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Cluster analysis is a crucial component in consumer behaviour segmentation. The density peak clustering al-
gorithm (DPC) is a novel density-based clustering method, but it performs poorly in high-dimension datasets 
and local density for boundary points. In addition, the DPC fault tolerance is affected by the one-step alloca-
tion strategy. To overcome these disadvantages, an adaptive density peak clustering algorithm based on dimen-
sion-free and reverse k-nearest neighbours (ERK-DPC) is proposed in this paper. First, we compute the Euler 
cosine distance to obtain the similarity of sample points in high-dimension datasets. Second, the adaptive local 
density formula is used to measure the local density of each point. Finally, the reverse k-nearest neighbour 
approach is added onto the two-step allocation strategy, which assigns the remaining points accurately and 
effectively. The proposed clustering algorithm was applied in experiments on several benchmark datasets and 
real-world datasets. After comparing the benchmarks, the results demonstrate that the ERK-DPC algorithm is 
superior to selected state-of-the-art methods.
KEYWORDS: Density peaks, Clustering, Local density, Euler cosine distance, Reverse k-nearest neighbour.
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1. Introduction
With the development of information technology, an 
increasing number of consumption and production 
data have emerged. The question of how to find cer-
tain rules and consumption patterns for these large 
amounts of data is a problem of concern in various 
fields. Clustering is a research hotspot in the field 
of data mining, and it is also a typical unsupervised 
learning method [14]. Clustering methods can find 
dense and sparse areas of data without any prior 
knowledge, and thus can understand the global distri-
bution of data and the relationship between data at-
tributes. Clustering has been widely applied in many 
fields, (e.g., pattern recognition [17], market analysis 
[25], image processing [8], time series analysis [19], 
information retrieval [35] and social networking 
[5], among others). According to different clustering 
methods, several broad categories are defined, name-
ly, which are hierarchical-based, partitioning-based, 
density-based, model-based and grid-based ap-
proaches [18].
The partitioning-based representative algorithms are 
the K-means algorithm [24] and fuzzy c-means clus-
tering algorithm (FCM) [16]. The hierarchical clus-
tering representative algorithms includes the BIRCH 
[36] and CURE [15] methods. Frey and Dueck pro-
posed an affinity propagation clustering algorithm, 
which is an exemplar-based method [13]. A typical 
density-based clustering algorithm is DBSCAN [11], 
which can discover arbitrary shapes of clusters. How-
ever, those methods are sensitive to parameters. Due 
to the shortcomings of DBSCAN, a series of improved 
algorithms such as OPTICS [1], GDBSCAN [28], 
STDBSCAN [3] and GRIDEN [7] have been proposed.
The density peak clustering algorithm (DPC) [27] is 
a novel density-based clustering method proposed 
by Rodriguez and Laio. DPC does not need to preset 
the cluster numbers, and has achieved promising ef-
ficiency and accuracy for non-spherical data and un-
balanced data. DPC uses only one cutoff distance as 
an adjustable parameter, does not require iteration in 
the clustering process, and has lower time consump-
tion than other clustering algorithms.
However, certain limitations exist in the DPC algo-
rithm: (1) It does not perform well on high-dimen-
sional data and suffers from the impact of “dimen-
sional disasters”. In the traditional DPC algorithm, 

the Euclidean distance is used as a measure of simi-
larity between data, but in many cases in high-dimen-
sional space, the concept of similarity no longer ex-
ists, which creates a severe test of high-dimensional 
data clustering. In addition, the Euclidean distance 
treats the importance of each dimension attribute 
equally, which at times fails to meet the actual needs. 
The calculation of the local density in the DPC al-
gorithm and the distance to the higher local density 
point are both related to the distance between the 
sample points. Therefore, the distance metric in the 
DPC algorithm becomes a serious task when working 
with high-dimensional data; (2) The boundary points 
of the traditional local density are susceptible to the 
data distribution shape of different clusters, which 
has a great impact on the final clustering effect; (3) 
The traditional one-step allocation strategy has poor 
fault tolerance. Although many improved allocation 
methods can improve the clustering accuracy to a cer-
tain extent, the trade-off is higher time consumption.
To overcome the above problems, this paper proposes 
an adaptive density peak clustering algorithm based 
on dimension-free and reverse k-nearest neighbours 
(ERK-DPC). The organization of this paper is listed as 
follows. In Section 2, the related work is introduced. 
In Section 3, the concepts of the traditional DPC algo-
rithm are reviewed as preliminaries for later sections. 
In Section 4, the ERK-DPC algorithm proposed in this 
paper is described in detail, and the time complexity is 
analysed. In Section 5, the proposed algorithm is test-
ed on multiple synthetic datasets and UCI datasets, 
and the clustering accuracy and parameter sensitivity 
are analysed. Finally, selected conclusions and future 
work are presented in the final section.

2. Related Work
In this section, we focus on recent research advance-
ments in the DPC algorithm.
Because the value of the cut-off distance is sensitive 
to the clustering results, many effective local densi-
ty metrics have been proposed. Du et al. [9] used the 
k-nearest neighbour to replace the cutoff distance, 
thus considering the global density and local density 
of the data. In the case of poor clustering of high-di-
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mensional data, the idea of principal component 
analysis was introduced. The application of k-near-
est neighbours reduced the parameter sensitivity 
and improved the accuracy of the clustering results. 
Wang et al. [33] proposed rapid clustering using adap-
tive density peak detection, which estimates the lo-
cal density through a nonparametric multivariate 
kernel. The nonparametric concept is a hot topic in 
the DPC algorithm. The proposed SNN-DPC [22] 
algorithm measured the similarity based on shared 
neighbours, redefined the local density and distance 
from the nearest larger density point, and introduced 
the shared neighbours and local density information 
between points. The advantage of this approach that 
it can effectively address variable-density clusters. 
The concept of geodesic distance was introduced 
into the DPC algorithm [10] because the traditional 
DPC algorithm cannot effectively solve multi-mani-
fold structures and data distributions with arbitrary 
shape clusters.
The DPC algorithm suffers from the limitation of 
manual selection of the clustering centres according 
to the decision graph. Bie et al. [4] proposed a fuzzy 
CFSFDP adaptive selection centre cluster, which 
searched for all density peaks and treated each peak 
as a local cluster before merging the local clusters 
to find the global cluster. However, this method only 
considers the distance property when merging clus-
ters, and thus the performance in complex data is 
not satisfactory. Wang and Song [32] proposed a new 
clustering algorithm to automatically detect the clus-
ter centres via statistical tests. Similar to the statisti-
cal tests, selected adaptive thresholds are applied to 
the DPC algorithm. When the local density and the 
cluster centre distance of the data points are greater 
than the selected thresholds, it is considered to be the 
cluster centre.
The final allocation strategy for the DPC algorithm 
is prone to continuity errors. Xie et al. [34] proposed 
a fuzzy weighted k-nearest density peak clustering 
(FKNN-DPC) method. Two new allocation strate-
gies were introduced. First, the core points and out-
liers in the data set are screened out. Second, the core 
points are distributed from the k-nearest neighbour 
points of each cluster centre. Finally, the outliers 
are assigned by calculating the membership of each 
non-cluster centre point to each cluster. Seyed Amjad 
Seyedi et al. [29] proposed dynamic graph-based label 

propagation for density peak clustering. The cluster-
ing centres are identified using local densities, and 
these centres are subsequently used to form the clus-
ter cores. Finally, novel graph-based label propaga-
tion is applied to spread the labels of the cluster cores 
to the remaining instances. This algorithm combines 
the DPC algorithm with a semi-supervised label prop-
agation method to improve efficiency. However, itera-
tions are performed during label propagation, which 
undoubtedly increases the complexity. Liu and Huang 
et al. [21] proposed a constraint-based density peak 
clustering algorithm that combines semi-supervised 
constraints, density clustering, and hierarchical clus-
tering for the first time and is a semi-supervised ro-
bust clustering algorithm.
The extended application of combining the density 
peak clustering algorithm with other algorithms has 
also become a topic of high interest. SVDD [6] used 
the cut-off distance-based local density and support 
vector data description to improve the performance of 
outlier detection for noise or uncertain data. Tang et 
al. [30] proposed an enhanced density-based cluster-
ing method (E-FDPC) for selection of hyperspectral 
bands. In this method, the weighted distance between 
the normalized local density and the intra-cluster den-
sity is controlled by introducing parameters. Zhang 
[37] applied the density peak clustering algorithm to 
multiple document summaries. Bai et al. [2] proposed 
an overlapping population detection algorithm based 
on density peaks to explore the community structure 
in the network. This method used a similarity method 
to set the distances among nodes, and it tends to per-
form better on those simple structure networks than 
on infrequently complicated networks.

3. Density Peak Clustering
In this section, we introduce the selected concepts re-
lated to density peak clustering.
The establishment of the DPC [27] algorithm is based 
on two assumptions. One assumption is that the den-
sity of the cluster centre is higher than that of the 
surrounding neighbours, and the other is that the dis-
tance between one cluster centre and another cluster 
centre is relatively larger.
The DPC algorithm is a density-based clustering 
method, the main idea of which is to find high-density 
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peaks surrounded by low-density points. In the DPC 
algorithm, the local density and the distance to the 
cluster centre point are directly related to the distance 
between the data points. The distance between sam-
ple points is generally calculated using the Euclidean 
distance, and d is the dimension of the sample point.
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The local density of the point i denoted by iρ  in the 
DPC algorithm, is represented by  Equation (2).
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where d(xi, xj) is the Euclidean distance between data 
points i and j. dc is the cutoff distance and must be 
specified in advance, and dc is equivalent to a radius 
of all data points. The range of value is generally the 
value of the first 1-2% of the distance matrix D. Addi-
tionally, D is a set of distances between every two data 
points, which is sorted from small to large. Another 
formula that uses the Gaussian kernel formula to rep-
resent the local density of data points is Equation (3), 
which applies to small data.
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The closest distance from each point to a higher local 
density point is represented by iδ , defined in Equation 
(4) as
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It can be observed from Equation (4) that if sample 
point i has the largest local density, its corresponding

iδ  is also the largest. 
After calculating iρ  and iδ  of all data points, the deci-
sion graph is drawn based on the two variables. Figure 
1(a) shows a clustering example with five clusters, and 

Figure 1(b) shows the corresponding decision graph.
A point with a higher local density and a larger dis-
tance to a higher local density on the upper right side 
of the decision graph is also viewed as a cluster centre 
point. To avoid the influence of data points with small 
local density but a large clustering centre distance, 
another strategy for determining the cluster centre 
point is proposed. Thus, iγ  can be calculated by Equa-
tion (5) as an indicator to measure whether the data 
point is the cluster center.

*i i iγ ρ δ= . (5)

The iγ  values are sorted. If the value of the point is larg-
er, it might be selected as the clustering centre. When the 

Figure 1

(b) Corresponding decision graph

(a) Sample data points
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cluster number and the cluster centre are determined, 
the remaining non-clustered centre points are sorted 
according to the local density, from largest to smallest. 
From the highest local density point, each non-clustered 
centre point is assigned to the nearest cluster.

4. The Proposed ERK-DPC 
Algorithm
The main contributions of the algorithm proposed 
in this paper can be summarized in three aspects. 
(1) A new Euler cosine distance formula is proposed 
that can solve the problem in which the Euclidean 
distance cannot correctly represent the distance be-
tween sample points in high-dimensional data; (2) 
An adaptive local density formula is used to solve 
the problem of boundary clustering. As such, (1) and 
(2) can improve the robustness of the algorithm; (3) 
The idea of reverse k-nearest neighbours is used to 
improve the clustering accuracy of the non-cluster 
central points and the algorithm without reducing the 
density and increasing the density.

4.1. Main Idea of ERK-DPC
This section describes the main idea of ERK-DPC, in-
cluding the Euler cosine distance, the adaptive local 
density, and the reverse k-nearest neighbours sample 
allocation strategy.
1 Euler cosine distance. Liwicki et al. [23] present-
ed a cosine-based metric formula in the Euler princi-
pal component analysis algorithm. In Equation (6), xj 
and xq belong to the sample point of the data set pℜ , 
and xj(c) represents the c-th dimension of xj.
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More specifically, the procedure for obtaining Equa-
tion (6) is given as follows. First, xj is mapped from a 
p-dimensional real space to a complex reproducing 
kernel Hilbert space (RKHS).
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The relationship between zj and d(xj, xq) is given as 
follows.
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In Equation (8), the distance between data points is 
a cosine-based metric calculated in complex space, 
but it actually represents a real distance. Because the 
range of the cosine function varies on the interval  
[-1, 1], the influence of noise characteristics on the 
distance is reduced to a certain extent compared with 
the Euclidean distance, without increasing the data 
complexity and data dimension. The Euler cosine 
metric defined in this paper is defined as follows in 
this paper.
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In Equation (9), d represents the number of attributes 
of the sample point, and α is an adjustment coeffi-
cient. In this paper, α takes on a value of 1, and wc is 
the weight of each dimension attribute in each sam-
ple point. If the dispersion of the m attribute is greater 
than n in the dataset, it is necessary to assign a larg-
er weight of m attribute to adjust the attribute space. 
This step is essential to accurately reflect the similar-
ity measurement among data samples. 
The coefficient of variation can describe the degree of 
dispersion of the data. Affected by the idea of coeffi-
cient of variation, to reduce the influence of the attrib-
ute dispersion degree on the distance between sample 
points, we apply Equation (10) to adjust the weight 
of each feature of the sample points. In this idea, the 
weight of p attributes of any two sample points is con-
sidered to be the same, and thus only p values in the 
data need to be calculated. Let w={w1, w2,…, wc}, and w 
is the set of weights in the attribute set.
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In Equation (10), wc represents the weight for c-th at-
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tributes in the sample point, n is the total number of 
sample points. cx

cx  represents the mean of all sample 
points in the c-th dimension attributes, and xic rep-
resents the value corresponding to the c-th dimension 
attributes in the i-th sample points. The new Euler 
cosine distance not only considers the weight of dif-
ferent attributes in the sample points, but also consid-
ers the noise influence of high-dimensional data.
2 Adaptive local density. In the concept of using 
k-nearest neighbours to optimize local density, the 
local density considers the equivalent effect of the 
k-nearest neighbours around the data point i. Because 
the k-th nearest neighbour of data point i is suscepti-
ble to noise points, it easily causes errors in the local 
density of the boundary points. As shown in Figure 2, 
point a and point b belong to different clusters, where-
as point a and point c belong to the same cluster. 
When calculating the local density in combination 
with k-nearest neighbours, points a and b tend to con-
sider each other as k-nearest neighbours, and their 
local densities are closer. Therefore, the probabili-
ty that point a and point b are misclassified into the 
same class is greater than that of point a and point c.
Based on the proposed idea of combining local density 
with k-nearest neighbours, a new adaptive k-nearest 
neighbour local density is proposed. The algorithm 
uses the adaptive neighbourhood local density, which 
emphasizes the flexibility of local density and corre-
sponds to one scale parameter for each sample. This 
idea overcomes the limitations of the single global 

Figure 2
Example of boundary points

scale parameter in the traditional local density for-
mula, thus achieving automatic selection of scale pa-

rameters. Intuitively, d(xa, xb)< d(xa, xc), and the sum of 
the distances of the k neighbours of point a and point 

b is equal, ( )
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and thus, 1-ln(w(a, b)) > 1-ln(w(a, c)). The value of the 
adaptive scale σ is greater than 1. Obviously, this dis-
tance adjustment method can increase the distance 
between clusters of different densities, which is bene-
ficial to the algorithm in distinguishing different clus-
ters. The new adaptive scale local density formula is 
written as follows.
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In Equation (11), d(·) represents the distance between 
two sample points, k is the number of neighbours of 
one point, and knn(xi) represents the set of k-nearest 
neighbours of the xi point. Equation (11) considers 
both the distribution information on the k-nearest 
neighbours and the state of the distance between two 
points in all k-nearest neighbours. This approach can 
better represent the local density information on a 
point without searching the global data points.
3 New allocation strategy. The new allocation 
strategy uses a two-step allocation strategy and intro-
duces the reverse k-nearest neighbour. The reverse 
k-nearest neighbour of i is defined as follows:

( ) ( ){ }| ,rk kN i o o D i N o= ∈ ∈ . (12)

Similar to the friend relationship model, the more 
people that are friends with others, the more popular 
the person. Therefore, the more neighbours of a point 
as another point, the more concentrated this point 
is in the sample point. Therefore, this point is not an 
isolated point. High-density points generally exist in 
data points of more reverse neighbours. First, based 
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on the previously obtained distance matrix (Eulerian 
cosine distance), we can obtain the k-nearest neigh-
bour matrix of each data point and further calculate 
the number of reverse k-nearest neighbours of each 
data point. We define the number of reverse k-near-
est neighbours as rKnn[i], i = 0, …,n. where (n is the 
number of sample points), if i∈Nk(o), o∈D, Nk(o) is the 
k-nearest neighbour set of o, thus rKnn[i]=rKnn[i]+1, 
where K is the number of loops. We define the glob-
al average reverse k-nearest neighbour number as 
avgrknn.

[ ]
0

1 n

i
rknn i

n
avgrknn

=
∑= . (13)

The two-step allocation strategy in this paper states 
that if the number of reverse k-neighbours of point 
i is greater than or equal to avgrknn, then allocation 
strategy 1 is adopted, and if the number of reverse 
k-nearest neighbours of point i is less than avgrknn, 
allocation strategy 2 is adopted. Allocation strategy 
1 is based on the reverse k-nearest neighbour num-
ber and uses the breadth-first search method to start 
from the point of the largest reverse k-nearest neigh-
bour number. If there is a labelled sample point in its 
reverse k-nearest neighbour, the label is propagated 
to the point. Allocation strategy 2 uses the density de-
viation degree of each sample point as the probability 
of label propagation. The propagation probability cal-
culation formula is shown in Equation (14). When the 
value of Pi is greater than or equal to 1, the degree of 
deviation indicating the point i is relatively low. The 
closest point of the label is propagated to point i in the 
inverse k-nearest of point i.
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4.2. Main Step Description of ERK-DPC 
Algorithm
This section describes the process of the ERK-DPC 
algorithm and the process of the two-step allocation 
strategy. The ERK-DPC algorithm follows the basic 
concept of the traditional DPC algorithm but opti-
mizes and improves its key steps. The entire process 
is still divided into four steps: Calculate the distance 

matrix, measure iρ  and iδ , select the cluster centres 
and assign the non-cluster centre points. The specific 
algorithm flow is described as follows.
Algorithm 1: ERK-DPC algorithm

Input: Data set of n mX ×∈ℜ , n sample points and m 
attributes; number of neighbours k
Output: Clustering results with labels 1nY ×∈ℜ

Begin algorithm 
Step1: All sample points are normalized
Step2: Calculate distance matrix according to 

Equation (9)
Step3: Calculate iρ  for point i according to Equation (11)
Step4: Calculate iδ  for point i according to Equation 

(12)
Step5: Plot decision graph and select cluster centers 
Step6: Calculate the reverse k-nearest neighbors for 

each point, Calculate the avgrknn according to 
Equation (13)

Step7: Apply Algorithm 2 to remaining point where 
reverse k-nearest neighbors is greater than 
avgrknn

Step8: Apply Algorithm 3 to point where reverse 
k-nearest neighbors is less than avgrknn

Step9: The remaining unallocated points are 
regarded as noise points and allocated to the 
cluster of the nearest allocated points.

Step10: Return y
End algorithm

The following is a description of Algorithm 2.
Algorithm 2: Assign reverse k-nearest neighbour to a 
point greater than avgrknn

Input: set of centers Cr={C1, C2,…, Cm}, number of 
neighbours k, distance matrix.
Output: preliminary result M={C1, C2,…, Cm }

Begin algorithm 
1.  Select a cluster center point Cm in Cr and mark it as 
visited 
2.  Put the knn(Cm) into an empty queue L, and sort 
the rknn(Cm) in the queue from large to small.
3.  While L is not empty
4.      Select the first point Xp in L
5.      If cluster(Xp)≠ -1 and rknn(Xp) > avgrknn
6.          Put the marked points in into list L
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7.               If L is not null:
8.                  Assign the label closest to Xp  in L to Xp

9.               Else no operation
10.             End if 
11.     End if 
12. Inserting unclassified point in knn(Xp) into queue L
13. Remove the  Xp  in the queue and repeat execution 
from line 5
14. End while
15. If all points  rknn(i) < avgrknn 
16. Break
17. Return M
End algorithm

The assignment process of data points with low re-
verse k-nearest neighbours is included in Algorithm 3.
Algorithm 3: Assign reverse k-nearest neighbour to 
a point less than avgrknn

Input: preliminary result M={C1, C2,…, Cm }, number 
of neighbours k.
Output: Final result R={r1, r2,…,rm}

Begin algorithm 
1. Sort the reverse k-nearest neighbours of the 
remaining unallocated points from large to small and 
put them in a queue L 
2. While L is not empty
3.       Select the first point Xp in L
4.      Calculate Pxp according to Equation (14)
5.           If cluster(Xp)≠ -1 and Pxp > 1
6.                 Put the marked points in knn(Xp) into list L 
7.                   If L is not null:
8.                  Assign the label closest to Xp  in L to Xp 
9.               Else no operation
10.                   End if 
11.          End if 
12.         Remove Xp from the queue
13. End while
14. Return R
End algorithm

4.3. Time Complexity of ERK-DPC Algorithm
This section primarily analyses the time complexity 
of the ERK-DPC algorithm, and the time complex-
ity depends on main three components: (1) the time 
needed to calculate the distance between sample 
points, (2) the time needed to measure the local den-
sity of iρ  and the cluster centre distance iδ , and (3) 
the time needed to assign the non-clustered centre 

points. The size of sample points is n, the number of 
cluster centres is c, and k is the number of neighbours. 
The algorithm proposed in this paper is analysed ac-
cording to Algorithm 1 as follows.
Step1: The time complexity of standardizing the ini-
tial data is the required O(n). 
Step2: The Euler cosine distance is computed to form 
a distance matrix between the sample points, the re-
quired time complexity of which is O(n2). In other 
words, it costs O(n) to calculate the weight of each di-
mension attribute. Thus, the overall time complexity 
of calculating the sample point distance is O(n2). 
Step3: The local density iρ  of each point is calculat-
ed. The time complexity requires O(n) to filter the 
k-nearest neighbours of each point. Second, the time 
complexity of n points is O(n2). 
Step4: The time complexity required to calculate iδ  is 
completed in Step3.
Step5: To obtain the cluster centres, iρ  and iδ  are sort-
ed, the time complexity of which is O(nlog(n)).
Step6: The calculation of the reverse k-nearest neigh-
bour number of each sample point is O(nk). 
Step7: The time complexity is O(n1k), applying alloca-
tion strategy 1, and n1 is the number of points, where 
the inverse k-nearest neighbour number is greater 
than avgrknn. 
Step8: The allocation strategy 2 supplies O(n2k), 
where n2=n-n1. 
Therefore, the total complexity is O(n)+O (n2) + O (n2) 
+ O(nlog(n))+ O(nk) + O(n1k) + O(n2k), which can be 
approximated as O (n2). The ERK-DPC algorithm has 
the same complexity as the traditional DPC algorithm.

5. Experiments and Analysis
To prove the effectiveness of the proposed algorithm, 
this paper uses artificial synthetic datasets [12] and 
UCI real-word datasets [20] for experimental testing 
and evaluation. The comparison algorithms include 
FKNN-DPC [34], traditional DPC [27], DBSCAN [11], 
K-means [25] and AP [13]. The ERK-DPC algorithm 
proposed in this paper and the four comparison al-
gorithms are implemented in Python language. The 
results shown are the optimal results after parame-
ter adjustment. Because we did not obtain the source 
code of the FKNN-DPC algorithm, we implemented 
the process by referring to the original paper. The pa-
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rameter of the FKNN-DPC algorithm to be adjusted is 
the number of k-nearest neighbours. The traditional 
DPC algorithm and DBSCAN were implemented us-
ing the source code supplied by the original author. In 
this paper, we did not consider the halo portion of the 
DPC algorithm, and the parameter to be adjusted is the 
cut-off distance. The two parameters that DBSCAN 
must adjust are ε and minpts, where ε is a floating point 
number, and minpts is an integer. K-means and AP 
are implemented in the sklearn library [26] of Python. 
K-means only needs to determine the correct clusters, 
and AP algorithms also have only one adjustable pa-
rameter in the sklearn library, known as “preference”. 
The synthetic data sets and UCI data sets used in the 
experiments are described in Tables 1 and 2. In this pa-
per, the ERK-DPC algorithm and the comparison algo-
rithm are all run on Python 3.6.3. The installation con-
figuration environment is an Inter(R) Xeon(R), with 
2.10 GHz CPU and 64.0 GB running RAM.

5.1. Data Preprocessing and Evaluation 
Metrics
Before the experiment, the data were preprocessed 
using the normalization method. Each attribute value 
of the data is mapped to the interval [0, 1] to eliminate 
the impact of the different dimensions, as shown in 
Equation (15).

* x min
x

max min

−
=

−
. (15)

To validate the effectiveness of the proposed algo-
rithm, four well-known external evaluation metrics 
were used in the synthetic datasets and the UCI data-
sets. These measures are accuracy(ACC), adjusted 
mutual information(AMI), adjusted rand-index(ARI) 
and normalized mutual information(NMI) [31]. All 
evaluation metrics need to know the results of real 
clustering in advance. The value range of NMI is [0, 1]. 
The range of values for ACC, ARI and AMI are [−1,1]. 
Evaluation metrics are used to measure the degree of 
agreement between the two data distributions. The 
upper bounds of the evaluation metrics are 1, and the 
larger the value, the better the clustering result.

5.2. Results and Analysis on Synthetic Datasets
This paper selects several representative synthetic 
datasets for visualization points of view, namely, the 
Aggregation, Flame, R15, Spiral, D31 and S1 data sets. 

These data sets differ in data distribution, number of 
attributes, number of samples, number of categories, 
etc. Many experiments have been run on each syn-
thetic dataset. Figure 3 shows the clustering results 
of several synthetic datasets on a two-dimensional 
graph. The black triangles in the ERK-DPC algorithm 
results graph represent the cluster centre points of 
each cluster. The ERK-DPC algorithm does not con-
sider the influence of noise points. The different col-
ours in the resulting graph represent a cluster. The 
ERK-DPC, FKNN-DPC and DPC algorithms deter-
mine the number of clusters according to the distri-
bution of points in the decision graph. DBSCAN and 
AP do not need to determine the number of clusters in 
advance. This paper directly determines the correct 
number of clusters of the K-means algorithm.

Table 1
Synthetic datasets used in the experiments

Datasets Objects Attribute Cluster

Aggregation 788 2 7

Flame 240 2 2

Spiral 312 2 3

R15 600 2 15

D31 3100 2 31

DIM512 1024 512 16

Table 2
UCI datasets used in the experiments

Datasets Objects Attribute Cluster

Iris 150 4 3

Balancescale 625 4 3

Ecoli 336 8 8

Glass 214 9 6

Breast 271 9 2

Vote 435 16 2

Zoo 101 19 7

Parkinson 195 23 2

Wpbc 198 33 2

Sonar 208 60 2

Leave 1600 64 100

Libras movement 360 90 15
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Figure 3
The clustering results by ERK-DPC algorithms

(a) ERK-DPC on Aggregation  (b) ERK-DPC on Flame

(c) ERK-DPC on R15 (d) ERK-DPC on Spiral

(e) ERK-DPC on D31 (f ) ERK-DPC on S1
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The Aggregation dataset consists of seven unbalanced 
clusters of different sizes, two of which have connec-
tion points. The identification of the connection points 
and boundary points presents difficulty in clustering. 
Figure 3(a) shows that the ERK-DPC algorithm not 
only correctly identifies the seven clustering centres 
but also better processes the connection points of four 
clusters. The Flame dataset contains two clusters of 
different sizes and shapes, one of which is a manifold 
shape. Figure 3(b) clearly illustrates that the proposed 
ERK-DPC method can correctly separate the two clus-
ters and that the data points at the junction of the two 
clusters are correctly identified. In Figure 3(c), the R15 
data set contains 15 clusters, and the seven clusters of 
the periphery are located far away from each other, and 
thus it is easy to distinguish them correctly. However, 
overlap exists between the eight clusters of the middle. 
The ERK-DPC algorithm can correctly identify 15 clus-
tering centres, but several overlapping data points have 
not been correctly separated. The Spiral dataset con-

tains three circular nested clusters. Because the three 
rings are nested with each other, it is easy to divide the 
different classes together in the traditional DPC algo-
rithm. In Figure 3(d), the ERK-DPC algorithm can cor-
rectly identify the centre point and correctly allocate 
it. D31 contains 31 clusters, and there are overlapping 
components in the clusters. Figure 3(e) shows that the 
ERK-DPC can completely find the cluster centres of 31 
clusters, and the cluster centre of each cluster is locat-
ed. The middle position of the cluster is also ideal for 
the distribution of the overlapping portions of the clus-
ter and the surrounding noise points. For the S1 dataset 
shown in Figure 3, the ERK-DPC algorithms correct-
ly identify all clusters. The S1 dataset includes many 
boundary points and overlapping points.
Table 3 shows a comparison of the evaluation metrics 
for several algorithms in the synthetic datasets. The 
best results of each evaluation metric are shown in 
bold, and Par is the corresponding parameter when 
the result is optimal.

Table3
Comparison of evaluation metrics on synthetic datasets

Algorithm ACC AMI ARI NMI Par ACC AMI ARI NMI Par

Aggregation Flame
ERK-DPC 0.995 0.991 0.994 0.993 19 1.000 1.000 1.000 1.000 25
FKNN-DPC 0.996 0.992 0.992 0.988 7 0.996 0.962 0.983 0.963 6
DPC 1.000 1.000 1.000 1.000 3.4 1.000 1.000 1.000 1.000 2.8
DBSCAN 0.985 0.955 0.979 0.968 1.5/8 0.958 0.783 0.923 0.851 1/6
K-means 0.786 0.833 0.762 0.879 3 0.838 0.386 0.453 0.399 3
AP 0.841 0.683 0.665 0.763 -2.56 0.775 0.367 0.441 0.454 -5.25

Sprial D31
ERK-DPC 1.000 1.000 1.000 1.000 2 0.956 0.955 0.934 0.957 20
FKNN-DPC 1.000 1.000 1.000 1.000 4 0.953 0.949 0.947 0.957 10
DPC 1.000 1.000 1.000 1.000 2.0 0.956 0.955 0.936 0.957 0.6
DBSCAN 1.000 1.000 1.000 1.000 2.5/2 0.864 0.849 0.709 0.879 0.6/9
K-means 0.343 0.006 0.005 0.006 3 0.711 0.529 0.304 0.681 31
AP 0.387 -0.005 -0.005 0.004 -2.08 0.631 0.417 0.192 0.579 0.65

R15 DIM512
ERK-DPC 0.997 0.994 0.993 0.994 15 1.000 1.000 1.000 1.000 4
FKNN-DPC 0.996 0.994 0.993 0.994 3 1.000 1.000 1.000 1.000 4
DPC 0.997 0.994 0.993 0.994 0.6 1.000 1.000 1.000 1.000 2.0
DBSCAN 0.953 0.929 0.933 0.944 0.4/8 0.985 0.976 0.982 0.983 2.0/4
K-means 0.997 0.994 0.993 0.994 15 1.000 1.000 1.000 1.000 16
AP 0.925 0.931 0.988 0.983 -0.16 0.974 0.945 0.921 0.962 -1.07
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Table 4
Comparison of evaluation metrics on UCI datasets

Algorithm ACC AMI ARI NMI Par ACC AMI ARI NMI Par

Iris Ecoli
ERK-DPC 0.967 0.883 0.904 0.885 4 0.821 0.633 0.738 0.711 3
FKNN-DPC 0.934 0.809 0.818 0.813 5 0.747 0.584 0.707 0.659 4
DPC 0.907 0.759 0.793 0.806 2.0 0.494 0.531 0.405 0.582 0.3
DBSCAN 0.667 0.651 0.562 0.713 0.7/3 0.677 0.412 0.507 0.506 0.2/9
K-means 0.893 0.826 0.730 0.758 3 0.584 0.515 0.454 0.598 8
AP 0.82 0.571 0.548 0.68 -0.25 0.623 0.411 0.307 0.512 -0.15

Balancescale Glass
ERK-DPC 0.426 0.226 0.208 0.230 8 0.411 0.328 0.175 0.357 13
FKNN-DPC 0.342 0.091 0.118 0.102 7 0.383 0.176 0.172 0.263 6
DPC 0.007 0.000 -0.001 0.007 0.3 0.277 0.177 0.292 0.323 6
DBSCAN 0.006 -0.001 0 0 0.04/2 0.294 0.273 0.231 0.356 0.2/3
K-means 0.141 0.129 0.160 0.143 3 0.313 0.288 0.166 0.323 6
AP 0.159 0.097 0.141 0.159 -0.15 0.356 0.162 0.165 0.356 1.57

Vote Sonar
ERK-DPC 0.901 0.545 0.643 0.554 12 0.659 0.075 0.096 0.086 4
FKNN-DPC 0.882 0.483 0.585 0.492 11 0.563 0.004 0.011 0.009 2
DPC 0.848 0.409 0.484 0.418 2.0 0.620 0.041 0.053 0.045 4
DBSCAN 0.483 0.315 0.410 0.391 0.8/3 0.409 0.073 0.004 0.121 0.5/2
K-means 0.866 0.459 0.536 0.469 2 0.552 0.005 0.006 0.005 2
AP 0.503 0.388 0.418 0.343 -0.61 0.417 0.017 0.022 0.025 -0.42

Zoo Libras movement
ERK-DPC 0.878 0.798 0.842 0.829 4 0.403 0.601 0.351 0.662 4
FKNN-DPC 0.757 0.675 0.563 0.757 10 0.367 0.549 0.324 0.367 3
DPC 0.604 0.658 0.497 0.722 2.0 0.346 0.485 0.261 0.581 2.0
DBSCAN 0.249 0.220 0.145 0.615 0.5/1 0.279 0.359 0.235 0.658 0.9/1
K-means 0.753 0.765 0.679 0.816 7 0.365 0.534 0.315 0.599 15
AP 0.561 0.494 0.578 0.561 2.65 0.257 0.281 0.147 0.438 4.06

Wpbc Breast
ERK-DPC 0.757 0.037 0.138 0.048 2 0.736 0.058 0.154 0.072 3
FKNN-DPC 0.737 0.013 0.099 0.027 4 0.718 0.048 0.135 0.055 2
DPC 0.676 0.019 -0.006 0.030 2.1 0.711 0.042 0.122 0.014 0.1
DBSCAN 0.459 0.025 0.044 0.042 0.6/4 0.438 0.035 0.083 0.065 0.8/1
K-means 0.601 0.020 0.035 0.027 2 0.509 -0.001 -0.003 0.001 2
AP 0.269 0.015 0.012 0.026 -0.96 0.671 0.036 0.057 0.067 1.15

Parkinson Leave
ERK-DPC 0.851 0.273 0.391 0.351 3 0.308 0.510 0.189 0.724 8
FKNN-DPC 0.825 0.168 0.324 0.206 6 0.222 0.423 0.144 0.628 5
DPC 0.635 0.047 0.144 0.053 2.5 0.212 0.466 0.194 0.681 0.1
DBSCAN 0.754 0.097 0.164 0.159 0.15/3 0.127 0.243 0.029 0.500 0.15/2
K-means 0.669 0.213 0.052 0.213 2 0.299 0.507 0.282 0.710 100
AP 0.703 0.053 0.043 0.115 0.23 0.152 0.274 0.036 0.571 3.25
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From the above results, it can be concluded that the 
proposed method performs well and can correctly 
cluster different types of data sets. The ERK-DPC al-
gorithm not only correctly classifies the complex data 
and ring data but also better addresses the connection 
points and boundary points. The comparison results 
show that the ERK-DPC algorithm in this paper is only 
slightly lower than the traditional DPC and FKNN-
DPC in Aggregation and D31, and the evaluation met-
rics in other data sets are not lower than the other four 
algorithms. In this paper, the ERK-DPC algorithm 
obtains 100% clustering results for the Flames, spiral 
and DIM512 datasets. These results indicated that the 
Euler cosine distance proposed in this paper has a good 
clustering effect on the two-dimensional data set and 
also has obvious advantages in high-dimensional data.

5.3. Results and Analysis on UCI Datasets
In this section, to further test the performance of the 
ERK-DPC algorithm, this paper selects 12 real data 
sets (as shown in Table 2) from the UCI database for 
experiments, in an attempt to obtain instructive ef-
fects. These datasets differ in the number of sample 
points, feature number and cluster number.
We compare the results of the cluster evaluation metrics 
of the five algorithms. ACC, AMI, ARI and NMI were 
used to evaluate the clustering results of real data sets. 
Table 4 shows the ERK-DPC algorithm and the cluster-
ing results of the comparison algorithms FKNN-DPC, 
DPC, DBSACN, K-means and AP on 12 UCI datasets. 
Par represents the parameters corresponding to the op-
timal results. The best results of each evaluation metric 
are shown in bold. The results show that the proposed 

method achieved good results in most cases. 
ERK-DPC outperforms other algorithms in low dimen-
sional datasets, such as Iris, Ecoli, Balancescale and 
Glass. Iris is the data set most commonly used in clus-
tering analysis and contains three class clusters, two 
of which are non-linearly separable. This algorithm 
can correctly distinguish the second and third clusters. 
However, this algorithm has better performance on rel-
atively high-dimensional data in the Sonar, Leave, and 
Libras Movement datasets. Specifically, the higher the 
feature value of the datasets, the greater the advantage of 
ERK-DPC. Leave contains 100 class clusters, each with 
64 characteristics. Each cluster has a small number of 
samples, which creates certain difficulties in clustering. 
However, in the Leave data, the algorithm proposed in 
this paper is superior to the other algorithms. Overall, 
the ERK-DPC algorithm achieved more satisfactory re-
sults on most data sets than other algorithms.

5.4. Analysis of Experimental Results of 
Consumer Behaviour Data
The ERK-DPC clustering algorithm is applied to the 
consumer behaviour segment. Consumption data are 
obtained by scanning a two-dimensional code during 
promotional activities. The data from January 1, 2018 
to March 15, 2018 are selected. In this period of time, 
consumers display repeated consumption behaviour. 
The number of data sample points is 8542, and five 
features are selected: consumption amount, con-
sumption frequency, recent consumption time, con-
sumer scan code longitude and latitude.
It can be determined from the decision graph of the 
consumption data in Figure 4(a) that the data can be 

(a) Consumer behaviour data decision graph (b) The three-dimensional diagram of clustering results

Figure 4
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grouped into three categories. Figure 4(b) presents a 
three-dimensional representation of the clustering 
results.
Because there is no known clustering label for con-
sumption data, this paper uses an internal evaluation 
indicator. The Silhouette coefficient applies to situa-
tions in which the actual category information is un-
known. The formula can be expressed as

 
( )b a

b a
s

max −

−
= . 

For a single data sample point, a represents the dis-
tance of a sample point from other samples of its class, 
and b is the average distance of samples in the differ-
ent categories from which it is closest. For a dataset, 
its Silhouette coefficient is the average of the Silhou-
ette coefficient of all sample points, and the range is 
[-1, 1]. The closer the distance between the same cate-
gory sample and the farther the distance between the 
different types of samples, the larger the Silhouette 
coefficient value.
Figure 5 shows the density relationship of consumer 
data attributes among three clusters, where M is con-
sumption amount, F is consumption frequency, and T 
is recent consumption time. In Figure 5(a), the con-
sumer’s recent consumption time is relatively close 
to the current date, and the consumption amount and 
consumption frequency in the high-density area are 
relatively large. This result shows that consumers in 
this category are valuable users. Enterprises need to 
focus on the objects. In Figure 5(b), the consumption 
time period is relatively large, but the consumption 
amount and consumption frequency are lower. This 
result shows that the user repurchase rate of this cat-
egory is relatively high, but it is a general value user. In 
Figure 5(c), the recent consumption time is far from 
the current value, and the consumption amount and 
consumption frequency are not too high, indicating 
that the users in this category are losing users or are 
about to lose users.
Table 5 compares the evaluation metric for several al-
gorithms on the consumption data. It can be observed 
that the EKP-DPC algorithm has better Silhouette 
coefficient scores in the consumption behaviour data 
than other algorithms. In summary, the EKP-DPC al-
gorithm effect is better.

Figure 5
Three attribute density analysis graphs in consumer 
behaviour data 

(a)

(b)

(c)
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Table 5
Performance comparison of algorithms on consumption data

Algorithm Silhouette coefficient Par Times(s)

ERK-DPC 0.6057 7 646.3344

FKNN-DPC 0.5028 7 690.0486

DPC 0.1865 0.1 771.0434

DBSCAN 0.4149 0.15/3 519.4163

K-means 0.6005 3 4.2433

AP 0.4025 1.83 602.7957

Figure 6
Result on different datasets with different k argument

5.5. Sensitivity Analysis
In this section, we discuss the influences of the k pa-
rameter. 
The k parameter can be adjusted to the resulting op-
timization in the ERK-DPC algorithm. To analyse the 
influence of the selection of the parameter k on the 
clustering result, different k values are selected for 
the result analysis. The range of k is [2, 30], and k is 
incremented by one each time. As shown in Figure 6, 
the results are compared with different dataset exper-
iments using the evaluation criteria, including AMI, 
ARI, and NMI. The datasets of Aggregation, R15 and 
D31 in the synthetic datasets and certain real-world 
datasets are selected. The dimensions of the datasets 
Ecoli, Zoo and Libras are 8, 19 and 90, respectively. 
As can be observed from Figure 6, the three synthetic 
data sets show little fluctuation with the change of k 
value. In the UCI data set, certain fluctuations occur 
in the values of the indicators. In Figure 6(a) and (b), 
the Zoo data set fluctuates slightly when the k value is 
small, but when k is greater than 20, the three index 
values to tend to be stable. The datasets of Ecoli and 
Libras show little fluctuation as k increases, which in-
dicates that the ERK-DPC algorithm has robustness 
in both low-dimensional and high-dimensional data. 
This result verifies the robustness of the algorithm.

6. Conclusions and Future Work
In this paper, an adaptive density peak clustering based 
on dimension-free and reverse k-nearest neighbours is 
proposed. In the process of clustering, the idea of reverse 

(a) AMI

(b) ARI

(c) NMI
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k-nearest neighbours is introduced to further optimize 
the one-step allocation strategy in the traditional DPC 
algorithm (known as ERK-DPC). The improved com-
ponent of the method is divided into three main aspects.
First, because the high-dimensional data will be greatly 
affected, and the traditional Euclidean distance cannot 
measure the distance between sample points correct-
ly, and thus this paper introduces a novel Euler cosine 
distance formula. The Euler cosine distance formula 
can measure the distance more accurately without 
reducing the data dimension (dimension-free). This 
distance formula can avoid the effects of noise and 
sparsity in high dimensional data, and can effectively 
represent the true distance between sample points. 
Second, an adaptive local density formula is that can 
better solve the problem of local density calculation 

in the boundary points of clusters. Third, aimed at the 
problem of continuous error in the one-step allocation 
strategy of the traditional DPC algorithm, a novel two-
step allocation strategy based on the number of reverse 
k-nearest neighbours is proposed. To evaluate the ef-
fectiveness of the proposed method, a large number of 
experiments were conducted on synthetic datasets and 
UCI real-world datasets. The results demonstrate the 
effectiveness and robustness of the proposed method. 
The ERK-DPC method is applied to consumer behav-
iour data, which proves that the method can be used to 
effectively segment consumers.
To obtain the distance matrix, calculation of the dis-
tance between two pairs of sample points is required, 
which limits the algorithm to be run on large datasets. 
In future work, we will attempt to reduce the time 
complexity and conduct incremental clustering.
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