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It is challenging to recover the required compressed CT (Computed Tomography, CT) image, which is got by 
transferred through the internet or is stored in a signal library after being compressed. We present a recov-
ery method for compressed sensing CT images. At present, minimizing 0-norm, 1-norm and p-norm is used to 
recover compressed sensing signals. However, sometimes 0-norm is an NP problem, 1-norm has no solution 
in theory and p-norm is not a convex function. We introduce a recovery method of compressed sensing sig-
nal based on regularized smooth convex optimization. In order to avoid solving the non-convex optimization 
problems and no solution condition, a convex function is designed as the objective function of optimization to 
fit 0-norm of signal and a fast iterative shrinkage-thresholding algorithm is proposed to find solution with the 
convergence speed is quadratic convergence. Experimental results show that our method has a sound recovery 
effect and is well suitable for processing big data of compressed CT images.
KEYWORDS:  Compressed sensing; CT Image; Re-weighted function; Regularized Least-Squares; Sparse rep-
resentation.

1. Introduction
CT (Computed Tomography, CT) images cannot only 
show physicians the anatomical structure of bones 
inside human body, but also reveal the damaged lev-
el to a certain degree. In hospital, physicians usually 
transfer CT images through the Internet or the local 
area network, but the big data of CT images pose a 
limit for the possibility of remote transmission or 
preview. Then these CT images are compressed be-
fore transmission or stored in a library and the CS 
(Compressed Sensing, CS) method is a popular com-
pression method at present. These compressed im-
ages must be recovered if we want to make good use 
of them. So the compressed sensing CT image recov-
ery becomes a hot research topic thanks to the rapid 
internet development. In this paper, we study how to 
recover the CT images which are compressed using 
the compressed sensing method. We could treat a 
sound signal as a 1-D signal, an image as a 2-D signal, 
and a 3-D model as a 3-D signal, so in this paper we 
treat CT images as 2-D signals. As an alternative and 
effective data acquisition strategy, the compressive 
sensing acquires a signal by collecting a relatively 
small number of linear measurements. Algorithms 
for signal recovery in a CS framework are referred 
to as sparse signal recovery (SSR) algorithms. Gen-
erally, the existing methods can be categorized as 
the 0-norm minimization, 1-norm minimization 
and p-norm (0 < p < 1) minimization. Unfortunate-
ly, 0-norm minimization is a combinatorial optimi-
zation problem whose computational complexity 
grows exponentially with the signal size. Recently, 

many approaches were developed based on mini-
mizing 0-norm because it is the direct approach [1-
2, 6, 10-14, 19, 22]. 1-norm minimization is the most 
popular algorithms, which has been widely applied 
[22]. However, sometimes in theory, there will be an 
infinite number of solutions. p-norm (0 < p < 1) min-
imization will solve the effect of 1-norm minimiza-
tion. Several SSR algorithms based on constrained 
p-norm minimization with (0 < p < 1) have also been 
proposed [1-2, 6-8, 10-14, 19, 22, 24-25].
In this paper, we propose a new algorithm for the re-
covery of compressed sensing CT images (2-D sig-
nals) and it is also suitable to the ordinary CS images. 
Furthermore, a new objective function is designed to 
replace signal’s 0-norm, and a fast iterative shrink-
age-thresholding algorithm is put forward to find the 
solution with a quadratic convergence speed.

2. Preliminaries
Recover compressed sensing signal is a linear inverse 
problem. It is a discrete linear system as:
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2. Preliminaries 
Recover compressed sensing signal is a linear inverse problem. It is a discrete linear system as: 

 

,y x w= Ψ +                          (1)           

where, ( )m nR m n×Ψ ∈ <<  and my R∈ , mw R∈  is an unknown noise vector. This linear system has a 
wide range of application prospect in many fields such as astrophysics, statistical inference, image 
processing or optics. If x is sparse, the solution of y x w= Ψ +  can be obtained by solving the 
constrained optimization problem: 

2
.

2 0
minimizex y x x

x
λ=     − Ψ +          (2) 

Unfortunately, the optimizing 
0

x is a combinatorial optimization problem whose computational 
complexity grows exponentially with the signal size n . 

Recently, the widely used recovery method is the optimizing signal’s 1-norm: 

(1)

where, ( )m nR m n×Ψ ∈ << ( )m nR m n×Ψ ∈ <<  and my R∈ , mw R∈  is an 
unknown noise vector. This linear system has a wide 
range of application prospect in many fields such as 
astrophysics, statistical inference, image processing 
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or optics. If x  is sparse, the solution of y x w= Ψ +  
can be obtained by solving the constrained optimiza-
tion problem:

 
 

for processing big data of compressed CT images. 
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minimizex y x x

x
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Unfortunately, the optimizing 
0

x is a combinatorial optimization problem whose computational 
complexity grows exponentially with the signal size n . 

Recently, the widely used recovery method is the optimizing signal’s 1-norm: 
2

2 1
minimize .x y x x

x
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The solving process of the optimizing signal’s 1-norm is shown in Figure 1. 

The p-norm (0 1)p   minimization recover a sparse signal from noisy measurements by solving the 

. (2)

Unfortunately, the optimizing 
0

x  
is a combinatori-

al optimization problem whose computational com-
plexity grows exponentially with the signal size n.
Recently, the widely used recovery method is the opti-
mizing signal’s 1-norm:
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From Figure 4, on the aspect of the time required in the recovery our method is superior to the other three 
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points, and an original CT image is shown in Figure 5. 
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Figure 6 (the right-hand side) shows a histogram for the x-coordinates of the CT image under the new basis 
and it is the spectral transform of 2-D image. As a result, 2-D image can be compressed based on compressed 
sensing. 
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Figure 7
The recovery effect of a different sampling matrix
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In fact, the data of CT image is big after being sampled using the traditional Shannon-Nyquist sampling 
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compression methods are low because the data is compressed after being sampled. While, the 
compressed sensing method compresses the data in the sampling process. So, the shortcoming of the 
large volume of data is essentially overcome by the compressed sensing method. Our recovery method is 
for the compressed sensing method. We believe that compressed sensing and recovery methods could 
play an important role in the field of CT image processing. 

5.  Conclusions  
In this paper, we recover the compressed CT images which are compressed by the compressed sensing 
method and achieve satisfactory results. However, this function is not convex in the whole space. The 
starting point is very important in the process of computing. So the future work will be emphasized to 
find out a convex function in the whole space. Thus, we can obtain the global optimal solution without 
considering the starting point. 
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