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In this article, simultaneous longitudinal and lateral flight control systems design for both passive and active mor-
phing unmanned aerial vehicles (UAVs) is first time applied for autonomous flight performance maximization. 
For this purpose, an UAV whose wing and tail unit can be assembled to fuselage from different points in a pre-
scribed interval and whose wing and tail can move forward and backward independently in tail to nose direction is 
manufactured. Following this, an autopilot is purchased and it lets change of P, I, D coefficients in certain intervals. 
First, dynamic model and longitudinal and lateral state space models of UAV are obtained and then simulation 
model is reached. At the same time, block diagram of autopilot system and modeling of it in MATLAB/Simulink 
environment are found. After these, using these two models and adaptive stochastic optimization method, name-
ly, SPSA, simultaneous design of UAV and autopilot is applied in order to minimize a cost function consisting of 
rise time, settling time and maximum overshoot. Therefore, primarily autonomous performance is maximized in 
computer environment. Moreover, high performance is observed at simulation responses.
KEYWORDS: UAV (Unmanned Aerial Vehicle), Dynamic Model, State Space Model, PID, Simulink.
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1. Introduction 
Studies on the morphing of UAV have been increas-
ing in recent years. The motivation behind morphing 
has been to find new ways to boost the capabilities of 
aircraft. This paper concentrates on UAV morphing 
concepts, designs and control  technologies. 
Aircraft wings are a structural part that allows the 
aircraft to fly in various flight conditions, but their 
performance can be improved. The ability to change 
the geometry of the wing surface before and during 
the flight attracts researchers and designers. Morph-
ing means a change of shape, but there is no accept-
ed definition in aviation. Changing the wing shape or 
geometry is not a new working area. In the literature, 
morphing solutions always have disadvantages in 
terms of cost, complexity or weight, but in some cases 
provide several benefits to the system. Recent devel-
opments in smart materials can overcome limitations 
and increase benefits from existing design solutions. 
The challenge is to design a structure that can with-
stand the prescribed loads, but  can also change the 
shape of the structure. Ideally, there should be no 
distinction between the wing and the fuselage. Mor-
phing is a promising technology for a new generation 
aircraft. However, manufacturers and end users still 
doubt about the benefits of adopting morphing in the 
near future. This paper provides a review of the latest 
technology in morphing aircraft and focuses on struc-
tural, deforming morphing concepts for fixed wings, 
particularly with reference to active systems. Re-
searchers have carried out many studies on the mod-
eling and control of unmanned aerial vehicles [8-15].
An Unmanned Aerial Vehicle (UAV) can move freely 
in three imaginary axes that intersect and are per-
pendicular to the center of gravity. To be able to say 
that this aircraft has been fully inspected, the pilot or 
automatic control systems must have control over the 
movement of these three imaginary axes. The Vertical 
Axis is that extending from the upper body through 
the center of gravity of the aircraft. Movement around 
this axis is called yaw motion. Yaw moves the nose of 
the aircraft to the right or left relative to the vertical 
axis. The longitudinal axis is the axis that extends 
from the nose to the tail of the aircraft, which crosses 
the aircraft and passes through the center of gravity. 
Motion around this axis is called ’roll’. The motion 
of the aircraft around this axis is controlled by flap, 

elevator or spoiler. The lateral axis is the axis that 
crosses the aircraft from one wing end to the other 
wing end and then passes through the center of gravi-
ty. Movement around this axis is called pitch motion. 
Pitch occurs when the aircraft changes its angle of 
attack, meaning that it moves to climb or dive [12]. 
The pitch movement of the aircraft around this axis is 
controlled by the elevators, movable horizontal stabi-
lizers and elevators. 

 

2. UAV Designing and Manufacturing
The design of UAV was completed on computer en-
vironment by using Solidworks program. A detailed 
drawing of all parts of the UAV during design was 
made. The top view of our unmanned aerial vehicle is 
given in Figure 1 [2].

Figure 1 
Top view of UAV
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As a result of the designing, the parts of the 
body components were cut from the depron 
and the plywood in the laser cutting device. 
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with epoxy adhesive. Wing and tail profile is produced 
using CNC cutting device. For the wing and tail set, 
the necessary reinforcements were made by using 
balsa, plywood and carbon rod. Aileron, elevator and 
rudder were produced. All outer surfaces were cov-
ered with coating. Transformation mechanism for 
wing and tail set was produced.  Aileron, elevator and 
rudder were assembled. Front and rear landing gear 
were produced and assembled [4]. In Figure 2, UAV 
body and wing skeleton view and in Figure 3, the final 
version of the UAV are presented.

Figure 3
The final version of the UAV 
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In order to extract the moment equations, the 
law of conservation of angular momentum, 
which is widely used in the literature, has 
been used. In Equation (3), this law is 
granted [14]: 
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In Figure 4, the linear and angular velocity 
components in an aircraft (in the aircraft axis 
assembly) are presented visually. In Figure 5, 
the relationships between the speed 
components and the off-shore and side-strap 
angles are presented in an aircraft. 
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Figure 2 
UAV body and wing skeleton view
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3. State-Space Model
Stability derivatives are obtained by using stability 
derivative coefficients. The state space model is de-
rived using these obtained stability derivatives. Nu-
merical values are obtained by using the geometric 
data of the unmanned aerial vehicle. Longitudinal 
state space model of  UAV is given in Equation (4): 
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Lateral state space model is given in Equation (5) [16]:
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ateral state space model is given in Equation (5) 
[16]:                                                                                     
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By examining the eigenvalues of state-space 
models obtained as a result of dynamic modeling, 
it can be decided that the models we create are 
correct. Figures 6 and 7 show the longitudinal and 
lateral flight modes, respectively. Therefore, it can 
be claimed that our dynamic modeling process is 
correct [6]. 
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Longitudinal motion modes of UAV  
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Lateral motion modes of UAV  

      
  
5. Wing and Structural 

Analysis of UAV 
Figure 8 shows the aerodynamic coefficient 
values of UAV at different attack angles, 
such as 0 °, 4 ° and 8 °. 
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Aerodynamic coefficients at (a) 0 ° attack 
angle, (b) 4 ° attack angle, (c) 8 ° attack angle 
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Figure 5
Ramp and side strap angles with speed components in an 
air tool

 
 

 

with coating. Transformation mechanism for wing 
and tail set was produced.  Aileron, elevator and 
rudder were assembled.  Front and rear landing 
gear were produced and assembled [4]. In Figure 
2, UAV body and wing skeleton view and in 
Figure 3, the final version of the UAV are 
presented. 
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UAV body and wing skeleton view 
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 The final version of the UAV  

 
 

 
3. UAV Dynamic Modeling 
In order to perform any dynamic modeling of any 
aeronautical vehicle or any UAV, it is necessary to 
obtain the governing equations of the aircraft 
body. These equations can be classified into three 
groups. These equations are the equations of force, 
moment equations and kinematic equations of the 
body. Newton's second law was used in the 
literature to extract the force equations [11]: 
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The components of the force on the three axes (X, 
Y, Z) can be expressed in terms of the weight of 
the aircraft, linear accelerations, linear velocities 

(u, v, w), angular velocities (p, q, r) and Euler 
orientation angles as follows [9]: 
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In order to extract the moment equations, the 
law of conservation of angular momentum, 
which is widely used in the literature, has 
been used. In Equation (3), this law is 
granted [14]: 
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 .               
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In Figure 4, the linear and angular velocity 
components in an aircraft (in the aircraft axis 
assembly) are presented visually. In Figure 5, 
the relationships between the speed 
components and the off-shore and side-strap 
angles are presented in an aircraft. 
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Linear and angular velocity components for 
aircraft (airborne axis team) 

 
 
FFiigguurree  55  

Ramp and side strap angles with speed 
components in an air tool 

  
 
 

By examining the eigenvalues of state-space models 
obtained as a result of dynamic modeling, it can be de-
cided that the models we create are correct. Figures 6 
and 7 show the longitudinal and lateral flight modes, 
respectively. Therefore, it can be claimed that our dy-
namic modeling process is correct [6].

Figure 6
Longitudinal motion modes of UAV 

Figure 7
Lateral motion modes of UAV 

5. Wing and Structural Analysis of UAV
Figure 8 shows the aerodynamic coefficient values of 
UAV at different attack angles, such as 0 °, 4 ° and 8 °.
When we increase the wing profile at angles of 0° to 
20° in angles of attack, the aerodynamic coefficients 
will change for each angle of attack. According to the 
results of the analysis, it is observed that the wing 
profile is stalled after 16° of attack (Figure 9).
Figure 10(a) shows the deviation of the UAV on the 
wing. The deviation is increased as the wing moves to-
wards the tip and reaches the highest value when the 
end of the wing is reached. Figure 10(b) shows the Von 
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Figure 8 
Aerodynamic coefficients at (a) 0 ° attack angle, (b) 4 ° 
attack angle, (c) 8 ° attack angle

Figure 9 
Angle of attack when entering the stall profile

(a)

(b)

(c)

Mises stress values on the wing of the UAV. Von Mises 
stress values vary according to the change in bending 
resistance. As a result, the largest Von Mises strain val-
ue is found at the root of the wing. The best place for 
carbon tubes is where the voltage produced by the foam 
and carbon tubes is below the maximum voltage value.

Figure 10 
Von mises stress results (80 km /h)
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When we increase the wing profile at angles of 0° 
to 20° in angles of attack, the aerodynamic 
coefficients will change for each angle of attack. 
According to the results of the analysis, it is 
observed that the wing profile is stalled after 16° 
of attack (Figure 9). 
 
Figure 10(a) shows the deviation of the UAV on 
the wing. The deviation is increased as the wing 
moves towards the tip and reaches the highest 
value when the end of the wing is reached. Figure 
10(b) shows the Von Mises stress values on the 
wing of the UAV. Von Mises stress values vary 
according to the change in bending resistance. As 
a result, the largest Von Mises strain value is 
found at the root of the wing. The best place for 
carbon tubes is where the voltage produced by the 
foam and carbon tubes is below the maximum 
voltage value. 
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Von mises stress results (80 km /h) 
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6. Autopilot System and 

Optimization 
 

P-I-D based autopilot system is shown in 
Figure 11. Six P-I-D controllers were used to 
control the distance between the designated 
distances. 
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Hierarchical detailed autopilot structure of 
the UAV 

 
  
 
An adjustable autopilot was used for the 
flight observations. This autopilot system has 
a classical autopilot structure. The three 
layers for the hierarchical control structure 
are outer loop, middle loop and inner loop 
which have been shown in the Figure 12 [5]. 
Here, the trajectory analysis can be examined 

(a)

(b)

6. Autopilot System and Optimization
P-I-D based autopilot system is shown in Figure 11. 
Six P-I-D controllers were used to control the dis-
tance between the designated distances.
An adjustable autopilot was used for the flight ob-
servations. This autopilot system has a classical au-
topilot structure. The three layers for the hierarchi-
cal control structure are outer loop, middle loop and 
inner loop which have been shown in the Figure 12 
[5]. Here, the trajectory analysis can be examined in 
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Figure 11
Hierarchical detailed autopilot structure of the UAV

terms of speed, altitude or angle of yaw and their com-
bination. It also benefited from 5 sensor inputs. 
Streamlined strengths acting on an UAV body put ten-
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Figure 12 
The control structure of autopilot system 

  

in terms of speed, altitude or angle of yaw and 
their combination. It also benefited from 5 sensor 
inputs.  
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Streamlined strengths acting on an UAV body put 
tentatively within the wind burrow can be gotten 
with a drive estimation framework. In any case, it 
is very expensive to form the calculation of these 
forces by analyzing each body shape in an isolated 
wind burrow. In expansion, it is not possible to 
calculate nonlinear complex components logically 
contained within the streamlined strengths. For 
this reason, stochastic estimation strategies are 
utilized [3-10]. 

In complex problems like ours, where random 
gradient is not possible, random optimization 
methods should be used. SPSA and genetic 
algorithms are some of them. However, SPSA 
achieves optimal results much faster than genetic 
algorithms. Because SPSA performs two 
calculations at each iteration, genetic algorithms 
calculate up to 2n. In other words, if the number of 
optimization variables is 5, the SPSA performs 2 
calculations in each iteration, while the genetic 
algorithms make 32 calculations. However, SPSA 
does not reach the optimum result every time that 
corresponding MATLAB code is executed. 
Therefore, a small number of trials is performed to 
determine the optimum result. 

Since there is a complex dependence between total 
autonomous flight performance cost index and the 
constraints on the optimization variables (3 P-I-D 
gains for longitudinal controller, 3 P-I-D gains for 
lateral controller, and 2 passive morphing 
parameters of UAV and 2 active morphing 
parameters of UAV, entire of 10 parameters), 

computation of cost function derivatives with 
respect to these parameters is not analytically 
possible. This advocates the invitation of 
certain stochastic optimization techniques. In 
order to solve this specific problem, a 
stochastic optimization method, named as 
SPSA (i.e. simultaneous perturbation 
stochastic approximation), is applied. 

 

 

 

 
 
7. Results and Discussion 
As a result of the concurrent design, a 
significant improvement was achieved in the 
performance index consisting of settling 
time, rising time and maximum overshoot. 
This ratio is 59% and is obtained from the 
relative relationship between the value 
obtained without concurrent calculation and 
the results obtained from the concurrent 
calculation. 
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Figure 14 shows the pitch angle of the 
longitudinal motion, the velocity along the x-
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er, SPSA does not reach the optimum result every 
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constraints on the optimization variables (3 P-I-D 
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7. Results and Discussion
As a result of the concurrent design, a significant im-
provement was achieved in the performance index 
consisting of settling time, rising time and maximum 
overshoot. This ratio is 59% and is obtained from 
the relative relationship between the value obtained 
without concurrent calculation and the results ob-
tained from the concurrent calculation.

Figure 13
(a) Cost improvement, (b) Relative cost improvement of 
the longitudinal motion
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Figure 14 
Closed-loop responses of longitudinal motion

 
 

 

axis, the angular velocity along the y-axis, the 
velocity along the z-axis and the responses of the 
horizontal tail and the elevation angle. 
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As can be seen from Figure 14, the longitudinal 
trajectory has followed the pitch angle well with a 
little error of 3 degrees. Furthermore, the velocity 
along the x-axis, the angular velocity along the y-
axis followed by the trajectory zero line.  

   
8. Conclusions 
In this paper, simultaneous longitudinal and 
lateral flight control systems design for both 
passive and active morphing unmanned 
aerial vehicles (UAVs) is first time applied 
for autonomous flight performance 
maximization. Dynamic model and 
longitudinal and lateral state space models of 
UAV are obtained and then simulation 
model of UAV is reached. After these, 
adaptive stochastic optimization method 
(SPSA), simultaneous design of UAV and 
autopilot is applied in order to minimize a 
cost function consisting of rise time, settling 
time and maximum overshoot. As a result of 
the concurrent design, a significant 
improvement was achieved in the 
performance index consisting of settling time, 
rising time and maximum overshoot and this 
ratio is 59%. Since the total cost index 
captures terms both related with longitudinal 
and lateral flights, considerable improvement 
in longitudinal autonomous flight 
performance was obtained and the lateral 
autonomous flight performance were not 
broken. Closed loop responses for both 
longitudinal and lateral flight while there 
exist atmospheric turbulence were 
investigated. The desired trajectories (i.e. 3 
degrees roll angle for lateral autopilot and 3 
degrees pitch angle for longitudinal 
autopilot) were successfully tracked. The 
saturations on active control surfaces (i.e. 
elevator and aileron) were also satisfied. In 
addition, the other outputs such as linear and 
angular velocities were not experienced with 
catastrophic behavior. Simultaneous design 
idea converted the UAV and its autopilot 
system into suitable form satisfying good 
performance and trajectory tracking for both 
lateral and longitudinal  flights. 
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active morphing unmanned aerial vehicles (UAVs) is 
first time applied for autonomous flight performance 
maximization. Dynamic model and longitudinal and 
lateral state space models of UAV are obtained and 
then simulation model of UAV is reached. After these, 
adaptive stochastic optimization method (SPSA), si-
multaneous design of UAV and autopilot is applied 
in order to minimize a cost function consisting of 
rise time, settling time and maximum overshoot. As 
a result of the concurrent design, a significant im-
provement was achieved in the performance index 
consisting of settling time, rising time and maximum 
overshoot and this ratio is 59%. Since the total cost in-
dex captures terms both related with longitudinal and 
lateral flights, considerable improvement in longitu-
dinal autonomous flight performance was obtained 
and the lateral autonomous flight performance were 
not broken. Closed loop responses for both longitu-
dinal and lateral flight while there exist atmospheric 
turbulence were investigated. The desired trajecto-
ries (i.e. 3 degrees roll angle for lateral autopilot and 
3 degrees pitch angle for longitudinal autopilot) were 
successfully tracked. The saturations on active con-
trol surfaces (i.e. elevator and aileron) were also satis-
fied. In addition, the other outputs such as linear and 
angular velocities were not experienced with cata-
strophic behavior. Simultaneous design idea convert-
ed the UAV and its autopilot system into suitable form 
satisfying good performance and trajectory tracking 
for both lateral and longitudinal  flights.
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