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Matrix Factorization (MF) is one of the most intuitive and effective methods in the Recommendation System
domain. It projects sparse (user, item) interactions into dense feature products which endues strong generality
to the MF model. To leverage this interaction, recent works use auxiliary information of users and items. De-
spite effectiveness, irrationality still exists among these methods, since almost all of them simply add the fea-
ture of auxiliary information in dense latent space to the feature of the user or item. In this work, we propose a
novel model named AANME, short for Attribute-aware Attentional Neural Matrix Factorization. AANMEF com-
bines two main parts, namely, neural-network-based factorization architecture for modeling inner product and
attention-mechanism-based attribute processing cell for attribute handling. Extensive experiments on two re-
al-world data sets demonstrate the robust and stronger performance of our model. Notably, we show that our
model can deal with the attributes of user or item more reasonably. Our implementation of AANMF is publicly
available at https://github.com/Holy-Shine/AANMF.

KEYWORDS: Recommender system, Matrix factorization, Neural network, Attention mechanism, Collabora-
tive filtering.

1. Introduction

The critical problem of the recommender system is et al. proposed the matrix factorization method [16].
how to model the interactions of user and item—a It projects users and items into a dense latent space.
high dimensional sparse interaction matrix. To ad-  Thus a user or an item can be represented by a dense
dress this computational complexity problem, Koren  feature vector, and the inner product by two features
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from a user and an item can show the degree of his/
her favorability towards this given item. To improve
the performance of the model, several works explored
the advantage of explicit social information such as a
user’s relationship to improve recommendation accu-
racy [3, 8, 27, 34]. Some works also tried to utilize at-
tribute information so that latent features could have
stronger expressive ability [15, 17, 31, 32, 35]. SVD++
[15] is a classical method which well models auxiliary
information i.e. attributes of the user or item.

Although SVD++ performs better than other models
that do not use attributes, we argue that irrationality
still exists in its direct addition way. To illustrate it,
we take attributes of users as an example. According
to SVD++-like attribute-aware models, a specific us-
er’s attributes will get the same latent feature vector
no matter what the item is. That is, towards each item,
a certain user’s attributes will provide the same bias,
which does not reflect the reality. Let us consider a
realistic scene of predicting people’s preference for
movies. We choose gender as that specific user attri-
bute. If the recommender system predicts people’s
rating to a Marvel’s movie, the audience’s gender usu-
ally is not a factor affecting preference, whereas when
it comes to a romantic love movie, the system should
pay more attention to the user’s gender.

To make our model able to catch this information, we
introduce the attention mechanism. Attention mech-
anism is a widely used method in NLP and Compute
Vision domain [1, 26, 30, 33]. For example, Yin et al.
utilized the attention mechanism to model language
sequence [29], and Xu et al. used it to generate image
caption [26]. Some recent works also introduce atten-
tion mechanism into their matrix factorization mod-
el. Chen et al. [4] and Xiao et al. [25] combined neural
networks and attention mechanism, hence improved
the performance of their model. However, these works
concentrated on the final latent feature of user and
item, with regards to modeling the attributes, they still
used shared weight embedding or do nothing.

In this work, we propose a novel model named
AANMF. It combines two main parts, namely, the
neural-network-based factorization machine and the
attention-mechanism-based attributes processing
unit. Extensive experiments on two real-world data
sets demonstrate robust and stronger performance of
our model. Notably, we show that our model can deal
with user or item’s attributes more reasonably.
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2. Related Work

With the success of the attention mechanism in the
field of image [26] and NLP [29], more and more
works began to introduce it into other fields. In the
recommender system domain, two works applied this
technology to model and enhanced the performance
of their proposed FM framework. We simply sum-
marize their works next and clarify the difference be-
tween our model and them.

Attentive Collaborate Filtering (ACF) [4], proposed
by Chen et al., introduced attention mechanism (we
called it AM in the following paper) into the recom-
mender system with multimedia content problem.
They utilized AM to filter some useless implicit infor-
mation. With regard to explicit information and (at-
tribute, user/item) interaction modeling, their work
does not involve them.

Another attention-based work is called AFM [25],
which was proposed by Xiao et al. Their work focused
on the interaction between user and item in the latent
feature space. As for how to embed origin categori-
cal variables into latent space, they still used shared
weight.

As these two attention-net-based methods are prob-
abilistic models and predict an item ranking list rath-
er than a rating prediction, we do not choose them as
baselines in this work.

Some works were proposed to enhance the performance
ofthe MF model. Del Corso et al. [6] built an NMF mod-
el that change adaptively the function to be minimized
at each step. Wang et al. [23] proposed an MF model
named LOD-MF, which dug out implicit feedback in-
formation and applied a hybrid similarity measure to
identify the semantically similar neighbors of the target
item. Cai et al. [2] introduced a novel parameter tuning
framework named mrMoulder. It can recommend an
optimized configuration for a new job in a short time.
All of their works focus on the training stage while our
method focuses on the model building stage.

In addition to these, some works also expanded at-
tribute modeling to improve prediction accuracy.
Some recommendation models are based on ratings,
reviews, and social relationships [13, 24]. These re-
lations can be treated as another user/item attribute
entry in our model. Yang et al. [28] introduced the
cloud platform into the multimedia platform which
explored the benefit of mobile cloud computing.
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3.SVD++

SVD++ is an attribute-aware model that can handle
the attributes of both sides of the interaction. Tradi-
tional MF methods only regard the product of latent
space features from user and item as the model’s pre-
diction outcome. SVD++ assumes that the attributes
provide bias to the final prediction. For each user’s
attribute, SVD++ projects it into latent space and gets
a dense feature, then SVD++ models user feature by
adding these features to the user’s original feature:

j}ui :/u+bi+bu+
%,_/

bias

T

q, | p,+

75’:2: a | v

Jel,

IM

inner production

where u is the global bias, b, and b, denote item bias
and user bias, respectively. As for the key part, assum-
ing that SVD++ describe a K-dim latent space R%, cor-
respondly K represents K latent factors. q; € R* and
p, € R¥denote item and user’s original dense feature,
respectively. I, is the set of user attributes, a; REis
the i-th latent feature of the attribute. Almost all of
MF methods are based on this equation.

It is worth noting that this model ignores the correla-
tion between item feature and user attributes i.e., no
matter what the item is, the user’s attributes will con-
tribute the same bias to the final prediction—which is
unrealistic and makes the model not being able to take
full advantage of attribute information. For a movie
recommendation example, the age of audience should
contribute little bias to action movies, whereas there
should be big bias to romantic movies. However, mod-
els like SVD++ share the same weight for attributes.
That is, latent features among set are neither dynam-
ical nor configurable, which limits the generalization
performance of the model.

Let us discuss the reason why non-configurable I, lim-
its the performance of the model with another perspec-
tive. By simplifying the SVD++ model and analyzing its
nature, we can rewrite Equation (1) as follows:

A
j\}ui = bias + qi’pu + ﬂ'kak b} (2)
k=1

where (.,) is the dot product of two vectors; /, is the
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normalization parameter. This equation shows that
the final prediction actually is the distance between
the feature vectors of a user and an item.

Consider a low dimension case. Figure 1 illustrates
the primary process of this model in a low dimension
feature space. The gray dash box denotes attribute
subspace, and the dark green arrow indicates the sum
of features of all attributes. After simply addingz Ja
and user feature P, the model gets a new vector p’u.
Then the distance between item feature ¢, and p/ can
be seen as the final prediction. Figure 1 also shows
that SVD++ assumes that each attribute contributes
the same bias to the final prediction (same normaliza-
tion parameter 1).

Figure 1

The example illustrates SVD++’s limitations. Since all
attribute features are simply added in feature space, the
aggregate final feature will fluctuate

| User Attribute Subspace

User Attribute Feature

Added User Attribute Feature|
Final User Feature
Original User Feature

Item Feature

However, when some attribute is not the main impact
factor, this model will get an unreasonable result. As-
sume the dashed arrow in the box is the “some attri-
bute” —user occupation. No matter what direction the
dash arrow points (different occupations get different
feature vectors), we expect the model will get the same
prediction. As Z is not configurable, p’, will be fluctu-
ant, which causes the model to get a siginificant loss of
prediction. Hence, we proposed a model which uses the
attention mechanism to handle this vital parameter 4.

4. Attributes-Aware Attentional
Neural Matrix Factorization

Recently, several works have applied neural networks to
matrix factorization. Neural networks have been proven
to be capable of approximating any continuous func-
tion [12]. In addition, they can also generalize better to
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unseen feature combinations through low dimensional
dense embeddings learned for the sparse features [5].
Hence, we divide our model into two main parts: the
first part for generalized matrix factorization and the
other for handling attention-based attribute modeling.

4.1. Model

Figure 2 illustrates our proposed AANFM model. For
clarity purposes, we omit the item attribute input and
only show the calculation process of one attribute in
Figure 2. On the whole, our AANMF model embeds
sparse one-hot representation of user and item to
dense vectors. Then it merges these two vectors and
gets the final prediction. We call it Neural network
based Factorization Machine (NFM), which is in-
spired by He et al. proposed the NCF model [10]. In
their work, NFM was proved that could mimic a large
family of factorization models. On this basis, we in-
troduce the attention mechanism into our model for
decreasing the irrationality of MF models, which is
the main contribution of this paper.

Figure 2
The AANMEF framework
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! Fully Connected Layer

q; Pooling Layer

| Attention Layer
attention cell ]

~

- H (i Embedding
u i

T ? T Layer
[o[1]..JoJo] [o]o]..[4]o] [1Jo]..Jo]o]
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Additionally, inspired by [24], several pooling ways
have been applied so that the model can get better
performance. In the following part of this section, we
detail our model from bottom to top.

Input and Embedding Layer

There is an enormous drawback to one-hot representa-
tion, hence, like other MF models, we maintain an em-
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beds table where each row represents a dense feature,
which is similar to the distributed representation of
words [18]. In our model, we use the Embedding layer to
implement this requirement and regard one-hot input
as aretrieval index. The corresponding row in the learn-
able embeds table can be seen as the latent vector for a
user or an item in the context of the latent factor model.

Attention Layer

Owing to its biological interpretability, attention
mechanism has been applied to many neural-net-
work-based tasks [4, 29]. The idea of setting an atten-
tion layer (Attention Cell in Figure 2) is to investigate
the interaction between user/item and item/user’s at-
tributes. That is, the model should learn the weight of
the attribute towards different user/item rather than
all of the attributes share the same weight.

Algorithm 1 and Figure 2 show the process of atten-
tion cell in the AANMEF framework. At each attention
step, it generates a probability vector A via learning
(item, user attributes) interaction, and this probabil-
ity vector represents how much this attribute con-
tributes to the user preference latent vector. Hence,
according to notational conventions of Equation (1),
user’s final latent feature can be described by:

p, = Proooling (P; 9’1_/ Oa, ) ) (€))

Jell,|

Algorithm 1: The process of Attention Cell in AANMF
framework.

Input: The set of user’s attributes, I ; Current item’s
embedding vector, q,; Latent space dimension, K
Output: Probability vectors represent the model’s

attention to each attributes, 4;

For each user attribute a, € I,,j € ||, concatenate
a;and q; into a dense vector: V;=[a,, q,];

2 Use adense layer with tanh project V; into K-dims
vector v;= tanh(/,V; +b,);

3 Add a single neural unit dense to each output from
the last procedure after which applying a softmax
layer to get attention parameter A, whose each en-
try is equal to:

exp(ReLu(W,v; +b,))
T ’

D exp(ReLu(,v, +b,))

k=1

4 Returni
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where (O denotes the element-wise product of two
vectors. It is worth mentioning that in Equation (3),
we use awell-chosen pooling way to solve two vectors,
we left its implementation detail in the next section.

Pooling Layer

Our model will get a set of dense vector pairs (p,,q,) to
describe user u and item 7 after the embedding layer.
Meanwhile, the embedding layer outputs an attribute
latent vector set, size of which may vary for different
inputs since different user/item may have a different
number of attributes.

Figure 3
The process of the Attention Cell

q; I, = {ai}{l=|’x4|

J=1

Traditional MF methods simply add (sum-pooling)
or average (average-pooling) these vectors into one
vector. We argue that it can limit the performance of
the model as it ignores the correlation between two
vectors in latent space. Inspired by [24], we adopt a
pooling way named pair-wise pooling. As illustrated
in Figure 3, we let /, ={4, ©®a }'| denote the user’s
attributes feature set after attention cell. What pair-
wise-pooling does is as follows:

A
P 'u = ¢pairwise (pu > ]u) :Zp” © (/1] © a])
[ANA = @

+> 2. (4,0a)0(4, 0a)).

Jj=1j'=j+1
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As Equation (4) shows, pair-wise pooling can encode
correlation between them in the feature latent space.

Fully Connected Layer

In order to endow AANMF modeling with a high level
of non-linearities, a stack of fully connected layers is
added above the pooling layer. Firstly, model merges 2
vectors: p!, q, with the element-wise product (cf. Fig-
ure 2), then make result vector flows through L fully
connected layers and get the final prediction y . Each
layer has weight matrix W), bias b, activation function
0,, where l denotes the I-th layer:

V=00 (W (p, Oq,)+b) ). )

‘We choose ReLu as the non-linear unit since ReLu
can avoid vanishing gradient and exploding gradient
problem [7].

Algorithm 2: The process of learning

Input: User feature matrix P = {p .}« , Item feature
matrix Q = {q,}"., ,Neural layer weights W ={W,, W, ,
Wy Wiy WzL’}’ biasb = {btl, b, by, by, ..., blL,}, learning
rate a

Output: Updated P, Q

1 Initailize P,Q, W, b

2 forj=1;j<iterations;j++ do

3 for each user, item pair (u, 7) do
4 Get their latent space features p, and q; from
P,Q

Compute 4 using Algorithm 1;
Use pair-wise pooling(Equation (6)) to
compute the final concatenated vector;

7 Compute prediction, loss and add each loss
to totalloss L

8 end for

9 for Win W, binb do

10 W(—W—aa—L,beb—aa—L

11 end for ow ob

12 for pinP,qinQdo

13 _aoL _g%L
pP<p-a—.q<q—-a

14 end for P oq

15 end for

16 ReturnP,Q
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4.2. Learning

We divide the learning process of our model into three
parts: Input, Pooling, and Output.

Input. Most neural network frameworks provide
Embedding Layer. It maintains a learnable parameter
matrix, each row of which can be regarded as a latent
feature. Thus, the input of AANMTF can be the one-hot
representation of user/item. For example, (user, item)
pair (u]., 1,) participate in the calculation, correspond-
ingly, row j in user’s latent feature matrix and row &
in item’s latent feature matrix would update after one
iteration training step.

Pooling. According to Equation (4), we need a nested
for-loop in code to accomplish pairwise-pooling. In
practice, we adopt another way proposed by [24]:

A IZ,|
2, =P, +2A, |0 P+ A,
Jj=1 Jj=1
A

P, 0p,— 24,04,

J=1

(G)

where a = 4,0a,.Itisworth noting that Equation 6)
canbe computed in O(K | I~u ) time.

Output. Unlike some ranking models [22], BPR [21]
and eALS [11], we train AANMF model to accomplish a
rating task; thatis, given auser and an item, the trained
model will get a user’s rating score prediction towards
to item. Hence, we opt for MSE as loss function:

. 1< N
L(yiy):;Z(yi_yi)z' 7
i=1

Additionally, a computationally efficient gradient de-
scent method—Adam [14] is adopted as the optimizer
to speed up the convergence of our model. We con-
clude the learning process in Algorithm 2.

5. Experiment
5.1. Data Set

Several data sets are used to evaluate the per-
formance of recommendation methods, but only
MovieLens100K and MovieLenslM contain us-
er-attribute information. Hence, we evaluate the
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performance of AANMF on these two real-world
data sets. The basic information on these two data
sets is provided in Table 1.

Table 1
Statistics of the dataset

Name User# Ttem# Interaction#
MovieLens100K 943 1682 100000
MovieLens1M 6040 3952 1000309

MovieLens100K and MovieLenlM are two subsets
of data obtained from the MovieLens!' research proj-
ect. They contain 100 thousand and 1 million rating
records with format (u, i, rating), respectively. As the
attributes of movies in Movielens are few, we opt for
the user’s attributes set as one input channel of the
AANMF model. For convenience, three attributes of
the user are chosen. We illustrate their statistics in
Table 2.

Table 2
Statistics of the attributes

User Attribute # Class Encoding
Male 01
User gender 2
Female 10
Under 18 0000001
18-24 0000010
User age 7
25-34 0000100
Artist &'Z'I'OJ
User job 21 00---10
Lawyer —

21

User gender:2 represents each user’s gender, and has
two possibilities, male or female. While 21 represents
the number of classes of jobs, which is 21 (doctor, art-
ist, etc.). For user age, we divide the age range from 0
to over 56 into 7 age groups (under 18, 18-24, 25-34,
ete.) In order to adapt the data to the input of the mod-
el, we reorganize the dataset shown in Table 3.

1 http://www.grouplens.org



Information Technology and Control

5.2. Baseline

As the contribution of this paper is proposing a more

reasonable method to model the input of attributes,

we opt for some representative models with attribute

processing unit as baselines:

— SVD++. This is a classic model which well utilizes
attributes to enhance its performance.

— NFM. Neural Factorization Machine [9] is aneural
network-based FM [20] method that has a strong
power to model categorical variables, such as the
attributes that we mentioned above.

- AESR. Autoencoder-based social recommender
system [19] is a state-of-the-art method which
is a hybrid method that by modeling a joint
optimization function extends deep Autoencoder
with top-k semantic social information.

- ACMF. ACMF [32] is an attribute coupling- based
matrix factorization method which incorporates
item-attribute information into the matrix
factorization model as well as adopts coupled
object similarity to capture the relationship among
items.

‘We conduct experiments to verify whether AANMF
does better in rating prediction task and answer the
following questions:

RQ1l: Does AANMEF perform better than the tradi-
tional attribute-aware models?

RQ2: Does AANMF outperform other state-of-the-
art methods?

RQ3: Do the results of our experiments have a strong
explanatory power?

Table 3
Reorganized Data set
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5.3.RQ1: Does AANMF Perform Better than
the Traditional Attribute-Aware Models?

We choose SVD++ and NFM as typical traditional
attribute-aware models. Figure 4 shows the training
and testing process of our model on two datasets. We
can intuitively observe that the loss curve of AANMF
is under the other two curves, which means AANMF
can better fit the data and lead to more reliable predic-
tions. Furthermore, although the neural-based model
(AANMF&NFM) achieves a higher testing error in
the early iteration (seen in subgraph 2 in Figure 4),
they get a continuous error decrease in subsequent
iterations. We owe a good deal to the generality of the
neural network.

We also tune models and report the best performance.
Figure 5 shows the best performance of MSE with re-
spect to the number of latent factors on the two data-
sets mentioned above. In order to facilitate the com-
parison, NFM and AANMF get the same two fully
connected layers before the final output. For SVD++,
we simply dot two latent space features into predic-
tion rank.

First, we can see that our AANMF gets the best per-
formance in both two subgraphs. Second, nearly all
the curves in Figure 5 have the same trend: for small
latent factors, the model will get better performance
along with increasing the number of factors, where-
as for large latent factors, it begins to overfit. Last-
ly, a horizontal comparison between two subgraphs
shows that the neural-network-based model can
model larger datasets easier (on average, the im-
provement over SVD++ in ml100k and mllm is 4.5%
and 6.5%, respectively).

Index Userid Movie id Rating User gender User age User job
0 1 1193 5 0 0 10
1 2 1193 5 1 5 16
2 3 1193 4 1 6 12
100206 5780 2845 1 1 4 17
100207 5851 3607 5 0 4 20
100208 5938 2909 4 1 6 1
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Figure 4
Training and test error w.r.t. iterations
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Figure 5
The performance of MSE w.r.t. the number of latent factors

MovieLens100K

1.2 I -
| = = AANMF(train) — AANMF(test)
| = = NFM(train) —  NFMitest)
i - SVD++{train) SVD++(test)
1.0F
w
w
=
0.9
0.8
0.7 .
0 10 20 30 40 50
Iteration

5.4. RQ2: Does AANMEF Perform Better than
Other State-of-the-Art Methods?

ASER and ACMF are two recently published state-of-
the-art algorithms of the recommender system. We
choose two popular matrices, namely, Mean Absolute
Error(MAE) and Root Mean Squared Error(RMSE) to
measure the recommendation quality:

T A
MAE:Zt:l|yt_yt|

®
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where T denotes the number of interaction pairs.

We tune these models to get the best performance
on MovieLens data sets and report comparison re-
sults in Table 4. It is easy to observe that our AANMF
model is superior to the other compared methods.
AANMF improves MAE and RMSE by 2.7% and 1.8%
on MovieLens100K as well as 5.7% and 3.5% on Mov-
ieLens1M. We can also see that pairwise pooling way
indeed improves the performance of the model (cf.
AAANMF+P in Tabel 4).

‘We use the Nemenyi test to confirm that our model ex-
actly performs better than the methods listed above.
‘We choose as the confidence of the null hypothesis:
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Table 4
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A comparision of AANMF with the other two methods on MAE and RMSE

Data sets Metric ACMF
MAE 0.7282
MovieLens100K
RMSE 0.9186
MAE 0.7045
MovieLens1M
RMSE 0.8875

all methods have the same performance. Then after
applying the Friedman test, we reject this hypothesis,
after which we use the Nemenyi test as apost-hoc test
to estimate each method pair. Nemenyi test computes
the critical distance CD as follows:

CD:C]M/k(g;I), ©)

where kis the number of methods and Nis the number
of data sets. If the distance between the average rank
of two methods is below this value, it can be claimed
that these two methods have a notable gap.

‘We use 0.01 as threshold to rank these three methods
(ACMF, AESR and AANMF+P). That is, if the gab be-
tween the value of two methods in Table 4 is lower
than 0.01, we treat them as in the same rank. We com-
pute average ranks of these three methods in Table 5.

Table 5
Rank of 3 methods in 2 metrics

Metric ACMF AESR AANMF+P
ML100K-MAE 2.5 2.5 1
ML100K-RMSE 3 2 1
ML1M-MAE 2.5 2.5 1
ML1IM-RMSE 2.5 2.5 1
Average rank 2.625 2.375 1

Finally, we compute CD and display the Friedman
test result in Figure 6. According to Figure 6, our
AANMF+P exactly performs better than the other
two methods.

AESR AANMF AANMEF+P
0.7216 0.7022 0.7012
0.9176 0.9012 0.8979
0.6980 0.6580 0.6473
0.8792 0.8485 0.8322
Figure 6
Friedman test result
. — AANMF+P
! — AESR
: -  ACMF
1
1
|
|
|
1 2 3

5.5.RQ3: Do the Results of Our Experiments
Have a Strong Explanatory Power?

It is known that a useful property of the attention
mechanism is its highly interpretable outputs. To
show whether the learned attentions are meaning-
ful, we choose attention weight learned from Mov-
ieLen100K dataset as an example.

For the convenience of visualization and observation,
we assume that the distance between movies of the
same type is short in feature space. We select 8 typical
movie types, and for each type, we make movie clus-
ters to train the AANMF model, observe the atten-
tion outputs with respect to 3 user attributes, name-
ly, gender, age, and job. Figure 7 shows the average
levels among different types of movies (colors white
and black represent high attention and low attention,
respectively). According to this figure, we can simply
find that:

1 Action movies tend to get high attention towards
gender, while animation movies get high attention
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towards age, which is in line with reality. As for the
other types, we can also find reasonable bias with
different attributes

User job is always not the main impact factor to the
final prediction (cf Figure 7, the third row always
gets black color). We owe this phenomenon to the
fact that someone’s job usually does not contribute
to his/her rank toward a movie.

Figure 7
Attention weight for different attributes

Documentary
Animation
Musical

Children
Romance

.
S
2
£
S

T

gender

References

1

Bahdanau, D., Cho, K., Bengio, Y. Neural Machine
Translation by Jointly Learning to Align and Translate.
Compute Science, 2014.

Cai, L., Qi, Y., Wei, W.,, Wu, J., Li, J. mrMoulder: A Rec-
ommendation-based Adaptive Parameter Tuning Ap-
proach for Big Data Processing Platform. Future Gener-
ation Computer Systems, 2019, 93, 570-582. https://doi.
org/10.1016/j.future.2018.05.080

Chaney, A. J., Blei, D. M., Eliassi-Rad, T. A Probabilistic
Model for Using Social Networks in Personalized Item
Recommendation. The 9th ACM Conference. ACM,
2015, 43-50. https://doi.org/10.1145/2792838.2800193

Chen, J., Zhang, H., He, X,, Nie, L., Liu, W,, Chua, T. S.
Attentive Collaborative Filtering: Multimedia Rec-
ommendation with Item and Component-level at-
tention. Proceedings of the 40th International ACM
SIGIR Conference on Research and Development
in Information Retrieval, 2017, 335-344. https://doi.
org/10.1145/3077136.3080797

Cheng, H. T\, Koc, L., Harmsen, J., Shaked, T., Chandra,
T., Aradhye, H., Anderson, G., Corrado, G., Chai, W,

2019/4/48

6. Conclusion and Future Work

In this work, we propose a neural-network-based
framework named AANMF, which develops a novel
method combining AM and matrix factorization. Ex-
tensive experiments on AANMTF and baselines demon-
strate the rationality and advancement of our model in
attribute modeling. We do not focus on tuning the other
part of the model as this work puts emphasis on prov-
ing the new architecture we proposed actually works.

In the future, we will continue to study how AM can in-
vestigate the interaction between user/item and attri-
bute deeper. In addition, as this work serves as a guide-
line for acombination of AM and NFM, we will attempt
to adjust other structures for further study. For exam-
ple, after the pairwise layer in AANMTF, our model sim-
ply adds some dense layer onto the element-wise prod-
uct of user and item. There may exist more reasonable
ways of handling this. Moreover, we are interested in
exploring how to apply AM in modeling the interaction
between user/item and multimedia auxiliary informa-
tion rather than only categorical attributes.

Lspir, M., Anil, R,, Haque, Z., Hong, L., Jain, V,, Liu, X,,
Shah, H. Wide & Deep Learning for Recommender Sys-
tems. Proceedings of the 1st Workshop on Deep Learn-
ing for Recommender Systems, 2016, 7-10. https://doi.
org/10.1145/2988450.2988454

6. Del Corso, G. M., Romani, F. Adaptive Nonnegative Ma-
trix Factorization and Measure Comparisons for Rec-
ommender Systems. Applied Mathematics and Com-
putation, 2019, 354, 164-179. https://doi.org/10.1016/j.
amc.2019.01.047

7. Glorot, X., Bordes, A., Bengio, Y. Deep Sparse Rectifier
Neural Networks. Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Sta-
tistics, 2011, 15, 315-323.

8. Guo, G., Zhang, J., Yorke-Smith, N. Trustsvd: Collabo-
rative Filtering with Both the Explicit and Implicit In-
fluence of User Trust and of Item Ratings. Proceedings
of the Twenty-Ninth AAAI Conference on Artificial In-
telligence, 2015, 123-129.

9. He, X, Chua, T. S. Neural Factorization Machines for
Sparse Predictive Analytics. Proceedings of the 40th


https://doi.org/10.1016/j.future.2018.05.080
https://doi.org/10.1016/j.future.2018.05.080
https://doi.org/10.1145/2792838.2800193
https://doi.org/10.1145/3077136.3080797
https://doi.org/10.1145/3077136.3080797
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1016/j.amc.2019.01.047
https://doi.org/10.1016/j.amc.2019.01.047

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Information Technology and Control

International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2017, 355-364.
https://doi.org/10.1145/3077136.3080777

He, X., Liao, L., Zhang, H., Nie, L., Hu, X, Chua, T. S. Neu-
ral Collaborative Filtering. Proceedings of the 26th In-
ternational Conference on World Wide Web, 2017, 173-
182. https://doi.org/10.1145/3038912.3052569

He, X., Zhang, H., Kan, M. Y., Chua, T. S. Fast Matrix
Factorization for Online Recommendation with Im-
plicit Feedback. Proceedings of the 39th International
ACM SIGIR Conference on Research and Development
in Information Retrieval, 2016, 549-558. https://doi.
org/10.1145/2911451.2911489

Hornik, K., Stinchcombe, M., White, H. Multilayer
Feedforward Networks are Universal Approxima-
tors. Neural Networks, 1989, 2(5), 359-366. https://doi.
org/10.1016/0893-6080(89)90020-8

Ji, Z., Pi, H., Wei, W,, Xiong, B., Wozniak, M., Damase-
vicius, R. Recommendation Based on Review Texts and
Social Communities: A Hybrid Model. IEEE Access,
2019, 7, 40416-40427. https://doi.org/10.1109/AC-
CESS.2019.2897586

Kingma, D. P, Ba, J. L. Adam: A Method for Stochastic
Optimization. International Conference on Learning
Representations, 2015.

Koren, Y. Factorization Meets the Neighborhood: A
Multifaceted Collaborative Filtering Model. Proceed-
ings of the 14th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2008,
426-434. https://doi.org/10.1145/1401890.1401944

Koren, Y., Bell, R., Volinsky, C. Matrix Factorization
Techniques for Recommender Systems. Computer,
2009,42(8), 30-37. https://doi.org/10.1109/MC.2009.263

Melville, P., Mooney, R. J., Nagarajan, R. Content-boost-
ed Collaborative Filtering. Eighteenth National Confer-
ence on Artificial Intelligence, 2002.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G., Dean, J.
Distributed Representations of Words and Phrases and
Their Compositionality. Proceedings of the 26th Inter-
national Conference on Neural Information Processing
Systems, 2013, 2, 3111-3119.

Nisha, C. C., Mohan, A. A Social Recommender System
Using Deep Architecture and Network Embedding. Ap-
plied Intelligence, 2018, 49(5), 1937-1953. https://doi.
0rg/10.1007/s10489-018-1359-z

Rendle, S. Factorization Machines. IEEE International
Conference on Data Mining (ICDM), 2010. https://doi.
org/10.1109/ICDM.2010.127

21

22.

23.

24.

25.

26.

27.

28.

29.

2019/4/48

Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-
Thieme, L. BPR: Bayesian Personalized Ranking from
Implicit Feedback. Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence,
20009, 452-461.

Sarwar, B., Karypis, G., Konstan, J., Riedl, J. Item-
based Collaborative Filtering Recommendation Algo-
rithms. Proceedings of the 10th International Confer-
ence on World Wide Web, 2001, 285-295. https://doi.
org/10.1145/371920.372071

Wang, R., Cheng, H. K., Jiang, Y., Lou, J. A Novel Ma-
trix Factorization Model for Recommendation with
Lod-based Semantic Similarity Measure. Expert Sys-
tems with Applications, 2019, 123, 70-81. https://doi.
org/10.1016/j.eswa.2019.01.036

Wang, X.,, He, X., Nie, L., Chua, T. S. Item Silk Road:
Recommending Items from Information Domains to
Social Users. Proceedings of the 40th International
ACM SIGIR Conference on Research and Development
in Information Retrieval, 2017, 185-194. https://doi.
org/10.1145/3077136.3080771

Xiao, J., Ye, H,, He, X, Zhang, H., Wu, F., Chua, T. S. At-
tentional Factorization Machines: Learning the Weight
of Feature Interactions via Attention Networks. Pro-
ceedings of the 26th International Joint Conference
on Artificial Intelligence, 2017, 3119-3125. https://doi.
org/10.24963/ijcai.2017/435

Xu, K., Ba, J, Kiros, R., Cho, K., Courville, A., Salakhu-
dinov, R., Zemel, R. S., Bengio, Y. Show, Attend and Tell:
Neural Image Caption Generation with Visual Atten-
tion. Proceedings of the 32nd International Conference
on International Conference on Machine Learning,
2015, 37, 2048-2057.

Yang, B, Lei, Y., Liu, J., Li, W. Social Collaborative Fil-
tering by Trust. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2017, 39(8), 1633-1647.
https://doi.org/10.1109/TPAMI.2016.2605085

Yang, J., Wang, H., Lv, Z., Wei, W,, Song, H., E.-K., M.,
Kantarci, B., He, S. Multimedia Recommendation and
Transmission System Based on Cloud Platform. Fu-
ture Generation Computer Systems, 2016, 70, 94-103.
https://doi.org/10.1016/j.future.2016.06.015

Yin, W., Schiitze, Hinrich, Xiang, B., Zhou, B. Abcnn:
Attention-based Convolutional Neural Network for
Modeling Sentence Pairs. Transactions of the Associ-
ation for Computational Linguistics, 2016, 4, 566-567.
https://doi.org/10.1162/tacl_a_00244

. You, Q., Jin, H., Wang, Z., Fang, C., Luo, J. Image Cap-

tioning with Semantic Attention. IEEE Conference on


https://doi.org/10.1145/3077136.3080777
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/2911451.2911489
https://doi.org/10.1145/2911451.2911489
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/ACCESS.2019.2897586
https://doi.org/10.1109/ACCESS.2019.2897586
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1007/s10489-018-1359-z
https://doi.org/10.1007/s10489-018-1359-z
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
https://doi.org/10.1016/j.eswa.2019.01.036
https://doi.org/10.1016/j.eswa.2019.01.036
https://doi.org/10.1145/3077136.3080771
https://doi.org/10.1145/3077136.3080771
https://doi.org/10.24963/ijcai.2017/435
https://doi.org/10.24963/ijcai.2017/435
https://doi.org/10.1109/TPAMI.2016.2605085
https://doi.org/10.1016/j.future.2016.06.015
https://doi.org/10.1162/tacl_a_00244

31

32.

33.

Information Technology and Control

Computer Vision and Pattern Recognition, 2016, 4651~
4659. https://doi.org/10.1109/CVPR.2016.503

Yu, K., Schwaighofer, A., Tresp, V., Xu, X., Kriegel, H.
Probabilistic Memory-based Collaborative Filtering.
IEEE Transactions on Knowledge and Data Engi-
neering, 2004, 16(1), 56-69. https://doi.org/10.1109/
TKDE.2004.1264822

Yu, Y., Wang, C., Hao, W,, Yang, G. Attributes Coupling
Based Matrix Factorization for Item Recommendation.
Applied Intelligence, 2017, 46(3), 521-533. https://doi.
org/10.1007/s10489-016-0841-8

Zanfir, M., Marinoiu, E., Sminchisescu, C. Spatio-tem-
poral Attention Models for Grounded Video Caption-

34.

35.

2019/4/48

ing. Asian Conference on Computer Vision, 2016, 104-
119. https://doi.org/10.1007/978-3-319-54190-7_7

Zhao, T., Mcauley, J., King, I. Leveraging Social Connec-
tions to Improve Personalized Ranking for Collabora-
tive Filtering. Proceedings of the 23rd ACM Interna-
tional Conference on Conference on Information and
Knowledge Management, 2014, 261-270. https://doi.
org/10.1145/2661829.2661998

Ziegler, C. N, Lausen, G., Schmidt-Thieme, L. Taxono-
my-driven Computation of Product Recommendations.
Proceedings of the 13th ACM International Conference
on Information and Knowledge Management, 2004, 5,
406-415. https://doi.org/10.1145/1031171.1031252


https://doi.org/10.1109/CVPR.2016.503
https://doi.org/10.1109/TKDE.2004.1264822
https://doi.org/10.1109/TKDE.2004.1264822
https://doi.org/10.1007/s10489-016-0841-8
https://doi.org/10.1007/s10489-016-0841-8
https://doi.org/10.1007/978-3-319-54190-7_7
https://doi.org/10.1145/2661829.2661998
https://doi.org/10.1145/2661829.2661998
https://doi.org/10.1145/1031171.1031252



