel fast sort algorithm in [Ws]

 Figure 4
 Comparison of energy consumption for parallel fast sort algorithms [Ws]

 Table 2. Energy consumption parallel fast sort algorithm in [Ws]

 Figure 4
 Comparison of energy consumption for parallel fast sort algorithms [Ws]

 Table 2. Energy consumption parallel fast sort algorithm in [Ws]

 Figure 4
 Comparison of energy consumption for parallel fast sort algorithms [Ws]

 Figure 5
 A comparison of the efficiency of the method in power consumption, using multiple
 processors in [%]

 Figure 6
 Parallel modified merge sort algorithms

 Figure 5
 A comparison of the efficiency of the method in power consumption, using multiple
 processors in [%]

 Figure 6
 Parallel modified merge sort algorithms

 Figure 5
 A comparison of the efficiency of the method in power consumption, using multiple
 processors in [%]

 Figure 6
 Parallel modified merge sort algorithms

 Figure 5
 A comparison of the efficiency of the method in power consumption, using multiple
 processors in [%]

 Figure 6
 Parallel modified merge sort algorithms

493Information Technology and Control 2019/3/48

Figure 6
Parallel modified merge sort algorithms

merged all ordered pairs from the temporary array
into the input array. The index of merged string shall
be the same as the index of the first element of the first
string. The entire proses merge all pairs of numeric
strings by the parallel loop by independently working
processors is the end of the merge cycle both in a tem-
porary array and in the input array. The duration of
the parallel loop can be defined as the time the longest
working processor which is involved in the merging of
strings. The way that strings are merged by indepen-
dent processors is shown in Figure 6.
Theorem 2. Parallel Modified Merge Sort Algorithm
using n/2 processors has time complexity:

(11)

PROOF
The proof is conducted for the n = 4k, where k = 1, 2,
Due to the fact that two ordered t - elements can mer-
ge into one sorted string by doing no more than 2t –1

 Figure 5
 A comparison of the efficiency of the method in power consumption, using multiple
 processors in [%]

comparisons, then for t = 1 in the first step each n/2
processors will perform no more than 2 ⋅ 1 – 1 = 1 com-
parisons. All string merge time is a single processor
operation time. In each step of t, the algorithm first
merges the n/22t–1 -element strings into a temporary
array, and then merge the n/22t element strings from
the temporary array into the input array by doing no
more than 2 ⋅ 22t–2 + 2 ⋅ 22t–1–2 comparisons. The sum
of all comparisons performed by the algorithm is

(12)

(13)

Information Technology and Control 2019/3/48494

(14)

(15)

(16)

given that

(17)

and

(18)

As a result of substitution

(19)

The presented method was implemented in C# Vi-
sual Studio Ultimate 2013. Statistical surveys for
samples range from 100 to 100 million elements, in-
creasing the dimension 10 times for each subsequent.
Each sorting operation by examined methods was
measured in time [ms]. The average power dissipated
in the high complexity workload of all cores (Thermal
Design Power) for the i7-7700HQ and TPD-down has
been accepted for calculation energy consumption.
The algorithm presented in Figure 7 uses the maxi-
mum number of processors available on the system.
Statistical surveys are averaged for 100 sorting sam-
ples. The benchmark comparison for parallel modified
merge sort algorithm is described in Table 3, and Fig-
ures 8-9. As with the parallel fast sort algorithm, the
analysis of the parallel results of the modified sorting
algorithm by merging shows that each processor add-
ed reduces power consumption. By adding a larger
number of processors, the changes are clearly visible.
With each processor added, the efficiency of the algo-
rithm increases, which confirms the theoretical com-
plexity of the algorithm contained in Theorem 2.
An analysis of the variation coefficients shows the
stability of parallel modified merge sort, which im-
proves sorting for large data sets.

 Figure 7
 Pseudocode parallel modified merge sort algorithms

 Start
 Load table a
 Load dimension of table a into n
 Create an array of b of dimension n
 Set options for parallelism to use all
 processors of the system
 Set the size of the merged string to one
 and remember in tt
 While tt is less than n then do
 Begin
 Calculate the number of consecutive pairs of
 strings to merge in array a and remember in it1
 Parallel for each processor jj at index
 greater or equal 0 and less than it1 do
 Begin parallel for
 Merge pairs of strings from array a
 allocated for the processor jj
 by saving the merged strings in array b
 End of the parallel for
 Multiply variable tt by two
 If tt greater than n then do
 Remember n in tt
 Calculate the number of consecutive pairs of
 strings to merge in array b and remember in it1
 Parallel for each processor jj at index
 greater or equal 0 and less than it1 do
 Begin parallel for
 Merge pairs of strings from array b
 allocated for the processor jj
 by saving the merged strings in array a
 End of the parallel for
 Multiply variable tt by two
 End
 Stop

 NOTE: If there is only one string to merge it, it is rewritten to the second array.

Figure 7
Pseudocode parallel modified merge sort algorithms

NOTE: If there is only one string to merge it, it is rewritten
to the second array.

 Table 3. Energy consumption parallel modified merge sort algorithm in [Ws]

 Figure 8
 A comparison of energy consumption for parallel modified merge sort [Ws]

Table 3
Energy consumption parallel modified merge sort
algorithm in [Ws]

495Information Technology and Control 2019/3/48

Figure 8
A comparison of energy consumption for parallel modified merge sort [Ws]

 Table 3. Energy consumption parallel modified merge sort algorithm in [Ws]

 Figure 8
 A comparison of energy consumption for parallel modified merge sort [Ws]

 Table 3. Energy consumption parallel modified merge sort algorithm in [Ws]

 Figure 8
 A comparison of energy consumption for parallel modified merge sort [Ws]

Figure 9
A comparison of the efficiency of the method in power consumption, using multiple processors in [%]

 Figure 9
A comparison of the efficiency of the method in power consumption, using
multiple processors in [%]

 Figure 10
 A comparison of sorting time for trigeminal heap sort, quick sort, merge sort on 1
 processor with parallel fast sort and parallel modified merge sort on 8 processors

 Figure 9
A comparison of the efficiency of the method in power consumption, using
multiple processors in [%]

 Figure 10
 A comparison of sorting time for trigeminal heap sort, quick sort, merge sort on 1
 processor with parallel fast sort and parallel modified merge sort on 8 processors

 Figure 9
A comparison of the efficiency of the method in power consumption, using
multiple processors in [%]

 Figure 10
 A comparison of sorting time for trigeminal heap sort, quick sort, merge sort on 1
 processor with parallel fast sort and parallel modified merge sort on 8 processors

 Figure 9
A comparison of the efficiency of the method in power consumption, using
multiple processors in [%]

 Figure 10
 A comparison of sorting time for trigeminal heap sort, quick sort, merge sort on 1
 processor with parallel fast sort and parallel modified merge sort on 8 processors

5. Analysis and Compression of
Energy Consumption
An analysis of energy consumption is an important
element in determining the efficiency of algorithms

for sorting large data sets in the NoSQL databases.
The reduction of power consumption when increas-
ing the number of processors is visible both for the
parallel fast sort parallel and the parallel modified
merge sort algorithm, which is exposed Efficiency in
Figures 5 and 9. Comparison of energy consumption

Information Technology and Control 2019/3/48496

Figure 10
A comparison of sorting time for trigeminal heap sort, quick sort, merge sort on 1 processor with parallel fast sort and
parallel modified merge sort on 8 processors

by parallel fast sorting and parallel modified merge
sorting algorithms running on 8 processors with
algorithms running on a single processor such as
quicksort, merge sort, trigeminal heap sort is prefer-
able for Parallel algorithms and is shown in Figure
10. The comparison based on trigeminal heap sort
algorithm and received a percentage difference in
energy consumption [Ws] compared to other algo-
rithms. Efficiency means reducing the percentage of
energy consumption in Figure 10.
The static analysis carried out in Figure 10 shows that
the parallel methods running on multiple processors
are more efficient than classical sorting methods and
have less power consumption in sorting large data
sets. The results obtained show that when sorting
small data sets, it is better to use classical sorting
methods that run on a single processor than the par-
allel sorting methods. This is because parallel meth-
ods that run on multiple processors require that the
program is loaded into memory. They also require
memory reservations for the processors to be used,
and that processor activity synchronization actions
are performed to prevent deadlock. The advantage of
parallel methods is only visible for the day dimension
greater than 100000. Time complexity of the parallel

 Figure 9
A comparison of the efficiency of the method in power consumption, using
multiple processors in [%]

 Figure 10
 A comparison of sorting time for trigeminal heap sort, quick sort, merge sort on 1
 processor with parallel fast sort and parallel modified merge sort on 8 processors

merge sorting methods is 0(n) and cannot be reduced
by simply adding processors to the sorting algorithm.
Reducing the time complexity of parallel sorting al-
gorithms by merging is possible by applying a parallel
method to merge numeric strings. However, it should
be expected that the use of more processors in the
string merging process will degrade energy consump-
tion and such algorithms would be less efficient in
terms of energy consumption [16, 17].

6. Final Remarks
The article presents the analysis of power consump-
tion by a parallel fast sort algorithm and parallel mod-
ified merge sorting algorithm for large data sets in the
NoSQL databases. The proposed method is based on
a model of PRAM (Parallel Random Access Machine)
that allows the efficient access to read and write infor-
mation in the memory cell for each single processor.
In the article, a theoretical analysis of the efficiency
and practical verification of power consumption algo-
rithms was presented. The practical realization of the
algorithms was done in C# MS Visual 2015 on Intel
i7 7700hq.

497Information Technology and Control 2019/3/48

The tests demonstrate stability of the methods and
confirm theoretical time complexity. Comparison
tests have shown that a parallel fast sort and a paral-
lel modified merge sort are more efficient than other
sorting methods, especially for big data sets. The pre-
sented methods for large task dimensions have less
power consumption than classic methods and can be
used successfully in NoSQL databases.
In the future research is planned a further devel-
opment in sorting performance. The research will

involve developing the power consumption parallel
merge string algorithm.

Acknowledgement
The author would like to acknowledge the contribu-
tion to this project from the Rector of the Silesian
University of Technology under the grant for perspec-
tive professors no. 09/RGH18/0035 and pro-quality
grant no. 09/010/RGJ19/0042

References
1. Beloglazov, A., Abawajy, J., Buyya, R. Energy-Aware Re-

source Allocation Heuristics for Efficient Management
of Data Centers for Cloud Computing. Future Genera-
tion Computer Systems, 28(5), 2012, 755-768. https://
doi.org/10.1016/j.future.2011.04.017

2. Ben-Or, M. Lower Bounds for Algebraic Computation
Trees. In Proceedings of 15th ACM Symposium. Theory
of Computing; ACM Press: New York, NY, USA, 1983,
80-86. https://doi.org/10.1145/800061.808735

3. Carlsson, S., Levcopoulos, C., Petersson, O. Sublinear
Merging and Natural Merge Sort. International Sympo-
sium on Algorithms, Springer, Berlin, Heidelberg, 1990,
251-260. https://doi.org/10.1007/3-540-52921-7_74

4. Chen, R., Y., Owens, R., M., Irwin, M., J., Bajway, R., D.,
S. Validation of an Architectural Level Power Analysis
Technique. Proceedings of the 35th Annual Design Au-
tomation Conference, ACM, 1998, 242-245. https://doi.
org/10.1145/277044.277106

5. Chang, N., Kim, K., Lee, H., G. Cycle-Accurate En-
ergy Measurement and Characterization with a
Case Study of the ARM7TDMI [Microprocessors].
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2002, 10(2), 146-154. https://doi.
org/10.1109/92.994992

6. Damasevicius, R., Ziberkas, G. Energy Consumption
and Quality of Approximate Mage Transformation.
Elektronika ir Elektrotechnika, 2012, 120, 4, 79-82.
https://doi.org/10.5755/j01.eee.120.4.1459

7. Damasevicius, R., Ziberkas, G., Stuikys, V., Toldinas, J.
Energy Consumption of Hash Functions. Elektronika ir
Elektrotechnika, 18, 10, 81-84. https://doi.org/10.5755/
j01.eee.18.10.3069

8. Doberkat, E.-E. Inserting a New Element Into a Heap.
Numerical Mathematics, 1981, 21(3), 255-269. https://
doi.org/10.1007/BF01941462

9. Fard, H., M., Prodan, R., Barrionuevo, J., J., D., Fahring-
er, T. A Multi-Objective Approach for Workflow Sched-
uling in Heterogeneous Environments. 12th IEEE/
ACM International Symposium on Cluster, Cloud and
Grid Computing, IEEE, 2012, 300-309. https://doi.
org/10.1109/CCGrid.2012.114

10. Gupta, S., Najm, F., N. Energy-Per-Cycle Estima-
tion at RTL. IEEE Proceedings, 1999 Internation-
al Symposium on Low Power Electronics and De-
sign (Cat. No. 99TH8477), 1999, 121-126. https://doi.
org/10.1145/313817.313894

11. Karsin, B., Weichert, V., Casanova, H., Iacono, J.,
Sitchinava, N. Analysis-Driven Engineering of Com-
parison-Based Sorting Algorithms on GPUs. Pro-
ceedings of the 2018 International Conference on
Supercomputing, ACM, 2018, 86-95. https://doi.
org/10.1145/3205289.3205298

12. Kessaci, Y., Melab, N., Talbi, E., G., A. Pareto-Based
Metaheuristic for Scheduling HPC Applications on a
Geographically Distributed Cloud Federation. Clus-
ter Computing, 2013, 16(3), 451-468. https://doi.
org/10.1007/s10586-012-0210-2

13. Kushagra, S., López-Ortiz, A., Munro, J., Qiao, A.
Multi-Pivot Quicksort: Theory and Experiments. Pro-
ceedings of the Meeting on Algorithm Engineering &
Experiments, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, 2016, 47-60. https://doi.
org/10.1137/1.9781611973198.6

14. Manumachu, R. R., Lastovetsky, A. Bi-Objective Op-
timization of Data-Parallel Applications on Homoge-
neous Multicore Clusters for Performance and Energy.
IEEE Transactions on Computers, 2017, 67(2), 160-177.
https://doi.org/10.1109/TC.2017.2742513

15. Marszalkowski, J., M., Drozdowski, M., Marszalkowski,
J. Time and Energy Performance of Parallel Systems

Information Technology and Control 2019/3/48498

with Hierarchical Memory. Journal of Grid Computing,
2016, 14(1), 153-170. https://doi.org/10.1007/s10723-
015-9345-8

16. Marszałek Z. Parallelization of Fast Sort Algorithm. In-
ternational Conference on Information and Software
Technologies, Springer, Cham, 2017, 408-421. https://
doi.org/10.1007/978-3-319-67642-5_34

17. Marszałek, Z. Parallelization of Modified Merge Sort
Algorithm. Symmetry, 2017, 9(9), 176. https://doi.
org/10.3390/sym9090176

18. Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., C., Talbi, E.,
G., Zomaya, A., Y., Tuyttens, D. A Parallel Bi-Objective
Hybrid Metaheuristic for Energy-Aware Scheduling for
Cloud Computing Systems. Journal of Parallel and Dis-
tributed Computing, 2011, 71(11), 1497-1508. https://
doi.org/10.1016/j.jpdc.2011.04.007

19. Paira, S., Chandra, S., Alam, S. K. S. Enhanced Merge
Sort-A New Approach to the Merging Process. Proce-

dia Computer Science, 2016, 93, 982-987. https://doi.
org/10.1016/j.procs.2016.07.292

20. Połap, D., Kęsik, K., Woźniak, M., Damaševičius, R. Par-
allel Technique for the Metaheuristic Algorithms Using
Devoted Local Search and Manipulating the Solutions
Space. Applied Sciences, 2018, 8(2), 293. https://doi.
org/10.3390/app8020293

21. Rauh, A., Arce, G., A Fast Weighted Median Algorithm
Based on Quick Select. Proceedings of the IEEE 17th
International Conference on Image Processing, Hong
Kong, China, 2010, 105-108. https://doi.org/10.1109/
ICIP.2010.5651855

22. Tsigas, P., Zhang, Y. A Simple, Fast Parallel Implemen-
tation of Quick Sort and Its Performance Evaluation on
SUN Enterprise 10000. IEEE Proceedings of Eleventh
Euromicro Conference on Parallel, Distributed and
Network-Based Processing, 2003, 372-381. https://doi.
org/10.1109/EMPDP.2003.1183613

