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A robot should be endowed with certain collaboration experience to recognize human’s behavioral intention. 
This paper provides a method based on machine learning to recognize the collaborator’s intention. A radial 
basis function neural network model was built for offline practice of a robot to recognize intention. Some col-
laboration skills can be obtained by the robot by building a map between the collaborator’s intention and the 
system state, deducing human’s intention based on the dynamic characteristics of collaborator and robot and 
taking the collaborator’s intention as the feedforward information for controlling the robot so as to estimate the 
human’s intention online based on collaborator’s force and robot’s motion characteristics during collaboration. 
The proposed method can overcome the difficulties in building the human-robot collaboration model by tra-
ditional method, especially the complicated human motion model, and difficulties in estimation of impedance 
parameters of human body. An experiment was conducted on a motion platform with single degree of freedom. 
The results prove that the collaborator’s force is reduced while synchronization of human-robot collaboration 
is improved, so that the compliance of collaborated motion is also improved. 
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1. Introduction
The collaborative robot enjoys a history of more than 
20 years. At present, it has a very wide space for appli-
cation in military, aerospace, rehabilitation, nursing, 
industry, living, etc. The robot should be capable of 
sensing the force, judging the intention and making 
the decision of motion during the collaboration with 
human for handling, assembling, limb rehabilitation 
exercising, robot assisted walking and other work to 
ensure its safety, compliance and high efficiency.
For a long time, the human-robot collaboration sys-
tem had an obvious defect, i.e. a robot calculates the 
position information based on the acquired infor-
mation, then transmits the position information to 
its controller, and finally realizes the follow motion, 
resulting in the time delay [6]. In order to solve this 
problem, Maeda et al. [12], on the basis of human-hu-
man collaboration, put forward that if a robot is en-
dowed with the prejudging ability like human, can 
recognize the collaborator’s intention in real time and 
build the relationship between its expected trajecto-
ry and the collaborator’s intention based on certain 
rule, many problems can be solved, i.e. the robot and 
the collaborator are not synchronous, and the collab-
orator’s force is too high. Finally, the robot can make 
more natural and more flexible motion. Therefore, 
the expected trajectory of a robot should be designed 
as a random variable related to the collaborator’s in-
tention. The recognition of collaborator’s intention 
becomes an important task. At present, the research-
es on methods of collaborator’s intention recognition 
mainly focus on the methods based on model and 
machine learning. Human intentions come from the 
brain. The research should start from the root of gen-
erating the intention. If the human’s intention signal 
can be abstracted from brain, the human’s intention 
can be clear and can be transmitted to the effector 
by external signal. For example, a neurologist, prof. 
Gregoire Courtine [4] from Swiss Federal Institute of 
Technology took an experiment on a monkey whose 
nervus centralis of leg is injured. The brain signal was 
abstracted from monkey’s brain and transmitted to 
the effector (monkey’s leg) by external transmission 
mode. The paralyzed monkey regained the ability to 
walk. At present, the brain signal is mainly abstracted 
by wearing the wearable devices. However, the head 
wearable device cannot abstract the brain signal well 

and the interference may not be eliminated. In addi-
tion, the correspondence relationship between brain 
phonetics and action is fuzzy. Thus, the research has 
not made significant progress. 
Many researchers simplify the control model of hu-
man’s upper limbs as the impedance control model, 
even directly simplify as the mass-spring-damper sys-
tem and represent the human’s intention as a virtual 
variable [14, 20, 5] of expectation. The method has an 
obvious defect, i.e. the method is based on a hypothe-
sis that the mass, damper and rigidity of a collaborator 
are not change during the human-robot collaboration. 
However, collaborator’s intention always changes 
with the change of current scenes, goals and tasks, i.e. 
the human’s intention changes at any time. Therefore, 
the method of recognition of collaborator’s intention 
based on model is not applicable to human-robot col-
laboration system with strong randomness. Thus, the 
prediction model built by machine learning meth-
od without consideration of human body model can 
make the robot recognize the collaborator’s intention 
more visually and effectively [3].
Among the current research results, Lee et al. [10] 
practiced the Hidden Markov Model (HMM) by 
Baum-Welch algorithm and predicted the collabora-
tor’s action and gesture by learning the meaning of 
collaborator’s gesture. Recognition of collaborator’s 
intention by visual information is an effective meth-
od, including face recognition, strength or gradient 
recognition, contour recognition, etc. [9, 21] The col-
laborator’s intention can be recognized by posture 
language of human body [19]. For example, Lv et al. 
[11] recognized the human body’s motion behavior on 
plane. Mikolajczyk et al. [13] recognized the collabo-
rator’s behavior based on some appearance features. 
Human’s behavior mode may be corresponding to 
the human’s intention. The human’s intention can be 
regarded as the hidden state in HMM. The collabora-
tor’s intention can be indirectly recognized by obser-
vation of collaborator’s behavior [16]. At present, this 
opinion becomes an important research idea in the 
intention recognition field. Tahb [18] and Weede et 
al. [17] adopted Dynamic Bayesian Network and Hy-
brid Dynamic Bayesian Network method to recognize 
the collaborator’s intention, respectively. Jeon et al. 
[7, 22] adopted Ontology, Graph and Utility method 
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to recognize the collaborator’s intention. Kelley et al. 
[8] adopted a novel HMM to recognize the collabo-
rator’s intention, while this method was analyzed by 
M Awais et al. [2] by Finite State Machines method 
based on probability.
Among above methods, most of them are based on 
gestures or actions and deduce the collaborator’s in-
tention on the basis of human’s action without con-
sideration of necessity of using mutual information 
and state information of the collaboration system 
in human-robot collaboration. Thus, these methods 
cannot meet the demand of human-robot collabora-
tion. Therefore, this paper provides a method based 
on machine learning to recognize the collaborator’s 
intention on the basis of the human-robot interac-
tion information. A radial basis function neural net-
work (RBFNN) model was built for offline practice 
of a robot to recognize intention. Some collaboration 
skills can be obtained by the robot by building a map 
between the collaborator’s intention and the system 
state, deducing human’s intention based on the dy-
namic characteristics of collaborator and robot and 
taking the collaborator’s intention as the feedforward 
information for controlling the robot so as to estimate 
the human’s intention on line based on collaborator’s 
force and robot’s motion characteristics during col-
laboration.

2. The Principle of Intention 
Recognition Based on Radial Basis 
Function Neural Network
The human’s intention is embodied by dynamic per-
formance of system and can be estimated on the 
ground of external performance of the system. Based 
on this idea, the intention recognition method based 
on radial basis function neural network is put forward. 
Its principle is shown in Fig. 1. The intention identi-
fication process includes offline learning and online 
real-time estimation. The human’s intention is sim-
plified as the speed of interaction point between the 
collaborator and the robot hd{ }x . Ge et al. [6] proved 
the rationality of this hypothesis. In order to prevent 
“resilience” of the robot, the expected rigidity of robot 
is set as 0, i.e. d =0K . If there is no requirements for ex-
pected inertia of robot, only the expected speed of ro-

bot rd{ }x  affects the interaction in impedance control. 
Therefore, the human’s intention is defined as the 
speed of collaborator’s palm, and the expected speed 
of robot rd{ }x  verges on the human’s intention speed 

hd{ }x  in an optimal mode to realize the synchronous 
motion of human-robot collaboration and play the 
role of reducing the interaction force.
In this paper, robot perceives human’s intention by 
the force from human, and follows human’s inten-
tion to move. In this process, RBFNN is used to pre-
dict human behavior.  RBFNN has strong input and 
output mapping ability and it can avoid falling into 
local minimum when training. Poggio et al. [15] have 
proven that the RBFNN is superior in approximating 
continuous functions. The essence of RBFNN used 
here is to build human intent model based on human 
historical behavior data including the speed, position 
and the corresponding interaction force of the robot. 
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A schematic diagram of intention recognition based on 
radial basis function neural network 
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if（） is the vector of interaction force between the robot and 
the collaborator in the i th group of observation data and the 
vector of force in motion direction which triggers the sensor. 
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The prerequisite of estimation of collaborator’s intention  
based on radial basis function neural network is building a 
proper neural network model. The key points of design lie in 
the method of selecting hidden layer node based on data and 
the design method of weight from hidden layer to output 
layer. Due to the number of hidden nodes in radial basis 
function neural network, i.e. p  in formula 1, greatly 
influences the generalization ability of the whole network, it 
is very important to find a rational method to confirm the 
number of hidden nodes. There are many methods to 
confirm the hidden nodes, such as clustering method, 
gradient training method and resource allocation network. 
However, in practice, the dynamic clustering algorithm is 
often adopted for data center selection by self-organization. 
During learning, the position of data center should be 
dynamically adjusted. 
K-means clustering method, as a common and effective 
clustering method, can confirm the extension constant of 
hidden nodes on the basis of the distance among various 
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be determined by enumeration. It is known from literature 
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number is smaller than the proper class cluster number, the 
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Choosing the value K  by enumeration can get the optimal 
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value, W of mean centroid distance (radius) of class cluster 
based on the determined indexes. The index is expressed as 
follows: 

 
1
mean

k
i

i
i

nW r
N

   ,                        (3) 

Figure 1
A schematic diagram of intention recognition based on 
radial basis function neural network



Information Technology and Control 2019/4/48640

The Gaussian function has good local approximation 
capability and is adopted as the radial basis transmis-
sion function to predict the collaborator’s intention 

hd
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where, y is the output of neural network, p  is the size 
of hidden layer, Wi  is the weight from hidden layer to 
output layer, σ is the extension constant of radial basis 
function, x is the input of neural network and ci is the 
center of neural network basis function.
In order to ensure the effective and real-time inten-
tion recognition, only the end-speed, position and 
interaction force are selected as the intention esti-
mation information. The network parameters are 
defined by combining the variable of human-robot 
collaboration system. Name and description of pa-
rameters are as follows:
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where, k is the number of class cluster, mean(ri)is the 
mean radius of the i th class clusters, ni is the number 
of data points in the the i th class clusters, N is the to-
tal number of data to be classified.
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4. Network Weight Design Based on 
Gradient Descent Method
The gradient descent algorithm, also called steep-
est descent algorithm, as an effective optimization 
algorithm, plays an important role in iteration pro-
cess of back-propagation algorithm. Therefore, the 
gradient descent method can be combined with the 
backpropagation idea to solve the weight from hid-
den layer to output layer of neural network. Sup-
pose that there are m groups of fixed sample sets 
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where, Wh （） is the function model related to weight, the 
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backpropagation algorithm to minimize  J W . The 
convergence threshold   of gradient descent algorithm 
should be set. To solve above formula to minimize the 
objective function  J W , finding the direction with fastest 
gradient descent, the partial derivative of Equation (4) can 
be obtained as: 
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In addition, the step length   in gradient descent direction, 
i.e. variation along the gradient descent direction each time, 
should be set. The descent process is expressed in Equation 
(6): 
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The above calculation can determine the weight from hidden 
layer to output layer. 

 5. Design of Impedance Controller 
Resilience force should not be set in human-robot 
collaboration. Therefore, the robot impedance control 
rigidity is set as 0, i.e. d 0K  . In cartesian space, the rotor 
impedance control can be expressed as: 

 d d rd dM x B x x f f      ,                  (7)
 

where, d d and M B  are expected mass matrix and damping 
matrix, respectively, x x 、  and rdx are end-acceleration, 
speed and expected end-speed of robot, f is the actual force 
and df  is the expected interaction force. In order to realize 
synchronization, the expected end-speed of the robot should 
be synchronous with the human’s intention ( rd hdx x  ), and 
the end-speed of robot should follow the expected speed 

rdx x  , i.e. we wish the follow deviation of robot is 0. 
In order to improve the follow effect of end-trajectory of the 
robot, the designed impedance controller is shown in Figure 
2. The speed compensation should be continuously adjusted 
on the basis of difference between the human-robot 
interaction contact force and the expected force to make the 
end-speed follow the expected end-speed well. The 
impedance controller: 

 d d rd dM x B x x f f       ,               (8) 

where,   is the speed compensation, df  is same with 
above, i.e. d =[- , ]f t t , t  is the constant which is approximate 
to 0 in positive direction. Other parameters are the same as 
indicated above. The speed compensation is set as: 
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where,   is the sampling cycle of controller,   is update 
rate and b  is a constant. 
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6. Experiment 
6.1. Experiment Devices 

In order to verify the effectiveness of the proposed method, 
a translational single-degree-of-freedom robot system was 
selected for collaboration with human to avoid the influence 
of complicated experiment device and control coupling of 
motion with multi-degree of freedom. The schematic 
diagram and picture of interaction system are shown in Fig. 
3. The parameters of the system are shown in Table 1. The 
interaction force is acquired by the 6D force sensor installed 
at the end of the robot. Here, only the force information in 
the sliding table moving direction is extracted. The 
operation frequency of the whole system is 1kHz. 
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from hidden layer to output layer of neural network. 
Suppose that there are m  groups of fixed sample sets 
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In addition, the step length   in gradient descent direction, 
i.e. variation along the gradient descent direction each time, 
should be set. The descent process is expressed in Equation 
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The above calculation can determine the weight from hidden 
layer to output layer. 

 5. Design of Impedance Controller 
Resilience force should not be set in human-robot 
collaboration. Therefore, the robot impedance control 
rigidity is set as 0, i.e. d 0K  . In cartesian space, the rotor 
impedance control can be expressed as: 
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and df  is the expected interaction force. In order to realize 
synchronization, the expected end-speed of the robot should 
be synchronous with the human’s intention ( rd hdx x  ), and 
the end-speed of robot should follow the expected speed 

rdx x  , i.e. we wish the follow deviation of robot is 0. 
In order to improve the follow effect of end-trajectory of the 
robot, the designed impedance controller is shown in Figure 
2. The speed compensation should be continuously adjusted 
on the basis of difference between the human-robot 
interaction contact force and the expected force to make the 
end-speed follow the expected end-speed well. The 
impedance controller: 
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where,   is the speed compensation, df  is same with 
above, i.e. d =[- , ]f t t , t  is the constant which is approximate 
to 0 in positive direction. Other parameters are the same as 
indicated above. The speed compensation is set as: 
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where,   is the sampling cycle of controller,   is update 
rate and b  is a constant. 
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6. Experiment 
6.1. Experiment Devices 

In order to verify the effectiveness of the proposed method, 
a translational single-degree-of-freedom robot system was 
selected for collaboration with human to avoid the influence 
of complicated experiment device and control coupling of 
motion with multi-degree of freedom. The schematic 
diagram and picture of interaction system are shown in Fig. 
3. The parameters of the system are shown in Table 1. The 
interaction force is acquired by the 6D force sensor installed 
at the end of the robot. Here, only the force information in 
the sliding table moving direction is extracted. The 
operation frequency of the whole system is 1kHz. 
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where, λ is the sampling cycle of controller, η is update 
rate and b is a constant.
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a translational single-degree-of-freedom robot system was 
selected for collaboration with human to avoid the influence 
of complicated experiment device and control coupling of 
motion with multi-degree of freedom. The schematic 
diagram and picture of interaction system are shown in Fig. 
3. The parameters of the system are shown in Table 1. The 
interaction force is acquired by the 6D force sensor installed 
at the end of the robot. Here, only the force information in 
the sliding table moving direction is extracted. The 
operation frequency of the whole system is 1kHz. 
 
Table 1 



Information Technology and Control 2019/4/48642

6. Experiment
6.1. Experiment Devices
In order to verify the effectiveness of the proposed 
method, a translational single-degree-of-freedom 
robot system was selected for collaboration with hu-
man to avoid the influence of complicated experiment 
device and control coupling of motion with multi-de-
gree of freedom. The schematic diagram and picture 
of interaction system are shown in Fig. 3. The param-
eters of the system are shown in Table 1. The interac-
tion force is acquired by the 6D force sensor installed 
at the end of the robot. Here, only the force informa-
tion in the sliding table moving direction is extracted. 
The operation frequency of the whole system is 1kHz.

Table 1
Important parameters of human-robot collaboration system

Name Parameter

IPC Advantech IPC-610

Robot controller ADLINK PCI-8258

6D force sensor ATI-SI125

Servo motor and 
driver

Yaskawa AC servo driver 400W, 
rated torque of motor 1.27N.m

Figure 3
A schematic diagram and picture of human-robot 
collaboration system
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The task performance is that the end (sliding table) of robot 
is synchronous with the hand which is installed with the 
force sensor and the collaborator’s hand moves at random. 
The acquired data is used for practicing the radial basis 
function neural network. The data acquisition flow chart 
(Figure 4) was established for the experiment device of 
human-robot collaboration system. 
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6.2. Sample Data Acquisition Based on Impedance Control 

Figure 4 
Data acquisition flow chart 
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and end-speed of the robot, the value fed back by servo 
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end-position and end-speed of the robot are both the 1D data 

1( Rx and 1R )x , respectively. The collaborator’s 
intention data 1

hd Rx   can be acquired by Equation (8). 
Because only the intention recognition of human-robot 
collaboration system with single degree of freedom is 
verified, the human’s intention information is also the 1D 
vector data in the experiment. 
In order to achieve the purpose of synchronization of 
human-robot collaboration, set rd hdx x  . In order to obtain 
the expected speed rdx  of robot in Equation (8), set the mass 
matrix and damping matrix of the robot as d 0.1M   and 

d= 0.5N,f respectively. Based on the above description of 
sampling cycle and repeated times, the practice data sample 
during 3 50 10 = 1500  interaction process can be obtained. 
 
6.3. Estimation of K Value and Determination of Network 

Basis Function Center 

The data is clustered by K-means algorithm. Because K-
means algorithm is very sensitive to class cluster number 
and initial class cluster center, the class cluster number and 
the initial class cluster center should be determined firstly. 
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under the sinusoidal speed change rule. During the 
whole data record process, the operation frequency is 
1kHz and the sampling frequency is 50Hz. The whole 
sampling process lasts for 10s. Sampling should be re-
peated three times.
It can be seen from above analysis that the interac-
tion force of the human-robot collaboration system 
with single degree of freedom is the 1D information 
( 1Rf ∈ ) and the sensor is accompanied with 10% 
noise. To acquire the end-position and end-speed of 
the robot, the value fed back by servo motor encoder 
should be adopted. Then, the end-position and end-
speed can be obtained on the basis of conversion re-
lationship between joint space and Cartesian space. 
The end-position and end-speed of the robot are both 
the 1D data 1( Rx ∈ and 1R )x ∈ , respectively. The col-
laborator’s intention data 1

hd Rx ∈  can be acquired by 
Equation (8). Because only the intention recognition 
of human-robot collaboration system with single de-
gree of freedom is verified, the human’s intention in-
formation is also the 1D vector data in the experiment.
In order to achieve the purpose of synchronization 
of human-robot collaboration, set rd hdx x=  . In order 
to obtain the expected speed rdx  of robot in Equa-
tion (8), set the mass matrix and damping matrix 
of the robot as d 0.1M =  and d = 0.5N,f  respectively. 
Based on the above description of sampling cycle 
and repeated times, the practice data sample during 
3 50 10 = 1500× ×  interaction process can be obtained.

6.3. Estimation of K Value and Determination 
of Network Basis Function Center
The data is clustered by K-means algorithm. Because 
K-means algorithm is very sensitive to class cluster 
number and initial class cluster center, the class clus-
ter number and the initial class cluster center should 
be determined firstly. By observing the sample data 
acquired, four kinds of data in the sample (expected 
speed rdx  of robot, end-speed and position ,x x  of ro-
bot and interaction force f ) are of the same order of 
magnitude. Therefore, there is no need to standardize 
the data if K-means algorithm is adopted. The sam-
ple data is classified into class 1-10 by enumeration. 
Some clustering results are shown in Figure 5.
In order to determine K  value, the weighted means of 
mean centroid distance (radius) of all class clusters 
for different class cluster quantities are calculated re-
spectively based on the Equation (6). The correspon-

Figure 5
Some clustering effects if k is different
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In order to determine K  value, the weighted means of mean 
centroid distance (radius) of all class clusters for different 
class cluster quantities are calculated respectively based on 
the Equation (6). The correspondence relationship between 
the class cluster number K  and the calculated weighted 
means is built, as shown in Figure 6. 
 

Figure 6 
Class cluster number k and weighted means of mean 
centroid distance of class clusters 
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It can be observed clearly from Figure 6 that in front of class 
7, the change is obvious, the weighted mean descends 
rapidly; behind class 7, weighted mean is stable and the 

change is slow. If k is 7, there is the turning point of 
weighted means of mean centroid distance of all class 
clusters. According to [1], the acquired sample data should 
be classified into 7 classes, i.e. k=7. Red mark ※ in Figure 5 
represents the class cluster center. In case of k=7, the 
marked position is regarded as the center of basis of radial 
basis function neural network. The obtained center positions 
and Gaussian function variances are shown in Table 2. 
 

Table 2 
Mean center coordinates of class clusters and Gaussian 
function variances 

Class 
cluster 

Mean center coordinates of 
class clusters 

Gaussian 
function 
variances 

1 -6.7376 8.4750 -9.8347 10.7798 
2 14.9258 -84.8704 19.1362 7.5946 
3 21.8041 26.2799 19.8990 11.2995 
4 -21.1810 55.1060 -24.5560 7.9990 
5 28.7029 -31.0898 28.2646 9.0735 
6 -24.7955 -75.1356 -22.5454 9.4053 
7 -34.2421 -15.5574 -34.4726 7.4068 

 
The weight is determined by the gradient descent algorithm. 
The learning speed of gradient descent algorithm is set to 
0.1. The change of weight is shown in Figure 7. With the 
increase of iteration number, the weight from hidden layer 
to output layer gradually converges. The prediction 
precision   is set to 610 .  The radial basis function neural 
network weight is shown in Table 3. 
 
Table 3 
Weight from hidden layer to output layer 

Hidden 
layer 

sequence i 
Weight ωi 

Hidden 
layer 

sequence i 
Weight ωi 

1 14.7179 5 38.1925 
2 11.0514 6 -21.5968 
3 27.6283 7 -50.2440 
4 -9.2611   

 
6.4. An Analysis of Human-Robot Motion Synchronization 

and Collaborator’s Interaction Force 

In order to verify that the intention recognition method 
based on radial basis function neural network proposed in 
this paper is more excellent in synchronization of man-robot 
motion, the experiment was conducted by impedance 
control method and the proposed method. The speed 
tracking curves of these two methods were drawn 
respectively, as shown in Figures 7-8. 

It can be seen from Figure 7 that the actual speed of robot is 
obviously slower than the expected speed during human-
rotor collaboration if the impedance control method is 
adopted. The inherent delay characteristics of impedance 
control restricts the synchronization of human and robot. 
The robot is always in the passive follow state. 
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In order to determine K  value, the weighted means of mean 
centroid distance (radius) of all class clusters for different 
class cluster quantities are calculated respectively based on 
the Equation (6). The correspondence relationship between 
the class cluster number K  and the calculated weighted 
means is built, as shown in Figure 6. 
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It can be observed clearly from Figure 6 that in front of class 
7, the change is obvious, the weighted mean descends 
rapidly; behind class 7, weighted mean is stable and the 

change is slow. If k is 7, there is the turning point of 
weighted means of mean centroid distance of all class 
clusters. According to [1], the acquired sample data should 
be classified into 7 classes, i.e. k=7. Red mark ※ in Figure 5 
represents the class cluster center. In case of k=7, the 
marked position is regarded as the center of basis of radial 
basis function neural network. The obtained center positions 
and Gaussian function variances are shown in Table 2. 
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The weight is determined by the gradient descent algorithm. 
The learning speed of gradient descent algorithm is set to 
0.1. The change of weight is shown in Figure 7. With the 
increase of iteration number, the weight from hidden layer 
to output layer gradually converges. The prediction 
precision   is set to 610 .  The radial basis function neural 
network weight is shown in Table 3. 
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6.4. An Analysis of Human-Robot Motion Synchronization 

and Collaborator’s Interaction Force 

In order to verify that the intention recognition method 
based on radial basis function neural network proposed in 
this paper is more excellent in synchronization of man-robot 
motion, the experiment was conducted by impedance 
control method and the proposed method. The speed 
tracking curves of these two methods were drawn 
respectively, as shown in Figures 7-8. 

It can be seen from Figure 7 that the actual speed of robot is 
obviously slower than the expected speed during human-
rotor collaboration if the impedance control method is 
adopted. The inherent delay characteristics of impedance 
control restricts the synchronization of human and robot. 
The robot is always in the passive follow state. 
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of class 7, the change is obvious, the weighted mean 
descends rapidly; behind class 7, weighted mean is 
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stable and the change is slow. If k is 7, there is the 
turning point of weighted means of mean centroid 
distance of all class clusters. According to [1], the ac-
quired sample data should be classified into 7 classes, 
i.e. k=7. Red mark ※ in Figure 5 represents the class 
cluster center. In case of k=7, the marked position is 
regarded as the center of basis of radial basis function 
neural network. The obtained center positions and 
Gaussian function variances are shown in Table 2.

Class 
cluster

Mean center coordinates of class 
clusters

Gaussian 
function 

variances

1 -6.7376 8.4750 -9.8347 10.7798

2 14.9258 -84.8704 19.1362 7.5946

3 21.8041 26.2799 19.8990 11.2995

4 -21.1810 55.1060 -24.5560 7.9990

5 28.7029 -31.0898 28.2646 9.0735

6 -24.7955 -75.1356 -22.5454 9.4053

7 -34.2421 -15.5574 -34.4726 7.4068

Hidden layer 
sequence i Weight ωi

Hidden layer 
sequence i Weight ωi

1 14.7179 5 38.1925

2 11.0514 6 -21.5968

3 27.6283 7 -50.2440

4 -9.2611

Table 2
Mean center coordinates of class clusters and Gaussian 
function variances

The weight is determined by the gradient descent al-
gorithm. The learning speedα of gradient descent al-
gorithm is set to 0.1. The change of weight is shown 
in Figure 7. With the increase of iteration number, the 
weight from hidden layer to output layer gradually 
converges. The prediction precision ε  is set to 610 .−  
The radial basis function neural network weight is 
shown in Table 3.
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Figure 8 
Speed tracking curve of method based on radial basis 
function neural network
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It can be seen from Figure 8 that compared with impedance 
control method, the intention recognition method based on 
radial basis function neural network can eliminate the delay 
caused by impedance control method by predicting the 
collaborator’s intention on the basis of current human-rotor 
collaboration state (intention speed in Figure 8). The 
proposed method realizes the synchronization of human-
robot motion. 

In order to further explain the role of the proposed intention 
recognition method in reducing the collaborator’s 
interaction force and make the robot finish the task more 
easily, the experiment was conducted by impedance control 
method and the proposed method. During interaction, the 
collaborator tried to keep the consistence of end-speed and 
motion trajectory. The interaction force information of the 
collaborator was abstracted, as shown in Figure 9. 

It can be seen from Figure 9 that compared with the 
impedance control method, the intention recognition method 
based on radial basis function neural network can greatly 
reduce the collaborator’s force applied on the system and 
has obvious effect. In order to further explain that the 
proposed method can reduce the interaction force during the 
human-robot collaboration and improve the compliance of 
the robot, the fragile object (egg roll) was used to push the 
handle of experiment device for verification. The 
experimental scene is shown in Figure 10. The experiment 
result shows that the proposed method can ensure the 
successful human-robot collaboration without damage of the 
fragile object. 
 
 

Figure 9 
Curve of change of interaction force of method based on 
impedance control and radial basis function neural network 
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Figure 10 
Effectiveness verification experiment with fragile object 
 

 
 

7. Conclusion 
A machine learning based method (radial basis function 
neural network model) was adopted in this paper to 
recognize the collaborator’s intention during human-robot 
collaboration. Firstly, in order to acquire the practice data of 
neural network, the human-robot collaboration system with 
single degree of freedom was adopted. The sample data was 
acquired by impedance control method. Secondly, the neural 
network parameters were identified by offline mode and the 
radial basis function neural network model was built. Finally, 
the collaborator’s intention can be recognized by the online 
prediction mode. In order to explain the effectiveness of the 
machine learning method, the end-speed of robot, 
interaction force and other data during the human-robot 
collaboration system were analyzed and the proposed 
method and the impedance control method were compared 
and analyzed. The experiment result shows that the 
proposed method can accurately recognize the collaborator’s 
intention, improve the synchronization of human-robot 
collaboration motion, effectively reduce the collaborator’s 
force during interaction process, reduce the collaborator’s 
effort, make the human-robot collaboration more easy, 
improve the compliance of the robot, endow the certain 
human-robot collaboration ability to the robot, and finally 
improve the intelligence of the robot. 

Table 3
Weight from hidden layer to output layer

6.4. An Analysis of Human-Robot Motion 
Synchronization and Collaborator’s 
Interaction Force
In order to verify that the intention recognition method 
based on radial basis function neural network proposed 
in this paper is more excellent in synchronization of 
man-robot motion, the experiment was conducted by 
impedance control method and the proposed method. 
The speed tracking curves of these two methods were 
drawn respectively, as shown in Figures 7-8.

Figure 7
Speed tracking curve of method based on impedance control

Figure 8
Speed tracking curve of method based on radial basis function 
neural network
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It can be seen from Figure 8 that compared with impedance 
control method, the intention recognition method based on 
radial basis function neural network can eliminate the delay 
caused by impedance control method by predicting the 
collaborator’s intention on the basis of current human-rotor 
collaboration state (intention speed in Figure 8). The 
proposed method realizes the synchronization of human-
robot motion. 

In order to further explain the role of the proposed intention 
recognition method in reducing the collaborator’s 
interaction force and make the robot finish the task more 
easily, the experiment was conducted by impedance control 
method and the proposed method. During interaction, the 
collaborator tried to keep the consistence of end-speed and 
motion trajectory. The interaction force information of the 
collaborator was abstracted, as shown in Figure 9. 

It can be seen from Figure 9 that compared with the 
impedance control method, the intention recognition method 
based on radial basis function neural network can greatly 
reduce the collaborator’s force applied on the system and 
has obvious effect. In order to further explain that the 
proposed method can reduce the interaction force during the 
human-robot collaboration and improve the compliance of 
the robot, the fragile object (egg roll) was used to push the 
handle of experiment device for verification. The 
experimental scene is shown in Figure 10. The experiment 
result shows that the proposed method can ensure the 
successful human-robot collaboration without damage of the 
fragile object. 
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7. Conclusion 
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neural network model) was adopted in this paper to 
recognize the collaborator’s intention during human-robot 
collaboration. Firstly, in order to acquire the practice data of 
neural network, the human-robot collaboration system with 
single degree of freedom was adopted. The sample data was 
acquired by impedance control method. Secondly, the neural 
network parameters were identified by offline mode and the 
radial basis function neural network model was built. Finally, 
the collaborator’s intention can be recognized by the online 
prediction mode. In order to explain the effectiveness of the 
machine learning method, the end-speed of robot, 
interaction force and other data during the human-robot 
collaboration system were analyzed and the proposed 
method and the impedance control method were compared 
and analyzed. The experiment result shows that the 
proposed method can accurately recognize the collaborator’s 
intention, improve the synchronization of human-robot 
collaboration motion, effectively reduce the collaborator’s 
force during interaction process, reduce the collaborator’s 
effort, make the human-robot collaboration more easy, 
improve the compliance of the robot, endow the certain 
human-robot collaboration ability to the robot, and finally 
improve the intelligence of the robot. 

It can be seen from Figure 7 that the actual speed of 
robot is obviously slower than the expected speed 
during human-rotor collaboration if the impedance 
control method is adopted. The inherent delay char-
acteristics of impedance control restricts the syn-



645Information Technology and Control 2019/4/48

chronization of human and robot. The robot is always 
in the passive follow state.
It can be seen from Figure 8 that compared with im-
pedance control method, the intention recognition 
method based on radial basis function neural network 
can eliminate the delay caused by impedance control 
method by predicting the collaborator’s intention on 
the basis of current human-rotor collaboration state 
(intention speed in Figure 8). The proposed method 
realizes the synchronization of human-robot motion.
In order to further explain the role of the proposed in-
tention recognition method in reducing the collabo-
rator’s interaction force and make the robot finish the 
task more easily, the experiment was conducted by 
impedance control method and the proposed method. 
During interaction, the collaborator tried to keep the 
consistence of end-speed and motion trajectory. The 
interaction force information of the collaborator was 
abstracted, as shown in Figure 9.
It can be seen from Figure 9 that compared with the 
impedance control method, the intention recognition 

Figure 9
Curve of change of interaction force of method based on 
impedance control and radial basis function neural network
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It can be seen from Figure 8 that compared with impedance 
control method, the intention recognition method based on 
radial basis function neural network can eliminate the delay 
caused by impedance control method by predicting the 
collaborator’s intention on the basis of current human-rotor 
collaboration state (intention speed in Figure 8). The 
proposed method realizes the synchronization of human-
robot motion. 

In order to further explain the role of the proposed intention 
recognition method in reducing the collaborator’s 
interaction force and make the robot finish the task more 
easily, the experiment was conducted by impedance control 
method and the proposed method. During interaction, the 
collaborator tried to keep the consistence of end-speed and 
motion trajectory. The interaction force information of the 
collaborator was abstracted, as shown in Figure 9. 

It can be seen from Figure 9 that compared with the 
impedance control method, the intention recognition method 
based on radial basis function neural network can greatly 
reduce the collaborator’s force applied on the system and 
has obvious effect. In order to further explain that the 
proposed method can reduce the interaction force during the 
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result shows that the proposed method can ensure the 
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fragile object. 
 
 

Figure 9 
Curve of change of interaction force of method based on 
impedance control and radial basis function neural network 

0 1 2 3 4 5 6 7 8
-60

-40

-20

0

20

40

60

时间[s]

交
互
力

 f 
[N

]

 

 
自适 阻抗控制方法应

方法RBFNN
Impedance control method

RBFNN method

Time (s)  
Figure 10 
Effectiveness verification experiment with fragile object 
 

 
 

7. Conclusion 
A machine learning based method (radial basis function 
neural network model) was adopted in this paper to 
recognize the collaborator’s intention during human-robot 
collaboration. Firstly, in order to acquire the practice data of 
neural network, the human-robot collaboration system with 
single degree of freedom was adopted. The sample data was 
acquired by impedance control method. Secondly, the neural 
network parameters were identified by offline mode and the 
radial basis function neural network model was built. Finally, 
the collaborator’s intention can be recognized by the online 
prediction mode. In order to explain the effectiveness of the 
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interaction force and other data during the human-robot 
collaboration system were analyzed and the proposed 
method and the impedance control method were compared 
and analyzed. The experiment result shows that the 
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collaboration motion, effectively reduce the collaborator’s 
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fragile object.

7. Conclusion
A machine learning based method (radial basis func-
tion neural network model) was adopted in this paper 
to recognize the collaborator’s intention during hu-
man-robot collaboration. Firstly, in order to acquire 
the practice data of neural network, the human-robot 
collaboration system with single degree of freedom 
was adopted. The sample data was acquired by imped-
ance control method. Secondly, the neural network 
parameters were identified by offline mode and the 
radial basis function neural network model was built. 
Finally, the collaborator’s intention can be recognized 
by the online prediction mode. In order to explain the 
effectiveness of the machine learning method, the end-
speed of robot, interaction force and other data during 
the human-robot collaboration system were analyzed 
and the proposed method and the impedance control 
method were compared and analyzed. The experiment 
result shows that the proposed method can accurate-
ly recognize the collaborator’s intention, improve the 
synchronization of human-robot collaboration mo-
tion, effectively reduce the collaborator’s force during 
interaction process, reduce the collaborator’s effort, 
make the human-robot collaboration more easy, im-
prove the compliance of the robot, endow the certain 
human-robot collaboration ability to the robot, and fi-
nally improve the intelligence of the robot.
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