
ISSN 1392–124X INFORMATION TECHNOLOGY AND CONTROL, 2012� Vol. 41, No.��

Forward Reasoning via Sequential Queries in Logic Programming

Keehang Kwon

DongA University, Department of Computer Engineering
Busan 604-714, Korea

E-mail: khkwon@dau.ac.kr

Abstract. Most Prolog implementations are based on backward chaining techniques. However, there are many applica-
tions in which forward chaining ones are desirable such as in dynamic programming. In this paper, we first introduce a variant
of a Prolog interpreter that computes interpolations and then introduce the notion of sequential queries. These two notions
allow a combination of both forms of reasoning in Prolog.

Keywords: backward chaining; forward chaining; sequential queries.

1. Introduction

The procedural intepretation of the commas be-
tween Prolog goals as sequentiality has been popu-
lar. However, this intepretation is purely wrong and
has very little to do with its logical foundation. Con-
sequently this generates many well-known semantic
problems, i.e., the mismatch between the declarative
meaning and the procedural meaning of the commas
between goals.

There has been much interest in giving a logical
account of the sequential construct in goals in the con-
text of logic programming. For example, Computabil-
ity Logic(CL) [1, 2] uses the logic of task to give a
logical foundation for additive(choice) sequentiality
[2] and multiplicative sequentiality [4] .

In this paper we are concerned with applying se-
quential queries introduced in [4] to generating lem-
mas and forward reasoning in computation. A se-
quence of well chosen lemmas is important in pre-
senting a proof in mathematical proof. Producing
such lemmas can also be important in logic program-
ming as lemmas can improve the search for proof.
Unfortunately, the underlying proofs using backward
chaining in logic programming are usually lemma-
free, and lemmas do not have a role in improving the
search for proofs.

Our solution to the above problem is the notion of
sequential queries introduced in [4]. To be specific,
proving the query G using some lemma G1 from a
logic program P can be represented via a sequential-
conjuctive goal of the form G1 ≺ G. Solving this goal
corresponds to first attempting to prove the lemma G1

from P and then G from P, G1. Using lemmas in this
fashion can be considered as a form of (guided) for-
ward reasoning in the sense that a knowledge base
grows during computation.

In the logic programming setting, there are some
complications due to the indefinite goal formulas of
the form ∃xG (or G∨G in some versions of Prolog).
In such a case, its definite version [t/x]G1 needs to
be extracted from the proof of G1 from P . We call
this process interpolation. This process converts an
indefinite goal formula to a set of atoms by producing
a set of atomic instances of the goal formula. This
process is integrated into the Prolog interpreter shown
in Section 2.

Another approach to generating lemmas and for-
ward reasoning in logic programming is tabled logic
programming [8–10, 5]. The idea behind tabling is
the following: goals encountered in solving a query
are maintained in a table. If a goal is re-encountered,
solving that goal reuses information from the table
rather than re-solving it. This idea supports dynamic
programming and termination of some nonterminat-
ing Prolog programs.

Compared to ours, their approaches have the fol-
lowing disadvantages:

• They restrict lemmas to be subgoals of the
original query. We do not have such a
restriction: the lemmas in our language can be
any formulas.

• In their approaches, due to the lack of
sequential goals, it is not possible for the user
to specify and guide a list of lemmas that
should be tabled. As a consequence, they
store all the previously proved atoms,
regardless of whether these atoms have a role
in improving the search for proofs.

In a sense, our approach supports guided tabling.
This paper proposes an extension of Prolog with

a limited form of sequentiality. That is, sequential
goals are allowed only in top-level Prolog goals.

328

http://dx.doi.org/10.5755/j01.itc.41.4.2364

We make this choice to provide a smooth transition
from Prolog to this new language from the perspec-
tive of implementation overheads. To be specific, a
sequential-conjunctive goal is of the form G1 ≺ G
where G1, G are Prolog goals to be executed sequen-
tially. Proving this goal with respect to P has the fol-
lowing intended semantics: prove G1 with respect to
P and then prove G with respect to P ∪G′

1 where G′
1

is a set of atomic instances of G1.
We also provide an iterative goal of the form

≺i..j
x G where G is a goal, x is a variable, and i, j are

natural numbers. This goal also appears in [7]. Prov-
ing this goal has the following intended semantics:
iterate G with x ranging over all elements in the set
{i, i + 1, . . . , j}.

In this paper we present the syntax and semantics
of this extended language, show some examples of its
use and study the interactions among the newly added
constructs. To be specific, we describe an operational
semantics for Prolog sequential goals in terms of CL,
which can be viewed operationally as extending the
logic program from the logic of truth to the logic of
task. Sequential queries introduce an element of for-
ward reasoning into logic programming, as we shall
see in Section 4. The sequential queries allow us to
program in a natural and declarative way many appli-
cations based on dynamic programming. An example
is memoization in logic programming.

The remainder of this paper is structured as fol-
lows. We describe a new interpreter with interpolation
for first-order Horn clauses in the next section and its
extension in Section 3. In Section 4, we present some
examples of SProlog. Section 5 concludes the paper.

2. The Prolog Interpreter that computes interpo-

lation

The Prolog language is based on Horn clauses.
It is described by G- and D-formulas given by the
syntax rules below:

G ::= A | G ∧ G | ∃x G
D ::= A | G ⊃ A | ∀x D | D ∧ D

In the rules above, A represents an atomic for-
mula. A D-formula is called a Horn clause, or a defi-
nite clause.

In the transition system to be considered, G-
formulas will function as queries and a set of D-
formulas will constitute a program. We will present
the standard operational semantics for this language
as inference rules [3].

The rules for executing queries in our language
are based on uniform provability [6].

Definition 1. Let G be a goal and let P be a program.
Then the notion of intpo(P, G) – proving G from P
– is defined as follows:

(1) intpo(P, A) if A is identical to an instance of a
program clause in P .

(2) intpo(P, A) if A is an instance of a program
clause in P of the form G1 ⊃ A and intpo(P, G1).

(3) intpo(P, G1∧G2) if intpo(P, G1) and intpo(P,
G2).

(4) intpo(P,∃xG1) if intpo(P, [t/x]G1).

Now we will present another operational seman-
tics for this language based on CL. Further, this is
a new form of a Prolog interpreter that performs ad-
ditional work: that of extracting its interpolations as
well. Basically, the set of interpolations is a table that
consists of all atomic instances of a goal G that are on
the goal side of the proof.

To be specific, we encode such inference rules
as theories in the logic of task, i.e., a simple variant
of CL [1]. Below the expression A sand B denotes
a sequential conjunction of the task A and the task
B and the expression A pand B denotes a parallel
conjunction of the task A and the task B.

Definition 2. Let G be a goal and let P be a program.
Then the notion of intpG(P, G, S) – proving G from
P and converting G to a set of atoms S – is defined
as follows:

(1) intpG(P, A, {A}) if A is identical to an instance
of a program clause in P .

(2) intpG(P, A, {A}) if A is an instance of a pro-
gram clause in P of the form G1 ⊃ A pand
intpG(P, G1, _). Here _ denotes a don’t-care
condition.

(3) intpG(P, G1∧G2, S1∪S2) if intpG(P, G1, S1)
pand intpG(P, G2, S2).

(4) intpG(P,∃xG1, S) if intpG(P, [t/x]G1, S).

It is easily observed that the notion of converting
a goal to a set of atoms requires little extra overheads.

3. The Sequential Queries

The language we use is an expanded version of
goal formulas with top-level sequential conjunctive
goals. It is described by E-formulas given by the syn-
tax rules below:

E ::= G | ≺i..j
x E | E ≺ E

329

Forward Reasoning via Sequential Queries in Logic Programming

In the rules above, a E-formula is called a
sequential-conjunctive goal or an extended goal.

In the transition system to be considered, E-
formulas will function as extended queries. We will
present an operational semantics for this language.

Definition 3. Let E be an extended goal and let P
be a program. Then the notion of intpE(P, E, S) –
proving E from P and converting E to a set of atoms
S – is defined as follows:

(1) intpE(P, G, S) if intpG(P, G, S).

(2) intpE(P, E1 ≺ E2, S ∪ T) if intpE(P, E1, S)
sand intpE(S ∪ P, E2, T). Thus, the first goal
E1 serves as a lemma.

(3) intpE(P,≺i..i
x E, {}). Thus, this task termi-

nates with a success.

(4) intpE(P,≺i..j
x E,S ∪ T) if (i < j) pand

(intpG(P, [i/x]E,S) sand intpE(S∪P,≺(i+1)..j
x

E, T)). Thus, the first goal [i/x]E serves as a
lemma.

In the above rules, the goal E1 ≺ E2 provides se-
quential executions of instructions: it allows for solv-
ing the extended goal E2 via the lemmas extracted
from the proof of E1.

4. Examples

Prolog permits the modification of the current
logic program through the assert and retract: assert
D adds clause D to the program, while retract D re-
moves D. To avoid the re-computation of previously
solved goals, lemmas are memoized by applying as-
sert to goals. It is well-known that the resulting pro-
gram becomes obscure and complicated.

Our approach is immune to this problem. To see
this, consider the following Horn clause specification
for computing Fibonacci numbers.

fib(0, 1). % base case
fib(1, 1). % base case
fib(X + 2, Y + W) : − fib(X, Y)∧

fib(X + 1, W).

Now consider the following query query1.

query1 :
∃xfib(100, x)

Solving this goal executes query1 in “backward
chaining” with respect to the instructions in the Fi-
bonacci program. If fn denotes the nth Fibonacci
number, then it is well-known that the size of the only
proof of the goal fib(n, fn) is exponential in n.

The query1 has the problem of re-computing
previously solved goals. To avoid this problem, our
language allows us to employ sequential goals to store
previously computed Fibonacci numbers. Consider
the following query query2.

query2 :
≺1..100

i ∃yfib(i, y)

Solving this query stores previously computed Fi-
bonacci numbers in a forward chaining fashion. It ta-
bles a list of goal instances fib(2, 1), fib(3, 2), . . . ,
fib(99,) which are extracted from a list of lemmas
∃xfib(2, x), . . ., ∃xfib(99, x). Note that each new
lemma instances in the list can be computed using
the previous lemma instances in constant time. In this
query, there exists a proof of fib(n, fn) and that proof
has a size proportional to n.

As a second example, consider the following
Horn clause specification for computing binomial co-
efficients, denoted by c(n, k, z).

c(N, 1, N). % select one out of n
c(N, N, 1). % select n out of n
c(N, K, 0) : − N < K.
c(N, K, W + Z) : − c(N − 1, K − 1, W)∧

c(N − 1,K, Z).

Now suppose we want to compute the value of
c(100, 45) by invoking the following query: ∃z c(100,
45, z). It is well-known that this query leads to re-
dundant computations. Instead, the following query,
which employs sequential goals to store previously
computed numbers, will do the job in an efficient way.

query3 :
≺1..100

i ≺1..45
j ∃zc(i, j, z)

Solving this query requires “forward chaining”
which is linear to the input size. It tables a list of
lemma instances c(1, 1, 1), c(1, 2, 0), . . . , c(100, 1,
100), . . . , c(100, 45,), as we desired.

5. Conclusion

In this paper, we have considered an extension
to Prolog with some limited form of sequential goal
formulas. This extension allows goals of the form
E1 ≺ E where E1, E are a sequence of Prolog goals
to be executed sequentially. These goals are particu-
larly useful for sequential executions of goal tasks at
the top-level and forward chaining. We plan to gen-
eralize our language so that sequential goals can be
embedded in goal formulas.

330

 K. Kwon

Higher-order logic programming based on CL
is another extension we have to consider in the fu-
ture. The vehicle for this work is λProlog, a logic
programming language supporting higher-order pred-
icates introduced by Miller et al.[6]. λProlog extends
Prolog in several directions: It provides the simply-
typed higher-order terms as a data type and incorpo-
rates modules. We plan to interpret this language via
CL, and add sequential queries to make it to perform
more complex tasks.

Acknowledgements

This work was supported by Dong-A University
Research Fund.

References

[1] G. Japaridze. Introduction to computability logic. An-
nals of Pure and Applied Logic, 2003, 123, 1–99.

[2] G. Japaridze. Sequential operators in computability
logic. Information and Computation, 2008, 206, 1443–
1475.

[3] G. Kahn. Natural Semantics. the 4th Annual Sympo-
sium on Theoretical Aspects of Computer Science, Lec-
ture Notes in Computer Science,1987,247,22–39.

[4] K. Kwon, S. Hur. Adding sequential conjunctions to
Prolog. International Journal of Computer Technology
and Applications, 2010,1,1–3.

[5] D. Miller, V. Nigam. Incorporating tables into proof.
Computer Science Logic 2007, Lecture Notes in Com-
puter Science,2007,4646,466–480.

[6] D. Miller, G. Nadathur, F. Pfenning, A. Scedrov. Uni-
form proofs as a foundation for logic programming.
Annals of Pure and Applied Logic,1991,51,pp.125–
157.

[7] J. Schimpf. Logical loops. International Conference
on Logic Programming, 2002, 224–238.

[8] A. Roychoudhury et al. Justifying proofs using memo
tables. International Symposium on Principles and
Practice of Declarative Programming,2000,178–189.

[9] H. Tamaki, T. Sato. OLD resolution with tabula-
tion. International Conference on Logic Programming,
1986,84–98.

[10] D.S. Warren. Memoing for logic programs. Comm.
of the ACM,1992,35,93–111.���

�����	�
����
�����������
�

�

331

Forward Reasoning via Sequential Queries in Logic Programming

