
249Information Technology and Control 2020/2/49

A Quantitative Approach to
Analyze Modifiability in Software
Architectural Design of Agile
Application Systems

ITC 2/49
Information Technology
and Control
Vol. 49 / No. 2 / 2020
pp. 249-259
DOI 10.5755/j01.itc.49.2.22893

A Quantitative Approach to Analyze Modifiability in
Software Architectural Design of Agile Application Systems

Received 2019/03/06 Accepted after revision 2020/01/08

 http://dx.doi.org/10.5755/j01.itc.49.2.22893

HOW TO CITE: Philip, M. M., Singhal, N., Ravi, R., Vijayakumar, B. A Quantitative Approach to Analyze Modifiability in Software
Architectural Design of Agile Application Systems. Information Technology and Control, 49(1), 249-259. https://doi.org/10.5755/j01.
itc.49.2.228933

Corresponding author: p20120003@dubai.bits-pilani.ac.in

Milu Mary Philip, Nishank Singhal, Raagashree Ravi, Vijayakumar B.
Department of Computer Science, Birla Institute of Technology and Science – Pilani,
Dubai Campus; P.O Box 345055, DIAC, Dubai, United Arab Emirates;
e-mails: p20120003@dubai.bits-pilani.ac.in; nishanksinghal20nov@gmail.com;
f20150277@dubai.bits-pilani.ac.in; vijay@dubai.bits-pilani.ac.in

The present-day software application systems require a high degree of agility during the development and op-
erational phases due to the advancements in software technologies and also because of the need to support the
variation points in software architecture. A single architectural style will not be adequate for the architectural
design of such application systems. This paper uses a composite architectural style involving three different ar-
chitectural styles, namely model view controller, pipes and filters and reflection architectural pattern. A metric
to evaluate the extent to which the architectural design is modifiable is defined and formulated. The number of
direct connections between the components and their modes of operation are the various factors that will de-
termine the extent to which the architectural design is modifiable. The model has been tested successfully for a
prototype document processing application system. The composite architectural design is quite generic and it
can be used for any real-time application system where the three modes of operation – data stream mode, user
interaction and dynamic invocation mode exist together.
KEYWORDS: Model View Controller, Modifiability, Pipes and Filters, Quality Attributes, Reflection.

mailto:obodovskiy58@gmail.com

Information Technology and Control 2020/2/49250

1. Introduction
The present-day software application systems are in-
creasingly driven by large-scale deployment of com-
ponents and their interrelationships. The software
architecture of an application system defines the
overall composition and formation of an application
system. It is described as a framework, representing
the main components and their connections [8]. It is
a baseline for the successful design and implementa-
tion of the application system. A robust and reliable
software architecture ensures that the software appli-
cation system will meet the essential functional and
non-functional requirements. Modifiability is one of
the essential non-functional attributes that an appli-
cation system should possess. It is defined as the po-
tential of a software application system to be improved
or reorganized to fit to the needs and requirements of
the customer. It molds the application system to ma-
ture to a better and complete product. The facility to
add, delete or modify the components, or change the
order of execution of the components are the variation
points that the architectural design should support.
This is considered as the main criteria to measure the
modifiability attribute [1]. These variations to the re-
quirements can be established at any of the stages of
the software development lifecycle [16].
This paper uses a composite architectural model for
handling data stream mode of operation, user inter-
activity and variation points at run time. The stream
mode of operation is fulfilled using the pipes and filters
architectural pattern; the interactivity is made possible
using the model view controller pattern and lastly the
reflection architectural pattern makes the application
system adaptable to the different variations. The com-
posite architectural model follows the pattern within a
pattern concept of blending the primitive patterns. The
P&F, MVC and reflection are the primitive patterns
that have been used together. The modifiability metric
has been defined and formulated, in order to evaluate
the architectural design. This metric provides an esti-
mate on the extent to which the architectural design is
modifiable. The major contributions of the work in this
paper are highlighted below:
1 A composite software architectural design is be-

ing used to provide architectural flexibility and
extendibility to comply with the dynamic require-
ments of the user community.

2 A metric to evaluate the architectural design for
the modifiability quality attribute is defined and
formulated.

3 The extent to which the architectural design is mod-
ifiable is assessed using the modifiability metric.

This paper is organized as follows- Section 2 covers
the existing literature on the different architectural
styles and the architectural evaluation techniques
and methods. It also highlights the contributions
of the current work. Section 3 discusses the generic
model for composite architectural design -involving
data stream, interactive and dynamic modes of opera-
tion of the application system. Section 4 provides de-
tails on the computation of modifiability metric that
can be used for the evaluation of the architectural
design. Section 5 discusses the document processing
system – the case study that is considered in this work.
The algorithm and the representation of the compos-
ite architectural style for the case study in this work is
also detailed in this section. The last section focuses
on experimental set up, test scenarios involving vari-
ous combinations of components and connectors and
the evaluation of the architectural style for the mod-
ifiability attribute. The benefits of the composite ar-
chitectural model are also highlighted.

2. Background
This section presents the existing literature on archi-
tectural patterns and the evaluation of quality attri-
bute – modifiability.
An application system provides support for user inter-
activity using a text or graphical based interface [19].
The functionality of the application system should
be separated from the interface. This makes it easy to
incorporate the changes in the interface, without af-
fecting the working of the system. The model view con-
troller (MVC) architectural pattern where the entire
system is structured into model, view and controller,
renders a solution for such application systems. The
model component includes the data and the different
functionalities of the system. The view acts as the user
interface, where the user enters his requirements and
the controller manages the user input [16].

251Information Technology and Control 2020/2/49

The pipes and filters (P&F) architectural pattern fa-
cilitates the processing of input data in streams [21].
Here, the system is arranged in a sequence of process-
ing stages. These stages are implemented using sep-
arate filter components. The filter components are
created independently by the developer community
[19]. This will ultimately speed up the time and ef-
fort required to build up the application system. Each
component acts as a filter, taking the input from the
previous stage, processing it and emitting the output
to the next stage in a pipeline mode. The workflow
management system [18] shows how P&F pattern can
be implemented to serve this purpose. A layered soft-
ware architectural design was developed for the de-
velopment of a flexible and smart organic rankine cy-
cle (ORC) [20]. This design allows coupling through
IoT into smart systems based on the functionalities
provided by the reflective operator and the cognitive
operator present in the architectural design of the ap-
plication system.
The reflection architectural pattern enables dynamic
changes to the structure and behavior of the appli-
cation systems [5]. These changes occur at runtime,
when the application system is in operation. In prac-
tical systems, it is not always possible to foresee the
runtime variations, especially those variations relat-
ing to the choice of components and their order of ex-
ecution. In such scenarios, the architectural design of
the application system is realized using – meta level,
base level and meta object protocol. The meta level
consists of the description of the objects relating to
an application system, whereas the base level mainly
focuses on the application logic. The presence of large
collection of components, independent programs and
application specific libraries help in building applica-
tion systems with less development efforts. However,
they pose great challenge with respect to choosing the
correct combination of components as well as their
sequence of operations. It is very much essential to
evaluate the architecture for assessing the extent to
which the quality attribute modifiability is support-
ed. Software Architectural evaluation speculates the
quality of a software product from a higher level de-
sign description [7]. The evaluation of the software
architecture provides credible mechanisms to calcu-
late the various features of the quality attributes and
to distinguish the likely risks in the software archi-
tectural design [15]. The software architecture evalu-

ation determines if the current design satisfies all the
requirements right from the analysis phase.
In the present age of agile software development, the
requirements of user applications vary considerably
in any of the phases of the software development
lifecycle. Hence, the software architecture for such
application systems should provide support for mod-
ifiability. The present-day software firms exist in a
world in which variability in requirements is the ma-
jor concern [12]. This makes it essential for the com-
panies to deploy software application systems that
are adaptable to ever-changing demands of the user
community. A substantial portion of software devel-
opment lifecycle costs deals with the development of
the application system to meet the changing require-
ments. Hence, modifiability acts as a strong quality
requirement for software architectural designs [4].
Architectural Tradeoff Analysis Method (ATAM), is
one such method that uses scenarios for architectural
evaluation. The scenario based evaluation methods
are widely used for assessing the architecture before
the development of the application system. It evalu-
ates the architecture and also gives information on
how well the quality objectives collaborate with each
other [10]. It determines the outcome of architectur-
al decisions with respect to the quality requirements.
ATAM considers the evaluation of multiple quality at-
tributes [22]. Software Architecture Analysis Method
(SAAM) is yet another generic evaluation technique
that evaluates the software architecture with respect
to any quality attribute. The stakeholders play a very
important role in such approaches as the scenarios
are being developed by the stakeholders. The SAAM
technique is used to explain and examine the software
architecture of an application system. The steps in
SAAM are as follows – designate a functional parti-
tioning, link the functional partitioning to the struc-
tural decomposition of the architecture, selection of
quality attributes to evaluate, scenarios to test the
quality attributes and finally to estimate the degree to
which the architecture provides the support [9].
Architecture Level Modifiability Analysis (ALMA)
deals with change scenarios to analyze the modifi-
ability of an application system [3]. The stakeholders
present various scenarios that can emerge at a later
stage in the software development lifecycle of an ap-
plication system. The architectural design should be
made adaptable to these change scenarios. The effect

Information Technology and Control 2020/2/49252

of these scenarios are then determined. The compo-
nents that should be modified for each of these sce-
narios have to be examined using architectural views.
The aspects that these viewpoints cover, are a neces-
sity for the application systems to be modifiable [12].
This evaluation technique finds its application in
business information systems.
The above mentioned literature gives an overview of
the different architectural patterns, their uses and the
architectural evaluation techniques. The work in [17]
clearly describes an architectural design where in-
teractivity and data stream mode of operations coex-
ist. The variation points were not handled in such an
architectural design. The Conference Management
System [14] uses the blackboard and reflection archi-
tectural patterns in combination. The major contri-
butions of the work described in this paper is being
highlighted below:
1 The metrics for the evaluation of the composite

software architectural design are developed.
2 The level of support for modifiability in the archi-

tecture is assessed using the modifiability metric.
The earlier works in the area of software architec-
tural evaluation does not directly provide a metric
for the modifiability attribute, though the coupling
and complexity has been detailed.

3 The various factors that will determine the extent
to which the architectural design is modifiable has
also been pointed out.

3. Architectural Design Using
Composite Patterns
The application systems in the present-day world
with large number of component libraries, filter pro-
grams are highly complicated, that they cannot be
designed using a single architectural style. Thus, a
composite architectural style is being used in this
work, with the three primitive patterns following the
pattern within a pattern concept of blending the archi-
tectural styles. This section describes a generic mod-
el of the composite architectural design as shown in
Fig. 1. It comprises of the architectural patterns MVC,
P&F and reflection. The individual components that
are used for the composite architectural design are
discussed below.

3.1. Interactive Mode
The interactive mode of operation is realized using
the MVC pattern. The view provides an interface to
allow the user to enter the input details pertaining to
the number of processing modules, their names, order
of processing, and the mode of operation – parallel or
sequential. For each and every application system, the
filters for processing the input data are selected by the
user. These processing filters are used to process the
input data. It also consists of a facility where the user
can enter any new filter according to the requirement.
The controller handles and manages the user input
and selects the required methods and procedures
that have to be invoked for the processing of the input
data. The model component consists of the coreData
that has the input data and the coreFunction which
has the different methods and procedures for the pro-
cessing of the input data. The sequence of steps that
are required for this subsystem are shown below:
1 The user chooses the required processing filters

and their sequence of operation from the list of
options provided in the interface. The new filter
modules that are required by the user can also be
entered in the user interface.

2 The controller takes the input details from the in-
terface and invokes the corresponding methods
present in the coreFunction of the model compo-
nent.

3 The data that have to be processed are present in
the coreData of the model component, and this will
be modified.

3.2. Processing Data in Pipeline
The functionalities provided by the application sys-
tem are present in the coreFunction of the model
component and they operate in pipeline mode. This
is made possible using the pipes and filters (P&F)
architectural pattern. Thus, the model component is
designed using P&F architectural design. This is the
first instance, where the pattern within a pattern con-
cept of blending the architectural styles is being real-
ized. The processing modules in the P&F pattern are
filters and the link between the filters is established
using the pipes. The input data in the model compo-
nent are taken up by the pipe and provided to the first
filter for their processing. The sequence of operation
of the filters can vary according to the entry made by

253Information Technology and Control 2020/2/49

the user in the interface. For each and every change in
the sequence of operation of the filters, there will be
a corresponding change in the architectural design,
thereby creating the flexibility in the design.

3.3. Dynamicity
Dynamic software product lines provide various ways
to deal with the changes that occur at run time [6].
These changes occur at runtime, when the applica-
tion system is in operation. In practical systems, it is
not always possible to foresee the runtime variations,
especially those variations relating to the choice of
components and their order of execution. The soft-
ware architectural design of such application systems
is developed using the reflection architectural pattern
[5]. The reflection architectural pattern enables dy-
namic changes to the structure and behavior of the
application systems. It divides the entire software
system into the meta-level, which contains the vari-
ous properties of the system, and the base level, that
consists of the entire logic of the application [11]. An-
dersson et.al [2], showed how a systematic approach
using the reflection architectural pattern can be used
for filling the gap between architectural design and its
implementation by reifying the architectural features
as meta-objects that are manipulated at execution
time. The two causally connected layers of the reflec-
tion architectural pattern have been detailed below:
1 Base Level – The different services that are sup-

ported by the application system will be displayed
in the user interface (view component) and form
the base level. The base level will not be affected
by any of the user requirement changes. Each com-
ponent is implemented using third party filter pro-
grams and hence, the execution logic of the filters
cannot be modified at any point of time. Any new
filter can be introduced in this level.

2 Meta Level – The base level can be modified at run-
time with the help of the meta-objects present in
this level. The processing components and their
order of processing are the variation points in this
application. Based on the user/client requirement,
the different processing components, which are
the instances of the component ‘Filter’ can be add-
ed or deleted and the connectivity between them
(which is established using the pipes, that are the
instances of ’Pipe’) can also be modified and thus,
they are visualized as the meta level.

The meta-level makes the necessary changes in the
different features present in the base level using an in-
terface called as the meta object protocol (MOP). For
any change in the filter components as well as in their
order of processing (which is specified in the user in-
terface), the MOP takes up the updated information
and makes the required changes in the meta-objects
accordingly. With each change in the meta-object, the
required impact is reflected in the base level. Thus,
the running architecture of the system is dynamically
manipulated by the meta-level through the meta ob-
ject protocol.

3.4. Combinational Architectural Model
The view presents an interface, where the user can
enter the input details. The controller accepts the
user entries and passes the input details to the model
component. The model component encapsulates the
core data of any application system and its associat-
ed core functions. The model corresponds to the meta
level of the reflection architectural pattern. The meta
level mainly consists of the information of the various
fields, methods and function calls used in the applica-
tion system. The information from the meta level is
taken to the base level through the meta object pro-
tocol (MOP). Based on this input, the required base
level filter objects are created. The base level consists
of the individual filters and the pipes that are support-
ed by the application system. This level provides the
necessary operations pertaining to the application
logic. Each operation is realized using filters. The fil-
ters can be arranged in any particular order as per the
requirement of the application system. The link be-
tween the filter components is established using the
pipes. The processing of the input data is carried out
in stream mode of operation. The required interface
and provided interface for the different components
are realized using the UML2.0 notation.
The variation points (inclusion, deletion of process-
ing modules and their order of processing) are the
modifications that can happen to the application sys-
tem. These changes will be known at run time, when
the user enters the input in the user interface. The
corresponding base objects are thus created only at
run-time. The binding between base object and meta
object occurs at run-time, and hence this follows the
run-time reflection. At compilation time, the individ-
ual filter objects or base objects will not be created,

Information Technology and Control 2020/2/49254

as the system does not know what entry the user will
make during the execution. The individual filters or
the base objects will not be able to make any chang-
es to itself. This architectural design adapts itself to
variation points and its variants. The design should
be evaluated for the modifiability quality attribute,
which is described in the subsequent section.

4. Computation of Modifiability Metric
The software architectural evaluation mainly deals
with the assessment of the architecture, to determine
whether it meets the quality requirements [22]. The
software architectural design described in the pre-
vious section, mainly handles the variation points in
the architecture, expressed in terms of components
and their ordering. Hence, modifiability acts as an im-
portant quality attribute to realize the variation points,
thereby providing flexibility in the development of ap-
plication systems that evolve over a period of time.
The architectural factors like coupling, cohesion and
complexity are used to measure the modifiability in
the architectural design. Coupling can be described
as the dependency between the different filters that
make up the application system. It is one of the fun-
damental properties of the software architectural
design. The interdependencies between the modules
makes it difficult to understand and modify an appli-
cation system. It also gives rise to ripple effects which
causes errors and changes from a given module to one
or more dependent modules. Cohesion is defined as
the extent to which the modules in a filter collabo-

Figure 1
Generic Model of the Combinational Architecture

rate with each other to serve the functionality of the
particular filter. In the present work, third party fil-
ter programs are being used to serve the application
system. It is considered that the operation of these fil-
ter programs is not modified. Therefore, as cohesion
is the property of each of the filter, this factor is not
considered in this work, to measure the modifiability.
Here, adding new filters, deleting existing ones and
changing the sequence of operation of the filters are
the variation points, to be considered to measure the
modifiability attribute. The presence of large number
of components with high coupling and low cohesion
is an indicator of highly complex architectural design.
Such a design is not desirable for evolving systems,
since it provides limited support for modifiability.
The different filters are connected to each other,
which increases the coupling. With every increase in
the number of filters, and also with every link between
the filters, the complexity of the application system
also increases. Modifiability is calculated with re-
spect to the coupling as well as complexity value. The
following parameters are considered in the computa-
tion of modifiability metric:
N - the number of filters in the application system
considered
p – the number of direct links between filters
q- the number of indirect links between filters
k – an integer constant indicating a set of filters hav-
ing a relation
The coupling can be defined as the ratio of the number
of direct links to the total number of links possible for
the filters:

Coupling=p/(p+q). (1)

Cyclomatic Complexity [13] is defined as

CC=E-N+2. (2)

where, E is the number of edges (link between filters),
N is the number of nodes (filters)

p+q>=k. (3)

Substituting Eq. (3) in Eq. (1) gives,

Coupling<=p/k. (4)

The risk assessment threshold value [13] for a simple
module without any risk has a complexity value in the

255Information Technology and Control 2020/2/49

range of 1-10. To calculate the cyclomatic complexity,
the number of edges ‘E’ corresponds to the number of
direct links between the filters. Hence,

CC=p-N+2. (5)

Substituting Eq. (4) in Eq. (2) gives,

Coupling * k –N +2 < = 10
Coupling = (8+N) / k.

(6)

An architectural design can support a higher level
of modifiability for any evolving application system,
when the coupling factor is low between the filters.
As the coupling between the filters increases, the
chances of making any changes to the filters become
more complex. Thus, it can be deduced that,

Modifiability ∞ (1 / Coupling)
Modifiability=M*(1/Coupling),

(7)

where M is a proportionality constant and is assumed
to be 1 in this study.
The coupling factor is expressed in a scale of 0 to 1 [7]. A
coupling value of 0 means that there are no dependency
between the filters in the architectural design, whereas
a value of 1 refers to a maximum level of coupling be-
tween the filters. A coupling value of 0.5 can be consid-
ered as an acceptable level of coupling. When coupling
=0, the modifiability will be too high and hence this can
be considered as the best architecture with respect to
the modifiability attribute. When coupling = 0.5, and
when the proportionality constant M is 1,
Modifiability = 1/ 0.5 = 2.
Thus, the modifiability metric can be tabulated as
shown in Table 1.

5. Case Study: Document Processing
System
As a case study, the document processing application
system has been considered. The variation points are
introduced in this architecture in one or more of the
following ways – adding new filters, deleting the ex-
isting ones and changing the processing sequence of
filters. The document processing application system
reads a collection of input documents in a continuous
stream mode, applies appropriate filter programs in a
given order and finally transforms them into an out-
put collection. The filter programs considered here
include pdf2word, Search and word2pdf. The software
architectural design detailed in the subsequent sec-
tion gives more insight into how the variation points
in architectural design are handled by the application
system.

5.1. Representation of Combinational
Architectural Design for the Case Study
The architectural design for the case study described
in the previous section is being detailed here. The ap-
plication system starts its working with the interac-
tivity. The interactivity is designed using the model
view controller architectural pattern. The view com-
ponent requires the following details from the user:

Number of filters – 3
Names of filters – pdf2word, search, word2pdf
Order of Processing– pdf2word, search, word2pdf
Mode of Operation – Sequential

These input details are provided to the controller.
The controller then selects the required methods pd-
f2word(), search() and word2pdf(). These methods as
well as the input documents that are to be processed
are present in the model or the meta level.
Here, the application system is examined about its
properties, its fields and methods and then makes the
changes depending on what has been found out. The
properties of the application system are realized us-
ing its input data, as well as the functionalities pro-
vided by it. The pdf2word(), search() and word2pdf()
are invoked in this component. Whenever the data are
updated or modified, the controller takes up the up-
dated information from the model and passes it back
to the view, so that the user can view it as required.

Table 1
Modifiability Metric

Coupling
Factor

Modifiability
Threshold

Architectural
Evaluation

[0] Too high Excellent

(0-0.5) >2 Good

[0.5] 2 Highly Acceptable

(0.5-1) 1<modifiability<2 Acceptable

[1] 1 Not Acceptable

Information Technology and Control 2020/2/49256

The base level consists of the application logic- which
implies that the processing of the input documents is
taken place here. The function calls from the model/
meta level are taken up by the MOP. Finally, the input
data is processed in the base level. The processing of
the input data in the base level is carried out in stream
mode of operation. The individual processing mod-
ules are called as filters. The connectivity between
the filters is established using the pipes. The final pro-
cessed output can then be given to the view compo-
nent, using which the end user can view it. Each of the
components in the architectural design and the corre-
sponding required and provided interfaces have been
detailed in Table 2. This corresponds to the generic
model of combinational architectural style in Fig. 1.

Table 2
Representation of Combinational Architectural Design for
Document Processing System

Table 2
Representation of Combinational Architectural Design
for Document Processing System

5.2 Algorithm:
composite_Arch_Design
This section proposes a generic algorithm for the
combinational architectural design described earlier.

1. Input: a collection of ‘n’ input elements
2. Output: collection of processed input elements.
3. Procedure:
3.1 Read the required user definable details from
 the user interface.
Action:
3.1.1 The user enters the number of filters, the filter

names as well as the required order of
processing of the filters and their mode of
operation.

3.1.2 If any new filter has to be added, the user
enters the filter name in the space provided
and go to step 3.2

3.1.3 The submit button is then clicked.

3.2 Insertion of a new filter
Action:
3.2.1 If there is any new filter that has to be

added, check whether the class-file or
the executable of the particular filter is
provided by the user.

3.2.2 If it is not provided, throw error
message as facility not available.

3.3 Invoke the appropriate processing filters at
runtime to process the input elements.

Action:

For every object obj,

3.3.1 Create the class object.

Class c = obj.getClass();

3.3.2 Using the class object from 3.3.1,get the
constructors of the specific class.

Constructor cs = c.getConstructors();

3.4 Provide an external view of processed
elements through the user interface.

The above algorithm has been successfully
implemented for the document processing and
analysis system.
6. Results and Discussion
The algorithm composite_Arch_Design has been
successfully implemented for a document
processing system. The experimental setup
included JAVA under UBUNTU 14.04 OS. The
main menu in the user interface has the provision
to include the appropriate document processing
filters. In the current work, ConvertPdf2Word,
ConvertWord2Pdf and Search for a particular
keyword in the input file are the filter programs
that are being used. The user has the option to
select the desired filters, their processing
sequence and mode of operation. The input
documents collection is comprised of files of type
PDF, with a total size of 100 MB. The overall
execution time for processing this document
collection, with the 3 filters in sequential mode of
operation was around 21.2 seconds. The time
taken by each individual filter solely depends on
the number of input documents and the size of the
input files considered for a single run.
The modifiability threshold value is then
calculated for the following scenario. This is a
case of sequential mode of operation:
ConvertPdf2Word------Search-------
ConvertWord2Pdf
Here,
Number of Filters (N) = 3

5.2. Algorithm: composite_Arch_Design

This section proposes a generic algorithm for the
combinational architectural design described earlier.

1. Input: a collection of ‘n’ input elements
2. Output: collection of processed input ele-

ments.
3. Procedure:
3.1 Read the required user definable details from

the user interface.

Action:
3.1.1 The user enters the number of filters, the

filter names as well as the required order of
processing of the filters and their mode of op-
eration.

3.1.2 If any new filter has to be added, the user en-
ters the filter name in the space provided and
go to step 3.2

3.1.3 The submit button is then clicked.
3.2 Insertion of a new filter

Action:
3.2.1 If there is any new filter that has to be added,

check whether the class-file or the execut-
able of the particular filter is provided by the
user.

3.2.2 If it is not provided, throw error message as
facility not available.

3.3 Invoke the appropriate processing filters at
runtime to process the input elements.

Action:
For every object obj,
3.3.1 Create the class object.

Class c = obj.getClass();
3.3.2 Using the class object from 3.3.1,get the con-

structors of the specific class.
Constructor cs = c.getConstructors();

3.4 Provide an external view of processed ele-
ments through the user interface.

The above algorithm has been successfully imple-
mented for the document processing and analysis
system.

257Information Technology and Control 2020/2/49

6. Results and Discussion
The algorithm composite_Arch_Design has been suc-
cessfully implemented for a document processing
system. The experimental setup included JAVA un-
der UBUNTU 14.04 OS. The main menu in the user
interface has the provision to include the appropri-
ate document processing filters. In the current work,
ConvertPdf2Word, ConvertWord2Pdf and Search for a
particular keyword in the input file are the filter pro-
grams that are being used. The user has the option to
select the desired filters, their processing sequence
and mode of operation. The input documents collec-
tion is comprised of files of type PDF, with a total size
of 100 MB. The overall execution time for processing
this document collection, with the 3 filters in sequen-
tial mode of operation was around 21.2 seconds. The
time taken by each individual filter solely depends on
the number of input documents and the size of the in-
put files considered for a single run.
The modifiability threshold value is then calculated
for the following scenario. This is a case of sequential
mode of operation:

ConvertPdf2Word----Search----ConvertWord2Pdf
Here,
Number of Filters (N) = 3
Number of Direct Connections (p) = 2
Number of Indirect Links Possible (q) = 1
As per Eq. (1),
Coupling = 2/(2+1) = 2/3 = 0.66.
According to Eq. (7),
Modifiability = M * (1/ Coupling).
M is a proportionality constant that is assumed to
be 1.
Thus, Modifiability = 3 / 2 = 1.5.

According to Table 1 in Section 4 described above, a
value of 1.5 for modifiability threshold refers to an ac-
ceptable architectural design in terms of modifiability.

6.1. Modifiability and the Number of Direct
Connections Between the Filters
If N is the number of filters taken into consideration,
and p is the number of direct links between the filters,
then,

Case 1: p > (N-1) - there are too many interdependen-
cies between the filters, which means coupling would
be high. As there exist an inverse relationship be-
tween the coupling and modifiability, the modifiabili-
ty will be very low. This implies that the architectural
design is not very good, with respect to modifiability.
Case 2: p = (N-1) - This will be the case of moderate
modifiability, as the coupling factor will be in the ac-
ceptable range of 0.5 in such scenarios. Hence, mod-
ifiability will have a value of 2. This is in the highly
acceptable range as per Table 1 shown in the previous
section.
Case 3: p < (N-1) - This refers to a scenario where all
of the filters supported by the application systems are
not interconnected. This means that the coupling fac-
tor would be very low. This is an example of an ideal
architectural design for supporting the modifiability
quality attribute.

6.2. Modifiability and the Different Modes of
Operation of Filters

Both sequential as well as parallel modes of operation
are supported by the architectural design. The se-
quential mode of operation is the case where one filter
will complete its processing of the input data and then
passes the processed data to the next filter. In the case
of parallel connections between the filters, the execu-
tion of those filters connected in parallel, start at the
same time.
For the scenario shown in Fig. 2, there are 6 filters
that are to be considered for the processing of the ap-
plication system. The typical sequential and paral-
lel modes of operation are shown separately. Here,
F1 – F6 are filter modules, M is taken as the number of
parallel connections. When M = 1, it implies that the
processing of the modules should be sequential and that
all the filters are directly connected. For M = 2, it implies
that there will be two filters that should be executed at
the same time. In Fig. 2, when M = 2, the filters F1 and
F3 should start their execution together. The number of
links with no direct connections are the ones between
(F1 and F5), (F1 and F6) and so on. It is observed that
as the number of rows (value of M) increases, the cou-
pling will be less and hence there will be an increase
in modifiability. In this case, there will be no depen-

Information Technology and Control 2020/2/49258

dency between F1 and F3 and also between F1 and F4.
Therefore, it is easy to make changes in this scenario.

Figure 2
Scenario for Different Modes of Operation for the case of
6 filters

Figure 3
Relationship between Modifiability Attribute, Coupling
Factor and Number of Parallel Connections between filters

Fig. 3 shows the relationship between the number of
parallel connections and the modifiability. The in-
crease in the modifiability with the increase in the
number of rows can be clearly observed. A similar
relationship exists between modifiability and the par-
allel mode of operation between the filters, even if the
number of filters N increases.

7. Conclusion
The software architectural design described in this
paper, can be considered for any evolving applica-
tion system. It uses a composite architectural style to
design application systems in which three different
modes of operation coexist - user interactivity, dyna-
mism and stream mode of operations. Flexibility and
adaptability are introduced to the application system,
as the architectural design can handle the variation
points leading to addition, deletion and changing the
order of processing of the components.
It is highly essential to evaluate the architectural
design before the development of the application
system, in order to save the maintenance efforts and
costs. The composite architectural design is evalu-
ated for the modifiability quality attribute. A lower
coupling factor indicates higher modifiability oppor-
tunities. Thus, the number of direct links between the
filter, has an impact on the modifiability value. As the
number of connections between the filter increases,
it is observed that the chances of making the changes
to the variation points becomes complex, which im-
plies that the architecture does not support modifi-
ability. The modifiability attribute is evaluated using
the metric formulated in this work. The minimum
threshold value for the architectural design to sup-
port modifiability fall in the range of 1-2. An analysis
has also been performed on the effect of parallel con-
nections between the filters on the modifiability at-
tribute. It can be concluded that with every increase
in the number of parallel connections, the coupling
between the filters will be very low, which ultimately
increases the modifiability scope.
The model used in this work, will significantly help
the software architect in developing flexible software
architectural design to support varying user require-
ments. Every architectural design can now be evalu-
ated for the modifiability attribute using the modifi-
ability metric computed in this work, and thus make
the application system open to the ever-changing
needs and demands of the user community.

259Information Technology and Control 2020/2/49

References
1. Altoyan, N., Perry, D, E. Towards a Well Formed Software

Architecture Analysis. ACM European Conference on
Software Architecture: Companion Proceedings, 2017,
173-179. https://doi.org/10.1145/3129790.3129813

2. Andersson, J., De Lemos, R., Malek, S., Weyns, D. Re-
flecting on Self-Adaptive Software Systems. IEEE/
ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, 2009, 38-47. https://doi.
org/10.1007/978-3-642-02161-9_2

3. Bengtsson, P., Lassing, N., Bosch, J., & van Vliet, H. Ar-
chitecture- Level Modifiability Analysis (ALMA). Jo-
urnal of Systems and Software, 2004, 69(1-2), 129-147.
https://doi.org/10.1016/S0164-1212(03)00080-3

4. Breivold, H., Crnkovic, I., Larsson, M. A Systematic Re-
view of Software Architecture Evolution Research. In-
formation and Software Technology, 54(1), 2012, 16-40.
https://doi.org/10.1016/j.infsof.2011.06.002

5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,
P. Pattern Oriented Software Architecture, Wiley India
Pvt Ltd, New Delhi, 2010.

6. Coplien, J, O. Reflections on Reflection. In 3rd Annual
Conference on Systems, Programming and Applicati-
ons: Software for Humanity, 2012, 7-10. https://doi.
org/10.1145/2384716.2384721

7. Dragomir, A., Lichter, H., Dohmen, J., Chen, H. Run-ti-
me Monitoring based Evaluation and Communicati-
on Integrity Validation of Software Architectures. In
Software Engineering Conference (APSEC) 21st Asia
Pacific, 2014, 191-198. https://doi.org/10.1109/AP-
SEC.2014.38

8. Galster, M., Eberlein, A., Moussavi, M. Systematic
Selection of Software Architecture Styles. IET Soft-
ware, 4(5), 2010, 349-360. https://doi.org/10.1049/iet-
sen.2009.0004

9. Kazman, R., Bass, L., Webb, M., Abowd, G. SAAM: A Me-
thod for analyzing the Properties of Software Architec-
tures. In Proceedings of 16th International Conference
on Software Engineering, 1994, 81-90.

10. Kazman, R., Klein, M., Clements, P. ATAM Method for
Architecture Evaluation. Carnegie-Mellon Univ, 2000.
https://doi.org/10.21236/ADA382629

11. Krupitzer, C., Roth, F, M., VanSyckel, S., Schiele, G., Becker,
C. A Survey on Engineering Approached for Self Adaptive
Systems. Pervasive and Mobile Computing, 17, 2015, 184-
206. https://doi.org/10.1016/j.pmcj.2014.09.009

12. Lassing, N., Rijsenbrij, D., Van Vliet, H. Viewpoints on
Modifiability. International Journal of Software Engi-

neering and Knowledge Engineering, 11(4), 2001, 453-
478. https://doi.org/10.1142/S0218194001000591

13. Mc Cabe, T. A Complexity Measure. IEEE Transactions
on Software Engineering, 1976, 308-320. https://doi.
org/10.1109/TSE.1976.233837

14. Molesini, A, F. Alessandro, C. Garcia, C. von Flach Gar-
cia, V. B. Thais. On the Quantitative Analysis of Ar-
chitectural Stability in Aspectual Decompositions. In
IEEE Conference on Software Architecture, 2008, 29-
38. https://doi.org/10.1109/WICSA.2008.26

15. Patidar, A., Suman, U. A Survey on Software Architec-
ture Evaluation Methods. In 2nd International IEEE
Conference Computing for Sustainable Global Deve-
lopment (INDIACom), 2015, 967-972.

16. Philip, M. M., Vijayakumar, B. Software Architectural
Design for Image Retrieval System Involving Data Stre-
am and User Interactivity. Proceedings of the World
Congress on Engineering and Computer Science, 2014.

17. Philip, M., Vijayakumar, B. Design and Implementati-
on of Combinational Software Architecture for Batch
Image Processing System. International Journal of
Software Engineering and its Applications, 11(6), 2017,
79-88. https://doi.org/10.14257/ijseia.2017.11.6.07

18. Scheibler, T., Frank, L., Dieter, R. Executing Pipes and Fil-
ters with Workflows. 5th International IEEE Conference
on Internet and Web Applications and Services (ICIW),
2010, 143-148. https://doi.org/10.1109/ICIW.2010.29

19. Tisato, F., Savigni, A., Cazzola, W. Architectural Reflec-
tion Realizing Software Architectures via Reflective
Activities. Engineering Distributed Objects, 2001, 102-
115. https://doi.org/10.1007/3-540-45254-0_10

20. Wolff, C., Knirr, M., Priebe, Klaus-Peter., Schulz, P.,
Strumberg, J. A Layered Software Architecture for a
Flexible and Smart Organic Rankine Cycle (ORC) Tur-
bine - Solutions and Case Study. Information Tech-
nology and Control, 2018, 47 (2), 349-362. https://doi.
org/10.5755/j01.itc.47.2.19681

21. Wulf, C., Wiechmann, C, C., Hasselbring, W. Increa-
sing the Throughput of Pipe and Filter Architectures
by Integrating the Task Farm Parallelization Pattern.
ACM SIGSOFT Symposium on Component Based Soft-
ware Engineering, 2016, 13-22. https://doi.org/10.1109/
CBSE.2016.21

22. Yang, C., Liang, P., Avgeriou, P. A Systematic Mapping Stu-
dy on the Combination of Software Architecture and Agi-
le Development. Journal of Systems and Software, 2016,
111, 157-184. https://doi.org/10.1016/j.jss.2015.09.028

https://doi.org/10.1145/3129790.3129813
https://doi.org/10.1007/978-3-642-02161-9_2
https://doi.org/10.1007/978-3-642-02161-9_2
https://doi.org/10.1016/S0164-1212(03)00080-3
https://doi.org/10.1016/j.infsof.2011.06.002
https://doi.org/10.1145/2384716.2384721
https://doi.org/10.1145/2384716.2384721
https://doi.org/10.1109/APSEC.2014.38
https://doi.org/10.1109/APSEC.2014.38
https://doi.org/10.1049/iet-sen.2009.0004
https://doi.org/10.1049/iet-sen.2009.0004
https://doi.org/10.21236/ADA382629
https://doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1142/S0218194001000591
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/WICSA.2008.26
https://doi.org/10.14257/ijseia.2017.11.6.07
https://doi.org/10.1109/ICIW.2010.29
https://doi.org/10.1007/3-540-45254-0_10
https://doi.org/10.5755/j01.itc.47.2.19681
https://doi.org/10.5755/j01.itc.47.2.19681
https://doi.org/10.1109/CBSE.2016.21
https://doi.org/10.1109/CBSE.2016.21
https://doi.org/10.1016/j.jss.2015.09.028

