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Since outliers are the major factors that affect accuracy in data science, many outlier detection approaches 
have been proposed for effectively identifying the implicit outliers from static datasets, thereby improving the 
reliability of the data. In recent years, data streams have been the main form of data, and the data elements in 
a data stream are not always of equal importance. However, the existing outlier detection approaches do not 
consider the weight conditions; hence, these methods are not suitable for processing weighted data streams. 
In addition, the traditional pattern-based outlier detection approaches incur a high time cost in the outlier 
detection phase. Aiming at overcoming these problems, this paper proposes a two-phase pattern-based outli-
er detection approach, namely, WMFP-Outlier, for effectively detecting the implicit outliers from a weighted 
data stream, in which the maximal frequent patterns are used instead of the frequent patterns to accelerate 
the process of outlier detection. In the process of maximal frequent-pattern mining, the anti-monotonicity 
property and MFP-array structure are used to accelerate the mining operation. In the process of outlier detec-
tion, three deviation indices are designed for measuring the degree of abnormality of each transaction, and the 
transactions with the highest degrees of abnormality are judged as outliers. Last, several experimental studies 
are conducted on a synthetic dataset to evaluate the performance of the proposed WMFP-Outlier approach. 
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The results demonstrate that the accuracy of the WMFP-Outlier approach is higher compared to the existing 
pattern-based outlier detection approaches, and the time cost of the outlier detection phase of WMFP-Outlier 
is lower than those of the other four compared pattern-based outlier detection approaches.
KEYWORDS:  outlier detection, weighted maximal frequent-pattern mining, weighted data stream, deviation 
indices, data mining.

1. Introduction
Because data streams [5] can reflect the variational 
trends of monitored objects in real time, they have 
been widely used in practice; for example, agricultural 
sensors are used to monitor the growth status of 
greenhouse plants, and weather sensors are used to 
monitor changes in temperature, humidity, and wind. 
From data streams, users can accurately assess the 
current state of the monitored objects to facilitate 
decision-making; thus, data streams are critical in 
manufacturing, agriculture and industry. However, 
outliers [2, 19] are often generated along with data 
streams and adversely affect the accuracy of the 
collected data, which further affects the accuracy of 
data-based decision-making.
In the past ten years, many outlier detection 
approaches have been proposed for effectively iden-
tifying implicit outliers. These approaches can 
be divided into distance-based outlier detection 
approaches [1, 10, 12], density-based outlier detection 
approaches [11, 13, 16] and pattern-based outlier 
detection approaches [3, 4, 8, 9, 17]. For distance-based 
and density-based outlier detection approaches, 
because the distance of each data element from the 
selected data must be calculated, outlier detection is 
inefficient for large datasets. In addition, distance-
based outlier detection approaches and density-
based outlier detection approaches only consider the 
degree of abnormality of each transaction and not the 
frequency of occurrence of each pattern; hence, the 
outliers that are detected via these methods cannot 
coincide with the outliers that are defined by Hawkins 
[7]. For pattern-based outlier detection approaches, 
the frequency of occurrence of each pattern is also 
considered a major factor that affects the degree of 
abnormality of the transactions. Because the outliers 
that are detected via pattern-based outlier detection 
approaches are closer to the real outliers, pattern-
based outlier detection approaches have been studied 
extensively in recent years. In addition, the frequent-
pattern-based outlier detection approaches [8, 17], 

maximal frequent-pattern-based outlier detection 
approaches [3, 4] and infrequent-pattern-based 
outlier detection approaches [9] gradually form a 
complete system. Pattern-based outlier detection 
approaches can be utilized in the following three main 
steps: (1) mining the frequent patterns or infrequent 
patterns in the datasets; (2) designing the deviation 
indices for each transaction; and (3) identifying the 
implicit outliers in the datasets.
In previous work [1, 6, 9], each data element was 
considered equally important in pattern-based out-
lier detection approaches; however, this is not al-
ways established in practice. For example, the prices 
of apples and oranges in a shopping cart are not the 
same. Therefore, we must consider the price infor-
mation (also called the weight) to make the results 
of outlier detection conform with the application 
scenario. However, to the best of our knowledge, no 
pattern-based outlier detection approach has been 
proposed until now for detecting the implicit outli-
ers from the data stream by considering the weight 
conditions. In addition, the scale of the frequent pat-
terns is very large for a small min_sup value (minimal 
support threshold), which substantially increases the 
time cost of the outlier detection phase.
Based on the problems that are discussed above, we 
propose a weighted maximal frequent-pattern-based 
outlier detection approach for detecting the implicit 
outliers in a weighted data stream. The major contri-
butions of this paper can be summarized as follows:
1 We design a WFP-Tree structure for storing de-

tailed pattern information and weight information 
and suggest using a two-array structure, namely, 
a WFP-array, to store the support value of each 
“weighted frequent” 2-pattern.

2 We use the weighted maximal frequent patterns to 
detect the implicit outliers rather than the weight-
ed frequent patterns, to decrease the time cost of 
the outlier detection phase.
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3 We design three deviation indices, namely, the 
weighted maximal frequent pattern deviation in-
dex (WMFPDI), the weighted infrequent 1-pattern 
deviation index (WIPDI) and the final transaction 
deviation index (FTDI), for measuring the degree 
of abnormality of the transactions in the sliding 
window.

4 Based on the mined weighted maximal frequent 
patterns and the defined deviation indices, we pro-
pose a Weighted Maximal Frequent Pattern-based 
Outlier detection approach, namely, WMFP-Out-
lier, for effectively detecting the implicit outliers 
from a weighted data stream.

5 We conduct extensive experiments on synthetic 
datasets to evaluate the validity and accuracy of 
the proposed WMFP-Outlier approach.

The remainder of this paper is organized as follows: 
Section 2 reviews related work on outlier detection 
approaches. Section 3 introduces preliminaries that 
are related to this paper and presents the weighted 
maximal frequent-pattern-based outlier detection 
framework, the weighted maximal frequent-pattern 
mining approach and the outlier detection approach. 
In Section 4, the empirical studies and experimental 
analysis are discussed. In Section 5, we present the 
conclusions of the study and discuss directions for 
future work.

2. Related Work
In the past two decades, the research on outlier 
detection methods was mainly focused on the fol-
lowing types of approaches: distance-based outlier 
detection approaches, density-based outlier detec-
tion approaches and pattern-based outlier detection 
approaches.
For distance-based outlier detection, Shaikh and 
Kitagawa [12] proposed an efficient cell-based 
outlier detection approach for quickly identifying 
the implicit outliers based on the Gaussian distri-
bution. Then, they proposed an approximate cell-
based outlier detection approach that uses a bound-
ed Gaussian distribution to further improve the 
efficiency of outlier detection. Aiming at overcoming 
the problems that are encountered with unsupervised 
outlier detection methods in high-dimensional 

space, Radovanović et al. [10] put forward a unified 
viewpoint of reverse nearest-neighbor counts and 
explored the relationship between Hubness and data 
sparsity. Based on this analysis, they proposed an 
efficient AntiHub approach for conducting unsuper-
vised outlier detection. Aiming at reducing the high 
time cost of the traditional distance-based outlier 
detection approaches, Angiulli et al. [1] proposed 
families of distance-based parallel and distributed 
outlier detection methods, namely, BruteForce and 
SolvingSet, for detecting the implicit outliers using 
GPU.
For density-based outlier detection, Salehi et al. [11] 
proposed an efficient memory incremental local 
outlier detection method, namely, MiLOF, which 
could identify the outliers from a data stream with 
limited memory usage. In addition, they proposed 
an extended version, namely, MiLOF_F, for reducing 
the scale of the summaries in the memory. Zhang et 
al. [16] proposed an adaptive kernel density-based 
outlier detection method, namely, Adaptive-KD, for 
detecting implicit outliers in nonlinear systems, in 
which the kernel width parameter could be adaptive-
ly set according to the average distance, thereby im-
proving the discrimination ability of the outlierness 
measure. Tang and He [13] introduced the relative 
density-based outlier score (RDOS) for measuring 
the local outlierness of an object and proposed an ef-
ficient outlier detection approach that was based on 
local kernel density estimation (KDE). In local KDE, 
the k nearest neighbors, reverse nearest neighbors 
and shared nearest neighbors were used to improve 
the outlier detection accuracy.
For pattern-based outlier detection, the reasons why 
various subspaces caused abnormalities in the over-
all spaces are considered; thus, the detected outliers 
can well satisfy the definition of outliers. He et al. [8] 
proposed a frequent-pattern-based method, namely, 
FindFPOF, for identifying the implicit outliers from 
static datasets, in which the ratio of the support 
value of the contained frequent patterns to the total 
number of mined frequent patterns was used as the 
final outlier criterion. However, this simple judging 
criterion can be changed to further improve the 
outlier detection performance. In addition, the time 
cost of the outlier detection phase of the FindFPOF 
method was relatively high because the scale of the 
frequent patterns was very large. Aiming at overcom-
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ing the sub-optimal efficiency of outlier detection 
via the FindFPOF method, an improved frequent-
pattern-based outlier detection approach, name-
ly, LFP [17], was proposed, which used the ratio 
of the longest length among the frequent patterns 
that were contained in the transaction to the length 
of transaction as the outlier criterion and yielded 
satisfactory results on multiple datasets. With the 
objective of further reducing the time cost in the 
outlier detection phase of the FindFPOF method, the 
OODFP method [4] and IM_Sunday method [3] were 
proposed for identifying the implicit outliers, where 
the maximal frequent patterns were used as the basis 
for outlier detection to reduce the time cost. To make 
the identified outliers more consistent with the defi-
nition of outliers, Hemalatha et al. [9] proposed a 
minimal infrequent-pattern-based method, namely, 
MIFPOF, for detecting the outliers in a data stream. 
In the outlier detection phase, they provided three 
abnormality factors for more accurately determining 
the deviation degrees of the detected transactions: the 
transaction weighting factor (TWF), the minimal in-
frequent deviation factor (MIPDF) and the minimal 
infrequent-pattern-based outlier factor (MIFPOF).
However, to the best of our knowledge, no maximal 
frequent-pattern-based outlier detection approaches 
have been proposed for identifying the outliers from a 
weighted data stream until now.

3. The Weighted Maximal Frequent-
Pattern-Based Outlier Detection 
Approach (WMFP-Outlier)
This section presents related preliminaries and defi-
nitions and introduces the overall framework of the 
proposed method. Then, the weighted maximal fre-
quent-pattern mining approach and outlier detection 
approach for a weighted data stream are introduced 
in detail using an example.

3.1. Preliminaries and Definitions
Pattern P={p1, p2,…, pn} is a set of items. Each transac-
tion T={P1, P2,…, Pn} consists of a set of patterns and 
each transaction is identified by a unique id, namely, 
TID. Data stream DS=[T1, T2,…, Tn) consists of contin-
uous transactions. For patterns Pa={p1, p2,…,pm} and 

Pb={p1, p2,…,pk}, if m<k, Pa is called a sub-pattern of Pb 
and Pb is called a super-pattern of Pa; Pb is also called 
a k-pattern. In recent research, the sliding window 
(SW) model has been used to effectively process the 
data stream. The SW model can only process the most 
recent transactions, that is, the sliding window must 
move back immediately when a new transaction en-
ters the SW. The size of the sliding window is denot-
ed as |SW|. To mine the weighted frequent patterns, 
a user-defined minimal weighted support threshold, 
namely, min_wsup, is used to determine whether the 
mined patterns are weighted frequent.
Then, an example of a weighted data stream, which 
is described in Table 1, is used to accurately interpret 
the definitions, where the value of min_wsup is 2.0 
and |SW| is 6.

Table 1
An example of a weighted data stream

TID Transaction TID Transaction

T1 {B, D, E} T2 {A, B, C, D, F}

T3 {A, B, E, F} T4 {B, D, E, F}

T5 {A, B, C, D} T6 {A, B, D, E}

… …… … ……

Pattern Weight Pattern Weight

A 0.7 B 0.8

C 0.9 D 0.6

E 0.4 F 0.5

Definition 1.  Support: The sum of the count values of 
pattern {X} in the current sliding window is denoted 
as support(X), which is defined as
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|M| denotes the number of 1-patterns {pi} in pattern 
{X}.
Example 2. The weight of pattern {A} is 
weight(A)=0.7/1=0.7 and the weight of pattern {AB} is 
weight(AB)=(0.7+0.8)/2=0.75.
Definition 3. Weighted support (wsup): The weight-
ed support of pattern {X} in the current sliding win-
dow is denoted as wsup(X) and is defined as

( ) ( ) * ( )wsup X weight X support X= .

Example 3. The weighted support of pattern {A} 
is wsup(A)=weight(A)*support(A)=0.7*4=2.8 and 
the weighted support of pattern {AB} is wsup(AB)=-
weight(AB)*support(AB)=0.75*4=3.0.
Definition 4. Weighted Frequent Pattern (WFP): 
If the weighted support of pattern {X} is not less than 
the predefined min_wsup, i.e., wsup(X)≥min_wsup, 
pattern {X} is a weighted frequent pattern.
Example 4. The weighted support of pattern {A} is 
wsup(A)=2.8>2.0; thus, pattern {A} is a weighted 
frequent pattern.
Definition 5. Weighted inFrequent Pattern (WiFP): 
If the weighted support of pattern {X} is less than 
the predefined min_wsup, i.e., wsup(X)< min_wsup, 
pattern {X} is a weighted infrequent pattern.
Example 5. The weighted support of pattern {C} is 
wsup(C)=weight(C)*support(C)=0.9*2=1.8<2.0; thus, 
pattern {C} is a weighted infrequent pattern.
Definition 6. Weighted Maximal Frequent Pattern 
(WMFP): If the weighted support of pattern {X} is 
not less than the predefined min_wsup and no super-
pattern of {X} is weighted frequent, pattern {X} is a 
weighted maximal frequent pattern.
Example 6. The weighted support of pattern {ABD} 
is wsup(ABD)=2.1>2.0 and the weighted support of its 
super-patterns is less than 2.0; thus, pattern {ABD} is 
a weighted maximal frequent pattern.
The weighted support of pattern {E} is wsup(E)= 
4*0.4=1.6<2.0; thus, pattern {E} is a weighted 
infrequent pattern. However, the weighted support 
of pattern {BE} is wsup(BE)=4*0.6=2.4>2.0; hence, 
pattern {BE} is a weighted frequent pattern. There-
fore, the well-known anti-monotonicity property [3] 
that used to reduce the scale of potential extensible 
patterns is not applicable in the weighted frequent-
pattern mining process.

3.2. The Overall Framework of the  
WMFP-Outlier Approach

According to the existing pattern-based outlier 
detection approaches (such as FindFPOF, LFP 
and OODFP), the complete detection process can 
be divided into the following two phases: (1) the 
pattern mining stage and (2) the outlier detection 
stage. In contrast to the previous approaches, the 
mining objects in the pattern mining stage of the 
WMFP-Outlier approach are the weighted maximal 
frequent patterns; thus, the overall framework of 
WMFP-Outlier is divided into the weighted maximal 
frequent-pattern mining phase and the WMFP-based 
outlier detection phase.
In the weighted maximal frequent-pattern mining 
phase, detailed valid data information on each 
transaction is stored into the WFP-Tree structure 
and the maximal weight and pruning strategy are 
used prior to the extension operation to increase 
the efficiency of the mining process. In the outlier 
detection stage, several deviation indices are defined 
for measuring the degrees of abnormality of the 
transactions in the sliding window based on the 
mined WMFPs. Then, the transactions are sorted in 
ascending order of the calculated deviation degree 
and the k transactions that have the lowest deviation 
degrees are identified as outliers. After detecting the 
transaction in the current sliding window, the sliding 
window is moved backwards to identify the outliers in 
the new incoming weighted data stream.

3.3. The Weighted Maximal Frequent-Pattern 
Mining Approach

In this subsection, we introduce the weighted max-
imal frequent-pattern mining approach, namely, 
WMFPM-WDS, which is the basis of outlier detec-
tion. The main steps of WMFPM-WDS are to use a 
WFP-Tree structure to store the detailed information 
of the new incoming weighted data stream and to use 
the maximal weight and pruning strategy to reduce 
the potential scale of the extended patterns.

3.3.1. The Main Strategy of WMFPM-WDS
In the data stream environment, the related 
operations must be processed in a short time. Because 
the FP-Growth method is more efficient in data 
mining, it is used as the main strategy in this paper. 
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In contrast to traditional data streams, the super-
patterns of an infrequent pattern have a non-zero 
probability of being frequent in the weighted data 
stream (pattern {BE} is frequent but pattern {E} is 
infrequent in this example). Thus, the well-known an-
ti-monotonicity property [3, 9] that is used to increase 
the mining efficiency is not suitable for weighted data 
streams. To overcome this limitation, the primary 
task of weighted maximal frequent-pattern mining 
is to design an efficient strategy for enabling the an-
ti-monotonicity property to be used also in weighted 
data streams, which is highly important for reducing 
the number of meaningless extension operations. In 
the process of weighted frequent-pattern mining, the 
concept of maximal weight [14] is used to ensure that 
the anti-monotonicity property can continue to be 
applied. However, in previous studies, the maximal 
weight was only used in the process of extending the 
frequent 1-patterns to 2-patterns. If it is used in each 
extension process, the efficiency of pattern mining 
can be further improved. In addition, if the maximal 
weight provides a much tighter bound during the 
mining process, the efficiency of weighted maximal 
frequent-pattern mining will be further improved. 
Based on these two assumptions, we propose an 
efficient weighted maximal frequent-pattern mining 
approach, namely, WMFPM-WDS, for effectively 
mining the WMFPs from a weighted data stream.
Definition 7. Maximal weight (maxweight): For 
a set of weight values (weight={weight1, weight2, …, 
weightn}) that belong to the weighted data stream, the 
maximal weight value of the valid patterns is called 
the maximal weight.
Example 7. In the example that is presented in Table 
1, the weight values of the patterns are {weight(A)=0.7, 
weight(B)=0.8, weight(C)=0.9, weight(D)=0.6, 
weight(E)=0.4, weight(F)=0.5}; thus, in this example, 
the maximal weight is maxweight=0.9.
Definition 8. Maximal weighted support (mwsup): 
For a pattern {X}, the maximal weighted support of {X} 
is the product of the support value and the maxweight 
value; it is defined as

( ) ( ) ( )mwsup X = maxweight X * support X .

Example 8. In the example that is presented in Table 
1, the maximal weighted support of pattern {A} is 
mwsup(A)=0.9*4=3.6.

Definition 9. Safe weighted infrequent pattern 
(SWiFP): For a pattern {X}, if the maximal weighted 
support of {X} is less than the predefined min_wsup, 
i.e., mwsup(X)<min_wsup, pattern {X} is a safe 
weighted infrequent pattern.
Example 9. In the example that is presented in Table 
1, the maximal weighted support of pattern {C} is 
mwsup(C)=0.9*2=1.8<2.0; thus, pattern {C} is a safe 
weighted infrequent pattern.
Theorem 1. Anti-monotonicity property: No su-
per-pattern of SWiFP can be weighted frequent.
Proof. Suppose pattern {Xk} is a safe weighted 
infrequent k-pattern and pattern {Xk+1} is the 
super-pattern of {Xk}. Since {Xk+1} is a super-
pattern of {Xk}, support(Xk+1)≤support(Xk) and 
maxweight(Xk+1)≤maxweight(Xk). Because {Xk} is a 
safe weighted infrequent pattern, mwsup(Xk)=maxwe
ight(Xk)*support(Xk)<min_wsup. It follows that
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That  is,  if  the maximal weighted support value 
of pattern  {Xk}  is  less  than min_wsup,  {Xk}  is 
not a weighted infrequent pattern. Therefore, 
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weighted  support  will  not  cause  the  loss  of 
WFPs. 
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(WiFPL))  to  reduce  the  scale  of  the 
constructed  WFP‐Tree  structure.  When  the 
data  stream  is  scanned  for  the  second  time, 
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Figure  1(a). When  scanning  transaction  T2, 
patterns {B}, {D}, {A} and {F} are inserted into 
the second branch of the WFP‐Tree, as shown 
in Figure 1(b). The other four branches of the 

Therefore, the super-pattern of the safe weighted 
infrequent pattern is also weighted infrequent and 
this property is established.
Lemma 1. The use of maximal weighted support will 
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studies,  the maximal weight was  only used  in  the 
process of extending  the  frequent 1‐patterns  to 2‐
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provides a much tighter bound during the mining 
process,  the  efficiency  of  weighted  maximal 
frequent‐pattern mining will be further improved. 
Based  on  these  two  assumptions, we propose  an 
efficient  weighted  maximal  frequent‐pattern 
mining  approach,  namely,  WMFPM‐WDS,  for 
effectively  mining  the WMFPs  from  a  weighted 
data stream. 
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set  of  weight  values  (weight={weight1,  weight2, …, 
weightn}) that belong to the weighted data stream, 
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Example  7.  In  the  example  that  is  presented  in 
Table  1,  the  weight  values  of  the  patterns  are 
{weight(A)=0.7,  weight(B)=0.8,  weight(C)=0.9, 
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That  is,  if  the maximal weighted support value 
of pattern  {Xk}  is  less  than min_wsup,  {Xk}  is 
not a weighted infrequent pattern. Therefore, 
pruning  the  patterns  based  on  maximal 
weighted  support  will  not  cause  the  loss  of 
WFPs. 

When  the  data  stream  enters  the  sliding 
window,  the  data  are  scanned  for  the  first 
time to adjust the insertion order (decreasing 
support)  and  discard  the  safe  weighted 
infrequent 1‐patterns (they are saved into the 
Weighted  inFrequent  Pattern  Library 
(WiFPL))  to  reduce  the  scale  of  the 
constructed  WFP‐Tree  structure.  When  the 
data  stream  is  scanned  for  the  second  time, 
the  “weighted  frequent”  1‐patterns  (the  1‐
patterns  for  which  the  maximal  weighted 
support  is not  less  than min_wsup, which are 
saved  into  Weighted  Frequent  Pattern 
Library  (WFPL))  are  inserted  into  the WFP‐
Tree. 

The  process  is  described  as  follows:  The 
maximal  weight  value  of  the  patterns  is  0.9. 
Since mwsup(C)=0.9*2=1.8<2.0, they should be 
discarded  and  saved  into WiFPL.  Then,  the 
maximal  weight  is  changed  to  0.8.  For  the 
maximal weighted frequent patterns, namely, 
{A,  B,  D,  E,  F},  support(A)=4,  support(B)=6, 
support(D)=5,  support(E)=4,  and  support(F)=3; 
thus,  the  insertion  order  is  adjusted  to 
B→D→A→E→F. When  scanning  transaction 
T1, patterns {B}, {D} and {E} are  inserted  into 
the first branch of the WFP‐Tree, as shown in 
Figure  1(a). When  scanning  transaction  T2, 
patterns {B}, {D}, {A} and {F} are inserted into 
the second branch of the WFP‐Tree, as shown 
in Figure 1(b). The other four branches of the 

That is, if the maximal weighted support value of 
pattern {Xk} is less than min_wsup, {Xk} is not a 
weighted infrequent pattern. Therefore, pruning the 
patterns based on maximal weighted support will not 
cause the loss of WFPs.
When the data stream enters the sliding window, 
the data are scanned for the first time to adjust the 
insertion order (decreasing support) and discard 
the safe weighted infrequent 1-patterns (they are 
saved into the Weighted inFrequent Pattern Library 
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(WiFPL)) to reduce the scale of the constructed WFP-
Tree structure. When the data stream is scanned for 
the second time, the “weighted frequent” 1-patterns 
(the 1-patterns for which the maximal weighted 
support is not less than min_wsup, which are saved 
into Weighted Frequent Pattern Library (WFPL)) 
are inserted into the WFP-Tree.
The process is described as follows: The max-
imal weight value of the patterns is 0.9. Since 
mwsup(C)=0.9*2=1.8<2.0, they should be discarded 
and saved into WiFPL. Then, the maximal weight 
is changed to 0.8. For the maximal weighted fre-
quent patterns, namely, {A, B, D, E, F}, support(A)=4, 
support(B)=6, support(D)=5, support(E)=4, and 
support(F)=3; thus, the insertion order is adjusted 
to B→D→A→E→F. When scanning transaction T1, 
patterns {B}, {D} and {E} are inserted into the first 
branch of the WFP-Tree, as shown in Figure 1(a). 
When scanning transaction T2, patterns {B}, {D}, {A} 
and {F} are inserted into the second branch of the 
WFP-Tree, as shown in Figure 1(b). The other four 
branches of the WFP-Tree are constructed as dis-
cussed above and the final WFP-Tree structure is il-
lustrated in Figure 1(c).
After the patterns of each transaction have been 
stored in the constructed WFP-Tree structure, the 
pattern mining operation is conducted to effectively 
mine the WMFPs from the weighted data stream. In 
the process of maximal weighted frequent-pattern 
mining, the general strategy of the FP-Growth 
approaches is to construct the conditional FP-Tree for 
recursively mining the frequent patterns. However, 
the construction of the conditional FP-Tree is time-
consuming because this operation requires the 
global FP-Tree to be scanned several times to obtain 
the pattern’s support value. Inspired by [14], we can 
construct the global WFP-array structure for stor-
ing the support value for each 2-pattern to improve 
the mining efficiency, where the patterns that do 
not need to be extended are easy to identify from the 
WFP-array. The WFP-array structure consists of an 
(n-1)*(n-1) two-dimensional matrix, where n is the 
number of “weighted frequent” 1-patterns. The pat-
terns in the WFP-array are stored in decreasing or-
der of support, namely, the rows of the WFP-array are 
the first (n-1) “weighted frequent” 1-patterns and the 
columns of the WFP-array are the last (n-1) “weighted 
frequent” 1-patterns. To illustrate the WFP-array 

structure, we use the example that is presented in 
Table 1 to demonstrate the process of constructing 
the WFP-array structure.

Figure 1
The construction process of the WFP-Tree structure
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Example 10. The “weighted frequent” 1-patterns 
are {B}, {D}, {A}, {E} and {F}; therefore, the patterns 
in the rows of the WFP-array structure are {B}, {D}, 
{A} and {E} and the patterns in the columns of the 
WFP-array structure are {D}, {A}, {E} and {F}. In 
the WFP-array structure, the specified number 
represents the support value of each 2-pattern. For 
pattern {F}, according to scans of the WFP-Tree, 
the number of occurrences of {FE} is 2; thus, the 
corresponding position is specified as 2. The final 
constructed global WFP-array structure is 
illustrated in Figure 2. 

Based on the global WFP-array structure, the 
support value of each 2-pattern can be easily 
determined. However, not all these 2-patterns 
must be further extended; thus, the next operation 
is to determine which 2-patterns do not need to be 
extended. According to Definition 9, if the 2-
patterns are SWiFPs, then the “pattern extension” 
is meaningless. A SWiFP is judged according to 

the magnitude between the maximal weighted 
support value of the pattern and the 
predefined min_wsup; the maximal weighted 
support value of the pattern is calculated as 
the product of the support value and the 
maximal weight value. Thus, if we obtain the 
maximal weight value and the min_wsup value, 
we can calculate the critical support (which is 
denoted as cs) value easily. If the real support 
value of the pattern (in the global WFP-array) 
is less than the cs value, this pattern need not 
be further extended. 
Figure 2 
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Example 11. For the patterns that are shown 
in Figure 2, the two largest valid weight 
values are 0.8 and 0.7; hence, the maximal 
weight value is 0.75 (=(0.8+0.7)/2) and the cs 
value of the 2-patterns is 2.67 (=2.0/0.75). 
According to a search of the constructed 
global WFP-array, the support values of 
patterns {DF}, {AF}, {EF} and {AE} are less 
than 2.67; thus, they are not “weighted 
frequent” 2-patterns and should not be 
included in the subsequent extension 
process. 

Then, the conditional WFP-array structure is 
constructed for mining the “weighted 
frequent” 3-patterns. If the number of 
“weighted frequent” 2-patterns that are 
prefixed by pattern {X} is not less than 2, the 
conditional WFP-array of pattern {X} must be 
constructed. For the 3-patterns, the three 
largest valid weight values are used to 
calculate the maximal weight value and the cs 
value is calculated to determine whether the 
3-patterns must be further extended. When 
the number of 3-patterns that are prefixed by 
pattern {XY} is not less than 2, the conditional 
WFP-array of pattern {XY} must be 
constructed for mining the longer “weighted 
frequent” patterns. These operations are 
performed recursively to mine the “weighted 
frequent” patterns until they cannot be 
further extended. 

When the “weighted frequent” patterns are 
mined, the real weighted support values of the 
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Example 11. For the patterns that are shown 
in Figure 2, the two largest valid weight 
values are 0.8 and 0.7; hence, the maximal 
weight value is 0.75 (=(0.8+0.7)/2) and the cs 
value of the 2-patterns is 2.67 (=2.0/0.75). 
According to a search of the constructed 
global WFP-array, the support values of 
patterns {DF}, {AF}, {EF} and {AE} are less 
than 2.67; thus, they are not “weighted 
frequent” 2-patterns and should not be 
included in the subsequent extension 
process. 

Then, the conditional WFP-array structure is 
constructed for mining the “weighted 
frequent” 3-patterns. If the number of 
“weighted frequent” 2-patterns that are 
prefixed by pattern {X} is not less than 2, the 
conditional WFP-array of pattern {X} must be 
constructed. For the 3-patterns, the three 
largest valid weight values are used to 
calculate the maximal weight value and the cs 
value is calculated to determine whether the 
3-patterns must be further extended. When 
the number of 3-patterns that are prefixed by 
pattern {XY} is not less than 2, the conditional 
WFP-array of pattern {XY} must be 
constructed for mining the longer “weighted 
frequent” patterns. These operations are 
performed recursively to mine the “weighted 
frequent” patterns until they cannot be 
further extended. 

When the “weighted frequent” patterns are 
mined, the real weighted support values of the 

Based on the global WFP-array structure, the support 
value of each 2-pattern can be easily determined. 
However, not all these 2-patterns must be further 
extended; thus, the next operation is to determine 
which 2-patterns do not need to be extended. Ac-
cording to Definition 9, if the 2-patterns are SWiFPs, 
then the “pattern extension” is meaningless. A SWiFP 
is judged according to the magnitude between the 
maximal weighted support value of the pattern and the 
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predefined min_wsup; the maximal weighted support 
value of the pattern is calculated as the product of the 
support value and the maximal weight value. Thus, if 
we obtain the maximal weight value and the min_wsup 
value, we can calculate the critical support (which is 
denoted as cs) value easily. If the real support value of 
the pattern (in the global WFP-array) is less than the 
cs value, this pattern need not be further extended.
Example 11.  For the patterns that are shown in Figure 
2, the two largest valid weight values are 0.8 and 0.7; 
hence, the maximal weight value is 0.75 (=(0.8+0.7)/2) 
and the cs value of the 2-patterns is 2.67 (=2.0/0.75). 
According to a search of the constructed global WFP-
array, the support values of patterns {DF}, {AF}, 
{EF} and {AE} are less than 2.67; thus, they are not 
“weighted frequent” 2-patterns and should not be 
included in the subsequent extension process.
Then, the conditional WFP-array structure is 
constructed for mining the “weighted frequent” 
3-patterns. If the number of “weighted frequent” 
2-patterns that are prefixed by pattern {X} is not 
less than 2, the conditional WFP-array of pattern 
{X} must be constructed. For the 3-patterns, the 
three largest valid weight values are used to calcu-
late the maximal weight value and the cs value is 
calculated to determine whether the 3-patterns must 
be further extended. When the number of 3-patterns 
that are prefixed by pattern {XY} is not less than 2, 
the conditional WFP-array of pattern {XY} must 
be constructed for mining the longer “weighted 
frequent” patterns. These operations are performed 
recursively to mine the “weighted frequent” patterns 
until they cannot be further extended.
When the “weighted frequent” patterns are mined, 
the real weighted support values of the mined longest 
“weighted frequent” patterns (suppose this pattern is 
a k-pattern) having different prefixes are calculated 
to identify the true weighted maximal frequent 
patterns. If the real weighted support value of the 
k-pattern is less than min_wsup, the real weighted 
support values of the (k-1)-patterns are calculated 
and compared with min_wsup. These operations are 
performed recursively if the real weighted support 
value is less than the min_wsup. Otherwise, the 
k-pattern is the weighted maximal frequent pattern. 
The mined weighted maximal frequent patterns are 
stored in the Weighted Maximal Frequent Pattern 
Library (WMFPL). Last, it is checked whether the 

mined weighted maximal frequent patterns are global 
weighted maximal frequent and the global weighted 
maximal frequent patterns are mined as the final 
WMFPs. Detailed pseudo-code for the WMFPM-
WDS algorithm is presented as Algorithm 1.

Algorithm 1: WMFPM-WDS

Input: Weighted data stream, min_wsup
Output: WMFPs

01. WFPL=Φ, WiFPL=Φ
02. scan the weighted data stream
03. search for maxweight value
04. foreach 1-pattern {pi} do
05.    if mwsup(pi)<min_wsup then
06.       {pi}→WiPL
07.    else
08.       {pi}→WFPL
09.    end if
10. end for
11. construct the WFP-Tree structure for the 1-patterns 
in WFPL
12. construct the global WFP-array structure
13. k=2
14. foreach “weighted frequent” k-pattern {p1,…,pk} do
15.    if number of “weighted frequent” k-patterns that 
are prefixed by (p1,…,pk)≥2 then
16.       construct the conditional WFP-array
17.       k++
18.       go to 15
19.    else
20.       calculate mwsup(p1,…,pk)
21.       if mwsup(p1,…,pk)≥min_wsup then
22.          {p1,…,pk}→WFPL
23.       end if
24.    end if
25. end for
26. for m-pattern {p1,…,pm} in WFPL do
27.    if wsup(p1,…,pm)<min_wsup then
28.       m--
29.       go to 27
30.    else
31.       {p1,…,pm}→WMFPL
32.    end if
33. end for
34. for the patterns in WMFPL do
35.    delete the sub-patterns
36. end for
37. return WMFPs

3.3.2. An Example of WMFPM-WDS Approach
In this subsection, we use the example that is 
presented in Table 1 to explain the WMFPM-WDS 
approach in detail; the min_wsup value is set to 2.0.
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Step  1. Calculate the maximal weighted support 
value for each 1-pattern to identify the safe weighted 
infrequent 1-patterns. In this example, the maximal 
weight is 0.9 (pattern {C}) initially, which is used to 
calculate the maximal weighted support value.
For 1-pattern {C}, mwsup(C)=0.9*2=1.8<2.0; thus, it is 
a safe weighted infrequent 1-pattern and it should be 
saved into WiFPL and excluded from the subsequent 
extension process to avoid incurring non-productive 
time cost. Then, the maximal weight is changed to 0.8 
(pattern {B}).
For 1-pattern {B}, mwsup(B)=0.9*6=5.4>2.0; hence, it 
is a “weighted frequent” 1-pattern.
For 1-pattern {A}, mwsup(A)=0.9*4=3.6>2.0; hence, it 
is a “weighted frequent” 1-pattern.
For 1-pattern {D}, mwsup(D)=0.9*5=4.5>2.0; hence, it 
is a “weighted frequent” 1-pattern.
For 1-pattern {E}, mwsup(E)=0.9*4=3.6>2.0; hence, it 
is a “weighted frequent” 1-pattern.
For 1-pattern {F}, mwsup(F)=0.9*3=2.7>2.0; hence, it 
is a “weighted frequent” 1-pattern.
Step  2. Insert the “weighted frequent” 1-patterns into 
the WFP-Tree using decreasing support values; the 
process is illustrated in detail in Figure 1.
Step  3. Construct the global WFP-array structure for 
storing the support value of the “weighted frequent” 
2-patterns; the result is presented in detail in Figure 2.
Step  4. Search for the two largest valid weight values 
and calculate the cs value for excluding the invalid 
patterns. The result is presented in detail in Example 11.
Step  5.   Construct the conditional WFP-array 
structure for mining the longer “weighted frequent” 
patterns. (1) For prefix {F}, the valid “weighted 
frequent” 2-pattern is only {BF}; thus, it is not 
necessary to construct the conditional WFP-array 
for pattern {F}. Therefore, the “weighted frequent” 
pattern that is prefixed by pattern {F} is {BF}. (2) For 
prefix {E}, the valid “weighted frequent” 2-patterns 
are {BE} and {DE} and it can be further extended into 
3-pattern {BDE}. For pattern {BDE}, support(BDE)=3 
and cs is 2.86 (=2.0/0.7); hence, it is a valid “weighted 
frequent” 3-pattern. Therefore, the “weighted 
frequent” pattern that is prefixed by pattern {E} 
is {BDE}. (3) For prefix {A}, the valid “weighted 
frequent” 2-patterns are {BA} and {DA} and it can be 
further extended into 3-pattern {BDA}. For pattern 

{BDA}, support(BDA)=3 and cs is 2.86 (=2.0/0.7); 
hence, it is a valid “weighted frequent” 3-pattern. 
Therefore, the “weighted frequent” pattern that is 
prefixed by pattern {A} is {BDA}. (4) For prefix {D}, 
the valid “weighted frequent” 2-pattern is only {BD}; 
thus, it is not necessary to construct the conditional 
WFP-array for pattern {D}. Therefore, the “weighted 
frequent” pattern that is prefixed by pattern {D} is 
{BD}.
Step  6.   Search for the true weighted maximal 
frequent patterns. (1) For prefix {F}, the “weighted 
frequent” pattern is {BF} and wsup(BF)=0.65*3=1.95 
<2.0; hence, it is not a weighted frequent pattern. 
Then, sub-pattern {F} is used to determine whether 
it is weighted frequent. Since wsup(F)=0.5*3=1.5 
<2.0, it is also not a weighted frequent pattern. (2) 
For prefix {E}, the “weighted frequent” pattern is 
{BDE} and wsup(BDE)=0.6*3=1.8<2.0; hence, it is 
not a weighted frequent pattern. Then, sub-patterns 
{BE} and {DE} are used to determine whether it is 
weighted frequent. Since wsup(BE)=0.7*4=2.8>2.0 
and wsup(DE)=0.5*3=1.5< 2.0, the weighted maximal 
frequent pattern that is prefixed by pattern {E} is 
{BE}. (3) For prefix {A}, the “weighted frequent” 
pattern is {BDA} and wsup(BDA)=0.7*3=2.1>2.0; 
hence, it is a weighted frequent pattern. There-
fore, the weighted maximal frequent pattern that 
is prefixed by pattern {A} is {BDA}. (4) For prefix 
{D}, the “weighted frequent” pattern is {BD} and 
wsup(BD)=0.7*5=3.5>2.0; hence, it is a weighted 
frequent pattern. Therefore, the weighted maximal 
frequent pattern that is prefixed by pattern {D} is 
{BD}.
Step  7.   Identify the global weighted maximal 
frequent patterns. Among the weighted maximal 
frequent patterns, namely, {BE}, {BDA} and {BD}, 
pattern {BD} is the sub-pattern of {BDA} and must 
be discarded. Finally, the WMFPs in this example are 
{BE} and {BDA}.

3.4. Outlier Detection Approach
The main objective of the outlier detection phase is 
to mine the implicit outliers from the weighted data 
stream according to the deviation degree of each 
transaction, where the deviation degree is measured 
by the deviation indices of the mined WMFPs. 
Therefore, the design of the deviation indices is 
critical for outlier detection.
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3.4.1. Design of the Deviation Indices
According to Hawkins, the main feature of an outlier 
[7] is that it differs from most other observations. If 
most patterns that are contained in a transaction occur 
frequently, the transaction is less likely to be an outlier. 
Thus, the mined WMFPs can be used to measure the 
degree of abnormality of the detected transactions. 
The following factors require our attention.
First, longer weighted maximal frequent patterns 
contain more weighted frequent patterns (the number 
of the contained weighted frequent patterns of a 
k-WMFP is close to 2k). Therefore, the length of the 
mined WMFPs is a critical factor that affects the 
outlier judgment. Second, the weighted support of 
each pattern is used to determine whether the pattern 
is weighted frequent and if a pattern has a large 
weighted support value, this pattern is more likely 
to be a weighted frequent pattern; thus, the weighted 
support of the WMFPs can be used to measure the 
degree of abnormality of the transactions. Third, if 
a transaction contains many weighted infrequent 
1-patterns, this pattern is more likely to be an outlier 
because more weighted infrequent patterns can 
be extended by weighted infrequent 1-patterns; 
hence, the number of contained weighted infrequent 
1-paterns is also a major factor that affects the outlier 
detection accuracy. Fourth, for transactions T1 and 
T2, which are of different lengths but containing the 
same numbers of WMFPs and WiFPs, the deviation 
degree between T1 and T2 depends on the abnormality 
density. Therefore, the length of each transaction is 
also an important factor.
Based on the above analysis, we have roughly identi-
fied the factors that affect the deviation degree of each 
transaction. Thus, we design three deviation indices 
for measuring the degree of abnormality of each 
transaction.
Definition  10.   Weighted Maximal Frequent 
Pattern Deviation Index (WMFPDI): For each 
weighted maximal frequent pattern {X}, the length of 
{X} is len(X) and the weighted support value of {X} is 
wsup(X). Then, WMFPDI is defined as

(X)( ) 2 *( ( ) ).lenWMFPDI X wsup X min_wsup= − (1)

Definition  11.   Weighted Infrequent 1-Pattern 
Deviation Index (WIPDI): For each transaction 
Ti in the sliding window, the number of contained 

weighted infrequent 1-patterns {Y} is M(Y). Then, 
WIPDI is defined as

( ) ( ) 1 .iWIPDI T M Y= + (2)

Definition 12. Final Transaction Deviation Index 
(FTDI): The length of each transaction Ti in the 
sliding window is len(Ti) and the number of contained 
WMFPs {X} is N(X). Then, FTDI is defined as

,

( ) * ( ( ) 1)
( ) ( )

( )
 .

i

i
i

iX T X WMFPL

len T N X
FTDI T WMFPDI X

WIPDI T∈ ⊂

+
= +∑ (3)

3.4.2. WMFP-Outlier Algorithm
After designing the deviation indices for the weighted 
maximal frequent patterns, the outliers (abnormal 
transactions) in current sliding window are detected 
based on the calculated FTDI value. The transactions 
are sorted in increasing order of FTDI value and the 
transactions that correspond to the lowest FTDI 
values are identified as the outliers, where the value 
of k is specified by the user. The implementation of 
the proposed WMFP-Outlier method is presented as 
Algorithm 2.

Algorithm 2: WMFP-Outlier

Input: Weighted data stream, min_wsup, k
Output: Outliers

01. call Algorithm 1   // mine WMFPs
02. WMFPDI(X)=0, WIPDI(X)=0, FTDI(Ti)=0
03. foreach {X} in WFPL do
04.    WMFPDI(X)=2len(X)*(wsup(X)-min_wsup)
05. end for
06. for i∈[1,|SW|] do
07.    foreach weighted infrequent 1-pattern {Y}⊆Ti do
08.       WIPDI(Ti)=M(Y)+1
09.    end for
10.    for {X}⊆Ti do
11.     

,

( ) * ( ( ) 1)
( ) ( )

( )
i

i

i

iX T X WMFPL

len T N X
FTDI T WMFPDI X

WIPDI T∈ ⊂

+
= +∑

12.    end for
13. end for
14. sort the transactions in increasing order of FTDI 
values
15. Outliers←top k Ti  // k is assigned by the user

3.4.3. An Example of WMFP-Outlier Approach
To demonstrate the proposed WMFP-Outlier 
method, we consider the example that is presented 
in Table 1 and set the min_wsup value to 2.0. The 
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mined WMFPs are {BE} and {BDA} and the weighted 
infrequent 1-patterns (1-WiFPs) are {C}, {E} and {F}. 
The calculated results for the WMFPDI value, WIPDI 
value and FTDI value are listed in Table 2.
After the calculation of the FTDI values, the transactions 
are sorted in increasing order of FTDI value. Thus, the 
transactions in decreasing order of probability of being 
an outlier are T5, T2, T3, T4, T1 and T6.

Table 2
The results of the WMFP-Outlier approach

4. Experiments and Analysis
To evaluate the effectiveness of the proposed WMFP-
Outlier approach, we conduct experiments on a 
synthetic dataset to evaluate the outlier detection 
accuracy and the time cost in the outlier detection 
phase. The size of the synthetic dataset is 600 and 
each transaction of the synthetic dataset is randomly 
selected from {1, 2, 3, 4, 5, 6, 7, 8, 9}. The weight value 

TID Contained 
WMFPs

Contained 
1-WiFPs WMFPDI WIPDI FTDI

T1 {BE} {E} 1.6 2 4.6

T2 {BDA} {C},{F} 0.8 3 4.13

T3 {BE} {E},{F} 1.6 3 4.27

T4 {BE} {E},{F} 1.6 3 4.27

T5 {BDA} {C} 0.8 2 3.47

T6 {BE},{BDA} {E} 2.4 2 8.4

of each pattern is randomly generated from (0.0, 1.0) 
and each probability is maintained to 1 decimal place. 
For each transaction, the length is randomly selected 
from {5, 6, 7, 8, 9}. Then, we randomly implant 3 to 5 
errors into every 20 transactions. The elements of 
the errors are randomly selected from {10, 11, 12, 13, 
14, 15} and these transactions into which errors have 
been implanted are labeled as true outliers.
In the experiments, four pattern-based outlier 
detection methods, namely, the FindFPOF method 
[8], the LFP method [17], the OODFP method [4] and 
the MIFPOF method [9], are compared with the pro-
posed method. The experiments are conducted using 
various sliding window sizes (|SW| is set to 20, 30 and 
50) and min_wsup is set to 10%, 15% and 20% of |SW|, 
respectively. All algorithms are coded in the Python 
language and evaluated on a machine with a 2.93 GHz 
CPU, 4 GB RAM and Windows 10 OS.

4.1. Detection Accuracy of the  
WMFP-Outlier Approach
In this subsection, we evaluate the detection accuracy 
of the proposed WMFP-Outlier approach using var-
ious sliding window sizes and various min_wsup 
values. The experimental results are presented in 
Figures 3 to 5. In the figures, the x-axis (“No. of slid-
ing windows”) corresponds to the serial number of 
the sliding window and the y-axis (“TPR (%)”) cor-
responds to the outlier detection accuracy of the 
proposed WMFP-Outlier method. The true-positive 
rate (TPR) is an accuracy evaluation indicator; it is 
expressed as TPR=TP/(TP+FN), where the TP de-
notes the number of true positives (accurate detec-
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Figure 5 

Accuracy of the WMFP-Outlier approach when |SW| is 50 
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tions) and FN denotes the number of false negative 
(incorrect detections).
For a sliding window of size 20, the accuracy of the 
proposed WMFP-Outlier approach is shown in Figure 
3. When the min_wsup value is 2, for the WMFP-
Outlier approach, six of the thirty sliding windows de-
tect errors and the detection accuracy of the WMFP-
Outlier approach is always the highest among the 
five compared methods. When the min_wsup value 
is 3, error detection occurs in ten of the thirty sliding 
windows. In the second, thirteen and twenty-three 
sliding windows, the outlier detection accuracy of 
the WMFP-Outlier approach is slightly lower than 
that of the MIFPOD approach. However, when the 
min_wsup value is 4, of the thirty sliding windows, only 
the ten sliding windows have a detection accuracy of 
100%. The proposed WMFP-Outlier approach has the 
highest detection accuracy in most sliding windows. 
When the size of the sliding window is constant, the 
outlier detection accuracy of the WMFP-Outlier ap-

Figure 5
Accuracy of the WMFP-Outlier approach when |SW| is 50
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Accuracy of the WMFP-Outlier approach when |SW| is 30
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the min_wsup value is 3, error detection 
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than that of the MIFPOD approach. 
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approach has the highest detection accuracy 
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experimental results are presented in Figures 3 to 
5. In the figures, the x-axis (“No. of sliding 
windows”) corresponds to the serial number of 
the sliding window and the y-axes (“TPR (%)”) 
corresponds to the outlier detection accuracy of 
the proposed WMFP-Outlier method. The true-
positive rate (TPR) is an accuracy evaluation 
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the thirty sliding windows, only the ten 
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approach has the highest detection accuracy 
in most sliding windows. When the size of 
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proach exhibits a decreasing trend as the min_wsup 
values increase; hence, the proposed WMFP-Outlier 
approach is more accurate when the min_wsup value 
is small.
This is because when the min_wsup value is relatively 
large, the scale of the mined weighted maximal frequent 
patterns is very small and the number of patterns that 
are used during the outlier detection phase is also small; 
therefore, the outlier detection accuracy is lower. In 
most cases, the accuracy of the FindFPOF approach 
is the lowest among the five compared methods, while 
that of the improved LFP is the second lowest. With 
the increase of the min_wsup value, the MIFPOD 
approach gradually demonstrates its advantages; how-
ever, its detection accuracy is not stable.
For a sliding window size of 30, the outlier detection 
accuracies of the five compared methods are shown in 
Figure 4. When min_wsup is 3, the error detection oc-
curs in two of the twenty sliding windows, the detection 
accuracy of WMFP-Outlier is the highest among the 
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five compared methods, and the accuracy of the Find-
FPOF approach is the lowest among the five compared 
methods in most sliding windows. When the min_wsup 
value is 4.5, the error detection of the WMFP-Outlier 
approach occurs more frequently than that when the 
min_wsup value is 3; however, the accuracy of the 
WMFP-Outlier approach is always the highest among 
the five compared methods. When the min_wsup value 
is 6, the accuracy of the WMFP-Outlier approach is 
much lower than that when the min_wsup value is 4.5 
and only four sliding windows of the WMFP-Outlier 
approach have a detection accuracy of 100%. In the 
first and ninth sliding windows, the accuracy of the 
WMFP-Outlier approach is not the highest among 
the five compared methods. Generally, similar to the 
case when the sliding window size is set to 20, when 
the min_wsup value is small, the outlier detection 
accuracy of the WMFP-Outlier approach is very high. 
The accuracy of the FindFPOF approach is the lowest 
in most sliding windows.
Figure 5 shows the outlier detection accuracies for 
the five compared methods when the sliding window 
size is 50. When the min_wsup value is 5, in all twelve 
sliding windows, the accuracy of the WMFP-Outlier 
approach reaches 100%; although the accuracies of 
the four comparison methods are similar, they do 
not exceed 40%. When the min_wsup value is 7.5, the 
accuracy of the WMFP-Outlier approach is substan-
tially lower compared with that when the min_wsup 
value is set to 5, while 100% detection accuracy is real-
ized only in five sliding windows; however, except for 
the third and eleventh sliding windows, the accuracy 
of the WMFP-Outlier approach is higher than those 
of the compared methods. When the min_wsup value 

is 10, the main advantage of the proposed WMFP-
Outlier approach in terms of outlier detection accu-
racy is very small; however, in most sliding windows, 
the detection accuracy is slightly higher than those of 
the other four compared methods.
The experimental results demonstrate that the 
proposed WMFP-Outlier approach is more suitable 
for detecting the implicit outliers from weighted data 
streams using small min_wsup values.

4.2. Time Cost of the WMFP-Outlier 
Approach in the Outlier Detection Phase

For the outlier detection, the detection accuracy and 
time cost are the two major indices that are used to 
evaluate the proposed approach. Therefore, this 
subsection evaluates the time cost of the WMFP-
Outlier approach in the outlier detection phase. The 
experiments are conducted using various sliding 
window sizes and various min_wsup values and 
four pattern-based approaches, namely, FindFPOF, 
OODFP, LFP and MIFPOD, are also compared in the 
experiments. The experimental results are presented 
in Figures 6 to 8.
When the sliding window size is 20, the time costs of 
the five compared approaches for various min_wsup 
values are shown in Figure 6. For each min_wsup 
value, the time cost of the FindFPOF approach is the 
highest among the five compared methods, while the 
time cost of the LFP approach is the lowest among 
the five compared methods. For various min_wsup 
values, the time cost of the proposed WMFP-Outlier 
approach is less than that of the MIFPOD approach 
but is very close to that of the OODFP approach. 

Figure 6
Time cost of the outlier detection phase when |SW| is 20
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time cost of the MIFPOD approach the second 
highest. The time cost trend of the WMFP-Outlier 
approach is relatively stable under various 
min_wsup values. When the min_wsup value is 
small, the time cost of the WMFP-Outlier 
approach is slightly higher than that of the 
OODFP approach and with the increase of the 
min_wsup value, the time cost of the WMFP-
Outlier approach is only slightly lower than that of 
the OODFP approach in a few sliding windows, 
however, overall, the time costs of the WMFP-
Outlier approach and the OODFP approach are 
comparable. For various min_wsup values, the 
time cost of the proposed WMFP-Outlier approach 
varies little; hence, the min_wsup value has little 
effect on the time cost of the WMFP-Outlier 
approach. 

For a sliding window size of 50, the time 
costs of the five compared methods for 
various min_wsup values are shown in Figure 
8. When the min_wsup value is set to 5, the 
time costs of the OODFP approach and the 
LFP approach are almost the same. When the 
min_wsup value is set to 7.5 or 10, the time 
cost of the LFP approach is slightly lower 
than that of the OODFP approach. Among 
the five compared methods, the time cost of 
the FindFPOF approach is the highest and 
the time cost of the MIFPOD approach is the 
second highest. As the min_wsup value 
increases, the time cost of the WMFP-Outlier 
approach becomes slightly lower than that of 
the OODFP approach in a few sliding 
windows. Overall, the change in the time 
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time cost of the MIFPOD approach the second 
highest. The time cost trend of the WMFP-Outlier 
approach is relatively stable under various 
min_wsup values. When the min_wsup value is 
small, the time cost of the WMFP-Outlier 
approach is slightly higher than that of the 
OODFP approach and with the increase of the 
min_wsup value, the time cost of the WMFP-
Outlier approach is only slightly lower than that of 
the OODFP approach in a few sliding windows, 
however, overall, the time costs of the WMFP-
Outlier approach and the OODFP approach are 
comparable. For various min_wsup values, the 
time cost of the proposed WMFP-Outlier approach 
varies little; hence, the min_wsup value has little 
effect on the time cost of the WMFP-Outlier 
approach. 

For a sliding window size of 50, the time 
costs of the five compared methods for 
various min_wsup values are shown in Figure 
8. When the min_wsup value is set to 5, the 
time costs of the OODFP approach and the 
LFP approach are almost the same. When the 
min_wsup value is set to 7.5 or 10, the time 
cost of the LFP approach is slightly lower 
than that of the OODFP approach. Among 
the five compared methods, the time cost of 
the FindFPOF approach is the highest and 
the time cost of the MIFPOD approach is the 
second highest. As the min_wsup value 
increases, the time cost of the WMFP-Outlier 
approach becomes slightly lower than that of 
the OODFP approach in a few sliding 
windows. Overall, the change in the time 
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time cost of the MIFPOD approach the second 
highest. The time cost trend of the WMFP-Outlier 
approach is relatively stable under various 
min_wsup values. When the min_wsup value is 
small, the time cost of the WMFP-Outlier 
approach is slightly higher than that of the 
OODFP approach and with the increase of the 
min_wsup value, the time cost of the WMFP-
Outlier approach is only slightly lower than that of 
the OODFP approach in a few sliding windows, 
however, overall, the time costs of the WMFP-
Outlier approach and the OODFP approach are 
comparable. For various min_wsup values, the 
time cost of the proposed WMFP-Outlier approach 
varies little; hence, the min_wsup value has little 
effect on the time cost of the WMFP-Outlier 
approach. 

For a sliding window size of 50, the time 
costs of the five compared methods for 
various min_wsup values are shown in Figure 
8. When the min_wsup value is set to 5, the 
time costs of the OODFP approach and the 
LFP approach are almost the same. When the 
min_wsup value is set to 7.5 or 10, the time 
cost of the LFP approach is slightly lower 
than that of the OODFP approach. Among 
the five compared methods, the time cost of 
the FindFPOF approach is the highest and 
the time cost of the MIFPOD approach is the 
second highest. As the min_wsup value 
increases, the time cost of the WMFP-Outlier 
approach becomes slightly lower than that of 
the OODFP approach in a few sliding 
windows. Overall, the change in the time 
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Figure 7
Time cost of the outlier detection phase when |SW| is 30

Figure 8
Time cost of the outlier detection phase when |SW| is 50

In addition, the time cost of the WMFP-Outlier 
approach is highly stable and the min_wsup value has 
little effect on the time cost of the WMFP-Outlier 
approach. This experimental result demonstrates 
that the use of weighted maximal frequent patterns 
can reduce the time cost of the outlier detection 
phase.
For a sliding window size of 30, the time costs of the 
compared five approaches using various min_wsup 
values are shown in Figure 7. Among the five com-
pared approaches, the time cost of the LFP approach 
is the lowest and the time cost of the FindFPOF ap-
proach is the highest in most sliding windows; the 
time cost of the MIFPOD approach the second high-
est. The time cost trend of the WMFP-Outlier ap-
proach is relatively stable under various min_wsup 
values. When the min_wsup value is small, the time 
cost of the WMFP-Outlier approach is slightly high-
er than that of the OODFP approach and with the 
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time cost of the MIFPOD approach the second 
highest. The time cost trend of the WMFP-Outlier 
approach is relatively stable under various 
min_wsup values. When the min_wsup value is 
small, the time cost of the WMFP-Outlier 
approach is slightly higher than that of the 
OODFP approach and with the increase of the 
min_wsup value, the time cost of the WMFP-
Outlier approach is only slightly lower than that of 
the OODFP approach in a few sliding windows, 
however, overall, the time costs of the WMFP-
Outlier approach and the OODFP approach are 
comparable. For various min_wsup values, the 
time cost of the proposed WMFP-Outlier approach 
varies little; hence, the min_wsup value has little 
effect on the time cost of the WMFP-Outlier 
approach. 

For a sliding window size of 50, the time 
costs of the five compared methods for 
various min_wsup values are shown in Figure 
8. When the min_wsup value is set to 5, the 
time costs of the OODFP approach and the 
LFP approach are almost the same. When the 
min_wsup value is set to 7.5 or 10, the time 
cost of the LFP approach is slightly lower 
than that of the OODFP approach. Among 
the five compared methods, the time cost of 
the FindFPOF approach is the highest and 
the time cost of the MIFPOD approach is the 
second highest. As the min_wsup value 
increases, the time cost of the WMFP-Outlier 
approach becomes slightly lower than that of 
the OODFP approach in a few sliding 
windows. Overall, the change in the time 
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time cost of the MIFPOD approach the second 
highest. The time cost trend of the WMFP-Outlier 
approach is relatively stable under various 
min_wsup values. When the min_wsup value is 
small, the time cost of the WMFP-Outlier 
approach is slightly higher than that of the 
OODFP approach and with the increase of the 
min_wsup value, the time cost of the WMFP-
Outlier approach is only slightly lower than that of 
the OODFP approach in a few sliding windows, 
however, overall, the time costs of the WMFP-
Outlier approach and the OODFP approach are 
comparable. For various min_wsup values, the 
time cost of the proposed WMFP-Outlier approach 
varies little; hence, the min_wsup value has little 
effect on the time cost of the WMFP-Outlier 
approach. 

For a sliding window size of 50, the time 
costs of the five compared methods for 
various min_wsup values are shown in Figure 
8. When the min_wsup value is set to 5, the 
time costs of the OODFP approach and the 
LFP approach are almost the same. When the 
min_wsup value is set to 7.5 or 10, the time 
cost of the LFP approach is slightly lower 
than that of the OODFP approach. Among 
the five compared methods, the time cost of 
the FindFPOF approach is the highest and 
the time cost of the MIFPOD approach is the 
second highest. As the min_wsup value 
increases, the time cost of the WMFP-Outlier 
approach becomes slightly lower than that of 
the OODFP approach in a few sliding 
windows. Overall, the change in the time 
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time cost of the MIFPOD approach the second 
highest. The time cost trend of the WMFP-Outlier 
approach is relatively stable under various 
min_wsup values. When the min_wsup value is 
small, the time cost of the WMFP-Outlier 
approach is slightly higher than that of the 
OODFP approach and with the increase of the 
min_wsup value, the time cost of the WMFP-
Outlier approach is only slightly lower than that of 
the OODFP approach in a few sliding windows, 
however, overall, the time costs of the WMFP-
Outlier approach and the OODFP approach are 
comparable. For various min_wsup values, the 
time cost of the proposed WMFP-Outlier approach 
varies little; hence, the min_wsup value has little 
effect on the time cost of the WMFP-Outlier 
approach. 

For a sliding window size of 50, the time 
costs of the five compared methods for 
various min_wsup values are shown in Figure 
8. When the min_wsup value is set to 5, the 
time costs of the OODFP approach and the 
LFP approach are almost the same. When the 
min_wsup value is set to 7.5 or 10, the time 
cost of the LFP approach is slightly lower 
than that of the OODFP approach. Among 
the five compared methods, the time cost of 
the FindFPOF approach is the highest and 
the time cost of the MIFPOD approach is the 
second highest. As the min_wsup value 
increases, the time cost of the WMFP-Outlier 
approach becomes slightly lower than that of 
the OODFP approach in a few sliding 
windows. Overall, the change in the time 
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time cost of the MIFPOD approach the second 
highest. The time cost trend of the WMFP-Outlier 
approach is relatively stable under various 
min_wsup values. When the min_wsup value is 
small, the time cost of the WMFP-Outlier 
approach is slightly higher than that of the 
OODFP approach and with the increase of the 
min_wsup value, the time cost of the WMFP-
Outlier approach is only slightly lower than that of 
the OODFP approach in a few sliding windows, 
however, overall, the time costs of the WMFP-
Outlier approach and the OODFP approach are 
comparable. For various min_wsup values, the 
time cost of the proposed WMFP-Outlier approach 
varies little; hence, the min_wsup value has little 
effect on the time cost of the WMFP-Outlier 
approach. 

For a sliding window size of 50, the time 
costs of the five compared methods for 
various min_wsup values are shown in Figure 
8. When the min_wsup value is set to 5, the 
time costs of the OODFP approach and the 
LFP approach are almost the same. When the 
min_wsup value is set to 7.5 or 10, the time 
cost of the LFP approach is slightly lower 
than that of the OODFP approach. Among 
the five compared methods, the time cost of 
the FindFPOF approach is the highest and 
the time cost of the MIFPOD approach is the 
second highest. As the min_wsup value 
increases, the time cost of the WMFP-Outlier 
approach becomes slightly lower than that of 
the OODFP approach in a few sliding 
windows. Overall, the change in the time 
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time cost of the MIFPOD approach the second 
highest. The time cost trend of the WMFP-Outlier 
approach is relatively stable under various 
min_wsup values. When the min_wsup value is 
small, the time cost of the WMFP-Outlier 
approach is slightly higher than that of the 
OODFP approach and with the increase of the 
min_wsup value, the time cost of the WMFP-
Outlier approach is only slightly lower than that of 
the OODFP approach in a few sliding windows, 
however, overall, the time costs of the WMFP-
Outlier approach and the OODFP approach are 
comparable. For various min_wsup values, the 
time cost of the proposed WMFP-Outlier approach 
varies little; hence, the min_wsup value has little 
effect on the time cost of the WMFP-Outlier 
approach. 

For a sliding window size of 50, the time 
costs of the five compared methods for 
various min_wsup values are shown in Figure 
8. When the min_wsup value is set to 5, the 
time costs of the OODFP approach and the 
LFP approach are almost the same. When the 
min_wsup value is set to 7.5 or 10, the time 
cost of the LFP approach is slightly lower 
than that of the OODFP approach. Among 
the five compared methods, the time cost of 
the FindFPOF approach is the highest and 
the time cost of the MIFPOD approach is the 
second highest. As the min_wsup value 
increases, the time cost of the WMFP-Outlier 
approach becomes slightly lower than that of 
the OODFP approach in a few sliding 
windows. Overall, the change in the time 
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time cost of the MIFPOD approach the second 
highest. The time cost trend of the WMFP-Outlier 
approach is relatively stable under various 
min_wsup values. When the min_wsup value is 
small, the time cost of the WMFP-Outlier 
approach is slightly higher than that of the 
OODFP approach and with the increase of the 
min_wsup value, the time cost of the WMFP-
Outlier approach is only slightly lower than that of 
the OODFP approach in a few sliding windows, 
however, overall, the time costs of the WMFP-
Outlier approach and the OODFP approach are 
comparable. For various min_wsup values, the 
time cost of the proposed WMFP-Outlier approach 
varies little; hence, the min_wsup value has little 
effect on the time cost of the WMFP-Outlier 
approach. 

For a sliding window size of 50, the time 
costs of the five compared methods for 
various min_wsup values are shown in Figure 
8. When the min_wsup value is set to 5, the 
time costs of the OODFP approach and the 
LFP approach are almost the same. When the 
min_wsup value is set to 7.5 or 10, the time 
cost of the LFP approach is slightly lower 
than that of the OODFP approach. Among 
the five compared methods, the time cost of 
the FindFPOF approach is the highest and 
the time cost of the MIFPOD approach is the 
second highest. As the min_wsup value 
increases, the time cost of the WMFP-Outlier 
approach becomes slightly lower than that of 
the OODFP approach in a few sliding 
windows. Overall, the change in the time 

increase of the min_wsup value, the time cost of the 
WMFP-Outlier approach is only slightly lower than 
that of the OODFP approach in a few sliding windows, 
however, overall, the time costs of the WMFP-Outlier 
approach and the OODFP approach are comparable. 
For various min_wsup values, the time cost of the pro-
posed WMFP-Outlier approach varies little; hence, 
the min_wsup value has little effect on the time cost 
of the WMFP-Outlier approach.
For a sliding window size of 50, the time costs of the 
five compared methods for various min_wsup values 
are shown in Figure 8. When the min_wsup value is 
set to 5, the time costs of the OODFP approach and 
the LFP approach are almost the same. When the 
min_wsup value is set to 7.5 or 10, the time cost of the 
LFP approach is slightly lower than that of the OOD-
FP approach. Among the five compared methods, the 
time cost of the FindFPOF approach is the highest 
and the time cost of the MIFPOD approach is the 



519Information Technology and Control 2019/4/48

second highest. As the min_wsup value increases, the 
time cost of the WMFP-Outlier approach becomes 
slightly lower than that of the OODFP approach in a 
few sliding windows. Overall, the change in the time 
consumption of the WMFP-Outlier approach is very 
small and the time cost of the proposed WMFP-Outli-
er approach is lower than those of the FindFPOF and 
MIFPOD approaches.

4.3. Impact of |SW| on the Accuracy and Time 
Cost of the Outlier Detection Phase
In subsections 4.1 and 4.2, we present the detection 
accuracy and time cost results of the WMFP-Outlier 
approach for a fixed sliding window size (|SW|) 
and discuss the effect of the min_wsup value on 
the detection accuracy and the time cost. However, 
the size of the sliding window can also affect the 
detection accuracy and the time cost. Therefore, in 
this subsection, the impacts of |SW| on the accuracy 
and time cost of outlier detection are evaluated. In the 
experiment, the value of min_wsup is selected from 
{2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6} and the sliding window size 
is selected from {20, 30, 40, 50, 60}. The experimental 
results are shown in Figures 9 and 10.
According to Figure 9, when min_wsup is set to 2.5 
and the sliding window size is set to 60, the detection 
accuracy of the WMFP-Outlier approach is the low-
est, whereas the detection accuracy is the highest 
when the sliding window size is set to 30. With the 
increase of the min_wsup value, when the |SW| is 

Figure 9
Impact of |SW| on the outlier detection accuracy

Figure 10
Impact of |SW| on the time cost of outlier detection

60, the outlier detection accuracy of the WMFP-
Outlier approach exhibits an increasing trend; when 
|SW| is set to 20 or 30, the detection accuracy of the 
WMFP-Outlier approach exhibits a decreasing trend. 
The main reason is that in large sliding windows, 
the number of mined WMFPs is larger; hence, the 
accuracy will be much higher. When the min_wsup 
value is not less than 3.5, the outlier detection 
accuracy is also higher in large sliding windows be-
cause the number of mined WMFPs is very large in a 
large sliding window. Therefore, the sliding window 
size affects the outlier detection accuracy and to 
improve the outlier detection accuracy, the ratio of 
min_wsup to |SW| should not be set to a large value for 
the proposed WMFP-Outlier approach.

  

consumption of the WMFP-Outlier approach is 
very small and the time cost of the proposed 
WMFP-Outlier approach is lower than those of the 
FindFPOF and MIFPOD approaches. 

4.3. Impact of |SW| on the Accuracy and 
Time Cost of the Outlier Detection 
Phase 
In subsections 4.1 and 4.2, we present the 
detection accuracy and time cost results of the 
WMFP-Outlier approach for a fixed sliding 
window size (|SW|) and discuss the effect of the 
min_wsup value on the detection accuracy and the 
time cost. However, the size of the sliding window 
can also affect the detection accuracy and the time 
cost. Therefore, in this subsection, the impacts of 
|SW| on the accuracy and time cost of outlier 
detection are evaluated. In the experiment, the 
value of min_wsup is selected from {2.5, 3, 3.5, 4, 
4.5, 5, 5.5, 6} and the sliding window size is 
selected from {20, 30, 40, 50, 60}. The experimental 
results are shown in Figures 9 and 10. 
Figure 9 

Impact of |SW| on the outlier detection accuracy 

2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

100

min_wsup value

T
P

R
 (%

)

 

 

|SW=20|
|SW=30|
|SW=40|
|SW=50|
|SW=60|

 
According to Figure 9, when min_wsup is set to 2.5 
and the sliding window size is set to 60, the 
detection accuracy of the WMFP-Outlier approach 
is the lowest, whereas the detection accuracy is the 
highest when the sliding window size is set to 30. 
With the increase of the min_wsup value, when the 
|SW| is 60, the outlier detection accuracy of the 
MWFP-Outlier approach exhibits an increasing 
trend; when |SW| is set to 20 or 30, the detection 
accuracy of the MWFP-Outlier approach exhibits a 
decreasing trend. The main reason is that in large 
sliding windows, the number of mined WMFPs is 
larger; hence, the accuracy will be much higher. 
When the min_wsup value is not less than 3.5, the 
outlier detection accuracy is also higher in large 
sliding windows because the number of mined 
WMFPs is very large in a large sliding window. 
Therefore, the sliding window size affects the 
outlier detection accuracy and to improve the 

outlier detection accuracy, the ratio of 
min_wsup to |SW| should not be set to a 
large value for the proposed WMFP-Outlier 
approach. 
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According to Figure 10, when min_wsup is set 
to 2.5, the time costs of the proposed WMFP-
Outlier approach are similar among sliding 
window sizes. When min_wsup is set to 6, the 
time cost of the WMFP-Outlier approach is 
very large for small sliding windows. The 
time cost of the proposed WMFP-Outlier 
approach is positively correlated with the 
min_wsup value, except when min_wsup is set 
to 60. When the min_wsup value is set 
relatively large, the time cost of the WMFP-
Outlier approach is more competitive for 
large sliding windows. The experimental 
results demonstrate that the size of the 
sliding window affects the time cost of the 
WMFP-Outlier approach in the outlier 
detection phase. 

 
5. Conclusions 
In this paper, a weighted maximal frequent-
pattern-based outlier detection approach, 
namely, WMFP-Outlier, is proposed for 
detecting the implicit outliers in a weighted 
data stream. The outlier detection process 
can be divided into two phases: (1) the 
weighted maximal frequent-pattern mining 
phase and (2) the pattern-based outlier 
detection phase. In the weighted maximal 
frequent-pattern mining process, the WFP-
Tree structure is used to store the detailed 
pattern information and weight information 
and the WFP-array structure and anti-
monotonicity property are used to accelerate 
WMFP mining. In the pattern-based outlier 
detection process, we define three deviation 
indices, namely, the weighted maximal 
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WMFP-Outlier approach is positively correlated 
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large, the time cost of the WMFP-Outlier approach 
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experimental results demonstrate that the size of the 
sliding window affects the time cost of the WMFP-
Outlier approach in the outlier detection phase.
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window size (|SW|) and discuss the effect of the 
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time cost. However, the size of the sliding window 
can also affect the detection accuracy and the time 
cost. Therefore, in this subsection, the impacts of 
|SW| on the accuracy and time cost of outlier 
detection are evaluated. In the experiment, the 
value of min_wsup is selected from {2.5, 3, 3.5, 4, 
4.5, 5, 5.5, 6} and the sliding window size is 
selected from {20, 30, 40, 50, 60}. The experimental 
results are shown in Figures 9 and 10. 
Figure 9 

Impact of |SW| on the outlier detection accuracy 
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According to Figure 9, when min_wsup is set to 2.5 
and the sliding window size is set to 60, the 
detection accuracy of the WMFP-Outlier approach 
is the lowest, whereas the detection accuracy is the 
highest when the sliding window size is set to 30. 
With the increase of the min_wsup value, when the 
|SW| is 60, the outlier detection accuracy of the 
MWFP-Outlier approach exhibits an increasing 
trend; when |SW| is set to 20 or 30, the detection 
accuracy of the MWFP-Outlier approach exhibits a 
decreasing trend. The main reason is that in large 
sliding windows, the number of mined WMFPs is 
larger; hence, the accuracy will be much higher. 
When the min_wsup value is not less than 3.5, the 
outlier detection accuracy is also higher in large 
sliding windows because the number of mined 
WMFPs is very large in a large sliding window. 
Therefore, the sliding window size affects the 
outlier detection accuracy and to improve the 

outlier detection accuracy, the ratio of 
min_wsup to |SW| should not be set to a 
large value for the proposed WMFP-Outlier 
approach. 
Figure 10 

Impact of |SW| on the time cost of outlier 
detection 

2.5 3 3.5 4 4.5 5 5.5 6
3

4

5

6

7

8

9

10

min_wsup value

T
im

e 
co

st
 (m

s)

 

 

|SW=20|
|SW=30|
|SW=40|
|SW=50|
|SW=60|

 
According to Figure 10, when min_wsup is set 
to 2.5, the time costs of the proposed WMFP-
Outlier approach are similar among sliding 
window sizes. When min_wsup is set to 6, the 
time cost of the WMFP-Outlier approach is 
very large for small sliding windows. The 
time cost of the proposed WMFP-Outlier 
approach is positively correlated with the 
min_wsup value, except when min_wsup is set 
to 60. When the min_wsup value is set 
relatively large, the time cost of the WMFP-
Outlier approach is more competitive for 
large sliding windows. The experimental 
results demonstrate that the size of the 
sliding window affects the time cost of the 
WMFP-Outlier approach in the outlier 
detection phase. 

 
5. Conclusions 
In this paper, a weighted maximal frequent-
pattern-based outlier detection approach, 
namely, WMFP-Outlier, is proposed for 
detecting the implicit outliers in a weighted 
data stream. The outlier detection process 
can be divided into two phases: (1) the 
weighted maximal frequent-pattern mining 
phase and (2) the pattern-based outlier 
detection phase. In the weighted maximal 
frequent-pattern mining process, the WFP-
Tree structure is used to store the detailed 
pattern information and weight information 
and the WFP-array structure and anti-
monotonicity property are used to accelerate 
WMFP mining. In the pattern-based outlier 
detection process, we define three deviation 
indices, namely, the weighted maximal 
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5. Conclusions
In this paper, a weighted maximal frequent-pat-
tern-based outlier detection approach, namely, WM-
FP-Outlier, is proposed for detecting the implicit 
outliers in a weighted data stream. The outlier detec-
tion process can be divided into two phases: (1) the 
weighted maximal frequent-pattern mining phase 
and (2) the pattern-based outlier detection phase. 
In the weighted maximal frequent-pattern mining 
process, the WFP-Tree structure is used to store the 
detailed pattern information and weight information 
and the WFP-array structure and anti-monotonicity 
property are used to accelerate WMFP mining. In the 
pattern-based outlier detection process, we define 
three deviation indices, namely, the weighted maxi-
mal frequent pattern deviation index (WMFPDI), the 
weighted infrequent 1-pattern deviation index (WIP-
DI) and the final transaction deviation index (FTDI), 
for measuring the degree of abnormality of each 
transaction. The transactions that have lower FTDI 
values are more likely to be implicit outliers.
The performance of the WMFP-Outlier approach is 
evaluated on a synthetic dataset, and the detection 
accuracy and the time cost of the outlier detection 
phase are evaluated under various sliding window 
sizes and various min_wsup values. The experimen-
tal results demonstrate that the detection accuracy of 

the proposed WMFP-Outlier approach is higher than 
those of the FindFPOF, LFP, OODFP and MIFPOD 
approaches in most scenarios. In all sliding windows, 
the time cost of the WMFP-Outlier approach is lower 
than that of the FindFPOF approach and the time cost 
of the WMFP-Outlier approach is also lower than that 
of the MIFPOD approach in most sliding windows. In 
addition, when the min_wsup value is relatively small, 
the detection accuracy of the proposed WMFP-Outli-
er approach is very high. The proposed WMFP-Out-
lier approach takes full account of the influence of 
weight information on outlier detection; therefore, it 
is more suitable for detecting implicit outliers from a 
realistic weighted data stream.
In the future, we will consider applying our proposed 
mining strategy to the mining process of weighted 
closed frequent-pattern mining and investigate the 
application of the weighted closed frequent-pat-
tern-based outlier detection approach to a weighted 
data stream. In addition, we are prepared to design an 
automatic threshold optimization selection method 
for improving the outlier detection accuracy.
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