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The growing dependency of human activities on software technologies is leading to the need for designing more 
and more accurate testing techniques to ensure the quality and reliability of software components. A recent lit-
erature review of software testing methodologies reveals that several new approaches, which differ in the way 
test inputs are generated to efficiently explore systems behaviour, have been proposed. This paper is concerned 
with the challenge of automatically generating test input sets for Event-Driven Systems (EDS) for which nei-
ther source code nor specifications are available, therefore we propose an innovative fully automatic testing 
with model learning technique. It basically involves active learning to automatically infer a behavioural model 
of the System Under Test (SUT) using tests as queries, generates further tests based on the learned model to 
systematically explore unseen parts of the subject system, and makes use of passive learning to refine the cur-
rent model hypothesis as soon as an inconsistency is found with the observed behaviour. Our passive learning 
algorithm uses the basic steps of Evidence-Driven State Merging (EDSM) and introduces an effective heuristic 
for choosing the pair of states to merge to obtain the target machine. Finally, the effectiveness of the proposed 
testing technique is demonstrated within the context of event-based functional testing of Android Graphical 
User Interface (GUI) applications and compared with that of existing baseline approaches.
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1. Introduction
Guaranteeing the quality and reliability of software 
components is often a key factor for business. It be-
comes even crucial for human safety in the context of 
safety-critical systems. To achieve qualitative and ro-
bust software, an intensive testing phase must be per-
formed. Our interest concerns with testing black-box 
event-driven systems at the system level, where sys-
tems behaviour is checked with specific input event 
sequences. This testing process requires SUT formal 
specifications or test models to automatically gener-
ate test cases that capture the system behaviour and 
to determine whether a test has passed or failed (test 
oracle problem). However, such specifications are 
rarely written out because developers cannot design 
and maintain system models in the actual agile con-
text in which requirements and implementation are 
constantly in flux. In this scenario, testing software 
elements becomes very challenging because there is 
no basis upon which to select suitable test inputs for 
the subject system. To deal with this problem, test en-
gineers can use both their intuition and background to 
drive the testing process or, more often, a random test 
input generation approach. Both of these approach-
es have several disadvantages in the sense that they 
often cannot lead to build a representative set of test 
input event sequences capable of investigating all the 
facets of software behaviour. Moreover, the absence 
of specifications and test models makes it difficult to 
estimate the quality and the adequacy of a test set. To 
address this problem, new academic research has fo-
cused on several learning-based approaches that in-
vestigate the use of Machine Learning in the software 
testing domain [17, 18, 9, 1, 33, 37, 16]. These tech-
niques automatically infer models from the observed 
system behaviour and generate new tests based on the 
learned model.
The idea of combining model inference with software 
testing was first introduced by Weyuker [42], but it is 
only recently that the topic has become very popular. 
Remarkable success has been obtained in the area of 
testing reactive systems by combining active learning 
and model checking to infer a black-box SUT model 
using tests as queries [17, 30]. An alternative to this 
approach is to use model synthesis techniques to 
automatically derive behavioural models via passive 
learning from pre-recorded execution traces and to 

guide the generation of new tests based on the in-
ferred models [37, 39].
In this paper, we address the problem of automatically 
generating test input sets for event-based Graphical 
User Interface (GUI) systems, for which we have nei-
ther an existing model of the GUI nor a complete spec-
ification, to achieve significant functional coverage. In 
recent years, both researchers and practitioners have 
investigated different approaches for testing event-
based systems through their GUI. These techniques 
mainly differ in the way they generate test inputs and 
for the strategy they adopt to discover the SUT be-
haviour. In particular, much effort has been focused 
on applying these techniques on mobile applications. 
In this field, automated GUI exploration techniques 
aim to detect the set of events that can be fired at 
each screen to guide the execution of the application. 
These events may be chosen either randomly or via a 
systematic exploration strategy of the GUI.
In this context, this paper proposes a fully automatic 
online black-box testing technique that combines ac-
tive learning, a systematic exploration of the GUI and 
passive learning. The testing approach effectiveness 
is demonstrated by applying it to Android applica-
tions. The proposed approach proceeds in a similar 
way as described in [9], however it introduces some 
relevant innovations that will be highlighted in the 
rest of the paper. 
Based on SUT interface descriptions and domain 
knowledge, our testing technique probes the system 
behaviour with tests, uses the test results to on-the-
fly learn an Extended Labelled Transition System 
(ELTS) model of the SUT, generates further tests on 
the learned model and refines it via inductive infer-
ence as soon as an inconsistency is found between the 
current ELTS model hypothesis and the set of execu-
tion traces observed so far. With reference to the pro-
posed ELTS inductive algorithm, it adopts the basic 
steps of the Evidence-Driven State Merging (EDSM) 
algorithm in the “blue fringe” framework [24, 39] and 
introduces a novel heuristic approach according to 
the order in which state pairs are chosen for merging 
during the generalization process.
In this setting the learned model cannot be validity 
checked against a formal specification of the SUT. As 
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a consequence, the proposed testing technique ter-
minates by approximating the equivalence check be-
tween the ELTS model and the SUT. 
The effectiveness of our testing with model learning 
technique is demonstrated by measuring the extent 
to which the generated test set covers the functional-
ities of the SUT in terms of the observed behaviour. 
The learned model represents the result of what we 
have observed during the test execution process, 
therefore we use it as a basis for estimating the func-
tional coverage in a similar way as in [37]. To confirm 
the analysis, we also measure the method coverage via 
app bytecode instrumentation. We highlight that our 
testing technique does not need app bytecode instru-
mentation to work; this is implemented just to per-
form this kind of measurement.
The experimental results show that our solution can 
outperform current baseline approaches in terms of 
test set adequacy. Moreover, the statistical signifi-
cance of the results has been evaluated via rank-based 
statistical testing. The rest of the paper is organized 
as follows. Section 2 gives a brief overview of the ex-
isting automated GUI exploration strategies for An-
droid GUI apps. The third section provides the math-
ematical definitions related to model inference and 
introduces the trace encoding process used to infer 
the sequential behaviour model of an Android GUI 
App. In Section 4 the proposed fully automatic on-
line black-box testing technique is described. Section 
5 and 6 give an overview of the Deterministic Finite 
Automaton induction problem in the learning from an 
informant setting and describe the proposed passive 
learning algorithm used to refine the ELTS model re-
spectively. Technical details regarding the implemen-
tation of our solution and the experimental results 
obtained in the context of event-based functional 
testing of Android applications are given in Section 7. 
Finally, our conclusions are drawn in the last section.

2. Related Work
In the last few years, the ever-growing demand for mo-
bile applications has led to the development of a set of 
frameworks and methods for automating GUI testing. 
In particular, several studies have been conducted to 
highlight the strengths and weaknesses of different 

testing frameworks and automated GUI exploration 
strategies for Android apps [2, 10, 29, 11, 21, 26, 34].
Android mobile applications are Event-Driven Sys-
tems (EDS) that can sense and react to events of 
different types. They may be either events generat-
ed through the application user interface, or system 
events produced by the device hardware platform and 
other running applications. Existing test input gen-
eration approaches are able to generate such events 
either randomly or systematically. In the first case, a 
random event is chosen at each GUI screen to navi-
gate the app [20, 3, 44, 41, 28, 31, 27]. On the other 
hand, systematic exploration strategies select new 
actions to be executed based on the app GUI model [9, 
5, 4, 6, 43, 7, 40, 25, 8, 32]. 
The remainder of the current section briefly describes 
these two main approaches along with the most popu-
lar Android GUI testing tools.

2.1. Random Exploration Strategy 
Random testing represents the most popular ap-
proach to automatically explore GUI-based software 
systems in the absence of specifications and test 
models. It consists of randomly selecting events (GUI 
events or system events) during the execution of the 
application to probe the system behaviour. However, 
the approach effectiveness strictly depends on the 
characteristics of the SUT; therefore, a random ex-
ploration strategy may be generally weak at selecting 
specific inputs resulting in a poor or partial coverage 
of the system behaviour. Moreover, when both speci-
fications and source code are missing, it becomes re-
ally difficult to determine a stop termination criterion 
and define the success or not of the exploration strate-
gy. The common practice is to manually specify a time 
budget limit for the testing procedure.
The first random automatic test input generation 
technique was proposed by Hu et al. [20]. It uses the 
Monkey tool [35] which comes together with the 
Android developer toolkit. The approach consists of 
generating and sending random events such as clicks, 
scroll, system-level events to the SUT in order to de-
tect GUI bugs. Relying on the Monkey tool, many oth-
er random GUI exploration tools have been developed 
[3, 44, 41]. Adaptive Random Testing (ART) [27] is a 
different random testing approach. The technique 
consists of selecting random sequences of events 
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that, according to a distance metric, are farthest from 
the already executed ones. The approach results in 
a better distributed generation of events sequences 
if compared with pure random testing. Dynodroid, 
proposed by Machiry et al. [28], performs a random 
selection of events considered to be relevant for the 
app. The authors state that an event is relevant to an 
application if it registers a listener for that event by 
means of the Android framework.
Finally, Morgado et al. [31] propose a random testing 
approach within the iMPAcT tool that automatically 
analyses a mobile application with the aim of iden-
tifying and testing its recurring behaviour (UI Pat-
terns). To achieve the goal, the iMPAcT tool explores 
the current state of the application, identifies all the 
events that can be fired and then uniformly selects at 
random one of them to verify if the specific UI Pattern 
is correctly implemented.

2.2. Systematic Exploration Strategy

Most of the systematic exploration approaches gen-
erally build a behavioural model of the application 
under test during its activity. Then, based on the ob-
tained model, new test input events are generated and 
executed to discover the app behaviour. According to 
various systematic traversal strategies, several An-
droid GUI exploration tools have been developed.
In [5, 4, 6], Amalfitano et al. propose several contri-
butions to the field of Android GUI app exploration. 
The designed approach builds a GUI model of the app 
and uses ripping to automatically explore it. For each 
newly visited GUI state, the procedure keeps all the 
events that could be fired in the current state and sys-
tematically executes them. The process terminates 
as soon as all the GUI app states have been explored. 
Yang at al. [43] implement a grey-box exploration 
strategy for automatically obtaining a model of the 
app under test in the Orbit tool. It is composed by an 
action detector module and a dynamic crawler. The 
first module automatically extracts the relevant GUI 
events by statically analysing the app source code and 
the manifest file. The second module builds a model 
of the GUI app by exercising the detected events on 
the live application. The systematic exploration of the 
GUI app is obtained via a modified depth-first strat-
egy. In [7], the authors describe Automatic Android 
App Explorer (A3E). The approach consists of two dif-

ferent exploration strategies, a Targeted Exploration 
and a Depth-First one. The Targeted Exploration first 
performs a static bytecode analysis to build a Static 
Activity Transition Graph. Such graph is then used 
to systematically explore the running app. Differently 
from the first one, the second approach automatically 
explores all the activities and the Android GUI ele-
ments in a depth-first manner to infer a dynamic Ac-
tivity Transition Graph model. For each activity, the 
procedure extracts the GUI components and system-
atically exercises them by firing their corresponding 
event handlers. The procedure stops when no more 
activities are found.
A different systematic GUI exploration strategy is the 
one proposed by Choi at al. in the SwiftHand tool [9]. 
It aims to learn a behavioural model of the GUI app 
in the form of a deterministic Extended Label Tran-
sition System (ELTS) using tests as queries. Further 
tests are then generated based on the learned model 
to discover new states of the application. If an in-
consistency between the learned model and the app 
is found, the ELTS is rebuilt from scratch using the 
set of execution traces observed so far. Wang et al. 
[40] introduce the DroidCrawle tool to automatically 
traverse an application’s GUI and achieve high GUI 
coverage. The crawler technique consists of automat-
ically exploring the application under test via a depth-
first approach and of inferring a GUI tree model at the 
same time. In [25], the authors introduce DroidBot, a 
lightweight UI-guided test input generator. It is able 
to generate UI-guided test inputs based on a transi-
tion model generated on-the-fly, and allows users to 
integrate their own testing strategies.
More recently, new techniques have been introduced 
with the aim of improving the effectiveness of mod-
el-based testing. Cao et al. [8] present the CrawlDroid 
tool that via a novel feedback based exploration strat-
egy, allows to dynamically adjust the priority of the 
actions to execute. With this approach, actions that 
potentially have more chances to expose new states of 
the GUI app can be selected. In [32], the authors de-
sign a behavioral-based GUI testing approach in or-
der to create a behavioural model based on usage logs 
by applying a statistical model. The approach consists 
of dynamically updating the model to increase the 
probability of selecting an event that rarely or never 
occurs when users use the application.
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3. Background
The automatic inference of state-machine models 
has been intensively investigated within the machine 
learning domain of grammar inference. The problem 
of grammar inference is concerned with the process of 
identifying a language from positive (valid) strings that 
belong to the language and negative (invalid) ones that 
do not. Several inference techniques have been devel-
oped to reduce human effort in automatically generat-
ing state machine models from examples of software 
behaviours. These examples can either be in the form 
of scenarios extracted from models created during the 
development stage of a software system, or execution 
traces from the current implementation of a program.
The aim of this section is to provide the reader with 
the mathematical definitions related to model infer-
ence. It also introduces an example of the specific 
trace-encoding process used to infer the sequential 
behaviour model of an Android GUI application.

3.1. Definitions
In this paper, we restrict the discussion to those sys-
tems that can be modelled as an Extended determin-
istic Labelled Transition System (ELTS) [33]. A La-
belled Transition System (LTS) [37] is an instance of 
a state machine often used to represent the behaviour 
of software systems. In intuitive terms, an ELTS mod-
el augments a conventional LTS with a state labelling 
function λ defining the set of enabled transitions at 
each model-state.
Most of the techniques used to infer software be-
haviour models take as input a set of program execu-
tion traces that consist of sequences of input events to 
which the system responds with actions. In this work, 
we adopt the same trace-encoding process described in 
[33] in which we assume that the interactions with the 
SUT can be characterised in terms of event labels be-
longing to the ELTS finite alphabet ∑. The definitions 
of trace and trace projection are formally given below.
Definition 1 [Trace]. An execution trace, or simply 
a trace t is a finite sequence of pairs of input events 
and sets of possible events at each traversed state q, 
starting from the initial state q0. Formally a trace t is 
an element of 
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3.2. Illustrative Example
Let us consider the scenario where we are required to 
learn a model of the sequential behaviour exhibited by 
an Android GUI application without the availability of 
the app source code. In this setting, we assume that we 
are able to detect the GUI components at each visit-
ed app screen and, as a consequence, to automatically 
navigate the application through the generation of GUI 
events [2]. It is during such exploration that both the 
given input event sequences and the corresponding 
app behaviour are encoded in a set of execution traces.
As a running example we use the Sanity Android ap-
plication to better explain the trace-encoding process 
needed to set up the behavioural model inference 
challenge.
Figure 1 shows one of the possible input sequences 
that, once given to the SUT, let the automatic explo-
ration reach the main Sanity app screen starting from 
the initial one. This scenario of execution is encoded 
in the trace below:

.
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... 
(a, set of available GUI events from screen 2) 
(b, set of available GUI events from screen 3) 
(c, set of available GUI events from screen 4) 
... 

Figure 1 
An automatic GUI exploration

Table 1 
GUI events labels

GUI event label GUI input action

‘a’ Click on Button Ok of screen 1

‘b’ Click on Button Ok of screen 2

‘c’ Click on Button CANCEL of screen 3

of the GUI to build an ELTS behavioural model of the 
SUT. The learned model is then used with the aim of 
guiding the generation of new test inputs to discover 
as quickly as possible unseen parts of the subject sys-
tem. Generally speaking, an active learning algorithm 
for inferring finite state machines iteratively asks 
for additional observations to complete its task and 
often implies a teacher-student relationship [12]. In 
our scenario, indeed, the designed testing with model 
learning procedure is thought to act as a teacher. It ex-
ecutes the SUT on specific test event sequences to get 
answers to two kind of different queries, membership 
and equivalence queries. Membership queries aim to 
realize whether the GUI app can trigger in order a 
particular sequence of events, whereas equivalence 
queries are intended to check if the current model 
hypothesis is consistent with the observed system 
behaviour, without the aid of formal specifications. 
Moreover, according to the taxonomy presented by 
Utting et al. [36], the overall testing procedure is de-
fined as online in the sense that test generation and 
test execution are iteratively performed on-the-fly. 
The testing with model learning process is described 
by Algorithm 1. It is based on the following practical 
assumptions:  
 _ it is possible to detect the set of available user 

inputs at each app screen, 
 _ the testing algorithm is able to restart the SUT, 

send events to the subject system and record its 
reaction. 

According to Definition 1 this execution trace con-
sists of a sequence of pairs (shown on a different line) 
of input event labels and GUI events available in the 
current app screen. Each event label represents a spe-
cific GUI event sent to the SUT as detailed in Table 1.

4.Testing with Model Learning
In this Section, the proposed fully automatic online 
black-box testing technique for GUI applications is 
described. The key idea is to combine testing with 
model learning to obtain a test input set capable of 
intensively exercising the functional behaviour of the 
SUT. To reach this goal, an active learning algorithm 
is used in conjunction with a systematic exploration 
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Algorithm 1: Testing with Model Learning Algorithm

Input: the SUT
Output: the set of execution traces T, the ELTS M 
modelling the sequential behaviour of the SUT

At each iteration, the testing algorithm exercises new 
functionalities of the GUI via a model-based explora-
tion strategy.
Definition 5 [Frontier model-state]. A state q in an 
ELTS model is a frontier-state if and only if there ex-
ists 

available GUI events is modelled as the state labelling function value in p (  p ) (line 1). We use throughout the rest of this 
Section s to refer to the current app-state (current GUI screen) and p to indicate its corresponding abstract state in the model. 
At each iteration, the testing algorithm exercises new functionalities of the GUI via a model-based exploration strategy. 

Definition 5 [Frontier model-state] A state q in an ELTS model is a frontier-state if and only if there exists a  q  such 

that q 
a

 u is not true for any u Q [33].  

The findFrontierState function is responsible of choosing a frontier-state q in the ELTS model that can be reached 
starting from the current model-state p, then the algorithm selects a sequence of event labels l that leads to q starting from p 
(lines 4-5). We heuristically pick the frontier-state q as follows: 

 if during the exploration an app-state s is reached whose corresponding model-state p is a frontier-state in M, then 
p is selected as the next frontier-state to explore,  

 otherwise, the algorithm selects the frontier-state q for which the number of diverse states to traverse, in the path 
that leads from p to q, is the greatest one.  

Starting from s, the algorithm executes the SUT on the sequence of GUI events corresponding to l and obtains a trace 
of execution t (line 6). If t is consistent with the current model hypothesis M (Definition 3), the algorithm randomly picks an 
unexplored outgoing transition a from q ( ), executes the app on the corresponding GUI action and updates 
both the current app-state s and the actual execution trace t (lines 7-9). If the state labelling function of an existing M state 
agrees with the set of available GUI events of the newly reached app-state s, a merge operation is performed in the model, 
otherwise a new fresh model-state p that abstracts s is added to M (lines 10-14). Two app-states are considered equivalent if 
they exhibit the same set of GUI components (enabled in the same boxes of screen coordinates). This is formally reflected in 
the ELTS state labelling function. Therefore, two model-states are compatible if they agree on . 

The above mentioned approximate check of equivalence between two app-states and their corresponding model-
states results in an aggressive merging strategy because it cannot take into account any future behaviour of the SUT starting 
from the states considered for merging. This approach may introduce an inconsistency between the model and the behaviour 
of the subject system observed so far. Indeed, if an inconsistency is found in the current ELTS model, the algorithm adds the 
current execution trace t to the set of traces T and refines M via passive learning (lines 17-18). The inferELTS function is 
exhaustively described by Algorithm 3 of Section 6. Whenever the selected frontier-state q is not reachable from the current 
model-state p, the testing algorithm updates the set of traces T with t, initialises t and restarts the app under test (lines 21-22) 
to select a new frontier-state and continue with the GUI exploration. The systematic exploration goes on until no more frontier-
states are available in M, meaning that every transition from each state in the model has been taken (model-based coverage 
termination criterion), or that the predefined testing time budget is expired. In the first case, it is needed to check whether the 
resulting ELTS M is equivalent to the SUT. This is performed by generating a predefined number of random walks on the 
ELTS model that do not represent a subsequence of any  t  . The SUT is then executed on these sequences of events and if 
a counterexample is found, the model is refined using the set of traces T observed so far to continue with the exploration. 

 
4.1.  Comparison with SwiftHand 
Our proposed testing with model learning algorithm exploits the basic steps of the learning-guided testing algorithm 

designed by Choi et al. in [9]. In this paper, the authors present an automated testing technique called SwiftHand for generating 
sequences of test inputs for Android apps. A key feature of SwiftHand is that it achieves significantly better code coverage 
than traditional random testing and active learning-based testing by reducing the number of restarts needed to complete the 
systematic GUI app exploration process. 

Here we want to highlight the main differences between our testing technique and SwiftHand. First of all SwiftHand 
randomly chooses the next frontier-state to explore, whereas our heuristic GUI exploration strategy moves in the direction of 
enhancing both the test depth and the ELTS state-coverage while minimizing the number of app restarts needed to complete 
the learning task. Indeed, we decide to make the exploration process as fluid as possible by privileging the choice of the 
current model-state as the next frontier-state to explore if possible or to maximize, with a different selection, the number of 
model states to traverse when it is not. Another relevant distinction concerns with the merging strategy adopted in the active 
model learning stage. Whenever more than one model-state is compatible for merging with the current one, then SwiftHand 
heuristically selects the nearest ancestor between them. The authors claim that this choice often avoids refining the model in 
future. However, in order to generalize the testing procedure, we randomly pick a model-state for merging and whenever an 
inconsistency is introduced into the model, due to an aggressive merging operation, we use the proposed passive learning 

 such that 

available GUI events is modelled as the state labelling function value in p (  p ) (line 1). We use throughout the rest of this 
Section s to refer to the current app-state (current GUI screen) and p to indicate its corresponding abstract state in the model. 
At each iteration, the testing algorithm exercises new functionalities of the GUI via a model-based exploration strategy. 

Definition 5 [Frontier model-state] A state q in an ELTS model is a frontier-state if and only if there exists a  q  such 

that q a  u is not true for any u Q [33].  

The findFrontierState function is responsible of choosing a frontier-state q in the ELTS model that can be reached 
starting from the current model-state p, then the algorithm selects a sequence of event labels l that leads to q starting from p 
(lines 4-5). We heuristically pick the frontier-state q as follows: 

 if during the exploration an app-state s is reached whose corresponding model-state p is a frontier-state in M, then 
p is selected as the next frontier-state to explore,  

 otherwise, the algorithm selects the frontier-state q for which the number of diverse states to traverse, in the path 
that leads from p to q, is the greatest one.  

Starting from s, the algorithm executes the SUT on the sequence of GUI events corresponding to l and obtains a trace 
of execution t (line 6). If t is consistent with the current model hypothesis M (Definition 3), the algorithm randomly picks an 
unexplored outgoing transition a from q ( ), executes the app on the corresponding GUI action and updates 
both the current app-state s and the actual execution trace t (lines 7-9). If the state labelling function of an existing M state 
agrees with the set of available GUI events of the newly reached app-state s, a merge operation is performed in the model, 
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they exhibit the same set of GUI components (enabled in the same boxes of screen coordinates). This is formally reflected in 
the ELTS state labelling function. Therefore, two model-states are compatible if they agree on . 

The above mentioned approximate check of equivalence between two app-states and their corresponding model-
states results in an aggressive merging strategy because it cannot take into account any future behaviour of the SUT starting 
from the states considered for merging. This approach may introduce an inconsistency between the model and the behaviour 
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resulting ELTS M is equivalent to the SUT. This is performed by generating a predefined number of random walks on the 
ELTS model that do not represent a subsequence of any  t  . The SUT is then executed on these sequences of events and if 
a counterexample is found, the model is refined using the set of traces T observed so far to continue with the exploration. 
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designed by Choi et al. in [9]. In this paper, the authors present an automated testing technique called SwiftHand for generating 
sequences of test inputs for Android apps. A key feature of SwiftHand is that it achieves significantly better code coverage 
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Here we want to highlight the main differences between our testing technique and SwiftHand. First of all SwiftHand 
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current model-state as the next frontier-state to explore if possible or to maximize, with a different selection, the number of 
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future. However, in order to generalize the testing procedure, we randomly pick a model-state for merging and whenever an 
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, executes 
the app on the corresponding GUI action and updates 
both the current app-state s and the actual execution 
trace t (lines 7-9). If the state labelling function of an 
existing M state agrees with the set of available GUI 
events of the newly reached app-state s, a merge op-
eration is performed in the model, otherwise a new 
fresh model-state p that abstracts s is added to M 
(lines 10-14). Two app-states are considered equiva-
lent if they exhibit the same set of GUI components 
(enabled in the same boxes of screen coordinates). 
This is formally reflected in the ELTS state labelling 
function. Therefore, two model-states are compatible 
if they agree on λ.
The above mentioned approximate check of equiva-
lence between two app-states and their correspond-
ing model-states results in an aggressive merging 
strategy because it cannot take into account any fu-
ture behaviour of the SUT starting from the states 
considered for merging. This approach may intro-
duce an inconsistency between the model and the be-

different queries, membership and equivalence queries. Membership queries aim to realize whether the GUI app can trigger 
in order a particular sequence of events, whereas equivalence queries are intended to check if the current model hypothesis is 
consistent with the observed system behaviour, without the aid of formal specifications. Moreover, according to the taxonomy 
presented by Utting et al. [36], the overall testing procedure is defined as online in the sense that test generation and test 
execution are iteratively performed on-the-fly.  

The testing with model learning process is described by Algorithm 1. It is based on the following practical 
assumptions:   

 it is possible to detect the set of available user inputs at each app screen,  
 the testing algorithm is able to restart the SUT, send events to the subject system and record its reaction.  

 
Algorithm 1: Testing with Model Learning Algorithm 
 
Input: the SUT 
Output: the set of execution traces T, the ELTS M modelling the sequential behaviour of the SUT 
1. M, p, s, T, t  initialisation() 
2. stop  false 
3. while  (timeBudget()  stop) do  
4.  if q  findFrontierState(M) then 
5.       if l  isReachable(q, p, M) then 
6.            (s, t)  execute(s, t, l) 
7.            if t is consistent with M then 
8.                 a  selectNextInput( ) 
9.                 (s, t)  execute(s, t, a) 
10.                 if there exists r in M s.t.  r    s   then 
11.                      M  addTransition(q, a, r) 
12.                 else 
13.                      M  addState(r) 
14.                      M  addTransition(q, a, r) 
15.                 end if 
16.            else  
17.                 (T, t)  updateTraces(t) 
18.                 M  inferELTS(T) 
19.            end if  
20.       else 
21.            (T, t)  updateTraces(t) 
22.            (p, s)  restart() 
23.       end if  
24.  else if (l, stop)  equivalenceCheck(projections(T)) then 
25.       (s, t)  execute(s, t, l) 
26.       if t is not consistent with M then 
27.            (T, t)  updateTraces(t) 
28.            M  inferELTS(T) 
29.       end if 
30.  else 
31.       return T, M 
32.  end if 
33. end while 
34. return T, M 
 

Due to the fact that no prior knowledge is available about the hidden state transition structure of SUT, an initial 
ELTS model of the Android GUI app is needed to start with the the model-based test input generation process. Therefore, the 
initialisation function launches the app to reach the initial system-state and queries the set of available GUI actions. The initial 
app-state s is abstracted as the initial ELTS model M containing the corresponding model-state p, whereas the detected set of 

Due to the fact that no prior knowledge is available 
about the hidden state transition structure of SUT, an 
initial ELTS model of the Android GUI app is needed 
to start with the the model-based test input genera-
tion process. Therefore, the initialisation function 
launches the app to reach the initial system-state and 
queries the set of available GUI actions. The initial 
app-state s is abstracted as the initial ELTS model M 
containing the corresponding model-state p, whereas 
the detected set of available GUI events is modelled 
as the state labelling function value in p (λ(p)) (line 1). 
We use throughout the rest of this Section s to refer 
to the current app-state (current GUI screen) and p to 
indicate its corresponding abstract state in the model. 
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haviour of the subject system observed so far. Indeed, 
if an inconsistency is found in the current ELTS mod-
el, the algorithm adds the current execution trace t to 
the set of traces T and refines M via passive learning 
(lines 17-18). The inferELTS function is exhaustively 
described by Algorithm 3 of Section 6. Whenever the 
selected frontier-state q is not reachable from the cur-
rent model-state p, the testing algorithm updates the 
set of traces T with t, initialises t and restarts the app 
under test (lines 21-22) to select a new frontier-state 
and continue with the GUI exploration. The system-
atic exploration goes on until no more frontier-states 
are available in M, meaning that every transition 
from each state in the model has been taken (mod-
el-based coverage termination criterion), or that the 
predefined testing time budget is expired. In the first 
case, it is needed to check whether the resulting ELTS 
M is equivalent to the SUT. This is performed by gen-
erating a predefined number of random walks on the 
ELTS model that do not represent a subsequence of 
any π(t). The SUT is then executed on these sequenc-
es of events and if a counterexample is found, the 
model is refined using the set of traces T observed so 
far to continue with the exploration.

4.1. Comparison with SwiftHand
Our proposed testing with model learning algorithm 
exploits the basic steps of the learning-guided testing 
algorithm designed by Choi et al. in [9]. In this paper, 
the authors present an automated testing technique 
called SwiftHand for generating sequences of test 
inputs for Android apps. A key feature of SwiftHand 
is that it achieves significantly better code coverage 
than traditional random testing and active learn-
ing-based testing by reducing the number of restarts 
needed to complete the systematic GUI app explora-
tion process.
Here we want to highlight the main differences be-
tween our testing technique and SwiftHand. First 
of all SwiftHand randomly chooses the next fron-
tier-state to explore, whereas our heuristic GUI ex-
ploration strategy moves in the direction of enhanc-
ing both the test depth and the ELTS state-coverage 
while minimizing the number of app restarts needed 
to complete the learning task. Indeed, we decide to 
make the exploration process as fluid as possible by 
privileging the choice of the current model-state as 
the next frontier-state to explore if possible or to max-

imize, with a different selection, the number of model 
states to traverse when it is not. Another relevant dis-
tinction concerns with the merging strategy adopted 
in the active model learning stage. Whenever more 
than one model-state is compatible for merging with 
the current one, then SwiftHand heuristically selects 
the nearest ancestor between them. The authors claim 
that this choice often avoids refining the model in fu-
ture. However, in order to generalize the testing pro-
cedure, we randomly pick a model-state for merging 
and whenever an inconsistency is introduced into the 
model, due to an aggressive merging operation, we use 
the proposed passive learning algorithm to refine it. 
Both the testing strategies terminate by means of an 
equivalence check between the ELTS inferred model 
and the SUT but they differ in the way they implement 
it. In absence of specifications, as is the case here, the 
equivalence check is implemented executing untried 
scenarios until a counter-example is found because 
the ELTS model cannot be validity checked against 
formal specifications of the SUT. As soon as the ELTS 
model is complete, SwiftHand performs this check 
by executing a sequence of events l starting from the 
current model-state and by ensuring that l is not a 
subsequence of any trace projection π(t)∈ π(T). More-
over, if multiple transition sequences are available, 
SwiftHand uses a random walk strategy to select one 
of them. This heuristic to approximate the equiva-
lence query suffers of the following drawback: if the 
current model-state corresponds to a terminal state, 
no subsequence would be found and SwiftHand termi-
nates without executing any equivalence check. Our 
approximate check of equivalence between the ELTS 
model and the SUT consists of executing a predefined 
number of acceptance tests. Starting from the current 
model-state, we generate a set of random walks then 
we randomly pick a sequence of events that is not a 
subsequence for any trace projection. In the case the 
current model state is a terminal state, we restart the 
app under test and iteratively evaluate new paths. 
Finally, the two strategies are totally different regard-
ing the inductive inference algorithm used to re-learn 
the model whenever an inconsistency is found be-
tween the learned model and the SUT. SwiftHand re-
fines the model via the Evidence-Driven State Merg-
ing (EDSM) algorithm with the Blue-fringe control 
strategy and exploits the idea of blocking constraints 
introduced by [23]. Our passive learning algorithm 
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adopts the basic steps of the EDSM algorithm in the 
“blue fringe” framework and introduces a novel heu-
ristic approach according to the order in which state 
pairs are chosen for merging as described in Section 6.

5. The Synthesis of Software 
Behaviour Models
To better understand our inductive learning algo-
rithm, we first give a brief review of the DFA induc-
tion problem in the learning from an informant set-
ting [12]. The automatic learning of behaviour models 
from scenarios of interaction between the SUT and 
its environment can be interpreted as a Determinis-
tic Finite Automaton (DFA) induction problem [15]. 
Starting from a set of system execution traces, the 
derived scenarios of interaction can be represented 
as strings over a finite alphabet of events (∑) and they 
can be generalized to form a language of acceptable 
behaviours. Indeed, whenever behaviours are repre-
sented as finite-state machines, the problem is equiv-
alent to induce a DFA from positive and negative 

strings. State-merging is the foundation for most suc-
cessful techniques in inferring DFA from positive (S+) 
and negative (S–) examples. These algorithms start by 
building an initial automaton called Prefix Tree Ac-
ceptor (PTA) [12] accepting exactly S+ and successive-
ly merge states to generalize the induced language.

5.1. State-Merging and Quotient Automaton
The generalization operation obtained by merging 
states of an original automaton A is formally defined 
through the concept of quotient automaton [15]. The 
set of possible generalizations which can be obtained 
by merging states of the original automaton can be 
searched through a lattice of partitions Lat(A) [14]. 
Figure 2 shows how, starting from the PTA S+( )  (Fig-
ure 2a), states belonging to the same subset, or block, 
of π are merged in the quotient automaton (Figure 2b). 
Accepting states are represented as light grey nodes.
Merging blocks B(0, π ) and B(1, π ) belonging to the 
initial partition π defined on the PTA states set (Fig-
ure 2a) leads to a nondetermistic quotient automaton. 
Therefore, a recursive process of merging blocks is 
needed to obtain the deterministic quotient automa-
ton shown in Figure 2b.

Figure 2 
Generalization process
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algorithm to refine it. Both the testing strategies terminate by means of an equivalence check between the ELTS inferred 
model and the SUT but they differ in the way they implement it. In absence of specifications, as is the case here, the 
equivalence check is implemented executing untried scenarios until a counter-example is found because the ELTS model 
cannot be validity checked against formal specifications of the SUT. As soon as the ELTS model is complete, SwiftHand 
performs this check by executing a sequence of events l starting from the current model-state and by ensuring that l is not a 
subsequence of any trace projection  t    T . Moreover, if multiple transition sequences are available, SwiftHand uses 
a random walk strategy to select one of them. This heuristic to approximate the equivalence query suffers of the following 
drawback: if the current model-state corresponds to a terminal state, no subsequence would be found and SwiftHand terminates 
without executing any equivalence check. Our approximate check of equivalence between the ELTS model and the SUT 
consists of executing a predefined number of acceptance tests. Starting from the current model-state, we generate a set of 
random walks then we randomly pick a sequence of events that is not a subsequence for any trace projection. In the case the 
current model state is a terminal state, we restart the app under test and iteratively evaluate new paths.  

Finally, the two strategies are totally different regarding the inductive inference algorithm used to re-learn the model 
whenever an inconsistency is found between the learned model and the SUT. SwiftHand refines the model via the Evidence-
Driven State Merging (EDSM) algorithm with the Blue-fringe control strategy and exploits the idea of blocking constraints 
introduced by [23]. Our passive learning algorithm adopts the basic steps of the EDSM algorithm in the “blue fringe” 
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described in Section 6. 
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leads to a nondetermistic quotient automaton. Therefore, a recursive process of merging blocks is needed to obtain the 
deterministic quotient automaton shown in Figure 2b. 
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Evidence-Driven State Merging (EDSM) is considered to be the state of the art with respect to the inference of DFAs 
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one [38]. The idea behind the EDSM approach is fairly straightforward. Given a sample, a PTA is built based on positive 
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evidence. A heuristic for choosing the pair of states to merge, can be realized in many ways. We show in Algorithm 2, the 
implementation of EDSM using the “blue-fringe” control strategy (state-merging ordering) [24]. 
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5.2. Evidence-Driven State Merging
Evidence-Driven State Merging (EDSM) is considered 
to be the state of the art with respect to the inference of 
DFAs from positive and negative examples. It won the 
Abbadingo competition [24] and was used as a baseline 
for the STAMINA one [38]. The idea behind the EDSM 
approach is fairly straightforward. Given a sample, 
a PTA is built based on positive examples, then two 
states are iteratively selected and merged unless com-
patibility is broken. The state-merging challenge is to 
identify pairs of states in the current DFA hypothesis 
that represent equivalent states. It is critically import-
ant to obtain correct algorithm’s early decisions, and 
hence a good strategy is to first perform those merges 
that are supported by the most evidence. A heuristic for 
choosing the pair of states to merge, can be realized in 
many ways. We show in Algorithm 2, the implementa-
tion of EDSM using the “blue-fringe” control strategy 
(state-merging ordering) [24].
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It begins by composing the positive sample (S+) in 
the form of a PTA (line 1) and then continues merg-
ing states in order to produce a compact and gener-
alized final DFA hypothesis. Starting from the PTA, 
the root is coloured red, its children are blue and the 
remaining states are white (line 2). At each iteration, 
the algorithm selects a set of pairs of states (one red, 
the other blue) as candidates for merging. The calcu-
lateScore function (line 9) then computes, for every 
selected pair of states, the score of that merge as the 
number of strings that end in the same state if that 
merge is done. To do that, the strings from S+ and 
S– have to be parsed. If by doing that merge (line 9), 
a conflict arises (a negative string ends in a final ac-
cepting state or a positive string is rejected) the score 
is equal to 

21.       end if 
22.  end for 
23.  if  promotion then 
24.        
25.  end if 
26. end while 
27. for x S  do 

28.   
29. end for 
30. for x S  do 

31.   
32. end for 
33. return A 
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order to produce a compact and generalized final DFA hypothesis. Starting from the PTA, the root is coloured red, its children 
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the score of that merge as the number of strings that end in the same state if that merge is done. To do that, the strings from 
S  and S  have to be parsed. If by doing that merge (line 9), a conflict arises (a negative string ends in a final accepting 
state or a positive string is rejected) the score is equal to   . Finally, the merge with the highest score is chosen (line 24). 
If during the generalization process, a blue node is unmergeable with a red one then it is promoted to the red set (line 17-20) 
and the algorithm continues by considering new candidates for merging until no further pairs of equivalent states can be found, 
which indicates convergence at the final DFA hypothesis. At the end of Algorithm 2, the final accepting and rejecting states 
are marked by parsing strings from S  and S  and the final DFA hypothesis is returned (lines 27-33). The overall 
generalization process is controlled by the negative sample S  to prevent merging those states that would lead to build an 
inconsistent machine, that is a DFA which accepts at least one negative string [12]. The availability of negative information 
is theoretically motivated since positive and negative samples are required to identify in the limit any super-finite class of 
languages, including the regular language class [19]. We use the basic steps of Algorithm 2 as a basis for our ELTS passive 
learning algorithm; however, a novel heuristic approach according to the order in which pairs of states are chosen for merging 
is introduced. 

 
6.  ELTS Model Refinement via Inductive Inference 
This Section describes the state-merging algorithm used to refine the ELTS model from scratch as soon as an 

inconsistency between the learned model and the SUT is found. Unlike many similar machine learning techniques, we cannot 
presume the presence of negative examples. In our setting, we only have execution traces to work from which represent 
possible behaviours (positive examples) for the SUT. In case of few or no negative examples, one can sometimes rely on 
another kind of knowledge to prevent merging incompatible states, which is typically provided by the application domain 
[23]. 

When learning a GUI model, two user interface states can be considered equivalent if they have the same set of 
enabled user inputs. This information is modelled by the state labelling function () in our ELTS model. In the absence of 
negative examples, the key idea of our approach is to let the generalization process be controlled by  and to perform those 
merges that are supported by the most evidence. This aspect is dealt with in more detail in subsection 6.1. 

Algorithm 3 describes the proposed ELTS inductive learning algorithm. It begins by arranging the set of traces 
projections  T   (Definition 2) into an initial PTA M. It is a tree-shaped ELTS whose states are the set of all traces prefixes 
in  T   (line 1). Starting from the PTA, the algorithm iteratively chooses a pair of states deemed to be a suitable merge-
candidate in the blue-fringe framework (line 14). Each selected pair is then scored by the calculateScore function (line 9). 
The higher is this score, the higher the evidence that the candidate states for merging are equivalent. Therefore, the pair of 
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in  T   (line 1). Starting from the PTA, the algorithm iteratively chooses a pair of states deemed to be a suitable merge-
candidate in the blue-fringe framework (line 14). Each selected pair is then scored by the calculateScore function (line 9). 
The higher is this score, the higher the evidence that the candidate states for merging are equivalent. Therefore, the pair of 



Information Technology and Control 2019/2/48326

6. ELTS Model Refinement via 
Inductive Inference
This Section describes the state-merging algorithm 
used to refine the ELTS model from scratch as soon as 
an inconsistency between the learned model and the 
SUT is found. Unlike many similar machine learn-
ing techniques, we cannot presume the presence of 
negative examples. In our setting, we only have exe-
cution traces to work from which represent possible 
behaviours (positive examples) for the SUT. In case of 
few or no negative examples, one can sometimes rely 
on another kind of knowledge to prevent merging in-
compatible states, which is typically provided by the 
application domain [23].
When learning a GUI model, two user interface states 
can be considered equivalent if they have the same set 
of enabled user inputs. This information is modelled 
by the state labelling function (λ) in our ELTS mod-
el. In the absence of negative examples, the key idea 
of our approach is to let the generalization process be 
controlled by λ and to perform those merges that are 
supported by the most evidence. This aspect is dealt 
with in more detail in Subsection 6.1.
Algorithm 3 describes the proposed ELTS inductive 
learning algorithm. It begins by arranging the set of 
traces projections π(T) (Definition 2) into an initial 
PTA M. It is a tree-shaped ELTS whose states are the 
set of all traces prefixes in π(T) (line 1). Starting from 
the PTA, the algorithm iteratively chooses a pair of 
states deemed to be a suitable merge-candidate in the 
blue-fringe framework (line 14). Each selected pair 
is then scored by the calculateScore function (line 9). 
The higher is this score, the higher the evidence that 
the candidate states for merging are equivalent. There-
fore, the pair of states with the highest score is deemed 
to be most likely to be equivalent, and is merged (line 
24). In this setting, the merge operation always occurs 
between a red state and a blue state (one of the two can-
didate nodes is always the root of a tree, resulting in a 
simple algorithm for merging two nodes).

Algorithm 3: ELTS Inductive Learning Algorithm
Input: T
Output: M

The state-merging operation frequently introduces 
non-determinism into the ELTS hypothesis, which 
can then be removed by the classical determinisation 
procedure (as shown in Figure 2). The symmetri-
cal merging operation, which requires determinisa-
tion through a cascade of merges is here replaced by 
the simpler asymmetric folding operation as in [12]. 
As described in [24], red states correspond to those 
states that have already been analysed by the gener-
alization procedure and will be the states of the final 
ELTS. Blue states, instead, are the candidate states 
to consider for merging with a red one. If during the 
generalization process, the algorithm discovers that 
a blue state is unmergeable with any red node, it is 
promoted to the red states set (line 19). The gener-
alization process continues until no further pairs of 
equivalent states can be found, which indicates con-
vergence at the final ELTS hypothesis.

6.1. Heuristic State-Merging Ordering
Due to the lack of negative examples, the generaliza-
tion operation performed by Algorithm 3 cannot be 
controlled in the same way as Algorithm 2 does to pre-
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vent merging incompatible states. In our scenario, two 
ELTS states are considered to be incompatible if they 
disagree on the state labelling function (λ). Therefore, 
states having the same λ may be merged but states 
that disagree on λ must not be merged. This clearly 
explains how the generalization process is possible 
even if there is no notion of negative information. In 
order to obtain correct algorithm’s early decisions, 
we propose a novel heuristic approach according to 
the order in which state pairs are chosen for merging 
that aims to identify as soon as possible incompatible 
states in the ELTS hypothesis. For each red-blue pair 
of states a score is computed measuring the evidence 
that the two candidates states are equivalent. This is 
done without actually performing the merge opera-
tion as classical state-merging algorithms do.
Let ( qr ,qb ) be a red-blue pair of candidate states for 
merging in the current ELTS hypothesis M. Accord-
ing to Definition 4, we define L M , qr( ) and L M , qb( )  
as the languages of M in qr  and qb  respectively, there-
fore 

no notion of negative information. In order to obtain correct algorithm’s early decisions, we propose a novel heuristic approach 
according to the order in which state pairs are chosen for merging that aims to identify as soon as possible incompatible states 
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Let ( qr ,qb ) be a red-blue pair of candidate states for merging in the current ELTS hypothesis M. According to 
Definition 4, we define L M , qr   and L M , qb   as the languages of M in qr  and qb  respectively, therefore 
Li  L M ,qr  L M ,qb   represents the set of common words w accepted by M  when starting from states qr  and qb . 
Formally, the measure of evidence associated to ( qr ,qb ) is computed as follows: 

 a null score is associated if Li  is the empty set,  
 provided that states qr  and qb  have the same s, a positive score is associated if, when processing each wLi  

starting from qr  and qb , no target states with different s are encountered in the outgoing paths. In this case the 
score is equal to the Li  cardinality ( Li ),  

 a negative score is associated if states qr  and qb  have different s or in the case that, when processing at least one 
word wLi  starting from qr  and qb , two target states that disagree on  are encountered in the outgoing paths. 
In this case the score is equal to ∞ .  
 
For example, let M   Q, qo,  ,  ,    be the current ELTS hypothesis shown in Figure 3 and 0 , 1,5  , the 

current red and blue states sets respectively. Let qr ,qb   0,1  be a candidate pair of states for merging. They agree on  as 
shown in Table 2 and the initial score is set equal to 0. The set of common words Li  recognized by M when starting from 
states 0 and 1 is Li  'a ', 'aa ', 'aae ', 'aaee ', 'e ', 'ee ', 'b '  . In order to compute the score for qr ,qb   0,1 , each word w in 
Li  is evaluated starting from both qr  and qb . Let us suppose we are interested in processing the word w=‘aae’, we obtain 

. All the traversed pair of states in the outgoing paths from states 0 and 1, leading to states 
1 and 11, agree on  as it is shown in Table 2, therefore the score is incremented by one. 
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Finally, the pair of states 0,1( )  is chosen for merging, 
resulting in the updated ELTS hypothesis of Figure 
4. The scoring procedure is described in Algorithm 4. 
From an implementation point of view, the calculate-
Score function operates by counting the number of 
transitions in the outgoing paths from the two argu-
ment states ( qr ,qb ) that share the same labels, (this 
is always finite because one of the states is always the 
root of a tree [39, 23]) provided that the target states 
of such equivalent transitions agree on λ.
The strength of our approach is that it can evaluate a 
priori the evidence that two states are equivalent or 
incompatible, differently from the control strategy 
described in [9] where the authors claim to use the 
classical blue-fringe ordering [24] with the idea of 
blocking constraints introduced in [23]. Due to the 
lack of negative examples, the proposed control strat-
egy strongly takes into account the future behaviour 
in the outgoing paths of the candidates states for 
merging to evaluate the evidence that they are equiv-
alent. Moreover, it does not need an unroll procedure 
and drastically reduces the total number of merges 
operation needed to obtain the target machine be-
cause the merge of a pair of states is executed if and 
only if the resulting score is positive.

Algorithm 4: CalculateScore

Input: qr , qb , M
Output: score

specification. In our case, we address the problem of 
producing a test input set for EDS that are black-box-
es, and for which neither formal specifications nor 
source code are available. Exhaustively executing the 
SUT on every test input is infeasible for most realistic 
software systems, and conventional random testing 
often fails to reach those system-states that are most 
likely to elicit an unexpected behaviour. Our goal is 
not to demonstrate that the behaviour of the subject 
system is functionally correct. This is practically im-
possible without a complete specification or a reliable 
test model. Instead, here the aim is to generate and 
execute a test input set that fully exercises the SUT 
in terms of its observable behaviour. Conceptually, a 
success in this direction allows us to infer a model of 
the sequential behavioural of the SUT using tests as 
queries. The definition of “observable behaviour” is 
strictly related with the characteristics of the SUT. 
For instance, the behaviour of a GUI mobile app is 
manifested in the variation of the GUI state in re-
sponse to different GUI actions. The inferred model 
is then the result of what we learn from test execu-
tion, therefore it provides a functional perspective on 
the test set. Having said that, in this work we use the 
ELTS model as a basis for measuring the functional 
coverage in a similar way as in [37]. The reason behind 
this is that a larger model implies that a broad range of 
SUT behaviour is exercised. Therefore, we estimate 
the functional coverage by counting the number of in-
dividual transitions in the model. Moreover, it is gen-
erally acknowledged that longer test sequences tend 
to lead to a higher level of coverage. They are able to 
reach system-states that would remain unreachable 
otherwise. For this reason, the average length of the 
generated tests is recorded at the end of the testing 
procedure.
In this Section, technical details regarding the im-
plementation of our testing with model learning 
technique are provided. Moreover, the experimental 
results obtained in the context of event-based func-
tional testing of Android applications are compared 
to those achieved by a random testing approach and 
SwiftHand.

7.1.  Implementation
The proposed testing with model learning algorithm 
(Algorithm 1) is written in the Python language. It 
does not need Android bytecode instrumentation for 

7.  Implementation and Experimental 
Results
Conventional coverage-driven testing approaches 
fully exercise the SUT in terms of its source code or 
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Algorithm 4: CalculateScore 
 
Input: qr , qb , M  
Output: score 
1. score  0 
2. if  qr    qb  then 

3.  return score    
4. else  
5.  for t1,t2  equivalentTransitions qr ,qb   do 
6.       score  score + 1 
7.       d1  qr ,t1 ; d2  qb,t2   
8.       score  score + calculateScore (M, d1, d2 ) 
9.  end for 
10. end if 
11. return score 

 
7.  Implementation and Experimental Results 
Conventional coverage-driven testing approaches fully exercise the SUT in terms of its source code or specification. 

In our case, we address the problem of producing a test input set for EDS that are black-boxes, and for which neither formal 
specifications nor source code are available. Exhaustively executing the SUT on every test input is infeasible for most realistic 
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the app under test to work and only uses the Android 
Debug Bridge (ADB) command tool to interact with 
the SUT. To proceed with the systematic exploration 
of the app, we need to dynamically extract the set of 
GUI components at each screen (GUI Tree), send 
events to the SUT and restart the app whenever it is 
required. These three activities are performed using 
the ADB tool. More in detail, the restart operation is 
implemented as follows: first, all data associated with 
the app package is deleted, then the app under test 
is launched again. To demonstrate the effectiveness 
of our solution, a comparison with two baseline ap-
proaches is performed. The first one is a random test-
ing technique that is aware of the set of available GUI 
actions at each app-state. Indeed, during the app ex-
ploration, this strategy randomly executes a GUI ac-
tion from the set of detected GUI events and only re-
starts the SUT when a terminal app-state is reached. 
All the scenarios of interaction between the automat-
ic procedure and the SUT are recorded in a set of exe-
cution traces that is returned at the end of the testing 
procedure. The second testing technique we compare 
to is a Python implementation of the SwiftHand tool. 
SwiftHand [9] consists of a front-end module which 
performs a bytecode instrumentation of the app un-
der test, and a back-end one which is responsible for 
the test input generation. Due to the technical limita-
tions of its basic framework, we cannot use the orig-
inal version available at https://github.com/wtchoi/
SwiftHand, therefore we have implemented its back-
end module. In order to perform an objective com-
parison of the three testing techniques and due to the 
fact that the random testing approach is not based on 
model learning, a time budget is chosen as the com-
mon termination criterion. As soon as the time-bud-
get expires, the execution traces collected by the ran-
dom testing algorithm are given to Algorithm 3 with 
the aim of inferring an ELTS model and estimate the 
functional coverage also in this case.

7.2. Experimental Setup
Our benchmark-suite consists of twelve Android apps 
available on the Google Play Store (see Table 3). All 
the experiments have been performed on a Samsung 
smartphone running the Android operating system 
(version 8.0.0) and using a 2.6 GHz Intel Core i5 Mac 
OS machine with 8Gb RAM. Moreover, we adopted 
0.5 and 1 hours test budgets per app for each strategy.

7.3. Experimental Results
Tables 4 and 5 summarize the results of applying 
the three different testing strategies to the selected 
Android apps with a time budget of 0.5 and 1 hours 
respectively. All values are the average of 10 exper-
iments run for each testing algorithm. In the tables 
we use TML, R and SH to respectively denote the de-
signed testing with model learning technique, random 
testing and our implementation of SwiftHand. For 
each app in the list, #Functional Coverage columns 
report the model-based estimation of the function-
al coverage, #Test Depth columns show the average 
length of the generated test set, #Restarts columns 
report the number of the app resets executed during 
the automatic exploration and finally #Model-States 
columns show the number of states discovered in the 
ELTS model.
The proposed testing with model learning technique 
always achieves better functional coverage than both 
random testing and SwiftHand within a time budget 
of 0.5 hour (Table 4). The gap even increases when the 
apps are executed within a time budget of 1 hour (Ta-
ble 5), meaning that the designed testing technique 
achieves functional coverage at a faster rate than that 
of random testing and SwiftHand. This is an import-
ant aspect to consider when the available time budget 
for testing is strictly limited. For all the tested apps, 

Table 3 
Benchmark Apps

Name Category Size (MB)

Sanity communication 0.63

Alarm Klock tools 0.59

EP Mobile medical 2.2

FillUp maps and navigation 0.93

TomDroid productivity 1.1

TippyTipper finance 0.8

Pedometer health and fitness 7.5

My Expenses finance 6.9

Weight Chart health and fitness 3.3

Timetable education 4.5

ToDoList productivity 4.3

BMI health and fitness 3.4
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Table 4 
Comparison Experiments (time budget = 0.5 hour)

App
# Functional Coverage #Test Depth #Restarts #Model-States

TML R SH TML R SH TML R SH TML R SH

Sanity 50.3 39.4 28.1 12.7 7.6 4.6 6.1 10.0 13.7 17.8 16.0 12.7

Alarm Klock 46.6 45.2 33.8 23.3 14.5 6.4 3.6 5.5 11.4 11.8 13.0 11.8

EP Mobile 72.0 64.25 34.0 26.5 52.5 5.0 2.5 1.1 14.5 28.0 23.7 16.5

FillUp 55.8 50.7 29.2 24.2 18.7 4.9 2.9 4.6 13.7 18.7 17.3 10.4

TomDroid 57.6 54.7 29.8 24.8 17.0 4.9 2.8 4.4 14.9 21.2 20.6 13.3

TippyTipper 48.6 40.6 33.9 20.7 15.7 6.0 3.4 4.5 11.5 11.6 9.7 9.9

Pedometer 41.7 38.7 32.3 8.7 3.7 4.3 8.0 15.7 14.7 24.3 17.3 13.7

My Expenses 57.8 56.9 33.5 23.4 21.9 6.5 2.8 3.5 10.5 25.4 23.2 16.0

Weight Chart 51.0 49.0 34.3 20.0 15.6 5.6 3.5 6.8 12.7 14.9 14.0 13.3

Timetable 50.4 48.6 27.1 13.5 9.6 3.9 5.0 9.0 15.6 19.4 17.3 13.4

ToDoList 56.8 52.8 24.0 9.8 7.6 3.0 6.8 12.0 17.0 22.2 19.2 10.5

BMI 40.6 29.3 37.5 15.0 9.7 9.7 4.8 8.3 11.0 12.8 9.7 11.0

Table 5 
Comparison Experiments (time budget = 1 hour)

App
# Functional Coverage #Test Depth #Restarts #Model-States

TML R SH TML R SH TML R SH TML R SH

Sanity 88.3 59.2 48.6 14.1 7.5 4.9 11.3 22.2 26.1 30.0 21.0 18.0

Alarm Klock 86.9 69.6 64.0 29.5 14.3 8.7 4.6 12.6 17.5 21.4 20.1 22.6

EP Mobile 125.3 114.6 55.0 31.0 62.0 6.0 4.6 2.2 25.0 44.6 40.0 24.0

FillUp 86.1 73.7 52.7 27.4 15.9 5.8 5.1 11.8 23.7 25.2 20.7 15.7

TomDroid 87.1 83.2 54.9 28.5 21.2 6.7 5.1 8.6 22.9 30.0 28.6 21.5

TippyTipper 82.8 71.6 58.6 23.6 16.1 6.4 6.9 9.4 22.4 17.5 16.4 15.0

Pedometer 91.3 60.3 48.7 9.7 4.5 4.7 15.7 27.3 28.3 52.3 25.0 22.0

My Expenses 102.2 98.3 51.0 30.3 28.6 6.7 4.6 5.6 27.0 38.3 35.2 24.0

Weight Chart 84.3 75.8 58.0 29.9 26.3 6.3 4.8 9.7 22.3 16.7 16.1 16.0

Timetable 88.7 85.5 46.3 19.0 11.6 5.0 6.3 17.7 24.7 29.5 27.2 17.3

ToDoList 97.0 95.3 47.7 17.0 10.3 3.8 8.4 16.3 31.7 32.8 30.3 18.5

BMI 82.0 80.3 67.0 16.5 10.3 10.6 9.5 22.3 24 21.0 19.6 21.5
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our solution performs a deeper exploration of the 
SUT than that of SwiftHand by generating longer test 
event sequences as it is shown by the #Test Depth col-
umns values. As a consequence, SwiftHand restarts 
the app under test more frequently than our testing 
algorithm. The same analysis holds for the random 
testing strategy except if we consider the EP Mobile 
app. This app has few terminal states, therefore the 
random testing algorithm rarely performs resets. 
However, due to the GUI app structure this aspect is 
not reflected in the estimated functional coverage. In 
addition, to confirm the above analysis, we also con-
sider measuring the method coverage. Indeed, Table 
6 shows a further comparison in terms of method cov-
erage between the different testing strategies. Even if 
the proposed testing with model learning technique 
does not need app bytecode instrumentation to work, 
it is only applied for the purpose of measuring the 
method coverage during the test execution. Given 
an Android application package (apk) file, the pro-
cess consists of injecting debugging statements into 
it and prints a log message whenever an instrument-
ed method is executed. We use the Soot library [22] 
to perform the instrumentation process. During the 
testing process, all the log messages are collected and 
then used to evaluate the method coverage. However, 
Table 6 measurements are coherent with the trend of 

Table 6 
Method Coverage (time budget = 1 hour)

App # IM
% Method Coverage

TML R SH

Sanity 1408 19.4 16.8 16.2

Alarm Klock 7856 2.8 2.5 2.0

EP Mobile 9561 8.0 7.8 6.9

FillUp 1783 36.7 28.8 17.3

TomDroid 1186 29.1 28.7 24.1

TippyTipper 5473 12.1 10.9 10.8

Pedometer 39594 17.0 16.3 16.8

My Expenses 47412 10.9 9.9 9.5

Weight Chart 2991 41.2 34.7 7.7

Timetable 23908 18.3 17.0 14.4

ToDoList 34682 12.8 12.3 12.3

BMI 31138 19.4 18.6 16.6

previous analysis. This also implies the goodness of 
the criterion adopted to estimate the functional cov-
erage based on the learned ELTS model. 

TML R SH

TML - 0.03805 0.00100

R - - 0.44041

(a) Model-States

TML R SH

TML - 0.03805 0.00100

R - - 0.03805

(c)  Functional Coverage

TML R SH

TML - 0.03805 0.00100

R - - 0.15772

(b)  Test Depth

Table 7 
Pairwise Comparison: p-values

To ensure that the result is significant from a statisti-
cal point of view, we performed the Friedman test with 
the Nemenyi post-hoc test (α = 0.05) [13]. First, Fried-
man test checks the hypothesis of “no difference” (null 
hypothesis) among the compared testing techniques, 
then the Nemenyi post-hoc analysis is performed to 
detect which of the considered techniques significant-
ly differs from the others. Table 7 lists the results. The 
analysis, which has been carried out on the #Function-
al Coverage, #Test Depth and #Model-States columns 
values of Table 5 (1 hour test budget), confirms that the 
proposed approach is statistically significant in terms 
of functional coverage, test depth and number of mod-
el-states discovered during the testing process.

8. Conclusions
High-quality and reliable software has nowadays 
become the exception rather than the rule. This is 
especially the case of mobile apps whose demand 
is growing faster and faster. A knee-jerk reaction to 
guarantee qualitative and robust software is often to 
add resources to testing teams and perform intensive 
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testing. However, testing black-box event-driven sys-
tems require formal specifications or models that are 
rarely written out by developers in the current agile 
context. When neither complete specifications nor 
reliable test models are available, the test input gen-
eration problem becomes a very challenging task to 
solve because there is no basis upon which to select 
suitable inputs that properly investigate the subject 
system behaviour. To tackle this issue, we proposed 
an innovative learning-based testing technique for 
automatically generating test input sets for event-
based driven systems and we demonstrated its ef-
fectiveness in the context of event-based functional 
testing of Android GUI applications. Our idea is to 
combine active learning with a systematic explo-
ration strategy of the GUI and inductive inference. 
The proposed testing algorithm probes the system 
behaviour with tests and uses the test results to auto-
matically learn a behavioural model of the SUT in the 
form of a deterministic ELTS. Based on the learned 
model, the procedure generates further tests to reach 
unseen parts of the running app. As soon as an in-
consistency between the current model hypothesis 
and the observed behaviour of the subject system is 
discovered, the testing algorithm refines the inferred 
model via a state-merging based learning algorithm 
using the set of execution traces observed so far. With 
reference to the passive learning algorithm designed 
to refine the ELTS model, we introduced an effective 
heuristic according to the order in which state pairs 
are chosen for merging that drastically reduces the 
number of required merge operations to reach the 
target machine. We highlight that our goal is not to 
demonstrate that the subject system behaviour is 

functionally correct since the test oracle problem 
cannot automatically be solved in the absence of for-
mal specifications. Instead, the aim is to generate and 
execute a test input set that fully exercises the SUT 
in terms of its observable behaviour. Therefore, the 
effectiveness of the testing technique is measured in 
terms of the test set adequacy and compared with that 
of two baseline testing strategies, SwiftHand and ran-
dom testing. The test adequacy has been expressed 
via model-based estimation of functional coverage, 
test depth and discovered ELTS model states during 
the testing process. Moreover, measurements of the 
app restarts needed by the different approaches to 
explore the SUT and the method coverage have been 
preformed. The experimental results show that the 
presented testing with model learning approach is 
better than the compared ones at exploring the SUT 
behaviour within the same time budget. The reason 
behind this has to be found in the designed GUI explo-
ration strategy that systematically tries to discover as 
soon as possible unseen system states. It also results 
in a better test depth and in few restarts when com-
pared with the considered approaches. An evaluation 
of the statistical significance of the experimental re-
sults has been performed via rank-based statistical 
testing and presented. First, Friedman test has been 
carried out to test hypothesis of no differences among 
the compared testing techniques, then the Nemenyi 
post-hoc analysis has been performed to detect which 
of the considered techniques significantly differs 
from the others. The analysis confirms that the pro-
posed approach is statistically significant in terms of 
functional coverage, test depth and number of mod-
el-states discovered during the testing process.
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