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Underground coal gasification (UCG) is a potential technology that enables to mine coal without traditional 
mining equipment. The coal is gasified deep in underground and produced syngas is processed on the surface. 
The most important technical problem in UCG is unstable quality of syngas and control. This paper propos-
es advanced control based on an adaptive predictive controller. The maintaining of desired calorific value de-
pends on flow rates of gasification agents injected to the underground geo-reactor and controlled exhaust. The 
paper proposes a physical model of UCG technology and applies a method of multivariate adaptive regression 
splines (MARS) to model the gasification process. This method satisfactorily approximates nonlinearity in the 
process variables. The paper proposes adaptive model predictive control (MPC) using online model estimation 
and applied it on the MARS model of UCG that imitates the real process. The results have shown that optimiza-
tion of manipulation variables can replace manual control in UCG. Getting better quality of syngas depends on 
setpoints, optimized manipulation variables, and constraints used in MPC. In simulations, the adaptive MPC 
has shown better performance in comparison with manual and PI control.
KEYWORDS: UCG, Coal, Gasification, Prediction, Model Predictive Control, MARS, Matlab-Simulink.

1. Introduction
Underground coal gasification (UCG) represents 
in-situ controlled combustion of coal where valuable 
gas (i.e., syngas) is produced. Conventional mining 

methods can extract only 15% of the total coal re-
serves. UCG offers an alternative to traditional min-
ing of coal, especially in case of coal seams which are 
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not mineable by conventional approach or have some 
tectonic failures. Moreover, it is less expensive than 
traditional mining. UCG has the potential to be used 
in the future. In in-situ gasification two wells drilled 
into underground are needed to initiate gasification, 
i.e., injection and production well. In UCG, heat is 
generated in the underground coal bed using injected 
oxidants (i.e., by endothermic chemical reactions). 
This heat is used by exothermic reactions with car-
bon to produce syngas components. With the need to 
improve the gasification process, it must be ensured 
that the combustive reactions have generated enough 
energy to heat of reactants. The calorific value of the 
produced syngas is the most important indicator 
of gasification quality. In UCG, various gasification 
agents are used, e.g., air, oxygen, or water vapor. In an 
underground reactor, the processes of drying, pyrol-
ysis of solid hydrocarbon, combustion and gasifica-
tion continually take place. UCG represents reaction 
zones defined by temperatures where the combustion 
front progressively moves. Groundwater also partic-
ipates in gasification. Raw, pure syngas from UCG 
contains predominantly CO, CO2, H2, CH4, and O2, 
higher hydrocarbons, tar, and impurities. Monitoring 
the underground temperature in the oxidation zone 
is important for the control of UCG. The UCG runs 
in temperatures close to 1000°C according to Figure 
1. At the fire face, there are high temperatures (up to 
1200–1300°C). An extensive overview of UCG can be 
found in [9, 12, 39].

Figure 1 
Principle of the UCG with reaction zones
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Research in the world is mainly focused on 
modeling internal processes of UCG and on 
model-based control. This paper examines the 
possibilities of model predictive control of UCG 
with adapted internal controller model. In this 
paper, the simulation study is performed to assess 
the suitability of the proposed approach. Major 
contributions of this paper are as follows: 1) A 
data-driven modeling of syngas calorific value and 
underground temperature by utilizing the model 
based on multivariate adaptive regression splines 
(MARS). The MARS model will be used to imitate 
the UCG process in simulations. Such an approach 

has not yet been applied in the world; 2) A 
proposal of the adaptive predictive control to 
maintain or increase the syngas calorific value. 
Such an approach to UCG control has not yet 
been verified. 3) A comparison of the proposed 
predictive control with manual control and 
classical PI control. The following subsections 
give an overview of recent research in the field of 
UCG modeling and control. 

 

1.1 UCG Modeling 

The UCG involves a complex range of physical 
processes occurring over a wide range of 
characteristic time and length scales. Modeling of 
such processes is a compromise between model 
complexity (often assumed to give better 
predictive capability) versus simplicity (known 
to provide faster computational runtimes). The 
tradeoffs made in the model development are 
typically a function of the model's intended 
purpose, expectations of the uncertainties, and 
sensitivities of model inputs the current state-of-
knowledge and the available computing power.  

A comprehensive UCG model should include 
various physical phenomena (e.g., heat and mass 
transfers, coal drying and pyrolysis, chemical 
reactions cavity evolution, liquid flow and 
interaction between surrounding environment) 
and physical sub-processes (e.g., cavity growth, 
combustion front propagation, the interaction of 
the cavity with overburden and hydrology) [45].  

In the literature, different approaches to UCG 
modeling can be found. Earliest numerical 
models were one-dimensional packed bed [40, 
57]. Thorsness et al. [49] were able to make a 
good prediction of syngas composition and coal 
consumption for laboratory experiments with 
steam and oxygen (ratio 6:1). Later, 2-D packed 
bed and channel models were developed [1, 4, 
50]. For thick seams with low-pressure 
operations (< 1 MPa), a CAVSIM process was 
developed [48]. Progress in computing has 
enabled the development of 3-D models of UCG, 
e.g., a 3-D computational model for roof spalling, 
bed dynamics, and cavity growth were 
developed in [5]. An important aspect of UCG 
models are the assumptions and modeling of the 
chemical reactions in the process. Models based 
on a chemical reaction of UCG can be found in [8, 
47]. The comprehensive summary of reported 
UCG models can be found in [27, 45]. 

A special group consists of mathematical models 
based on soft sensors where an unmeasurable 
process variable is calculated or estimated from 
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In the literature, different approaches to UCG mod-
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periments with steam and oxygen (ratio 6:1). Later, 
2-D packed bed and channel models were developed 
[1, 4, 50]. For thick seams with low-pressure oper-
ations (< 1 MPa), a CAVSIM process was developed 
[48]. Progress in computing has enabled the develop-
ment of 3-D models of UCG, e.g., a 3-D computation-
al model for roof spalling, bed dynamics, and cavity 
growth were developed in [5]. An important aspect of 
UCG models are the assumptions and modeling of the 
chemical reactions in the process. Models based on a 
chemical reaction of UCG can be found in [8, 47]. The 
comprehensive summary of reported UCG models 
can be found in [27, 45].
A special group consists of mathematical models 
based on soft sensors where an unmeasurable pro-
cess variable is calculated or estimated from other 
measurable process variables. Since the UCG runs in 
the underground, some of the process variables can-
not be measured directly by conventional hardware 
(e.g., underground temperature). Known proxies of 
underground temperature estimation are based on 
measurement of carbon isotopes [11, 28] and radon 
emanations [54, 58]. Various soft-sensing methods 
are developed for monitoring and prediction of UCG 
variables. Currently, UCG modeling with the appli-
cation of machine learning (i.e., neural networks 
(NNs), support vector machines (SVMs), and adap-
tive regression models) is developed. This approach 
brings interesting results in the modeling of expert 
knowledge of the UCG. It is mostly data-driven 
modeling with continuous model adaptation as the 
process evolves. In terms of control, it needs to pre-
dict the composition of syngas calorific value, or un-
derground temperature in a combination of control 
variables. 
Some works model underground temperature based 
on nonstationary heat conduction (e.g., [17, 29]). Re-
cently, many models based on neural networks were 
developed (e.g., [23, 26, 35, 36]). Some models are di-
rectly developed to support predictive control. Vari-
ous applications of support vector machines (SVMs) 
for UCG data prediction can be found in the litera-
ture. For example, Kačur et al. [25] achieved interest-
ing results in predicting calorific value using support 
vector regression (SVR). Other methods of prediction 
applied in UCG that utilize soft computing can be 
found in [22, 37, 60, 61].

1.2. Control of UCG

The control of UCG to produce stable syngas is most 
problematic. Currently, the UCG is controlled blindly, 
causing unstable quality of syngas. For air technology 
(i.e., the air is used as a main gasification agent), a low-
er syngas calorific value of 3-7 MJ/Nm3 is achieved. 
In oxygen technology (i.e., typically a mixture of oxy-
gen and water vapor), the calorific value is usually in 
the range of 9-14 MJ/Nm3 [39]. Optimal control is the 
most investigated field in UCG within academic re-
search. Much work focused on UCG control has been 
done on experimental ex-situ reactors (e.g., [24, 30, 
31]) but also there are some trials on in-situ gasifier 
(e.g., [52]). 
The discrete PI controller is ideal for slow and 
time-delayed processes such as UCG. Applications 
of PI controllers to stabilize the oxygen in syngas and 
underground temperature can be found in [24]. Kačur 
and Kostúr proposed PI controllers using discrete 
ARX models and a modified Ziegler-Nichols method 
[24]. The authors also verified the PI controller with 
a continuous adaptation of controller parameters. 
By such an approach, they were able to increase and 
maintain the syngas calorific value. Another approach 
to automated UCG control was based on the applica-
tion of the adaptive regression model [33]. The pro-
posed regression model was able to calculate optimal 
manipulation variables (i.e., volume flows of gasifica-
tion agents) with the continual adaptation of model 
parameters from the historical data. Recently, Kostúr 
and Kačur [30] developed optimal control based on 
the utilization of the gradient optimization method. 
This method was adopted to continually optimize 
manipulation variables (i.e., gasification agents, and 
outlet underpressure) and maximize syngas calorific 
value during UCG. It was a model-free control of UCG 
verified in laboratory conditions on ex-situ reactor. 
Kostúr and Kačur [31] also proposed and verified an 
extremum-seeking control to maximize CO in syngas 
using air as one manipulation variable. 
Uppal et al. [52, 53] have also done a lot of research in 
UCG control. They have proposed a predictive model 
of the one-dimensional underground coal bed. De-
signed model-based control optimizes UCG inputs. 
The model has been connected in a closed loop with 
a robust slide mode controller (SMC) to stabilize the 
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calorific value of syngas to the reference value. Oth-
er researchers, i.e., Wei and Liu [55], proposed a UCG 
control scheme based on iterative optimal learning 
and iterative adaptive dynamic programming. Some 
connection of learning methods with predictive con-
trol of gasification can be found in [20]. In this work, 
adaptive predictive control of oxygen concentration 
in syngas without the use of a model was proposed. 
The authors used offline input-output data for the 
learning method and compact-form dynamic plant 
linearization.

1.3. Potential of Predictive Control in UCG
A model predictive control (MPC) represents a ro-
bust control technique that can be applied on mul-
tivariable linear and nonlinear processes. Since the 
coal gasifier appears to be a non-linear system with 
some inputs and outputs, this way of managing it can 
have potential benefits. The main objective is to con-
tinuously maintain the syngas calorific value on de-
sired value over time as the UCG develops (e.g., com-
bustion front propagation, water influx, gas leaks, 
and various uncertainties). Unfortunately, there 
is no model to describe UCG comprehensively, but 
different black-box models have potential. The tech-
nique of MPC integrates optimal control, stochastic 
control, and control of processes with dead time. In 
this control technique, the model of process and min-
imizing of the cost function is used to obtain optimal 
control. There are many applications of MPC in the 
gasification industry (e.g., [3, 7, 59, 62]). Unfortunate-
ly, only low evidence of this technique can be found 
in UCG. Beneficial is MPC formulation in the state 
space [43]. It facilitates the generalization of MPC 
for mono-variable, multi-variable, linear, and nonlin-
ear processes. When control multiple-inputs-multi-
ple-outputs (MIMO) or multiple inputs-single-out-
puts (MISO), the most popular way is decoupling 
MISO control into multiple single-input-single-out-
put (SISO) controllers (e.g., PID control). However, 
complete decoupling is very difficult to achieve for 
processes with complex dynamics or dead times. In 
MPC, the MISO and MIMO systems are controlled in 
a straightforward manner [13, 15, 46].
Although many industrial processes are nonlinear, 
most MPC applications are based on the use of lin-
ear models. In most cases, the nonlinear model of the 
process can be linearized in operating points where 

linearity is assumed in the neighborhood of a specific 
operating point. The linear model can be relative easy 
identified on process data and provide a good result 
when the plant is operating in the neighborhood of the 
operating point. In this paper, a model-based MARS is 
linearized to the discrete state-space model in the op-
erating point by offline and appropriately used within 
the linear MPC strategy. The online model estimation 
and continual MPC model update ensure the adapta-
tion of MPC. MARS is an attractive tool to model non-
linear processes. This feature, together with training 
availability, makes it very useful in MPC applications 
to process imitation. The similar utilization can be 
found in NNs or SVMs. This paper proposes adaptive 
model predictive control (AMPC) using online model 
estimation and applies it to the MARS model of UCG 
that imitates the real process.

2. Physical Modeling of UCG
Researchers have developed various ex-situ gasifica-
tion plants to improve the UCG. Ex-situ gasification 
was most investigated in [16, 31, 32, 56]. To investi-
gate the possibilities of control and measurement of 
process variables in the UCG, an ex-situ reactor has 
been created.
Two compressors injected air into the pressure ves-
sel from where it was blown into the ex-situ reactor. 
Technical oxygen as the second gasification agent 
was added from pressure vessels. Air and oxygen were 
mixed in the mixing chamber, and this mixture was 
injected into the ex-situ reactor to support the gasifi-
cation. The flow rates of gasification agents were con-
trolled using valves. 
At the outlet, the composition of syngas was measured 
by stationary analyzers. The calorific value of syngas 
was calculated from the measured syngas composi-
tion. The underpressure at the outlet was controlled 
by an industrial fan and measured by a pressure gauge. 
The physical model of the underground coal bed was 
formed by blocks of Lignite-type coal from the Slovak 
mine (see Figure 2). Thermocouples of K-type were 
used to measure temperature in coal, overburden, un-
derburden and gasification channels. To meet simi-
larity conditions, the reactor was slightly inclined and 
sealed. Several experiments were performed on two 
ex-situ reactors (i.e., syngas generators 1 and 2). The 
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Figure 3 
Experimental ex-situ reactors with devices for measurement and control.

comprehensive scheme of the experimental gasifica-
tion equipment with two syngas generators is shown 
in Figure 3. These ex-situ reactors differ in dimen-
sions. The bedding of coal corresponds to real coal 
seam with inclination. A monitoring system to mon-
itor experiments was created in the SCADA/HMI 
application Promotic (see Figures 4 and 5). The mon-
itoring system provided auxiliary algorithms for op-

 

 

gasification were also used in this paper to verify 
the proposed modeling method. The monitoring 

system was divided into screens, between which 
the operator may switch.  

 

Figure 3  
devices for measurement and control. 

 
 

Figure 4  
The main screen of the monitoring system. 

Figure 2
Creation of the physical model of the coal seam

  

uncertainties). Unfortunately, there is no model to 
describe UCG comprehensively, but different 
black-box models have potential. The technique of 
MPC integrates optimal control, stochastic control, 
and control of processes with dead time. In this 
control technique, the model of process and 
minimizing of the cost function is used to obtain 
optimal control. There are many applications of 
MPC in the gasification industry (e.g., [3, 7, 59, 
62]). Unfortunately, only low evidence of this 
technique can be found in UCG. Beneficial is MPC 
formulation in the state space [43]. It facilitates the 
generalization of MPC for mono-variable, multi-
variable, linear, and nonlinear processes. When 
control multiple-inputs-multiple-outputs (MIMO) 
or multiple inputs-single-outputs (MISO), the most 
popular way is decoupling MISO control into 
multiple single-input-single-output (SISO) 
controllers (e.g., PID control). However, complete 
decoupling is very difficult to achieve for 
processes with complex dynamics or dead times. 
In MPC, the MISO and MIMO systems are 
controlled in a straightforward manner [13, 15, 46]. 

Although many industrial processes are nonlinear, 
most MPC applications are based on the use of 
linear models. In most cases, the nonlinear model 
of the process can be linearized in operating points 
where linearity is assumed in the neighborhood of 
a specific operating point. The linear model can be 
relative easy identified on process data and 
provide a good result when the plant is operating 
in the neighborhood of the operating point. In this 
paper, a model-based MARS is linearized to the 
discrete state-space model in the operating point 
by offline and appropriately used within the linear 
MPC strategy. The online model estimation and 
continual MPC model update ensure the 
adaptation of MPC. MARS is an attractive tool to 
model nonlinear processes. This feature, together 
with training availability, makes it very useful in 
MPC applications to process imitation. The similar 
utilization can be found in NNs or SVMs. This 
paper proposes adaptive model predictive control 
(AMPC) using online model estimation and 
applies it to the MARS model of UCG that imitates 
the real process. 

 
2. Physical Modeling of UCG 
Researchers have developed various ex-situ 
gasification plants to improve the UCG. Ex-situ 
gasification was most investigated in [16, 31, 32, 
56]. To investigate the possibilities of control and 
measurement of process variables in the UCG, an 
ex-situ reactor has been created. 

Two compressors injected air into the pressure 
vessel from where it was blown into the ex-situ 
reactor. Technical oxygen as the second 
gasification agent was added from pressure 
vessels. Air and oxygen were mixed in the mixing 
chamber, and this mixture was injected into the 
ex-situ reactor to support the gasification. The 
flow rates of gasification agents were controlled 
using valves.  

 
Figure 2 
Creation of the physical model of the coal seam. 

 
 

At the outlet, the composition of syngas was 
measured by stationary analyzers. The calorific 
value of syngas was calculated from the 
measured syngas composition. The 
underpressure at the outlet was controlled by an 
industrial fan and measured by a pressure gauge. 
The physical model of the underground coal bed 
was formed by blocks of Lignite-type coal from 
the Slovak mine (see Figure 2). Thermocouples of 
K-type were used to measure temperature in 
coal, overburden, underburden and gasification 
channels. To meet similarity conditions, the 
reactor was slightly inclined and sealed. Several 
experiments were performed on two ex-situ 
reactors (i.e., syngas generators 1 and 2). The 
comprehensive scheme of the experimental 
gasification equipment with two syngas 
generators is shown in Figure 3. These ex-situ 
reactors differ in dimensions. The bedding of coal 
corresponds to real coal seam with inclination. A 
monitoring system to monitor experiments was 
created in the SCADA/HMI application Promotic 
(see Figures 4 and 5). The monitoring system 
provided auxiliary algorithms for operating of 
the control system, plotting and archiving 
measured data from the gasification process to 
the database. The data recorded from 
experimental gasification during laboratory 

erating of the control system, plotting and archiving 
measured data from the gasification process to the 
database. The data recorded from experimental gas-
ification during laboratory gasification were also used 
in this paper to verify the proposed modeling method. 
The monitoring system was divided into screens, be-
tween which the operator may switch. 
The control of experimental UCG was ensured by 
PLC (B&R X20) that performed several cyclic tasks 
(i.e., data acquisition, data processing, process vari-
ables stabilization via PI controllers, extremum seek-
ing control, and optimal control based on gradient 
method). The PLC was connected with PC through 
RS232 and OPC protocol.
The proposed monitoring system for experimental 
gasification equipment is able to monitor and record 
various process variables, e.g., injected air volume 
flow, injected air overpressure, injected oxygen vol-
ume flow, injected oxygen overpressure, exhausting 
underpressure, syngas temperature, concentrations 
of O2, CO2, H2, CO, CH4 in syngas, calorific value of 
syngas, syngas volume flow, temperatures of overbur-
den layers, temperatures inside gasifier (i.e., in oxidiz-
ing, reducing, and pyrolyzing zone), and temperatures 
of underburden layers.
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Figure 4 
The main screen of the monitoring system
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3. UCG Modeling Based on MARS
Currently, various methods for nonlinear system 
modeling are applied in research, e.g., Neural Net-
works (NN), Nonlinear Finite Impulse Response 
(NFIR), Nonlinear AutoRegressive with eXogenous 
inputs (NARX), Nonlinear AutoRegressive Moving 
Average with eXogenous input (NARMAX), Non-
linear Output Error (NOE) model, and Nonlinear 
Box-Jenkins (NBJ) model. This section explains the 
background of the black-box method called Multivar-
iate Adaptive Regression Splines (MARS) that can 
model nonlinearities in the UCG process. The model 
can be created from offline UCG observations and tar-
gets. The goal is to find the dependency of variables yi 
on one or more independent variables ui. The follow-
ing regression sample is considered:
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   11 1
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 u   (1) 

where ui∈ℝn represents the i-th vector of the 
independent variables; yi∈ℝ, (i = 1, …, N) is the 
dependent variable, i.e., target; n represents the 
number of independent variables, and N 
represents the number of samples, i.e., the total 
number of (ui, yi) pairs. These variables represent 
manipulated variables and measured output in 
UCG. In experimental UCG, three manipulation 
variables (i.e., input observations) and two 
controlled variables (i.e., targets) have been 
specified (see Table 1). 

 
Table 1 
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The MARS method was firstly introduced in [18] 
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technique that can automatically model 
nonlinearities and interactions between process 
variables. If the MARS technique of regression 
analysis on time series is used, the autoregressive 
model can be obtained. Many works have been 
published that discussed the MARS method (e.g., 
[14, 19, 51]). 

In order to create the MARS model, the training 
data vectors, i.e., the inputs (observations) and 
outputs (targets) are needed. Training data are 
split into several splines on an equivalent interval 
basis. The data are in every spline split into many 
subgroups, and several knots are created that can 
be placed between different input variables or 
different intervals in the same input variable to 
separating subgroups [14]. To verify the 
performance of the model being created, the 
model is verified on the test data. In MARS, the 
regression function called basis function (BF) is 
approximated by smoothing splines for a general 
representation of data in each subgroup. Between 
any two knots, the model can characterize the 
data either globally or by using linear regression. 
The BF is unique between any two knots and is 
shifted to another BF at each knot. Two BFs in 
two adjacent domains of data intersect at the knot 
to make model outputs continuous. MARS 
creates a curved regression line to fit the data 
from subgroup to subgroup and from one spline 
to another spline. For evading over-fitting and 
over-regressing, the shortest distance between 
two neighboring knots is predetermined to 
prevent too few data in a subgroup [18]. In the 
MARS method, the goal is to find the dependency 
of variables yi on one or more independent 
variables ui. The relationship between yi and ui (i 
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experimental gasification equipment is able to 
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n), that are neither controlled nor observed.
In the one-dimensional case, splines are expressed 
in terms of piecewise linear basis functions, (u-t)+ 
and (t-u)+ with the node in t. The “+” means a positive 
part. These functions are truncated linear functions, 
for u∈ℝ:
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Each function (i.e., (u-t)+ and (t-u)+) is piecewise 
linear, with a knot at the value t. They are marked 
as linear splines. These two functions are named as 
a reflected pair. In the multidimensional case, the 
idea is to form reflected pairs for each input 
component uj of the vector u=(u1,...,uj,...,un)T with 
knots at each observed value uij of that input 
(i=1,2,...,N; j=1,2,...,n). Thus, a set of constructed 
basis functions can be expressed as follows: 
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If all input data are different, then in the set of 2Nn 
basis functions, each of them depends on only one 
variable uj. For example, B(u)=(uj-t)+ is regarded as 
a function over the entire input space ℝn. Basis 
functions used for approximation are as follows: 
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where Km represents the total number of truncated 
linear functions in the m-th basis function, u(v(k,m)) is 
the component of the vector u, related to the k-th 
truncated linear function in the m-th basic function, 
tkm is the corresponding node, and sk,m∈ {±1}. 
Parameter Km is by user-defined degree order of 
the interaction term and sk,m represents the 
direction of the univariate term, which could be 
positive or negative. 

The model-building strategy is like a forward 
stepwise linear regression, but instead of using the 
original inputs, it is allowed to use functions from 
the set C of their products. Therefore, the MARS 
model can be expressed by the following equation 
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where y is the output variable, u represents the 
vector of input variables, M is the number of basis 
functions in the model (i.e., number of spline 
functions), c0 is the coefficient of the constant basis 

function B0, and the sum is over the basis 
functions Bm produced by an algorithm that 
implements the forward stepwise part of the 
MARS strategy by incorporating the modification 
to recursive partitioning. The coefficients 𝑐𝑐�  are 
estimated by minimizing the residual sum-of-
squares. Bm(u) is the m-th function in C, or a 
product of two or more such functions. 

The most important thing in this model is the 
choice of the basis functions. In the beginning, the 
model contains a single function B0(u)=1 and all 
functions from the set C are possible candidates 
for inclusion in the model. As in linear regression, 
setting Bm, the coefficients cm can be found by the 
method of least squares. Another subroutine of 
MARS performs the backward deletion strategy 
wherein each iteration causes one unnecessary 
(i.e., redundant) basis function to be deleted. A 
function whose removal either mostly improves 
the fit or at least degrades it will be deleted. 
However, the constant basis function B1(u)=1 is 
never removed. 

 

4. Model Predictive Control 
Nowadays, various methods of technological 
process control are being developed, e.g., [42, 44]. 
The MPC controller is conceived as 
multidimensional, i.e., it works in a coordinated 
manner with a higher number of manipulated 
variables (MVs) and controlled variables, i.e., 
measured outputs (MOs) what is typical in 
MIMO or MISO systems. All limitations on 
permitted ranges of values and rate of change of 
regulated and action variables are already 
respected when calculating action interventions 
and not additionally. At any time of sampling, 
the following must be available: dynamic control 
system model, including restrictive conditions; 
current and past values of controlled variables; 
previous values of manipulated variables; known 
or expected course of desired values of controlled 
variables within the assumed horizon of 
prediction N. For comparison, MPC responds to 
the predicted future value of control errors, PID 
only to current and past values. At each moment 
of sampling, the optimization task is solved, and 
the calculation of manipulated variables is 
performed within the considered control horizon 
Nu. The control sequence has the following form: 
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It is assumed that u(k+p│k)=u(k+Nu-1│k) for p≥Nu. 

(3)

Each function (i.e., (u-t)+ and (t-u)+) is piecewise lin-
ear, with a knot at the value t. They are marked as 
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linear splines. These two functions are named as a 
reflected pair. In the multidimensional case, the idea 
is to form reflected pairs for each input component 
uj of the vector u=(u1,...,uj,...,un)T with knots at each 
observed value ui

j of that input (i=1,2,...,N; j=1,2,...,n). 
Thus, a set of constructed basis functions can be ex-
pressed as follows:
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where Km represents the total number of truncated 
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tkm is the corresponding node, and sk,m∈ {±1}. 
Parameter Km is by user-defined degree order of 
the interaction term and sk,m represents the 
direction of the univariate term, which could be 
positive or negative. 
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Bm(u) is the m-th function in C, or a product of two or 
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of the basis functions. In the beginning, the model 
contains a single function B0(u)=1 and all functions 
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coefficients cm can be found by the method of least 
squares. Another subroutine of MARS performs the 
backward deletion strategy wherein each iteration 
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mostly improves the fit or at least degrades it will be 
deleted. However, the constant basis function B1(u)=1 
is never removed.
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of the vector of desired values w(k+p|k) within pre-
diction horizon N (p=1,2,...,N) (see Figure 6). Only 
u(k|k) is used in the calculation sequence, and the cal-
culation is repeated in the next step. Horizon is mov-
ing so gradually. This procedure is referred to as a re-
ceding horizon. The MPC control calculations based 
on actual measurements and predictions are carried 
at individual sampling periods Ts. These calculations 
include process constraints and other parameters 
that can be manually specified. The main task of the 
MPC controller is to determine a sequence of control 
moves in the manipulated variable so that the system 
can be tracked to its setpoint in an optimal fashion. 
Usually, the prediction horizon N and control horizon 
Nu are set so that Nu≤N which results in that the MPC 
to be less sensitive to model [2].

Figure 6 
Principle of MPC

The future  plant outputs calculated via predictive 
model i.e., y(k+p), for p=1,2,…,N, (where N is the pre-
diction horizon) depend on plant current states x(k) 
and future values of manipulating variables (MVs), 
i.e., u(k+p), for p=1,2,…,Nu (where Nu is the control 
horizon and Nu≤N).

4.1. State-Space Interpretation of MPC 
In industry, state-space models based on step re-
sponse [34, 38] are widely used. If a MIMO system 
(i.e., multivariable process) without disturbance is 
considered, the Equation (8) represents the general 
form of the state-space model:

   1 ,k k  x Ax B uu  

   .k ky Cx  (8)

The general prediction state-space model (i.e., the 
internal model of MPC) that assumes input dis-
turbance (e.g., in the form of unit gains) represents 
Equations (9):
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k is the time index (i.e., current control interval ); 
x represents the state vector of nx plant model 
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(MVs), which are adjusted by the MPC controller; 
v represents the vector of nv measured 
disturbance inputs (if any); d is the vector of nd 
unmeasured disturbance inputs and y is the 
vector of ny plant outputs. If ∆u(k)=u(k)-u(k-1) is 
used instead u(k), then an incremental state-space 
form of the model can be obtained. Equation (10) 
shows the future plant behavior estimated by the 
model at time step k=0 when setting nd(i)=0 for all 
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When control law depends on states x(k), then an 
appropriate state observer is needed to be used [6]. 

In MPC, the optimization problem is solved by 
quadratic programming (QP) to determine optimal 
manipulated variables (MV) in each control interval. 
Constraints represent conditions that must be 
satisfied (i.e., physical bounds on MVs and plant 
outputs). In MPC, a decision zk about MVs 
adjustment must be obtained by minimizing the cost 
function (13) in each control interval [6]: 
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where Q (ny×ny), Ru, and R∆u (nu×nu) are positive-
semi-definite weight matrices. These matrices are 
diagonal with the squares of those weights as 
diagonal elements. ey(k+i)=Sy-1[r(k+i+1│k)-y(k+i+1|k)]; 
eu(i+k)=Su-1[utarget(k+i│k)-u(k+i|k)]; ∆u(k+i)=Su-

1[u(k+i│k)-u(k+i-1)]; k is the current control interval, 
p is the prediction horizon (i.e., number of intervals), 
nu represents the number of MVs, ny represents the 
number of the measured output variables, Sy is a 
diagonal matrix of the plant output variable sale 
factors, Su is a diagonal matrix of MV scale factors. 
r(k+1|k) represents the vector of ny plant output 
reference values at the i-th prediction horizon step. 

y(k+1|k) represents ny measured plant outputs at the 
i-th prediction horizon step. Vector zk represents the 
QP decision, given by: 
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where utarget(k+i|k) are nu MV target values 
corresponding to u(k+i|k). Parameter εk is scalar QP 
slack variable at control interval k (dimensionless) 
used for constraint softening and ρε is constraint 
violation penalty weight (dimensionless). 

When using MPC, an optimization problem is 
solved at each time step k through the cost function 
based on output predictions over a prediction 
horizon of p time steps; this objective function 
(usually a quadratic one) is minimized by a 
selection of manipulated variables moves over a 
control horizon of M control moves. It is important 
to emphasize that, even though at each time step a 
group of M moves is calculated, only the first one 
u(k) is implemented. After this step, the 
measurement at the next time instant y(k+1) is 
obtained, followed by a correction due to model 
error, and then a new optimization problem is 
solved again. These procedures are carried for 
every time step k. 

In MPC applied on MIMO system, the following 
form of constraints can be considered [6]:  
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where parameters Vj,min
y, Vj,max

y, Vj,min
u, Vj,max

u, Vj,min
∆u, 

and Vj,max∆u are dimensionless controller constants 
analogous to the cost weights used for constraint 
softening; εk ≥ 0 is the scalar QP slack variable used 
for constraints softening; sj

y is the scale factor for 
the j-th plant output; yj,min and yj,max(i) are lower and 
upper limits for the j-th plant output and the i-th 
prediction horizon step; uj,min and uj,max(i) are lower 
and upper limits for the j-th MV and the i-th 
prediction horizon step; ∆uj,min and ∆uj,max(i) are 
lower and upper limits for the j-th MV increment 
and the i-th prediction horizon step. 
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In MPC, a decision zk about MVs adjustment must be 
obtained by minimizing the cost function (13) in each 
control interval [6]:

  

1
1

0

,y upn n

p
h

h







 
  
  
 
 
  


CB
CB CAB

S

CA B

 R

u

u u

u

u

 

1 2

0 0

0

,

0
0

y u

u
pn n

p p
h h

u
h h

B



 

 

 
 
 
  
 
 
  
 

CB
CAB CB

S

CA CA B CB





   



R

u

u

u

u u

 

 

1 2 3

1

0 0
0

.y v

p p p
v

pn p n

  

 

 
 
 
 
 
 



CB D
CAB CB D

H

CA CA B CA B D





    



R

v v

v v v
v

V v vB

. 

When control law depends on states x(k), then an 
appropriate state observer is needed to be used [6]. 

In MPC, the optimization problem is solved by 
quadratic programming (QP) to determine optimal 
manipulated variables (MV) in each control interval. 
Constraints represent conditions that must be 
satisfied (i.e., physical bounds on MVs and plant 
outputs). In MPC, a decision zk about MVs 
adjustment must be obtained by minimizing the cost 
function (13) in each control interval [6]: 
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where Q (ny×ny), Ru, and R∆u (nu×nu) are positive-
semi-definite weight matrices. These matrices are 
diagonal with the squares of those weights as 
diagonal elements. ey(k+i)=Sy-1[r(k+i+1│k)-y(k+i+1|k)]; 
eu(i+k)=Su-1[utarget(k+i│k)-u(k+i|k)]; ∆u(k+i)=Su-

1[u(k+i│k)-u(k+i-1)]; k is the current control interval, 
p is the prediction horizon (i.e., number of intervals), 
nu represents the number of MVs, ny represents the 
number of the measured output variables, Sy is a 
diagonal matrix of the plant output variable sale 
factors, Su is a diagonal matrix of MV scale factors. 
r(k+1|k) represents the vector of ny plant output 
reference values at the i-th prediction horizon step. 

y(k+1|k) represents ny measured plant outputs at the 
i-th prediction horizon step. Vector zk represents the 
QP decision, given by: 
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where utarget(k+i|k) are nu MV target values 
corresponding to u(k+i|k). Parameter εk is scalar QP 
slack variable at control interval k (dimensionless) 
used for constraint softening and ρε is constraint 
violation penalty weight (dimensionless). 

When using MPC, an optimization problem is 
solved at each time step k through the cost function 
based on output predictions over a prediction 
horizon of p time steps; this objective function 
(usually a quadratic one) is minimized by a 
selection of manipulated variables moves over a 
control horizon of M control moves. It is important 
to emphasize that, even though at each time step a 
group of M moves is calculated, only the first one 
u(k) is implemented. After this step, the 
measurement at the next time instant y(k+1) is 
obtained, followed by a correction due to model 
error, and then a new optimization problem is 
solved again. These procedures are carried for 
every time step k. 

In MPC applied on MIMO system, the following 
form of constraints can be considered [6]:  

       , ,
, ,

|
,

( 1, , ; 1, , ),

j min j j maxy y
k j min k j maxy y y

j j j

y

y y k i k y i
V i V i

s s s
i p j n

 


   

   

 

       , ,
, ,

1|
,

( 1, , ; 1, , ),

j min j j maxu u
k j min k j maxu u u

j j j

y

u u k i k u i
V i V i

s s s
i p j n

 
 

   

   

       , ,
, ,

1|
,

( 1, , ; 1, , ),

j min j j maxu u
k j min k j maxu u u

j j j

y

u u k i k u i
V i V i

s s s
i p j n

      
   

   

 

(15) 

where parameters Vj,min
y, Vj,max

y, Vj,min
u, Vj,max

u, Vj,min
∆u, 

and Vj,max∆u are dimensionless controller constants 
analogous to the cost weights used for constraint 
softening; εk ≥ 0 is the scalar QP slack variable used 
for constraints softening; sj

y is the scale factor for 
the j-th plant output; yj,min and yj,max(i) are lower and 
upper limits for the j-th plant output and the i-th 
prediction horizon step; uj,min and uj,max(i) are lower 
and upper limits for the j-th MV and the i-th 
prediction horizon step; ∆uj,min and ∆uj,max(i) are 
lower and upper limits for the j-th MV increment 
and the i-th prediction horizon step. 
 

 

5. Results and Discussion 
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where Q (ny×ny), Ru, and R∆u (nu×nu) are posi-
tive-semi-definite weight matrices. These matrices 
are diagonal with the squares of those weights as di-
agonal elements. ey(k+i)=Sy

-1[r(k+i+1│k)-y(k+i+1|k)]; 
eu(i+k)=Su

-1[utarget(k+i│k)-u(k+i|k)]; ∆u(k+i)=Su
-1[u 

(k+i│k)-u(k+i-1)]; k  is the current control interval, p 
is the prediction horizon (i.e., number of intervals), 
nu represents the number of MVs, ny represents the 
number of the measured output variables, Sy is a di-
agonal matrix of the plant output variable sale factors, 
Su is a diagonal matrix of MV scale factors. r(k+1|k) 

represents the vector of ny plant output reference 
values at the i-th prediction horizon step. y(k+1|k) 
represents ny measured plant outputs at the i-th pre-
diction horizon step. Vector zk represents the QP de-
cision, given by:
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When control law depends on states x(k), then an 
appropriate state observer is needed to be used [6]. 

In MPC, the optimization problem is solved by 
quadratic programming (QP) to determine optimal 
manipulated variables (MV) in each control interval. 
Constraints represent conditions that must be 
satisfied (i.e., physical bounds on MVs and plant 
outputs). In MPC, a decision zk about MVs 
adjustment must be obtained by minimizing the cost 
function (13) in each control interval [6]: 
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where Q (ny×ny), Ru, and R∆u (nu×nu) are positive-
semi-definite weight matrices. These matrices are 
diagonal with the squares of those weights as 
diagonal elements. ey(k+i)=Sy-1[r(k+i+1│k)-y(k+i+1|k)]; 
eu(i+k)=Su-1[utarget(k+i│k)-u(k+i|k)]; ∆u(k+i)=Su-

1[u(k+i│k)-u(k+i-1)]; k is the current control interval, 
p is the prediction horizon (i.e., number of intervals), 
nu represents the number of MVs, ny represents the 
number of the measured output variables, Sy is a 
diagonal matrix of the plant output variable sale 
factors, Su is a diagonal matrix of MV scale factors. 
r(k+1|k) represents the vector of ny plant output 
reference values at the i-th prediction horizon step. 

y(k+1|k) represents ny measured plant outputs at the 
i-th prediction horizon step. Vector zk represents the 
QP decision, given by: 
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where utarget(k+i|k) are nu MV target values 
corresponding to u(k+i|k). Parameter εk is scalar QP 
slack variable at control interval k (dimensionless) 
used for constraint softening and ρε is constraint 
violation penalty weight (dimensionless). 

When using MPC, an optimization problem is 
solved at each time step k through the cost function 
based on output predictions over a prediction 
horizon of p time steps; this objective function 
(usually a quadratic one) is minimized by a 
selection of manipulated variables moves over a 
control horizon of M control moves. It is important 
to emphasize that, even though at each time step a 
group of M moves is calculated, only the first one 
u(k) is implemented. After this step, the 
measurement at the next time instant y(k+1) is 
obtained, followed by a correction due to model 
error, and then a new optimization problem is 
solved again. These procedures are carried for 
every time step k. 

In MPC applied on MIMO system, the following 
form of constraints can be considered [6]:  
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where parameters Vj,min
y, Vj,max

y, Vj,min
u, Vj,max

u, Vj,min
∆u, 

and Vj,max∆u are dimensionless controller constants 
analogous to the cost weights used for constraint 
softening; εk ≥ 0 is the scalar QP slack variable used 
for constraints softening; sj

y is the scale factor for 
the j-th plant output; yj,min and yj,max(i) are lower and 
upper limits for the j-th plant output and the i-th 
prediction horizon step; uj,min and uj,max(i) are lower 
and upper limits for the j-th MV and the i-th 
prediction horizon step; ∆uj,min and ∆uj,max(i) are 
lower and upper limits for the j-th MV increment 
and the i-th prediction horizon step. 
 

 

5. Results and Discussion 
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where utarget(k+i|k) are nu MV target values corre-
sponding to u(k+i|k). Parameter εk is scalar QP slack 
variable at control interval k (dimensionless) used 
for constraint softening and ρε is constraint violation 
penalty weight (dimensionless).
When using MPC, an optimization problem is solved 
at each time step k through the cost function based on 
output predictions over a prediction horizon of p time 
steps; this objective function (usually a quadratic one) 
is minimized by a selection of manipulated variables 
moves over a control horizon of M control moves. It 
is important to emphasize that, even though at each 
time step a group of M moves is calculated, only the 
first one u(k) is implemented. After this step, the mea-
surement at the next time instant y(k+1) is obtained, 
followed by a correction due to model error, and then 
a new optimization problem is solved again. These 
procedures are carried for every time step k.
In MPC applied on MIMO system, the following form 
of constraints can be considered [6]: 
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When control law depends on states x(k), then an 
appropriate state observer is needed to be used [6]. 

In MPC, the optimization problem is solved by 
quadratic programming (QP) to determine optimal 
manipulated variables (MV) in each control interval. 
Constraints represent conditions that must be 
satisfied (i.e., physical bounds on MVs and plant 
outputs). In MPC, a decision zk about MVs 
adjustment must be obtained by minimizing the cost 
function (13) in each control interval [6]: 
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where Q (ny×ny), Ru, and R∆u (nu×nu) are positive-
semi-definite weight matrices. These matrices are 
diagonal with the squares of those weights as 
diagonal elements. ey(k+i)=Sy-1[r(k+i+1│k)-y(k+i+1|k)]; 
eu(i+k)=Su-1[utarget(k+i│k)-u(k+i|k)]; ∆u(k+i)=Su-

1[u(k+i│k)-u(k+i-1)]; k is the current control interval, 
p is the prediction horizon (i.e., number of intervals), 
nu represents the number of MVs, ny represents the 
number of the measured output variables, Sy is a 
diagonal matrix of the plant output variable sale 
factors, Su is a diagonal matrix of MV scale factors. 
r(k+1|k) represents the vector of ny plant output 
reference values at the i-th prediction horizon step. 

y(k+1|k) represents ny measured plant outputs at the 
i-th prediction horizon step. Vector zk represents the 
QP decision, given by: 

 ( | )   ( 1| )  1|    ,TT T T
kk k k k k p k       z u u uk

 (14) 

where utarget(k+i|k) are nu MV target values 
corresponding to u(k+i|k). Parameter εk is scalar QP 
slack variable at control interval k (dimensionless) 
used for constraint softening and ρε is constraint 
violation penalty weight (dimensionless). 
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where parameters Vj,min
y, Vj,max

y, Vj,min
u, Vj,max

u, Vj,min
∆u, 

and Vj,max∆u are dimensionless controller constants 
analogous to the cost weights used for constraint 
softening; εk ≥ 0 is the scalar QP slack variable used 
for constraints softening; sj

y is the scale factor for 
the j-th plant output; yj,min and yj,max(i) are lower and 
upper limits for the j-th plant output and the i-th 
prediction horizon step; uj,min and uj,max(i) are lower 
and upper limits for the j-th MV and the i-th 
prediction horizon step; ∆uj,min and ∆uj,max(i) are 
lower and upper limits for the j-th MV increment 
and the i-th prediction horizon step. 
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put; yj,min and yj,max(i) are lower and upper limits for the 
j-th plant output and the i-th prediction horizon step; 
uj,min and uj,max(i) are lower and upper limits for the j-th 
MV and the i-th prediction horizon step; ∆uj,min and 
∆uj,max(i) are lower and upper limits for the j-th MV in-
crement and the i-th prediction horizon step.

5. Results and Discussion

5.1. Modeling Results
This paper simulates in-situ UCG plant relying on an 
ex-situ physical model (see Section 2) and UCG pro-
cess by the MARS method. An open MARS source 
code (i.e., ARESLab software) [21] was used to create 
the model and the necessary simulations. The UCG 
experiment was performed on a generator 1, and 
measured data were recorded in a database to create 
a regression model. The obtained process model can 
imitate the nonlinear behavior of UCG. The initial 
number of BFs in the forward phase was determined 
according to the formula: min(200, max(20, 2d))+1, 
where d represents the number of input variables. 
The initial number of BFs was set to 21 in all simu-
lations. There was regarded maximal interactivity 
between the input variables and no self-interactions 
any input variable. The piecewise-linear type of the 
model has been analyzed in order to know the pre-
diction performance in two and three input vari-
ables. The best or optimal number of maximal BFs in 
final MARS model was estimated by the Generalized 
Cross-Validation criterion. Piecewise linear type of 
MARS model uses max(0,u-t) function, where t is 
the knot. The max function represents the positive 
part of (0,u-t) what can be formally expressed as the 
following:
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where t represents a univariate knot which is 
selected for each of the factor variables u. 

The first stage of the proposed MPC is to train a 
MARS model to represent the forward dynamics of 
the plant. The MARS model uses an offline dataset 
of input observations (MVs) and targets for the 
training itself. When specific MVs inputs into the 
model, the predicted value at given inputs can be 
obtained. The offline data should be collected from 
the real UCG operation but in our case, the data 
from experimental UCG on ex-situ reactor have 
been used. For best model approximation, the 
database should be continuously updated with 
newer input-output pairs and repeat learning. 

Although the MARS prediction does not depend 
on time, it can predict the plant response over and 
specified time horizon in dependency on MVs. The 
total numbers of 3256 samples of measured data 
have been applied from the experiment. For the 
training, 80% of the experiment was used, i.e., 2605 
samples. Remaining 20% was used for the test. In 
this paper, the underground temperature and 
syngas calorific value have been modeled 
according to Table 1. The behavior of input 
observations is shown in Figure 7. A comparison of 
predicted and measured targets is shown in 
Figures 8 and 9. The test was performed on new 
data. The quality of prediction was evaluated 
based on several common statistical measures, i.e., 
the mean square error (MSE) (17), coefficient of 
correlation (ryY) (18), root mean squared error 
(RMSE) (19), and the relative root mean squared 
error (RRMSE) (20): 
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Variable y represents the measured target, and Y its 
prediction. In control, Y can be the desired value. 
Variable ȳ represents the average of target values yi 
and Ȳ is the average of the predicted value Yi 
(i=1,…,N). Parameter N represents the number of 
samples in the training or testing set. 
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Variable y represents the measured target, and Y its 
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Variable ȳ represents the average of target values yi 
and Ȳ is the average of the predicted value Yi 
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Variable y represents the measured target, and Y its 
prediction. In control, Y can be the desired value. 
Variable ȳ represents the average of target values yi 
and Ȳ is the average of the predicted value Yi 
(i=1,…,N). Parameter N represents the number of 
samples in the training or testing set. 
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and Ȳ is the average of the predicted value Yi 
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data. The quality of prediction was evaluated 
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Variable y represents the measured target, and Y its 
prediction. In control, Y can be the desired value. 
Variable ȳ represents the average of target values yi 
and Ȳ is the average of the predicted value Yi 
(i=1,…,N). Parameter N represents the number of 
samples in the training or testing set. 
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prediction. In control, Y can be the desired value. 
Variable ȳ represents the average of target values yi 
and Ȳ is the average of the predicted value Yi (i=1,…,N). 
Parameter N represents the number of samples in the 
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Figure 8  
Measured and simulated calorific value by MARS model with three input observations. 

 
 

 

 

 

 

Figure 9  
Measured and simulated temperature by MARS model with three input observations. 
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Figure 9  
Measured and simulated temperature by MARS model with three input observations. 
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Figure 9  
Measured and simulated temperature by MARS model with three input observations. 
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These measures were evaluated in the training and 
testing phase (see Table 2). The results show that 
better prediction performance can be reached when 
three input observations were used. These observa-
tions will be used as manipulated variables in MPC.

Table 2 
A comparison of modeling methods based on machine learning (division on training and testing)

Observations Target 
variable

Training Test

MSE ryY RMSE RRMSE 
(%) MSE ryY RMSE RRMSE 

(%)

u1, u2 y1 7.2259 0.6868 2.6881 59.8328 11.8804 0.3767 3.4468 71.6223

u1, u2, u3 y1 6.2375 0.7375 2.4975 55.5903 4.0252 0.5080 2.0063 41.6896

u1, u2 y2 9289.4151 0.7091 96.3816 10.5519 19952.8736 0.2149 141.2546 13.3129

u1, u2, u3 y2 5040.1402 0.8545 70.9939 7.7725 10359.7920 0.2653 101.7831 9.5928

Table 3
Basis function of piecewise linear type MARS model of 
calorific value

Basis function Equation

BF1 max(0, 1.4 - u2)

BF2 max(0, 3.209 - u1)

BF3 max(0, u3 + 48.712)

BF4 max(0, u1 - 3.209) × max(0, u3 + 296.53)

BF5 BF3 × max(0, u2 - 0.5)

BF6 BF3 × max(0, 0.5 - u2)

BF7 max(0, u2 - 1.45)

BF8 max(0, 1.45 - u2)

BF9 BF2 × max(0, u2 - 0.34)

BF10 BF2 × max(0, 0.34 - u2)

BF11 BF9 × max(0, u3 + 102.58)

BF12 BF9 × max(0, -102.58 - u3)

BF13 BF9 × max(0, -87.928 - u3)

BF14 BF8 × max(0, u3 + 249.07)

BF15 BF8 × max(0, -249.07 - u3)

The calorific value will be used as the only one out-
put variable that will be stabilized on the desired set-
point, i.e., the MISO system is regarded. The model of 
temperature will provide just information about the 
reached temperature at given manipulated variables. 
Equation (21) represents the piecewise linear type of 
MARS model for the prediction of caloric value:

1  2.7409 85.324 BF1 1.2 BF2 0.26951 BF3 
0.0011818 BF4 0.036694 BF5 0.16423 BF6 
1.0776 BF7 84.938 BF8 11.03 BF9

 3.8959 BF10 0.20587 BF11 
1.0584 BF12 1.0493 BF13 
0.012226 BF14 
0.013287 BF

y       
     
     
   
   
 
  15.

 
(21)

Table 3 shows the calculation of basis functions for 
the given model. The model (21) can be transformed 
into linear time-invariant (LTI) discrete state-space 
form by further linearization and used as an internal 
predictive model of MPC controller.
Similarly, Equation (22) along with Table (4) repre-
sent the MARS model for the prediction of under-
ground temperature. The MARS models (21) and (22) 
will be used in an adaptive MPC scheme for the UCG 
imitation.
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2   835.76 12.49 BF1 25.957 BF2 2.4513 BF3
 16.838 BF4 30.646 BF5 232.27 BF6 

14.128 BF7 0.039049 BF8 0.27664 BF9
 209.44 BF10 722.08 BF11 0.20386 BF12 

18.433 BF13 54.165 BF14 0.022901 BF

y       
     
     
     
      15 

3.1304 BF16 177.4 BF17.   

 
(22) 

 

5.2 Adaptive MPC Results 

The UCG process is strongly nonlinear, or its 
properties can be changed with time. Concerning 

(22)
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Figure 10 
The basic concept of adaptive MPC applied to UCG

5.2. Adaptive MPC Results
The UCG process is strongly nonlinear, or its proper-
ties can be changed with time. Concerning calorific 
value and underground temperature variations, this 
process can be unstable when the change occurs from 
one operating condition to another. The UCG is typi-
cally regarded as a MIMO system, but in our research, 
only MISO system was investigated.
During MPC, the future plant behavior is predicted 
by linear model plant output. Due to the fact that this 
prediction may not be accurate, the goal is to tune the 
MPC to be as less sensitive to predictive errors as pos-
sible (i.e., the robustness of the controller is achieved).
In nonlinear systems controlled by conventional 
MPC, the LTI prediction accuracy can be degraded, 
and MPC performance becomes unacceptable. Fur-
thermore, the MPC proposed in specific operating 
condition does not give sufficient control efficiency 
over a wide operating range. Adaptive MPC can solve 
this problem by updating the prediction model for 
changing operating conditions. The optimizer per-
forms QP minimization (13) with a given number of 
iterations to optimize control moves. Figure 10 shows 
the basic concept of adaptive MPC proposed for UCG. 
In the proposal, a linearized version of the MARS 
model (21) at the current operating point has been 
used. In linearization, the gradient of the nonlinear 
function is taken representing all variables, and linear 
representation at that point is created. It enables us 

  

calorific value and underground temperature 
variations, this process can be unstable when the 
change occurs from one operating condition to 
another. The UCG is typically regarded as a MIMO 

system, but in our research, only MISO system was 
investigated. 
 

Figure 10  
The basic concept of adaptive MPC applied to UCG. 

 
 
During MPC, the future plant behavior is predicted 
by linear model plant output. Due to the fact that 
this prediction may not be accurate, the goal is to 
tune the MPC to be as less sensitive to predictive 
errors as possible (i.e., the robustness of the 
controller is achieved). 

In nonlinear systems controlled by conventional 
MPC, the LTI prediction accuracy can be degraded, 
and MPC performance becomes unacceptable. 
Furthermore, the MPC proposed in specific 
operating condition does not give sufficient control 
efficiency over a wide operating range. Adaptive 
MPC can solve this problem by updating the 
prediction model for changing operating conditions. 
The optimizer performs QP minimization (13) with 
a given number of iterations to optimize control 
moves. Figure 10 shows the basic concept of 
adaptive MPC proposed for UCG. In the proposal, a 
linearized version of the MARS model (21) at the 
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representation at that point is created. It enables us 
to put the model into a linear state-space form. 
Discrete-state-space MISO model of UCG obtained 
from MARS is the following: 

      ,x k t x k k  A Bu  

      ,y k x k k C Du  

  1 ,   0.2460    7.6454 ,  A B  

  1, 0 0 . C D  

(23) 

Equation (23) represents the resulting linear-time-
invariant (LTI) model of calorific value that can be 
affected by two manipulated variables. Resulting 
LTI model for three manipulated variables 
represents the following equations: 

      ,x k t x k k  A Bu  

      ,y k x k k C Du  

  1 ,   0.0623        1 1.97       0.08483 , A B  

  1, 0 0 0 . C D  

(24) 

The adaptive MPC estimates its prediction model 
states via linear-time-varying Kalman filter because 
the prediction model parameters are changing at run 
time. In adaptive MPC, the prediction model (i.e., 
the internal controller's model) is continually 
updated as operating condition change. A sampling 
time Ts=1 s has been applied. The data from the 
model are continually estimated within the smallest 
sampling period Ts/5=0.2 s by recursive polynomial 
estimator and new ARX model (25) is calculated at 
the main sampling period Ts. The new ARX model is 
converted into state-space at the sampling period 
Ts=1 s. This model then updates the controller's 
internal prediction model. Recursive polynomial 
estimation of ARX–MISO model considers the 
following model structure: 

          ,kq y k q k n e k  A B u  (25) 
where y(k) is the output at time step k; q is the time-
shift operator, and nk is the input delay; u(k) 
represents the vector of MVs and e(k) represents 
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to put the model into a linear state-space form. Dis-
crete-state-space MISO model of UCG obtained from 
MARS is the following:
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where y(k) is the output at time step k; q is the time-
shift operator, and nk is the input delay; u(k) rep-
resents the vector of MVs and e(k) represents white-
noise disturbance value. For MISO systems, there are 
as many B(q) polynomials as the number of inputs. 
The objective of the control is to maintain the calorif-
ic value of syngas at its reference values when UCG 
runs. The internal plant model is continually updated 
at each control interval to obtain nonlinear control 

of the UCG plant. Adaptive MPC continuously up-
dates the plant model and nominal conditions at each 
sampling period. Nominal conditions and plant mod-
el stay fixed over the prediction horizon. The online 
estimation is used in the closed-loop. Conventional 
MPC regards nominal operation point at which the 
nonlinear plant model is linearized. In adaptive MPC, 
as time evolves, this nominal point should be updated 
to be consonant with the updated plant model. 
The UCG plant model can be written in term of devia-
tion from the nominal conditions:

 

 

white-noise disturbance value. For MISO systems, 
there are as many B(q) polynomials as the number 
of inputs.  

The objective of the control is to maintain the 
calorific value of syngas at its reference values when 
UCG runs. The internal plant model is continually 
updated at each control interval to obtain nonlinear 
control of the UCG plant. Adaptive MPC 
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In Equation (26), the general MIMO system 
structure with parameter matrices A, B, C, and D 
has been considered. These matrices are continually 
updated. Parameter ut represents the vector of 
combined plant input variables, comprising the 
measured and unmeasured disturbance. Variables x̄, 
∆x̄, ūt and ȳ represent nx nominal states, nx nominal 
state increments, nut nominal MVs and ny nominal 
MOs which are updated. 

In the simulation with MPC, no disturbance was 
used, only the noise was added to the manipulated 
variables and output variables to simulate real 
conditions. In the result, it can be seen how the 
setpoint is tracked with the measured plant output. 
The prediction horizon was set up to 10 s, control 
horizon to 2 s. The piecewise linear type of MARS 
model has been linearized to obtain discrete-state-
space matrices for internal prediction model of 
MPC. The linearized plant model is joined with the 
MPC controller. The nominal values are also set up 
in the MPC controller. An initial plant model 
initializes online polynomial estimation. In this case, 
the Kalman filter is used for recursive online 
estimation of the autoregressive model (ARX). The 
resulting discrete-time ARX model is converted into 
a discrete state-space form with the same order and 
sample time as the original plant model has.  

Simulations were performed in Matlab-Simulink 
environment with the support of Model Predictive 

Control Toolbox [41]. In Figure 11, the simulation 
model to simulate adaptive MPC with three 
manipulation variables is proposed. A simulation 
model with one manipulation variable was also 
proposed to compare MPC with PI controller. For 
the UCG plant imitation, Level 2 Matlab S-Functions 
were used in the control scheme. These S-Functions 
implement MARS models. The discrete state space-
model derived from ARX model is decomposed into 
relevant real-valued matrices, i.e., A (square state 
matrix with a dimension of nx×nx), B (input-to-state 
matrix with a dimension of nx×nu), C (state to output 
matrix with a dimension of ny×nu), D (feedthrough 
matrix with as many rows as outputs, and as many 
columns as inputs), U, Y, X, and DX to update 
original internal prediction model of the MPC 
controller, where nx represents the number of plant 
model states; nu represents the number of plant MVs, 
and ny represents the number of plant MOs. When 
the ARX state-space model is used in the conversion, 
only A and B matrices are updated (e.g., for 
comparison the ARMAX model has matrices A, B, 
and C). Vector X of the length nx replaces nominal 
states in the internal prediction model of the MPC 
controller. Vector Y of length ny replaces nominal 
outputs in the internal prediction model of the MPC 
block. Vector U of length nu, replaces nominal inputs 
in the internal prediction model of the MPC block. 
Vector DX of length nx, replaces nominal ∆x in the 
internal prediction model of MPC block. For 
discrete-time models, DX=x(k+1)-x(k)=f(X,U)-X, i.e., 
DX=f(X,U). Vectors X, Y, and U represent plant state, 
output, and input at the operating point. 

In the first simulation, the comparison of 
stabilization of calorific value to various setpoints by 
the classical discrete PI controller and MPC was 
performed (see Figure 12). The discrete PI controller 
is well applicable in slow and delayed processes. 
This type of controller has already been applied in 
UCG to stabilize injected airflow, underground 
temperature, a ratio of CO/(CO+CO2) and oxygen 
concentration in syngas [24]. Since it would be 
complicated to create a decomposed PI control for 
all MVs, only one MV was considered in simulation, 
i.e., u – air flow. To compare the performance of 
MPC with the PI controller, the MPC controller also 
worked only with one manipulating variable. The 
discrete PI controller that was applied has the 
following form: 

(26)

In Equation (26), the general MIMO system struc-
ture with parameter matrices A, B, C, and D has been 
considered. These matrices are continually updated. 
Parameter ut represents the vector of combined plant 
input variables, comprising the measured and unmea-
sured disturbance. Variables x-, ∆x-, ūt and ȳ represent 
nx nominal states, nx nominal state increments, nut 
nominal MVs and ny nominal MOs which are updated.
In the simulation with MPC, no disturbance was used, 
only the noise was added to the manipulated variables 
and output variables to simulate real conditions. In 
the result, it can be seen how the setpoint is tracked 
with the measured plant output. The prediction hori-
zon was set up to 10 s, control horizon to 2 s. The 
piecewise linear type of MARS model has been lin-
earized to obtain discrete-state-space matrices for in-
ternal prediction model of MPC. The linearized plant 
model is joined with the MPC controller. The nominal 
values are also set up in the MPC controller. An initial 
plant model initializes online polynomial estimation. 
In this case, the Kalman filter is used for recursive 
online estimation of the autoregressive model (ARX). 
The resulting discrete-time ARX model is converted 
into a discrete state-space form with the same order 
and sample time as the original plant model has. 
Simulations were performed in Matlab-Simulink en-
vironment with the support of Model Predictive Con-
trol Toolbox [41]. In Figure 11, the simulation model 
to simulate adaptive MPC with three manipulation 
variables is proposed. A simulation model with one 
manipulation variable was also proposed to compare 
MPC with PI controller. For the UCG plant imitation, 
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Level 2 Matlab S-Functions were used in the control 
scheme. These S-Functions implement MARS mod-
els. The discrete state space-model derived from ARX 
model is decomposed into relevant real-valued ma-
trices, i.e., A (square state matrix with a dimension of 
nx×nx), B (input-to-state matrix with a dimension of 
nx×nu), C (state to output matrix with a dimension of 
ny×nu), D (feedthrough matrix with as many rows as 
outputs, and as many columns as inputs), U, Y, X, and 
DX to update original internal prediction model of the 
MPC controller, where nx represents the number of 
plant model states; nu represents the number of plant 
MVs, and ny represents the number of plant MOs. 
When the ARX state-space model is used in the con-
version, only A and B matrices are updated (e.g., for 
comparison the ARMAX model has matrices A, B, and 
C). Vector X of the length nx replaces nominal states in 
the internal prediction model of the MPC controller. 
Vector Y of length ny replaces nominal outputs in the 
internal prediction model of the MPC block. Vector 
U of length nu, replaces nominal inputs in the inter-
nal prediction model of the MPC block. Vector DX of 
length nx, replaces nominal ∆x in the internal predic-
tion model of MPC block. For discrete-time models, 
DX=x(k+1)-x(k)=f(X,U)-X, i.e., DX=f(X,U). Vectors X, 
Y, and U represent plant state, output, and input at the 
operating point.

In the first simulation, the comparison of stabiliza-
tion of calorific value to various setpoints by the clas-
sical discrete PI controller and MPC was performed 
(see Figure 12). The discrete PI controller is well 
applicable in slow and delayed processes. This type 
of controller has already been applied in UCG to sta-
bilize injected airflow, underground temperature, a 
ratio of CO/(CO+CO2) and oxygen concentration in 
syngas [24]. Since it would be complicated to create a 
decomposed PI control for all MVs, only one MV was 
considered in simulation, i.e., u – air flow. To compare 
the performance of MPC with the PI controller, the 
MPC controller also worked only with one manipu-
lating variable. The discrete PI controller that was 
applied has the following form:
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where (k) is an increase of the manipulating 

(27)

where ∆u(k) is an increase of the manipulating vari-
able u (i.e., injected air flow), k is an index of the con-
trol period, u(k) is the value of manipulating variable 

Figure 11 
Matlab-Simulink block scheme for adaptive MPC simulation (modified after [6])
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where ∆u(k) is an increase of the manipulating 
variable u (i.e., injected air flow), k is an index of the 

control period, u(k) is the value of manipulating 
variable in step k, e(k) is the control error (e(k)=w(k)-
y(k)), w(k) is the setpoint in step k (i.e., desired 
calorific value), q0, q1 are defined parameters of the 
resultant discrete controller by the following 
substitution: q0=KP, q1=-KP(1-Ts ∕TI), Ts is the sampling 
period. KP is the proportional gain and TI is integral 
time (i.e., constant of integration). 
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Figure 12  
A comparison of calorific value stabilization when stabilizing by MPC and PI controller. 
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Figure 12 
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Figure 13  
The behavior of the measured calorific value and its reference values during simulated MPC of UCG. 

 
 

Figure 14  
The behavior of the optimized manipulation variables during simulated MPC of UCG. 

 
 

 

 

 

 

 
Figure 15  
Modeled temperature during simulated MPC of UCG. 

in step k, e(k) is the control error (e(k)=w(k)-y(k)), 
w(k) is the setpoint in step k (i.e., desired calorific val-
ue), q0, q1 are defined parameters of the resultant dis-
crete controller by the following substitution: q0=KP, 
q1=-KP(1-Ts ⁄TI), Ts is the sampling period. KP is the 
proportional gain and TI is integral time (i.e., constant 
of integration).

The discrete PI controller was designed by the Modi-
fied Ziegler-Nichol method, which is based on the ARX 
model [10, 24]. The simulation of the calorific value 
stabilization through the PI and MPC controller was 
performed for the entire UCG experiment. Discrete 
PI controller continually calculated increments ∆u of 
one gasification agent (i.e., air) to stabilize the syngas 
calorific value, i.e., variable y. The experiment used to 
simulate MPC lasted 195300 s, which is over 54 hours. 
The MARS model that was applied was trained in an 
experiment using only air as a gasification agent.
The desired calorific value was continually set accord-
ing to the UCG manual control. For the performance 
evaluation, the MSE (17) was used. As expected, sta-
bilization of calorific value by MPC has reached a 
lower MSE (i.e., MSE=0.0552) than in PI control (i.e., 
MSE=5.6025). The upper limit for the manipulation 
variable in the case of MPC was set to 35 Nm3/h. This 
setting was based on the assumption that more air 
(i.e., atmospheric oxygen) is needed to support gasifi-
cation chemical reactions since technical oxygen was 
not added. In stabilizing the syngas calorific value by 
the discrete PI controller, a higher overshooting and 
a longer control time can also be observed. It can be 

stated that the MPC was faster than the discrete PI 
controller. Next, the simulation with three MVs was 
performed.
In the simulation with three manipulation variables, 
constraints in MPC were set up as follows:
y1,min=0 MJ/Nm3, y1,max=20 MJ/Nm3,
u1,min=0 Nm3/h, u1,max=15 Nm3/h,
u2,min=0 Nm3/h, u2,max=10 Nm3/h,
u3,min=-1000 Pa, u3,max=0 Pa.
The desired calorific value for MPC was the same as 
the measured calorific value from the manual control 
of the UCG. Simulation results show that the MPC 
gives less air and more oxygen (i.e., as optimized ma-
nipulation variables) during the experimental UCG 
(see Figures 13 and 14) in comparison with manual 
control (see Figures 7 and 8). More air injected into 
the reactor can cause heat loss because cold air cools 
the coal that is gasified. Atmospheric air itself contains 
less oxygen and more nitrogen, and it needs to be sup-
plied more oxygen to support combustion reactions 
with carbon. The pure technical oxygen that was blown 
as an auxiliary oxidant has a more significant influence 
on exothermic reactions (i.e., chemical reactions that 
releases energy through light or heat). Usually, only in-
dustrial oxygen and water vapor are used in real indus-
trial UCG. In our case, the steam was not used because 
of a suitable water vapor generator was no available. 
In addition, the temperature of the overheated vapor 
at a higher pressure (i.e., up to 1 bar) would have to be 
at least 120°C. MPC has also reduced outlet pressure, 
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Figure 13 
The behavior of the measured calorific value and its reference values during simulated MPC of UCG
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The discrete PI controller was designed by the 
Modified Ziegler-Nichol method, which is based on 
the ARX model [10, 24]. The simulation of the 
calorific value stabilization through the PI and MPC 
controller was performed for the entire UCG 
experiment. Discrete PI controller continually 
calculated increments ∆u of one gasification agent 
(i.e., air) to stabilize the syngas calorific value, i.e., 
variable y. The experiment used to simulate MPC 
lasted 195300 s, which is over 54 hours. The MARS 
model that was applied was trained in an 
experiment using only air as a gasification agent. 

The desired calorific value was continually set 
according to the UCG manual control. For the 
performance evaluation, the MSE (17) was used. As 
expected, stabilization of calorific value by MPC has 
reached a lower MSE (i.e., MSE=0.0552) than in PI 
control (i.e., MSE=5.6025). The upper limit for the 
manipulation variable in the case of MPC was set to 
35 Nm3/h. This setting was based on the assumption 
that more air (i.e., atmospheric oxygen) is needed to 
support gasification chemical reactions since 
technical oxygen was not added. In stabilizing the 
syngas calorific value by the discrete PI controller, a 
higher overshooting and a longer control time can 
also be observed. It can be stated that the MPC was 
faster than the discrete PI controller. Next, the 
simulation with three MVs was performed. 

In the simulation with three manipulation variables, 
constraints in MPC were set up as follows: 

y1,min=0 MJ/Nm3, y1,max=20 MJ/Nm3, 

u1,min=0 Nm3/h, u1,max=15 Nm3/h, 

u2,min=0 Nm3/h, u2,max=10 Nm3/h, 

u3,min=-1000 Pa, u3,max=0 Pa. 

The desired calorific value for MPC was the same as 
the measured calorific value from the manual 
control of the UCG. Simulation results show that the 
MPC gives less air and more oxygen (i.e., as 
optimized manipulation variables) during the 

experimental UCG (see Figures 13 and 14) in 
comparison with manual control (see Figures 7 and 
8). More air injected into the reactor can cause heat 
loss because cold air cools the coal that is gasified. 
Atmospheric air itself contains less oxygen and more 
nitrogen, and it needs to be supplied more oxygen to 
support combustion reactions with carbon. The pure 
technical oxygen that was blown as an auxiliary 
oxidant has a more significant influence on 
exothermic reactions (i.e., chemical reactions that 
releases energy through light or heat). Usually, only 
industrial oxygen and water vapor are used in real 
industrial UCG. In our case, the steam was not used 
because of a suitable water vapor generator was no 
available. In addition, the temperature of the 
overheated vapor at a higher pressure (i.e., up to 1 
bar) would have to be at least 120°C. MPC has also 
reduced outlet pressure, which means that less 
electric power would be needed for exhausting. 
More suction at the outlet causes the other air to be 
drawn into the gasification reactor through various 
gaps and cracks in the overburden rocks. However, 
it should be noted, that there exist UCG technologies 
where gasification is controlled only by a regulated 
underpressure using an exhaust fan without direct 
injection of the inlet oxidant. The air enters into the 
underground reactor by suction through the air 
well, and through the various joints and cracks in 
the overburden. The advantage of this technology is 
that there are no gas leaks from underground to 
surface.  

In MPC, the calorific value was well stabilized to its 
setpoints without significant overshoots. It can be 
seen that there was also a low variability in some 
manipulated variables (i.e., airflow and outlet 
pressure). However, this was achieved by defining 
constraints on manipulation variables. With less 
variance in manipulating variables, there is also less 
mechanical stress on the actuator. By this way, the 
underground temperature can be longer maintained 
over 1000°C (see Figure 15), allowing a more 
calorific syngas to be produced. It should be noted 



575Information Technology and Control 2019/4/48

which means that less electric power would be need-
ed for exhausting. More suction at the outlet causes 
the other air to be drawn into the gasification reactor 
through various gaps and cracks in the overburden 
rocks. However, it should be noted, that there exist UCG 
technologies where gasification is controlled only by a 
regulated underpressure using an exhaust fan without 
direct injection of the inlet oxidant. The air enters into 
the underground reactor by suction through the air 
well, and through the various joints and cracks in the 
overburden. The advantage of this technology is that 
there are no gas leaks from underground to surface. 
In MPC, the calorific value was well stabilized to its 
setpoints without significant overshoots. It can be 
seen that there was also a low variability in some ma-
nipulated variables (i.e., airflow and outlet pressure). 
However, this was achieved by defining constraints on 
manipulation variables. With less variance in manipu-
lating variables, there is also less mechanical stress on 
the actuator. By this way, the underground tempera-
ture can be longer maintained over 1000°C (see Figure 
15), allowing a more calorific syngas to be produced. 
It should be noted that higher temperatures above 
1000°C and higher syngas calorific values are typically 
achieved with oxygen UCG technologies. On the other 
hand, more oxygen injected into the underground reac-
tor can be more expensive. In manual control, the tem-
perature was approximately 1000°C, and for a short 
time, it reached approximately 1300°C (see Figure 9). 
Since thermocouples cannot be used in real UCG (i.e., 
thermocouple holes could cause pressure losses), the 
estimation of the temperature from the advanced re-
gression model has been proposed. In this paper, the 
MARS model was used because of its more straight-
forward implementation for MPC simulation. It was 
found that MARS model well models non-linearities 
in the UCG data. In another work (e.g., [25]), a ma-
chine model based on the Support Vector Regression 
(SVR) was successfully applied by the author of this 
paper. The underground temperature can be estimat-
ed based on control variables or by inverse way from 
the measured syngas composition.

6. Conclusion
In this paper, an adaptive MPC applied to UCG was 
investigated. The UCG has the potential to be used 
on unmined or deepest coal seams, as an alternative 

for traditional coal mining with less environmental 
impacts. The advanced control of this process is very 
complicated as the underground gasifier crosses sev-
eral stages, where operating conditions are changing. 
The UCG experiment was performed to acquire data 
for modeling and control simulation.  Two MARS 
models for UCG plant imitation (i.e., a model for 
syngas calorific value and underground temperature 
model) were designed in the paper. The linearized 
discrete state-space version of the calorific value 
model was used as an internal prediction model of 
the MPC. The MPC with constraints showed perfor-
mance improvement when compared with manual 
control in terms of manipulation variables optimi-
zation. This approach to UCG control method can 
completely replace the manual control as it is based 
on a predictive model that is continuously adapted 
to changing operating conditions. The simulations 
results have shown that MPC can continually opti-
mize the manipulation variables to maintain the de-
sired calorific value. Some optimized manipulated 
variables have lower variability in comparison with 
manual control. In addition, optimized manipulation 
variables can maintain a temperature over 1000°C for 
a long time that is essential for the producing calorific 
elements of the syngas (i.e., CO). Moreover, MPC has 
reduced the underpressure at the outlet, so the intake 
of free air into the gasification reactor can be elimi-
nated. It has also been presented that MPC achieves 
better performance than the traditional discrete PI 
controller. At the same time, MPC can eliminate con-
trol error faster without significant overshoots. How-
ever, it must be noted that the system decomposition 
for the PI control by several manipulations variables 
was not performed in this work, and only the airflow 
was used to stabilize the calorific value. The results 
show the potential of the proposed control method. 
The results can serve as a basis for the application of 
MPC for the advanced control of in-situ UCG. Further 
research will focus on implementing MPC on auto-
mation hardware and software (i.e., PLC + SCADA/
HMI) and verifying the control system online during 
experimental gasification.
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