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Software systems are to be developed based on expectations of the customers. These expectations are expressed 
using natural languages. To design software meeting the needs of the customer and the stakeholders, the inten-
tions, feedback and reviews are to be understood accurately and without ambiguity. These textual inputs often 
contain inaccuracies, contradictions and are seldom given in a well-structured form. The issues mentioned in 
the previous thought frequently result in the program not satisfying the expectation of the stakeholders. In par-
ticular, for non-functional requirements, clients rarely emphasize these specifications as much as they might 
be justified. Identifying, classifying and reconciling the requirements is one of the main duty of the System An-
alyst, which without using a proper tool, can be very demanding and time-consuming. Tools which support text 
processing are expected to improve the accuracy of identification and classification of requirements even in an 
unstructured set of inputs. System Analysts can also use them in document archeology tasks where many docu-
ments, regulations, standards, etc. have to be processed. Methods elaborated in natural language processing and 
machine learning offer a solid basis. However, their usability and the possibility to improve the performance 
utilizing the specific knowledge from the domain of the software engineering are to be examined thoroughly. In 
this paper, we present the results of our work adapting natural language processing and machine learning meth-
ods for handling and transforming textual inputs of software development. The major contribution of our work 
is providing a comparison of the performance and applicability of the stateof-the-art techniques used in natural 
language processing and machine learning in software engineering. Based on the results of our experiments, 
tools which can support System Analysts working on textual inputs can be designed.
KEYWORDS: Requirements Engineering, Feedback processing, Natural Language Processing, Machine 
Learning.
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1. Introduction
Software systems are made based on specifications 
composed of functional and non-functional require-
ments. The needs and expectations of the customers 
are expressed by requirements mostly given in a natu-
ral language form. These textual documents are often 
ambiguous and sometimes also contain contradic-
tions. To use the collected requirements for software 
design, they must be formalized and any inconsisten-
cies need to be removed. These tasks, without using a 
proper tool, can be demanding and time-consuming.
Tools supporting System Analysts in requirements 
engineering provide templates, checklists, traceabil-
ity, management and reporting environment to facil-
itate their work, but these tools can support process-
ing of requirements given in textual form only to a 
limited extent [8].
Non-functional requirements (NFRs) are also cru-
cial factors for software design [18]. The lack of a 
well-structured set of non-functional requirements 
can lead to an inappropriate software design and 
the failure of the project. Security aspects are also 
a critical part of the design, and their significance is 
growing steadily today. Every requirement related to 
security is to be taken into consideration, but it can 
be difficult without the corresponding non-function-
al requirements. Many NFRs are out of the analysis 
and those non-functional requirements considered 
during analysis are often weakly elaborated. Incom-
plete or ambiguous specifications can lead the system 
into an undefined state.
The quality of requirements is the primary factor of 
the success of a software project. Though, there are 
several problems to be faced with regarding the re-
quirements. Firesmith in his article issued in Journal 
of Object Technology in 2007 has collected the most 
common issues related to requirements engineering 
along with some practice to solve these problems [17]. 
Although steps have been taken to improve the qual-
ity of the specifications, unsuccessful software proj-
ects are still being attributed largely to the inadequate 
requirements engineering [21].
As mentioned above, the requirements are available 
mainly in textual form. However, this is valid for ev-
ery customer feedback, error ticket and specification. 
In the case of a complex project, various requirements 
are collected from documents, regulations reports, so 

System Analyst has to process a lot of documents. 
These documents are well-structured and use busi-
ness language. The main challenge for processing 
business documents is to manage texts and to iden-
tify information relevant to the application being 
made. In addition to the business documents, the 
basic sources of the requirements are the interviews 
with clients and stakeholders. The memos or records 
created during interviews are often unstructured or 
semi-structured and often contain ambiguities, logi-
cal fallacies. Non-functional requirements are most-
ly given as a part of the text but sometimes they are 
expressed superficially. Identifying and classifying 
requirements from this collection of different doc-
uments can be demanding and error-prone. Several 
investigations have been accomplished with remark-
able results to support the identification and classifi-
cation process using natural language processing and 
machine learning methods [1, 3, 4, 9, 24, 25, 33, 34]. 
Some researchers investigated the use of ontologies, 
which have been created based on the standards [3, 
33]. Some researchers like Lu and Liang [25] or Abad 
et al. [1] utilized supervised learning methods, others 
utilized semisupervised learning techniques such as 
Expectation Maximization strategy [9]. Abad et al. 
applied also clustering techniques to identify the best 
method for processing requirements sentences [1]. 
These studies have shown that natural language pro-
cessing and machine learning methods can be utilized 
successfully also for requirements engineering.
To apply machine learning along with natural lan-
guage processing (NLP) methods, several learning 
examples have to be available, however, there are only 
a few labeled examples that can be accessed via the 
Internet. This is especially true for the collection of 
non-functional requirements which are often over-
looked during the requirements elicitation. The ma-
jority of researchers have used the Tera Promise NFR 
dataset which was created by the students of DePaul 
University [7, 13]. This dataset contains 625 examples 
of 15 projects classified into 12 classes. Some classes 
contain only very few examples which is detrimental 
to machine learning methods.
One possible direction for overcoming the shortage 
of labeled examples is using semi-supervised meth-
ods which can give better results at these conditions 
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as shown by Casamayor et al. [9]. Using ontologies as 
a background knowledge representation is another 
possible solution [3, 33], but building a proper ontol-
ogy-based database is a tedious and time-consuming 
task. Rashwan et al. have created an ontology based 
on the ISO/IEC 9126-1:2001.1 In addition to these 
strategies, corpus of requirements also can be built. 
Software repositories make available various open 
source software which can provide also sources of 
requirements related to the specific software [31, 32]. 
Extracting requirements from these repositories and 
building corpus can support the usage of machine 
learning processes effectively.
Applying NLP and machine learning methods for 
requirements engineering is based on the assump-
tion that these methods can facilitate the work of 
System Analysts as reducing the amount of manual 
work, therefore, reduce the time needed for elicita-
tion and the cost of the analysis. This assumption has 
also been confirmed by Groen et al. in their investi-
gation [19]. To support System Analysts in choosing 
the appropriate procedure, investigations have been 
proceeded for comparison of the performance of the 
methods [1, 9, 25, 38]. The researchers found that 
Multinomial Naive Bayes and the Support Vector 
Machine (SVM) using the linear kernel had given the 
best performance using only a few labeled examples 
such as the NFR dataset.
Our work is focusing on comparison the methods in-
cluding the application of the simplest deep neural net-
work. In our former work, we have compared methods 
implemented in scikit-learn library [30] using the NFR 
dataset [38]. Our work has confirmed that the Multino-
mial Naive Bayes and the SVM might be the best choice 
if there are only a few labeled examples available. The 
scikit-learn library contains also a Multilayer Percep-
tron (MLP) classifier which has produced the worst 
result in our experiment owing to the small dataset. To 
ensure that the small dataset does not hinder the ex-
periments, we have collected tagged posts from Stack 
Overflow and used them in our examinations. We have 
repeated the former experiments with the new dataset 
and also the Fully Connected Network constructed us-
ing Keras library have been tested and compared to the 
non-deep learning methods. The applicability and the 
restrictions of our methodology is shown in detail in 
the background section.

1 This standard has been revised and a new standard was pub-
lished in 2011 as the ISO/IEC 25010:2011.

The contribution of our work is providing a com-
parison of the performance and applicability of the 
stateof-the-art techniques used in natural language 
processing and machine learning in software engi-
neering. Additionally, the effects of the size of the 
dataset are also demonstrated.
The paper is organized as follows. The next section in-
troduces our approach and analysis model. In Section 
3, we introduce the dataset of non-functional require-
ments and compare it to the dataset from Stack Over-
flow. Section 4 provides the findings of our analysis 
produced by various classifiers and compares closely 
related work. The related literature is briefly presented 
in Section 5 and we conclude the paper in Section 6.

2. Background
The source of the requirements is the collection of 
business documents, laws, regulations, and records of 
interviews. These documents contain texts written in 
natural languages. In order to be able to classify these 
texts, they have to be pre-processed. This transforma-
tion process converts the raw text into a vectorized 
form which can be used for machine learning proce-
dures. The procedure involves common natural lan-
guage techniques such as tokenization and filtering. 
At the end of the procedure, the input is converted into 
a vectorized form. The most common representation 
is the tf-idf model which was used also in our experi-
ments. This representation measures the importance 
of a given word in a given document and produces a 
sparse matrix as the representation of the whole text. 
The measure of tf-idf is formulated as:

tfidf(t,d,D) = tf(t,d) ∗ idf(t,D),

where t denotes terms (words in our case), d denotes 
the document (sentences or Stack Overflow posts in 
our case) and D denotes the collection of documents 
(the set of sentences or set of posts in our case). The 
tf(t,d) is the term frequency in a given document. The 
idf (inverse document frequency) is formulated as:

.

For tokenization, we used the Keras Tokenizer [11] 
which applies filtering, lower case converting and 
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splitting words before the conversion into tf-idf based 
vector.
Two different datasets were applied to our experi-
ments. For the first tests, we used the Tera Promise 
NFR dataset which was constructed by the MS stu-
dents of DePaul University [7, 13]. This dataset con-
tains 625 requirements collected from 15 different 
projects. The sentences containing the requirements 
are classified into 12 classes from which one class rep-
resents functional requirements and the other 11 class-
es correspond to various types of non-functional re-
quirements. The statistics about the classification and 
the related projects is shown in Table 1 and Figure 1.

Figure 1
Distribution of the Promise NFR dataset

 

The source of the second series of our experiments 
was a dataset queried from Stack Overflow. The data-
set is composed of a sequence of tagged posts. Posts 
contain English texts and sometimes code fragments 
are occurring. Stack Overflow is an important source 
also for researchers. Extracting topics related to 
non-functional requirements is also common [5, 6, 39, 
40]. We have chosen posts tagged with performance 
or test related labels for our experiments.  Testability 
and the performance are very important factors for 
software quality and these topics are also discussed 
thoroughly via Stack Overflow. This dataset contains 
50000 posts where 20166 posts correspond to per-
formance and 30753 posts correspond to test. Stack 
Overflow posts are multi-labeled so 919 posts are la-
beled both test and performance.
There were two different experiment series conduct-
ed. The first series used the Tera Promise NFR data-
set and applied a set of classifiers from scikit-learn 
library [38]. The second series used the dataset from 
Stack Overflow and also applied classifiers provided 
by scikit-learn and supplemented by a classifier based 
on a simple Neural Network solution using Keras and 
Tensorflow [2] background.
For evaluation, we have employed precision, recall 
and F1 metrics. The precision is formulated as:

,

Table 1
Requirement labels in the 15 projects of the Promise NFR dataset

Requirement type
Project No

Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Functional (F) 20 11 47 25 36 27 15 20 16 38 0 0 0 0 0 255
Availability (A) 1 2 2 0 2 1 0 5 1 1 2 1 1 1 1 21
Fault tolerance (FT) 0 4 0 0 0 2 0 2 0 0 0 2 0 0 0 10
Legal (L) 0 0 0 6 3 0 1 3 0 0 0 0 0 0 0 13
Look and feel (LF) 1 4 0 2 3 2 0 6 0 7 2 2 4 3 2 38
Maintainability (MN) 0 0 0 0 0 4 0 2 1 0 1 3 2 2 2 17
Operational (O) 0 0 7 6 10 15 3 9 2 0 0 2 2 3 3 62
Performance (PE) 2 6 2 2 4 1 2 17 4 4 3 5 0 1 1 54
Portability (PO) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Scalability (SC) 0 3 4 0 3 4 0 4 0 0 0 1 2 0 0 21
Security (SE) 1 3 10 10 7 5 2 15 0 1 3 3 2 2 2 66
Usability (US) 3 6 8 4 5 13 0 10 0 2 2 3 6 4 1 67
Total NFRs 8 29 33 30 37 47 8 73 8 15 13 22 19 16 12 370
Functional 20 11 47 25 36 27 15 20 16 38 0 0 0 0 0 255
Total Requirements 28 40 80 55 73 74 23 93 24 53 13 22 19 16 12 625
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where tp is the true positive which is the number of 
correct positive classification, fp denotes the false 
positive which is the case when classifier accepts 
the example but it has to be rejected. This measure is 
called also as Type I error.
Recall can be formulated as:

,

where fn denotes the false negative which is the case 
when classifier rejects the example but it has to be ac-
cepted. This measure is called also as Type II error.
The recall is also an important metric for our purpose 
because one of the most important usage of our work 
might be the identification of non-functional require-
ments from their textual context and in this case, it is 
crucial to find them in the input. However, the preci-
sion is as the essential metric as the recall. Taking into 
account the purpose of the classifier of non-function-
al requirements the most adequate metric is the F1.
F1 is formulated as:

.

Note: F1 is a special case of F-measure with β = 1 val-
ue. The F-measure is formulated as:

.

During the Stack Overflow based experiments, the 
calculation of the metrics has been performed using 
classification reports provided by the scikit-learn li-
brary. The report uses the calculation methods which 
were applied directly in Promise based experiments. 
For this former dataset, the averaged measures were 
calculated manually but, for dataset obtained from 
Stack Overflow, the average values were produced by 
the classification report. Four types of averages were 
calculated by the report which are the micro, macro, 
weighted and samples averages.
Let denote yl the set of label l predicted by a classifier 
and yˆl the set of classes with true label l. Let y = ∪yl 
and yˆ = ∪yˆl, where l ∈ L and L is the set of labels. Then 
the micro average of precision can be given as

.

The same is done for recall:

.

For macro averages, the formulas are the following:

.

Similar formulas can be used for sample averages, 
where S denotes the set of samples:

.

For weigted averages, the following formulas can be 
applied:

.

3. Experiments
As we have mentioned in the previous section, two 
series of experiments were performed with two dif-
ferent datasets. Before the experiments datasets were 
preprocessed. During this transformation filtering 
and tokenization were applied and the resulted text 
was transformed into tf-idf representation.
The Promise NFR dataset contains only one label for 
each example but the dataset extracted from Stack 
Overflow is multilabeled. We selected only two la-
bels (performance and test) for extraction to obtain 



437Information Technology and Control 2019/3/48

a well-balanced input. During the preprocessing the 
labels of dataset from Stack Overflow were also trans-
formed using one-hot encoding and the labels differ-
ent from our interest were filtered out.
In the first experiments, we accomplished classifi-
cation processes using algorithms implemented in 
scikit-learn library on the dataset of Promise NFR 
and compared the results each other and the results 
obtained by Cassamayor et al. in their experiments 
[9]. The objective of these experiments was to deter-
mine the best algorithm of classification implement-
ed in scikit-learn for requirements classification 
tasks considering precision, recall and F-measure, 
complemented by execution time. For these first se-
ries of experiments, we applied the following classi-
fiers: Multinomial-, Gaussian- and Bernoulli Naive 
Bayes, Support Vector Machine with linear kernel, 
Linear Logistic Regression, Label Propagation, La-
bel Spreading, Decision Tree, Extra Tree, K-Nearest 
Neighbour and Multi Layer Perceptron. The selection 
process was also influenced by the resource require-
ments of the classifiers.
The experiments were executed using repeated 
K-Fold cross-validation method. Both the number of 
groups and the repetition number were set to 10. The 
classification was performed using one-versus-rest 
strategy for each class. Using this strategy, the exam-
ined class is fitted against the other classes. Preci-
sion, recall and F-measure were calculated for each 
test and each class by the corresponding scikit-learn 
method and the results were averaged for each classi-
fier. Averaged variance was calculated as well and also 
the F-measure value was computed for every classifi-
er using the averaged precision and recall because the 
averaged F-measure does not hold any useful infor-
mation using this method of calculation.
The Stack Overflow based experiments applied 
Multinomial, Gaussian- and Bernoulli Naive Bayes, 
Support Vector Machine with linear kernel, Linear 
Logistic Regression, Decision Tree, Extra Tree, and 
K-Nearest Neighbour classifiers from scikit-learn li-
brary, and the experiments were supplemented using 
a fully connected neural network with Keras and Ten-
sorflow back-end. The MLP test was removed from 
this series because the implemented fully connected 
network gives better scalability and the applied strat-
egy is similar in the two cases. The LabelPropagation 

and the LabelSpreading were also removed because 
we experienced performance issues applying it on the 
Stack Overflow dataset.
The original dataset extracted from Stack Overflow 
contains 50000 examples which were split to a train-
and a test-set. The train-set contains 35000 train-
posts whereas the test-set contains 15000 posts.
The classifiers from scikit-learn were applied using 
one-versus-rest strategy. The precision, recall and the 
F1-measure were calculated for each class and the av-
erages were also determined as we described it in the 
previous section.
The Fully Connected Network was constructed using 
Keras libraries and Tensorflow back-end. Our model 
contains 1024 units in the first layer. The number of 
units and the input shape can be varied, the shape has 
to be aligned with the dimension of tf-idf vectors. In 
our case, this dimension is 3000 which is the number 
of the selected most frequent words from the input 
dataset. As mentioned before, this hyperparameter 
can be varied, however, our experiments did not yield 
better results in case of the bigger dimension. In gen-
eral, this parameter depends on the size of the vocab-
ulary of the dataset in question.
For the purpose of the regularization, the dropout 
technique was applied. The dropout regularization 
selects a given proportion of the units randomly and 
inactivates them during the learning phase. The ratio 
of the neurons is to be inactivated is a hyperparame-
ter which can be tuned during the experiments. The 
activation function of the first layer is the ReLU (Rec-
tified Linear Unit). This function produces 0 for every 
negative input and any positive x it returns with that 
value. (Formula: f(x) = max(0,x)). The second layer is 
a softmax layer whose output size is the same as the 
number of classes under investigation. The softmax 
function can be written as:

,

where K is the number of classes. The formula provides 
a probability value for every class used in the model.
The network was trained using the categorical 
cross-entropy as a loss function and the adam opti-
mizer [23] was applied. The equiation of categorical 
cross-entropy is:
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,

Adam (Adaptive Moment Estimation) is a gradi-
ent-based optimizer for stochastic objective func-
tions which applies adaptive estimation of lower-or-
der moments which help the algorithm to not stuck in 
a local optimum. The optimizer combines the advan-
tages of AdaGrad and RMSProp methods [23]. The 
update rule of Adam is:

,

where m̂ t and v̂t are the second order moments which 
are calculated as:

,

where mt and vt are the first-order moments which are 
updated as:

mt = β1mt−1 + (1 − β1)gt vt = β2vt−1 + (1 − β2)gt
2.

For β1, 0.9 is proposed by the authors as the default 
value, whereas, for β2, 0.999 and 10−8 for  [23]. We used 
the default values for our experiments.
In addition to the performance of classifiers, the ex-
ecution time was also measured during the experi-
ments.

4. Results
In Table 2, the measured averages of Precision, Recall 
and F-measure related to the first series of our exper-
iments based on the Tera Promise NFR dataset with 
their averaged variance are presented. As mentioned 
in the previous section, averaging F-measure does not 
hold valuable information so F-measure was comput-
ed based on averages precision and recall. The averag-
es of precision, recall and F-measure values and their 
variance are illustrated in Figure 2. For comparison 
purpose, the results are illustrated using line dia-
grams. The results show that the SVM has produced 
the best precision value, however, the recall is only 
65% which is the median value of the results. The 
Multinomial Naive Bayes and Logistic Regression 
have produced the best F1 values but the F1 value of 
the SVM is only 1% lower. As one can see in the chart, 
the MLP has produced the worst result. The size of 

Table 2
Precision, recall and F-measure values during the classification of the Promise NFR

Classifier
Average Comp Variance

P R F F P R F

BernoulliNB 0.43 0.22 0.25 0.29 0.18 0.09 0.06

DT 0.66 0.64 0.62 0.65 0.01 0.03 0.01

ET 0.63 0.62 0.59 0.62 0.01 0.04 0.02

ETs 0.63 0.63 0.59 0.63 0.01 0.04 0.02

GNB 0.72 0.69 0.67 0.70 0.02 0.02 0.02

KNeighbours 0.71 0.52 0.55 0.60 0.08 0.07 0.05

LabelPropagation 0.70 0.68 0.65 0.69 0.02 0.03 0.02

LabelSpread 0.70 0.67 0.65 0.68 0.02 0.03 0.02

Logistic 0.87 0.67 0.72 0.76 0.01 0.05 0.03

MLP 0.38 0.66 0.36 0.48 0.01 0.03 0.01

MultinomialNB 0.84 0.68 0.72 0.75 0.02 0.03 0.02

SVM 0.89 0.65 0.71 0.75 0.01 0.05 0.02
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the dataset is too small for applying the Multilayer 
Perceptron classifier, but this result can be explained 
with the underfitted model.
The variance of the measures can be seen on the right 
side of the chart. As one can see the Bernoulli Naive 
Bayes and the KNeighbours have resulted in the larg-
est variance, but the top 3 classifiers (Logistic Regres-
sion, Multinomial Naive Bayes and SVM) have a small 
variance. The average variance is relatively low, the 
values are lower than 5% for every metrics.
As the results of our first-series experiments pres-
ent, regarding the precision the Multinomial Naive 
Bayes Classifier, Support Vector Machine with linear 
kernel and Linear Logistic Regression have produced 
the best values. The Naive Bayes Classifier was found 
also in former researches as the best classifier for 
classification of requirement sentences comparing it 
to other classifiers such as the tf-idf classifier [9], the 
k-Nearest Neighbour [1, 9], the Bittern Topic Model 
(BTM) or the Latent Dirichlet Allocation (LDA) [1]. 
Lu and Liang have found that the SVM classifier has 
performed best during their research [25].
The second series of the experiments used dataset 
obtained from Stack Overflow. This dataset is large 
enough for machine learning purpose. While the 
Promise NFR contains 625 examples, this dataset 
contains 50000 examples. The main drawback re-

garding Stack Overflow dataset is its noisy nature. 
Noisiness means in our case that there are several 
false or off-topic posts presents in the database. Nois-
iness also means that there are many code-fragments 
presented which have to be also filtered out.
The results of the second series of experiments (Stack 
Overflow) are presented in Table 3 and Table 4, re-

Figure 2 
Precision, recall, f-measures (left) and their variance (right) during classification of the Promise NFR
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 P R F P R F 
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P R F P R F
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GaussianNB 0.82 0.81 0.81 0.84 0.84 0.81

MultinomialNB 0.92 0.91 0.92 0.92 0.92 0.92

DecisionTree 0.91 0.91 0.91 0.91 0.90 0.90

ExtraTree 0.84 0.84 0.84 0.83 0.83 0.83

LogisticRegr 0.95 0.95 0.95 0.95 .95 0.95
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Table 4 
Precision, recall and F-measure values during the 
classification of the dataset from Stack Overflow

Classifier
weighted 
average

samples 
average

P R F P R F

BernoulliNB 0.91 0.91 0.91 0.91 0.91 0.91

GaussianNB 0.87 0.81 0.81 0.82 0.82 0.81

MultinomialNB 0.92 0.91 0.92 0.93 0.92 0.92

DecisionTree 0.91 0.91 0.91 0.90 0.91 0.90

ExtraTree 0.84 0.84 0.84 0.80 0.85 0.80

LogisticRegr 0.95 0.95 0.95 0.95 0.96 0.95

KNeighbours 0.80 0.80 0.79 0.80 0.80 0.80

SVM 0.95 0.95 0.94 0.94 0.95 0.94

FullyConnected 0.96 0.94 0.95 0.96 0.95 0.95

spectively. The results are also illustrated in Figure 3 
and in Figure 4. According to the results of the Logis-
tic Regression, the SVM and the FCN have produced 
the best values. The FCN has yielded the strongest 
values of precision and F-measure in all calculated 
averages. However, regarding the F-measure the re-
sults of Logistic Regression are the same as those of 
the FCN. In the case of the recall, the Logistic Regres-
sion has outperformed the other classifiers, however, 
the results of the FCN are only 0.1% lower.

Figure 3 
Average precision, recall values during classification of the 
dataset from Stack Overflow
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The averages were calculated using the micro, macro, 
weighted and samples calculation method. The for-
mulas of these methods are presented in the Section 
2 of this paper. The suitability of these methods de-
pends on the input. Macro averages take the values 
calculated for every class and calculate their average. 
In the case of a well-balanced dataset, this average 
can be useful, but when the size of the classes varies, 
this method is not recommended. The micro average 
can be applied for any cases and it is the best choice if 
the size of the classes varies. If the size of the classes 
is also an important factor, weighted averages can be 
proposed. Sample averages calculate the averages of 
the values of the instances. As one can see in Figures 
3 and 4, these values differ but can be used in a similar 
way to characterize classifiers.
The significance of the difference was tested using 
the first five classifiers, the FCN, the SVM, the Lo-
gistic Regression, the Multinomial Naive Bayes and 
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the Decision Tree Classifier. For the significance test, 
we have applied one-way repeated measures ANOVA 
test. The p-value of the test is 0.000575, which is sig-
nificant at p<0.05. Because the assumptions of ANO-
VA as the samples are drawn from a normal distribu-
tion and the variance homogeneity is not held, we also 
performed a repeated measures Friedman Test [14]. 
The p-value in this case is 0.10739 which is not sig-
nificant at p<0.05. As mentioned before, the value of 
the F-measure is the same of the FCN and the Logistic 
Regression.
The variance was also calculated, however, only two 
classes were included in the classification. The re-
sults of the calculation are shown in Table 5 and in 
Figure 5. The results show that Gaussian Naive Bayes 
has produced the biggest variance regarding the pre-
cision whereas the KNN yielded the biggest value re-
garding to the recall. Those classifiers, which present-
ed the best values, produced also a small variance.
The results of the second series of the experiments 
(Stack Overflow based) confirmed the result of the 
first series (Tera Promise based) as the SVM and the 
Logistic Regression have produced the best values us-
ing scikit-learn classifiers. However, Multinomial Na-
ive Bayes has also given good results, its performance 
appeared to be a bit worse than the results of the top 
three. These values suggest that the linear classifiers 
can be applied for classifying, labeling or tagging re-
quirements given in natural language form. The result 
of the FCN shows that if there are enough examples 

Table 5 
Variance statistics during the classification of the dataset 
from Stack Overflow

Classifier
Variance

P R F

BernoulliNB 0.045 0.045 0.045

GaussianNB 3.200 3.645 0.005

MultinomialNB 0.320 0.020 0.045

DecisionTree 0.045 0.080 0.045

ExtraTree 0.405 0.500 0.405

LogisticRegr 0.020 0.020 0.020

KNeighbours 0.320 6.480 1.125

SVM 0.045 0.320 0.320

FullyConnected 0.020 0.020 0.020
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examples available, the neural network models can 
outperform the classic models of machine learning. 

During the FCN test, we applied a simple fully 
connected network with the dropout regularization 
and the Adam optimizer. The hyperparameters such 
as the number of neurons, the dropout keep ratio, 
the batch size or the number of epochs were also 
adjusted, and the results were checked. The best 
results were achieved using 1024 neurons in the 
first layer, the 0.1 value for dropout parameter and 
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Figure 5
Variance statistics during the classification of the dataset 
from Stack Overflow

available, the neural network models can outperform 
the classic models of machine learning.
During the FCN test, we applied a simple fully con-
nected network with the dropout regularization and 
the Adam optimizer. The hyperparameters such as 
the number of neurons, the dropout keep ratio, the 
batch size or the number of epochs were also adjust-
ed, and the results were checked. The best results 
were achieved using 1024 neurons in the first layer, 
the 0.1 value for dropout parameter and 100 for batch 
size. The training phase contained 3 epochs. The 
maximum difference between the worst and the best 
results was only 0.2% during the parameter changes.
As mentioned in the previous sections, the execution 
time was also measured for every classifier during 
both series of the experiments. Execution time is 
also an important factor for practice which can help 
System Analyst to choose the appropriate tool for 
requirement elicitation. The values of the execution 
time of the second series of our experiments are pre-
sented in Table 6. The two series of the experiments 
were performed in a different hardware context, 
therefore, the results cannot be compared. The sec-
ond series, however, provides useful information 
about the expectable execution time using a standard 
desktop environment with Intel I7-3770 3.9 GHz CPU 
and 8 GB RAM with 240 GB SSD. The operating sys-
tem is Windows 10 64 bit.
The execution times are given in seconds. However, the 
actual execution time depends on the dataset under in-
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Table 6 
Execution time of the learning process using the dataset from 
Stack Overflow

BernoulliNB 3.80

GaussianNB 6.67

MultinomialNB 0.99

DecisionTree 162.26

ExtraTree 3.33

LogisticRegression 11.18

KNeighbours 4290.83

SVM 10.91

FCN 50.92

vestigation, these results can give a hint for the choice 
in case the running time is an important factor. The 
best result has been presented using Multinomial Na-
ive Bayes. This classifier was also the winner regarding 
the execution time also in our first experiments. The 
worst result has been produced by KNeighbours clas-
sifier. This epoch lasted 4290.83 seconds which is very 
high comparing to other classifiers. The execution time 
of the FCN is also a reasonable result which implies 
that it is worth to move to the area of the Deep Learn-
ing also in classification non-functional requirements.

5. Related Work
The problem of processing requirements documents 
using natural language processing and machine learn-
ing methods has been a research topic for decades [4]. 
Although non-functional requirements are less de-
pendent on the application domain, it is not a trivial 
problem to set up a general list of NFR types. The types 
identified in the literature are widespread, for example, 
Chung et al. [12] identified 156 NFR categories, while 
Mairiza et al. [28] separated 114 different NFR classes 
in their work, on the contrary to the 6 high-level cate-
gories defined by the ISO/IEC 25010:2011 standard.
A fundamental study of NFR classification is pub-
lished relatively lately in 2006 by Cleland-Huang et 
al. [13]. They used 14 NFR categories separated from 
functional requirements. More than 600 require-
ments from 15 projects were collected and manual-
ly categorized to train and test their categorization 

methods. Cleland-Huang et al. achieved high recall 
with the tradeoff of really low precision. This exper-
iment was reproduced by several researchers in the 
past [10, 37]. Casamayor et al. [10] employed multino-
mial Naive Bayes classifier coupled with an Expecta-
tion Maximization algorithm.
Requirements traceability is a related field, where 
NLP and information retrieval techniques are fre-
quently applied [26, 27, 41]. Hindle et al. [20] used top-
ic modeling to link NFRs to topics found in commit 
messages. Falessi et al. [16] conducted a largescale ex-
periment with various NLP techniques including dif-
ferent algebraic models, term weightings and similar-
ity metrics in order to detect identical nonfunctional 
requirements.
Sharma et al. [36] addressed the NFR extraction prob-
lem with a rule-based approach. They implement-
ed a framework for NFR analysis including a DSL 
language. Sawyer et al. have focused on document 
archaeology and created an NLP based tool called 
REVERE to support business analysts in the inves-
tigation of different documents containing require-
ments [35]. This tool has utilized some standard NLP 
techniques like part-of-speech tagging or semantic 
tagging and determination of modality.
Denger et al. examined the ambiguity of require-
ments sentences and investigated the use of language 
patterns for rewriting these requirements into less 
ambiguous sentences [15]. The ambiguity of require-
ments is one of the most prominent issues in require-
ments engineering which has to be resolved as pointed 
by Firesmith in his paper [17]. Ambiguity, complete-
ness, conformity of requirements were examined and 
discussed also by Kang and Park using linguistics 
viewpoint [22]. The researchers developed a require-
ment-grammar and also applied error patterns for 
developing a tool for parsing the manually annotated 
corpus built by system-engineering related texts. The 
annotated corpus can be then used for training error 
model which can be applied to check the exactness of 
the requirements.
From the perspective of mining software reposito-
ries, Paixao et al. [29] investigated the relationship 
between built results obtained from continuous inte-
gration tools with non-functional requirements.
To overcome the scarcity of the labeled examples 
available via the Internet, extracting requirements re-
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lated information from social networks has become a 
frequently examined area. Portugal and do Prado Leite 
[31] applied the pattern-search method and extracted 
requirements related information from GitHub. They 
have also built a corpus of requirements based on the 
information retrieved from README files located 
on GitHub repository [32]. Stack Overflow is also a 
popular repository among the researchers. Zou et al. 
examined the repository via utilizing the Latent Di-
richlet Allocation (LDA) to discover the main topics 
of discussion. [39]. These topics are related to various 
NFR which were also identified by the researchers. 
The topics which are the focus of developers was in-
vestigated also by Barua et al. [6] using LDA on Stack 
Overflow textual database.

6. Conclusions
Identifying and classifying non-functional require-
ments is a crucial duty of System Analysts which can 
be a demanding and error-prone task without using 
a proper tool. The collection of the requirements ex-
pressed using natural language form are originated 
from customers and stakeholders. Natural Language 
Processing techniques along with Machine Learning 
can support the processing of the requirements given 
in the textual form.
In this paper, we have demonstrated the usability of 
various machine learning methods along with the 
transformation of the textual input into an appropri-
ate form which is processable by implemented ma-

chine learning algorithms. The methods have been 
compared with each other using precision, recall and 
F1 metrics and also a significance test has been per-
formed. Two series of experiments were executed. We 
used the small-sized Tera Promise NFR dataset to the 
first series and the large dataset extracted from Stack 
Overflow for the second series of experiments. The 
results are presented in the results section.
The results of our experiments show that the linear 
classification algorithm produced the best values us-
ing both of the small and the large datasets. The win-
ners are Multinomial Naive Bayes, Support Vector 
Machine and the Logistic Regression but Decision 
Tree also produced good results. Using the dataset 
from Stack Overflow, the Fully Connected Network 
produced the best values and outperformed the other 
classifiers.
The performance metrics along with execution times 
present that using NLP and machine learning tech-
niques provides a reasonable solution for the base 
technology of tools supporting System Analysts in re-
quirement elicitation process. The precision and re-
call can be both above the 95 % which is a good start-
ing point for practical usage, however, these values 
are to be improved.
Our future research plans are to continue studying 
neural networks by involving deep networks and 
recurrent networks. Examinations will be extend-
ed using another representation of inputs such as 
embedding techniques which can represent also the 
contextual information of a textual element and also 
some grammatical features can be also captured.
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