
Information Technology and Control 2019/2/48316

Automatic Test Set
Generation for Event-Driven
Systems in the Absence of
Specifications Combining
Testing with Model Inference

ITC 2/48
Journal of Information Technology
and Control
Vol. 48 / No. 2 / 2019
pp. 316-334
DOI 10.5755/j01.itc.48.2.21725

Automatic Test Set Generation for Event-Driven Systems in the
Absence of Specifications Combining Testing with

Model Inference

Received 2018/09/28 Accepted after revision 2019/04/08

 http://dx.doi.org/10.5755/j01.itc.48.2.21725

Corresponding author: luigi.novella@unisannio.it

Luigi Novella, Manuela Tufo, Giovanni Fiengo
Università degli Studi del Sannio, Department of Engineering, Piazza Roma 21, 82100 Benevento, Italy,
e-mail: {luigi.novella,manuela.tufo,gifiengo}@unisannio.it

The growing dependency of human activities on software technologies is leading to the need for designing more
and more accurate testing techniques to ensure the quality and reliability of software components. A recent lit-
erature review of software testing methodologies reveals that several new approaches, which differ in the way
test inputs are generated to efficiently explore systems behaviour, have been proposed. This paper is concerned
with the challenge of automatically generating test input sets for Event-Driven Systems (EDS) for which nei-
ther source code nor specifications are available, therefore we propose an innovative fully automatic testing
with model learning technique. It basically involves active learning to automatically infer a behavioural model
of the System Under Test (SUT) using tests as queries, generates further tests based on the learned model to
systematically explore unseen parts of the subject system, and makes use of passive learning to refine the cur-
rent model hypothesis as soon as an inconsistency is found with the observed behaviour. Our passive learning
algorithm uses the basic steps of Evidence-Driven State Merging (EDSM) and introduces an effective heuristic
for choosing the pair of states to merge to obtain the target machine. Finally, the effectiveness of the proposed
testing technique is demonstrated within the context of event-based functional testing of Android Graphical
User Interface (GUI) applications and compared with that of existing baseline approaches.
KEYWORDS: Event-Based testing, Android GUI testing, Model Learning, Model-Based exploration, Automata.

mailto:obodovskiy58@gmail.com

317Information Technology and Control 2019/2/48

1. Introduction
Guaranteeing the quality and reliability of software
components is often a key factor for business. It be-
comes even crucial for human safety in the context of
safety-critical systems. To achieve qualitative and ro-
bust software, an intensive testing phase must be per-
formed. Our interest concerns with testing black-box
event-driven systems at the system level, where sys-
tems behaviour is checked with specific input event
sequences. This testing process requires SUT formal
specifications or test models to automatically gener-
ate test cases that capture the system behaviour and
to determine whether a test has passed or failed (test
oracle problem). However, such specifications are
rarely written out because developers cannot design
and maintain system models in the actual agile con-
text in which requirements and implementation are
constantly in flux. In this scenario, testing software
elements becomes very challenging because there is
no basis upon which to select suitable test inputs for
the subject system. To deal with this problem, test en-
gineers can use both their intuition and background to
drive the testing process or, more often, a random test
input generation approach. Both of these approach-
es have several disadvantages in the sense that they
often cannot lead to build a representative set of test
input event sequences capable of investigating all the
facets of software behaviour. Moreover, the absence
of specifications and test models makes it difficult to
estimate the quality and the adequacy of a test set. To
address this problem, new academic research has fo-
cused on several learning-based approaches that in-
vestigate the use of Machine Learning in the software
testing domain [17, 18, 9, 1, 33, 37, 16]. These tech-
niques automatically infer models from the observed
system behaviour and generate new tests based on the
learned model.
The idea of combining model inference with software
testing was first introduced by Weyuker [42], but it is
only recently that the topic has become very popular.
Remarkable success has been obtained in the area of
testing reactive systems by combining active learning
and model checking to infer a black-box SUT model
using tests as queries [17, 30]. An alternative to this
approach is to use model synthesis techniques to
automatically derive behavioural models via passive
learning from pre-recorded execution traces and to

guide the generation of new tests based on the in-
ferred models [37, 39].
In this paper, we address the problem of automatically
generating test input sets for event-based Graphical
User Interface (GUI) systems, for which we have nei-
ther an existing model of the GUI nor a complete spec-
ification, to achieve significant functional coverage. In
recent years, both researchers and practitioners have
investigated different approaches for testing event-
based systems through their GUI. These techniques
mainly differ in the way they generate test inputs and
for the strategy they adopt to discover the SUT be-
haviour. In particular, much effort has been focused
on applying these techniques on mobile applications.
In this field, automated GUI exploration techniques
aim to detect the set of events that can be fired at
each screen to guide the execution of the application.
These events may be chosen either randomly or via a
systematic exploration strategy of the GUI.
In this context, this paper proposes a fully automatic
online black-box testing technique that combines ac-
tive learning, a systematic exploration of the GUI and
passive learning. The testing approach effectiveness
is demonstrated by applying it to Android applica-
tions. The proposed approach proceeds in a similar
way as described in [9], however it introduces some
relevant innovations that will be highlighted in the
rest of the paper.
Based on SUT interface descriptions and domain
knowledge, our testing technique probes the system
behaviour with tests, uses the test results to on-the-
fly learn an Extended Labelled Transition System
(ELTS) model of the SUT, generates further tests on
the learned model and refines it via inductive infer-
ence as soon as an inconsistency is found between the
current ELTS model hypothesis and the set of execu-
tion traces observed so far. With reference to the pro-
posed ELTS inductive algorithm, it adopts the basic
steps of the Evidence-Driven State Merging (EDSM)
algorithm in the “blue fringe” framework [24, 39] and
introduces a novel heuristic approach according to
the order in which state pairs are chosen for merging
during the generalization process.
In this setting the learned model cannot be validity
checked against a formal specification of the SUT. As

Information Technology and Control 2019/2/48318

a consequence, the proposed testing technique ter-
minates by approximating the equivalence check be-
tween the ELTS model and the SUT.
The effectiveness of our testing with model learning
technique is demonstrated by measuring the extent
to which the generated test set covers the functional-
ities of the SUT in terms of the observed behaviour.
The learned model represents the result of what we
have observed during the test execution process,
therefore we use it as a basis for estimating the func-
tional coverage in a similar way as in [37]. To confirm
the analysis, we also measure the method coverage via
app bytecode instrumentation. We highlight that our
testing technique does not need app bytecode instru-
mentation to work; this is implemented just to per-
form this kind of measurement.
The experimental results show that our solution can
outperform current baseline approaches in terms of
test set adequacy. Moreover, the statistical signifi-
cance of the results has been evaluated via rank-based
statistical testing. The rest of the paper is organized
as follows. Section 2 gives a brief overview of the ex-
isting automated GUI exploration strategies for An-
droid GUI apps. The third section provides the math-
ematical definitions related to model inference and
introduces the trace encoding process used to infer
the sequential behaviour model of an Android GUI
App. In Section 4 the proposed fully automatic on-
line black-box testing technique is described. Section
5 and 6 give an overview of the Deterministic Finite
Automaton induction problem in the learning from an
informant setting and describe the proposed passive
learning algorithm used to refine the ELTS model re-
spectively. Technical details regarding the implemen-
tation of our solution and the experimental results
obtained in the context of event-based functional
testing of Android applications are given in Section 7.
Finally, our conclusions are drawn in the last section.

2. Related Work
In the last few years, the ever-growing demand for mo-
bile applications has led to the development of a set of
frameworks and methods for automating GUI testing.
In particular, several studies have been conducted to
highlight the strengths and weaknesses of different

testing frameworks and automated GUI exploration
strategies for Android apps [2, 10, 29, 11, 21, 26, 34].
Android mobile applications are Event-Driven Sys-
tems (EDS) that can sense and react to events of
different types. They may be either events generat-
ed through the application user interface, or system
events produced by the device hardware platform and
other running applications. Existing test input gen-
eration approaches are able to generate such events
either randomly or systematically. In the first case, a
random event is chosen at each GUI screen to navi-
gate the app [20, 3, 44, 41, 28, 31, 27]. On the other
hand, systematic exploration strategies select new
actions to be executed based on the app GUI model [9,
5, 4, 6, 43, 7, 40, 25, 8, 32].
The remainder of the current section briefly describes
these two main approaches along with the most popu-
lar Android GUI testing tools.

2.1. Random Exploration Strategy
Random testing represents the most popular ap-
proach to automatically explore GUI-based software
systems in the absence of specifications and test
models. It consists of randomly selecting events (GUI
events or system events) during the execution of the
application to probe the system behaviour. However,
the approach effectiveness strictly depends on the
characteristics of the SUT; therefore, a random ex-
ploration strategy may be generally weak at selecting
specific inputs resulting in a poor or partial coverage
of the system behaviour. Moreover, when both speci-
fications and source code are missing, it becomes re-
ally difficult to determine a stop termination criterion
and define the success or not of the exploration strate-
gy. The common practice is to manually specify a time
budget limit for the testing procedure.
The first random automatic test input generation
technique was proposed by Hu et al. [20]. It uses the
Monkey tool [35] which comes together with the
Android developer toolkit. The approach consists of
generating and sending random events such as clicks,
scroll, system-level events to the SUT in order to de-
tect GUI bugs. Relying on the Monkey tool, many oth-
er random GUI exploration tools have been developed
[3, 44, 41]. Adaptive Random Testing (ART) [27] is a
different random testing approach. The technique
consists of selecting random sequences of events

319Information Technology and Control 2019/2/48

that, according to a distance metric, are farthest from
the already executed ones. The approach results in
a better distributed generation of events sequences
if compared with pure random testing. Dynodroid,
proposed by Machiry et al. [28], performs a random
selection of events considered to be relevant for the
app. The authors state that an event is relevant to an
application if it registers a listener for that event by
means of the Android framework.
Finally, Morgado et al. [31] propose a random testing
approach within the iMPAcT tool that automatically
analyses a mobile application with the aim of iden-
tifying and testing its recurring behaviour (UI Pat-
terns). To achieve the goal, the iMPAcT tool explores
the current state of the application, identifies all the
events that can be fired and then uniformly selects at
random one of them to verify if the specific UI Pattern
is correctly implemented.

2.2. Systematic Exploration Strategy

Most of the systematic exploration approaches gen-
erally build a behavioural model of the application
under test during its activity. Then, based on the ob-
tained model, new test input events are generated and
executed to discover the app behaviour. According to
various systematic traversal strategies, several An-
droid GUI exploration tools have been developed.
In [5, 4, 6], Amalfitano et al. propose several contri-
butions to the field of Android GUI app exploration.
The designed approach builds a GUI model of the app
and uses ripping to automatically explore it. For each
newly visited GUI state, the procedure keeps all the
events that could be fired in the current state and sys-
tematically executes them. The process terminates
as soon as all the GUI app states have been explored.
Yang at al. [43] implement a grey-box exploration
strategy for automatically obtaining a model of the
app under test in the Orbit tool. It is composed by an
action detector module and a dynamic crawler. The
first module automatically extracts the relevant GUI
events by statically analysing the app source code and
the manifest file. The second module builds a model
of the GUI app by exercising the detected events on
the live application. The systematic exploration of the
GUI app is obtained via a modified depth-first strat-
egy. In [7], the authors describe Automatic Android
App Explorer (A3E). The approach consists of two dif-

ferent exploration strategies, a Targeted Exploration
and a Depth-First one. The Targeted Exploration first
performs a static bytecode analysis to build a Static
Activity Transition Graph. Such graph is then used
to systematically explore the running app. Differently
from the first one, the second approach automatically
explores all the activities and the Android GUI ele-
ments in a depth-first manner to infer a dynamic Ac-
tivity Transition Graph model. For each activity, the
procedure extracts the GUI components and system-
atically exercises them by firing their corresponding
event handlers. The procedure stops when no more
activities are found.
A different systematic GUI exploration strategy is the
one proposed by Choi at al. in the SwiftHand tool [9].
It aims to learn a behavioural model of the GUI app
in the form of a deterministic Extended Label Tran-
sition System (ELTS) using tests as queries. Further
tests are then generated based on the learned model
to discover new states of the application. If an in-
consistency between the learned model and the app
is found, the ELTS is rebuilt from scratch using the
set of execution traces observed so far. Wang et al.
[40] introduce the DroidCrawle tool to automatically
traverse an application’s GUI and achieve high GUI
coverage. The crawler technique consists of automat-
ically exploring the application under test via a depth-
first approach and of inferring a GUI tree model at the
same time. In [25], the authors introduce DroidBot, a
lightweight UI-guided test input generator. It is able
to generate UI-guided test inputs based on a transi-
tion model generated on-the-fly, and allows users to
integrate their own testing strategies.
More recently, new techniques have been introduced
with the aim of improving the effectiveness of mod-
el-based testing. Cao et al. [8] present the CrawlDroid
tool that via a novel feedback based exploration strat-
egy, allows to dynamically adjust the priority of the
actions to execute. With this approach, actions that
potentially have more chances to expose new states of
the GUI app can be selected. In [32], the authors de-
sign a behavioral-based GUI testing approach in or-
der to create a behavioural model based on usage logs
by applying a statistical model. The approach consists
of dynamically updating the model to increase the
probability of selecting an event that rarely or never
occurs when users use the application.

Information Technology and Control 2019/2/48320

3. Background
The automatic inference of state-machine models
has been intensively investigated within the machine
learning domain of grammar inference. The problem
of grammar inference is concerned with the process of
identifying a language from positive (valid) strings that
belong to the language and negative (invalid) ones that
do not. Several inference techniques have been devel-
oped to reduce human effort in automatically generat-
ing state machine models from examples of software
behaviours. These examples can either be in the form
of scenarios extracted from models created during the
development stage of a software system, or execution
traces from the current implementation of a program.
The aim of this section is to provide the reader with
the mathematical definitions related to model infer-
ence. It also introduces an example of the specific
trace-encoding process used to infer the sequential
behaviour model of an Android GUI application.

3.1. Definitions
In this paper, we restrict the discussion to those sys-
tems that can be modelled as an Extended determin-
istic Labelled Transition System (ELTS) [33]. A La-
belled Transition System (LTS) [37] is an instance of
a state machine often used to represent the behaviour
of software systems. In intuitive terms, an ELTS mod-
el augments a conventional LTS with a state labelling
function λ defining the set of enabled transitions at
each model-state.
Most of the techniques used to infer software be-
haviour models take as input a set of program execu-
tion traces that consist of sequences of input events to
which the system responds with actions. In this work,
we adopt the same trace-encoding process described in
[33] in which we assume that the interactions with the
SUT can be characterised in terms of event labels be-
longing to the ELTS finite alphabet ∑. The definitions
of trace and trace projection are formally given below.
Definition 1 [Trace]. An execution trace, or simply
a trace t is a finite sequence of pairs of input events
and sets of possible events at each traversed state q,
starting from the initial state q0. Formally a trace t is
an element of

model to increase the probability of selecting an event that rarely or never occurs when users use the application.

3. Background
The automatic inference of state-machine models has been intensively investigated within the machine learning

domain of grammar inference. The problem of grammar inference is concerned with the process of identifying a language
from positive (valid) strings that belong to the language and negative (invalid) ones that do not. Several inference techniques
have been developed to reduce human effort in automatically generating state machine models from examples of software
behaviours. These examples can either be in the form of scenarios extracted from models created during the development
stage of a software system, or execution traces from the current implementation of a program.

The aim of this section is to provide the reader with the mathematical definitions related to model inference. It also
introduces an example of the specific trace-encoding process used to infer the sequential behaviour model of an Android GUI
application.

3.1. Definitions
In this paper, we restrict the discussion to those systems that can be modelled as an Extended deterministic Labelled

Transition System (ELTS) [33]. A Labelled Transition System (LTS) [37] is an instance of a state machine often used to
represent the behaviour of software systems. In intuitive terms, an ELTS model augments a conventional LTS with a state
labelling function  defining the set of enabled transitions at each model-state.

Most of the techniques used to infer software behaviour models take as input a set of program execution traces that
consist of sequences of input events to which the system responds with actions. In this work, we adopt the same trace-encoding
process described in [33] in which we assume that the interactions with the SUT can be characterised in terms of event labels
belonging to the ELTS finite alphabet  . The definitions of trace and trace projection are formally given below.

Definition 1 [Trace] An execution trace, or simply a trace t is a finite sequence of pairs of input events and sets of possible

events at each traversed state q, starting from the initial state q0. Formally a trace t is an element of     * where

   is a subset of  .

Definition 2 [Trace Projection] A trace projection  t  denotes the sequence of input event labels in the trace t. Formally,

if t  a1,1 , , an,n  , then  t   a1,, an . The set of traces projections is denoted by  T  .

We define a trace t to be consistent with an ELTS if and only if it can trigger in order the input event labels of the
trace and passes through the same states labelled as in the trace. This concept is formally defined below.

Definition 3 [Consistency] A trace t  a1,1 , , an , n  is consistent with a given ELTS M  Q,q0, , ,  if and only
if:

Moreover, a trace t is said to be a positive trace of a system if it represents a feasible behaviour that the given system

may exhibit, otherwise it is said to be negative. The rest of the manuscript will also refer to the language of the ELTS. It can
be defined as the set of labels sequences accepted by M and represents the behaviour permitted by M.

Definition 4 [The Language of an ELTS] Given some ELTS M, for a given state q Q, L M ,q , is the language of M in

state q, and can be defined as: L M ,q   w | ̂ is defined for q,w   . The language of an ELTS M is defined as:

L M   w | ̂ is defined for q0,w   .

3.2. Illustrative Example
Let us consider the scenario where we are required to learn a model of the sequential behaviour exhibited by an

where

model to increase the probability of selecting an event that rarely or never occurs when users use the application.

3. Background
The automatic inference of state-machine models has been intensively investigated within the machine learning

domain of grammar inference. The problem of grammar inference is concerned with the process of identifying a language
from positive (valid) strings that belong to the language and negative (invalid) ones that do not. Several inference techniques
have been developed to reduce human effort in automatically generating state machine models from examples of software
behaviours. These examples can either be in the form of scenarios extracted from models created during the development
stage of a software system, or execution traces from the current implementation of a program.

The aim of this section is to provide the reader with the mathematical definitions related to model inference. It also
introduces an example of the specific trace-encoding process used to infer the sequential behaviour model of an Android GUI
application.

3.1. Definitions
In this paper, we restrict the discussion to those systems that can be modelled as an Extended deterministic Labelled

Transition System (ELTS) [33]. A Labelled Transition System (LTS) [37] is an instance of a state machine often used to
represent the behaviour of software systems. In intuitive terms, an ELTS model augments a conventional LTS with a state
labelling function  defining the set of enabled transitions at each model-state.

Most of the techniques used to infer software behaviour models take as input a set of program execution traces that
consist of sequences of input events to which the system responds with actions. In this work, we adopt the same trace-encoding
process described in [33] in which we assume that the interactions with the SUT can be characterised in terms of event labels
belonging to the ELTS finite alphabet  . The definitions of trace and trace projection are formally given below.

Definition 1 [Trace] An execution trace, or simply a trace t is a finite sequence of pairs of input events and sets of possible

events at each traversed state q, starting from the initial state q0. Formally a trace t is an element of     * where

   is a subset of  .

Definition 2 [Trace Projection] A trace projection  t  denotes the sequence of input event labels in the trace t. Formally,

if t  a1,1 , , an,n  , then  t   a1,, an . The set of traces projections is denoted by  T  .

We define a trace t to be consistent with an ELTS if and only if it can trigger in order the input event labels of the
trace and passes through the same states labelled as in the trace. This concept is formally defined below.

Definition 3 [Consistency] A trace t  a1,1 , , an , n  is consistent with a given ELTS M  Q,q0, , ,  if and only
if:

Moreover, a trace t is said to be a positive trace of a system if it represents a feasible behaviour that the given system

may exhibit, otherwise it is said to be negative. The rest of the manuscript will also refer to the language of the ELTS. It can
be defined as the set of labels sequences accepted by M and represents the behaviour permitted by M.

Definition 4 [The Language of an ELTS] Given some ELTS M, for a given state q Q, L M ,q , is the language of M in

state q, and can be defined as: L M ,q   w | ̂ is defined for q,w   . The language of an ELTS M is defined as:

L M   w | ̂ is defined for q0,w   .

3.2. Illustrative Example
Let us consider the scenario where we are required to learn a model of the sequential behaviour exhibited by an

 is a subset of ∑.
Definition 2 [Trace Projection]. A trace projection
π(t)denotes the sequence of input event labels in
the trace t. Formally, if

model to increase the probability of selecting an event that rarely or never occurs when users use the application.

3. Background
The automatic inference of state-machine models has been intensively investigated within the machine learning

domain of grammar inference. The problem of grammar inference is concerned with the process of identifying a language
from positive (valid) strings that belong to the language and negative (invalid) ones that do not. Several inference techniques
have been developed to reduce human effort in automatically generating state machine models from examples of software
behaviours. These examples can either be in the form of scenarios extracted from models created during the development
stage of a software system, or execution traces from the current implementation of a program.

The aim of this section is to provide the reader with the mathematical definitions related to model inference. It also
introduces an example of the specific trace-encoding process used to infer the sequential behaviour model of an Android GUI
application.

3.1. Definitions
In this paper, we restrict the discussion to those systems that can be modelled as an Extended deterministic Labelled

Transition System (ELTS) [33]. A Labelled Transition System (LTS) [37] is an instance of a state machine often used to
represent the behaviour of software systems. In intuitive terms, an ELTS model augments a conventional LTS with a state
labelling function  defining the set of enabled transitions at each model-state.

Most of the techniques used to infer software behaviour models take as input a set of program execution traces that
consist of sequences of input events to which the system responds with actions. In this work, we adopt the same trace-encoding
process described in [33] in which we assume that the interactions with the SUT can be characterised in terms of event labels
belonging to the ELTS finite alphabet  . The definitions of trace and trace projection are formally given below.

Definition 1 [Trace] An execution trace, or simply a trace t is a finite sequence of pairs of input events and sets of possible

events at each traversed state q, starting from the initial state q0. Formally a trace t is an element of     * where

   is a subset of  .

Definition 2 [Trace Projection] A trace projection  t  denotes the sequence of input event labels in the trace t. Formally,

if t  a1 ,1 , , an , n  , then  t   a1,, an . The set of traces projections is denoted by  T  .

We define a trace t to be consistent with an ELTS if and only if it can trigger in order the input event labels of the
trace and passes through the same states labelled as in the trace. This concept is formally defined below.

Definition 3 [Consistency] A trace t  a1,1 , , an , n  is consistent with a given ELTS M  Q,q0, , ,  if and only
if:

Moreover, a trace t is said to be a positive trace of a system if it represents a feasible behaviour that the given system

may exhibit, otherwise it is said to be negative. The rest of the manuscript will also refer to the language of the ELTS. It can
be defined as the set of labels sequences accepted by M and represents the behaviour permitted by M.

Definition 4 [The Language of an ELTS] Given some ELTS M, for a given state q Q, L M ,q , is the language of M in

state q, and can be defined as: L M ,q   w | ̂ is defined for q,w   . The language of an ELTS M is defined as:

L M   w | ̂ is defined for q0,w   .

3.2. Illustrative Example
Let us consider the scenario where we are required to learn a model of the sequential behaviour exhibited by an

, then

model to increase the probability of selecting an event that rarely or never occurs when users use the application.

3. Background
The automatic inference of state-machine models has been intensively investigated within the machine learning

domain of grammar inference. The problem of grammar inference is concerned with the process of identifying a language
from positive (valid) strings that belong to the language and negative (invalid) ones that do not. Several inference techniques
have been developed to reduce human effort in automatically generating state machine models from examples of software
behaviours. These examples can either be in the form of scenarios extracted from models created during the development
stage of a software system, or execution traces from the current implementation of a program.

The aim of this section is to provide the reader with the mathematical definitions related to model inference. It also
introduces an example of the specific trace-encoding process used to infer the sequential behaviour model of an Android GUI
application.

3.1. Definitions
In this paper, we restrict the discussion to those systems that can be modelled as an Extended deterministic Labelled

Transition System (ELTS) [33]. A Labelled Transition System (LTS) [37] is an instance of a state machine often used to
represent the behaviour of software systems. In intuitive terms, an ELTS model augments a conventional LTS with a state
labelling function  defining the set of enabled transitions at each model-state.

Most of the techniques used to infer software behaviour models take as input a set of program execution traces that
consist of sequences of input events to which the system responds with actions. In this work, we adopt the same trace-encoding
process described in [33] in which we assume that the interactions with the SUT can be characterised in terms of event labels
belonging to the ELTS finite alphabet  . The definitions of trace and trace projection are formally given below.

Definition 1 [Trace] An execution trace, or simply a trace t is a finite sequence of pairs of input events and sets of possible

events at each traversed state q, starting from the initial state q0. Formally a trace t is an element of     * where

   is a subset of  .

Definition 2 [Trace Projection] A trace projection  t  denotes the sequence of input event labels in the trace t. Formally,

if t  a1,1 , , an,n  , then  t   a1,, an . The set of traces projections is denoted by  T  .

We define a trace t to be consistent with an ELTS if and only if it can trigger in order the input event labels of the
trace and passes through the same states labelled as in the trace. This concept is formally defined below.

Definition 3 [Consistency] A trace t  a1,1 , , an , n  is consistent with a given ELTS M  Q,q0, , ,  if and only
if:

Moreover, a trace t is said to be a positive trace of a system if it represents a feasible behaviour that the given system

may exhibit, otherwise it is said to be negative. The rest of the manuscript will also refer to the language of the ELTS. It can
be defined as the set of labels sequences accepted by M and represents the behaviour permitted by M.

Definition 4 [The Language of an ELTS] Given some ELTS M, for a given state q Q, L M ,q , is the language of M in

state q, and can be defined as: L M ,q   w | ̂ is defined for q,w   . The language of an ELTS M is defined as:

L M   w | ̂ is defined for q0,w   .

3.2. Illustrative Example
Let us consider the scenario where we are required to learn a model of the sequential behaviour exhibited by an

. The set of traces projections is denot-
ed by π(T).
We define a trace t to be consistent with an ELTS if and
only if it can trigger in order the input event labels of
the trace and passes through the same states labelled
as in the trace. This concept is formally defined below.
Definition 3 [Consistency]. A trace t  a1,1 , , an , n 

t  a1,1 , , an , n  is consistent with a given ELTS

model to increase the probability of selecting an event that rarely or never occurs when users use the application.

3. Background
The automatic inference of state-machine models has been intensively investigated within the machine learning

domain of grammar inference. The problem of grammar inference is concerned with the process of identifying a language
from positive (valid) strings that belong to the language and negative (invalid) ones that do not. Several inference techniques
have been developed to reduce human effort in automatically generating state machine models from examples of software
behaviours. These examples can either be in the form of scenarios extracted from models created during the development
stage of a software system, or execution traces from the current implementation of a program.

The aim of this section is to provide the reader with the mathematical definitions related to model inference. It also
introduces an example of the specific trace-encoding process used to infer the sequential behaviour model of an Android GUI
application.

3.1. Definitions
In this paper, we restrict the discussion to those systems that can be modelled as an Extended deterministic Labelled

Transition System (ELTS) [33]. A Labelled Transition System (LTS) [37] is an instance of a state machine often used to
represent the behaviour of software systems. In intuitive terms, an ELTS model augments a conventional LTS with a state
labelling function  defining the set of enabled transitions at each model-state.

Most of the techniques used to infer software behaviour models take as input a set of program execution traces that
consist of sequences of input events to which the system responds with actions. In this work, we adopt the same trace-encoding
process described in [33] in which we assume that the interactions with the SUT can be characterised in terms of event labels
belonging to the ELTS finite alphabet  . The definitions of trace and trace projection are formally given below.

Definition 1 [Trace] An execution trace, or simply a trace t is a finite sequence of pairs of input events and sets of possible

events at each traversed state q, starting from the initial state q0. Formally a trace t is an element of     * where

   is a subset of  .

Definition 2 [Trace Projection] A trace projection  t  denotes the sequence of input event labels in the trace t. Formally,

if t  a1,1 , , an,n  , then  t   a1,, an . The set of traces projections is denoted by  T  .

We define a trace t to be consistent with an ELTS if and only if it can trigger in order the input event labels of the
trace and passes through the same states labelled as in the trace. This concept is formally defined below.

Definition 3 [Consistency] A trace t  a1,1 , , an , n  is consistent with a given ELTS M  Q,q0, , ,  if and only
if:

Moreover, a trace t is said to be a positive trace of a system if it represents a feasible behaviour that the given system

may exhibit, otherwise it is said to be negative. The rest of the manuscript will also refer to the language of the ELTS. It can
be defined as the set of labels sequences accepted by M and represents the behaviour permitted by M.

Definition 4 [The Language of an ELTS] Given some ELTS M, for a given state q Q, L M ,q , is the language of M in

state q, and can be defined as: L M ,q   w | ̂ is defined for q,w   . The language of an ELTS M is defined as:

L M   w | ̂ is defined for q0,w   .

3.2. Illustrative Example
Let us consider the scenario where we are required to learn a model of the sequential behaviour exhibited by an

 if and only if:

model to increase the probability of selecting an event that rarely or never occurs when users use the application.

3. Background
The automatic inference of state-machine models has been intensively investigated within the machine learning

domain of grammar inference. The problem of grammar inference is concerned with the process of identifying a language
from positive (valid) strings that belong to the language and negative (invalid) ones that do not. Several inference techniques
have been developed to reduce human effort in automatically generating state machine models from examples of software
behaviours. These examples can either be in the form of scenarios extracted from models created during the development
stage of a software system, or execution traces from the current implementation of a program.

The aim of this section is to provide the reader with the mathematical definitions related to model inference. It also
introduces an example of the specific trace-encoding process used to infer the sequential behaviour model of an Android GUI
application.

3.1. Definitions
In this paper, we restrict the discussion to those systems that can be modelled as an Extended deterministic Labelled

Transition System (ELTS) [33]. A Labelled Transition System (LTS) [37] is an instance of a state machine often used to
represent the behaviour of software systems. In intuitive terms, an ELTS model augments a conventional LTS with a state
labelling function  defining the set of enabled transitions at each model-state.

Most of the techniques used to infer software behaviour models take as input a set of program execution traces that
consist of sequences of input events to which the system responds with actions. In this work, we adopt the same trace-encoding
process described in [33] in which we assume that the interactions with the SUT can be characterised in terms of event labels
belonging to the ELTS finite alphabet  . The definitions of trace and trace projection are formally given below.

Definition 1 [Trace] An execution trace, or simply a trace t is a finite sequence of pairs of input events and sets of possible

events at each traversed state q, starting from the initial state q0. Formally a trace t is an element of     * where

   is a subset of  .

Definition 2 [Trace Projection] A trace projection  t  denotes the sequence of input event labels in the trace t. Formally,

if t  a1,1 , , an,n  , then  t   a1,, an . The set of traces projections is denoted by  T  .

We define a trace t to be consistent with an ELTS if and only if it can trigger in order the input event labels of the
trace and passes through the same states labelled as in the trace. This concept is formally defined below.

Definition 3 [Consistency] A trace t  a1,1 , , an , n  is consistent with a given ELTS M  Q,q0, , ,  if and only
if:

Moreover, a trace t is said to be a positive trace of a system if it represents a feasible behaviour that the given system

may exhibit, otherwise it is said to be negative. The rest of the manuscript will also refer to the language of the ELTS. It can
be defined as the set of labels sequences accepted by M and represents the behaviour permitted by M.

Definition 4 [The Language of an ELTS] Given some ELTS M, for a given state q Q, L M ,q , is the language of M in

state q, and can be defined as: L M ,q   w | ̂ is defined for q,w   . The language of an ELTS M is defined as:

L M   w | ̂ is defined for q0,w   .

3.2. Illustrative Example
Let us consider the scenario where we are required to learn a model of the sequential behaviour exhibited by an

(1)

Moreover, a trace t is said to be a positive trace of a
system if it represents a feasible behaviour that the
given system may exhibit, otherwise it is said to be
negative. The rest of the manuscript will also refer to
the language of the ELTS. It can be defined as the set
of labels sequences accepted by M and represents the
behaviour permitted by M.
Definition  4 [The Language of an ELTS]. Giv-
en some ELTS M, for a given state q Q, L M ,q ,
is the language of M in state q, and can be de-
fined as:

model to increase the probability of selecting an event that rarely or never occurs when users use the application.

3. Background
The automatic inference of state-machine models has been intensively investigated within the machine learning

domain of grammar inference. The problem of grammar inference is concerned with the process of identifying a language
from positive (valid) strings that belong to the language and negative (invalid) ones that do not. Several inference techniques
have been developed to reduce human effort in automatically generating state machine models from examples of software
behaviours. These examples can either be in the form of scenarios extracted from models created during the development
stage of a software system, or execution traces from the current implementation of a program.

The aim of this section is to provide the reader with the mathematical definitions related to model inference. It also
introduces an example of the specific trace-encoding process used to infer the sequential behaviour model of an Android GUI
application.

3.1. Definitions
In this paper, we restrict the discussion to those systems that can be modelled as an Extended deterministic Labelled

Transition System (ELTS) [33]. A Labelled Transition System (LTS) [37] is an instance of a state machine often used to
represent the behaviour of software systems. In intuitive terms, an ELTS model augments a conventional LTS with a state
labelling function  defining the set of enabled transitions at each model-state.

Most of the techniques used to infer software behaviour models take as input a set of program execution traces that
consist of sequences of input events to which the system responds with actions. In this work, we adopt the same trace-encoding
process described in [33] in which we assume that the interactions with the SUT can be characterised in terms of event labels
belonging to the ELTS finite alphabet  . The definitions of trace and trace projection are formally given below.

Definition 1 [Trace] An execution trace, or simply a trace t is a finite sequence of pairs of input events and sets of possible

events at each traversed state q, starting from the initial state q0. Formally a trace t is an element of     * where

   is a subset of  .

Definition 2 [Trace Projection] A trace projection  t  denotes the sequence of input event labels in the trace t. Formally,

if t  a1,1 , , an,n  , then  t   a1,, an . The set of traces projections is denoted by  T  .

We define a trace t to be consistent with an ELTS if and only if it can trigger in order the input event labels of the
trace and passes through the same states labelled as in the trace. This concept is formally defined below.

Definition 3 [Consistency] A trace t  a1,1 , , an , n  is consistent with a given ELTS M  Q,q0, , ,  if and only
if:

Moreover, a trace t is said to be a positive trace of a system if it represents a feasible behaviour that the given system

may exhibit, otherwise it is said to be negative. The rest of the manuscript will also refer to the language of the ELTS. It can
be defined as the set of labels sequences accepted by M and represents the behaviour permitted by M.

Definition 4 [The Language of an ELTS] Given some ELTS M, for a given state q Q, L M ,q , is the language of M in

state q, and can be defined as: L M ,q   w | ̂ is defined for q,w   . The language of an ELTS M is defined as:

L M   w | ̂ is defined for q0,w   .

3.2. Illustrative Example
Let us consider the scenario where we are required to learn a model of the sequential behaviour exhibited by an

. The
language of an ELTS M is defined as:

model to increase the probability of selecting an event that rarely or never occurs when users use the application.

3. Background
The automatic inference of state-machine models has been intensively investigated within the machine learning

domain of grammar inference. The problem of grammar inference is concerned with the process of identifying a language
from positive (valid) strings that belong to the language and negative (invalid) ones that do not. Several inference techniques
have been developed to reduce human effort in automatically generating state machine models from examples of software
behaviours. These examples can either be in the form of scenarios extracted from models created during the development
stage of a software system, or execution traces from the current implementation of a program.

The aim of this section is to provide the reader with the mathematical definitions related to model inference. It also
introduces an example of the specific trace-encoding process used to infer the sequential behaviour model of an Android GUI
application.

3.1. Definitions
In this paper, we restrict the discussion to those systems that can be modelled as an Extended deterministic Labelled

Transition System (ELTS) [33]. A Labelled Transition System (LTS) [37] is an instance of a state machine often used to
represent the behaviour of software systems. In intuitive terms, an ELTS model augments a conventional LTS with a state
labelling function  defining the set of enabled transitions at each model-state.

Most of the techniques used to infer software behaviour models take as input a set of program execution traces that
consist of sequences of input events to which the system responds with actions. In this work, we adopt the same trace-encoding
process described in [33] in which we assume that the interactions with the SUT can be characterised in terms of event labels
belonging to the ELTS finite alphabet  . The definitions of trace and trace projection are formally given below.

Definition 1 [Trace] An execution trace, or simply a trace t is a finite sequence of pairs of input events and sets of possible

events at each traversed state q, starting from the initial state q0. Formally a trace t is an element of     * where

   is a subset of  .

Definition 2 [Trace Projection] A trace projection  t  denotes the sequence of input event labels in the trace t. Formally,

if t  a1,1 , , an,n  , then  t   a1,, an . The set of traces projections is denoted by  T  .

We define a trace t to be consistent with an ELTS if and only if it can trigger in order the input event labels of the
trace and passes through the same states labelled as in the trace. This concept is formally defined below.

Definition 3 [Consistency] A trace t  a1,1 , , an , n  is consistent with a given ELTS M  Q,q0, , ,  if and only
if:

Moreover, a trace t is said to be a positive trace of a system if it represents a feasible behaviour that the given system

may exhibit, otherwise it is said to be negative. The rest of the manuscript will also refer to the language of the ELTS. It can
be defined as the set of labels sequences accepted by M and represents the behaviour permitted by M.

Definition 4 [The Language of an ELTS] Given some ELTS M, for a given state q Q, L M ,q , is the language of M in

state q, and can be defined as: L M ,q   w | ̂ is defined for q,w   . The language of an ELTS M is defined as:

L M   w | ̂ is defined for q0,w   .

3.2. Illustrative Example
Let us consider the scenario where we are required to learn a model of the sequential behaviour exhibited by an

.

3.2. Illustrative Example
Let us consider the scenario where we are required to
learn a model of the sequential behaviour exhibited by
an Android GUI application without the availability of
the app source code. In this setting, we assume that we
are able to detect the GUI components at each visit-
ed app screen and, as a consequence, to automatically
navigate the application through the generation of GUI
events [2]. It is during such exploration that both the
given input event sequences and the corresponding
app behaviour are encoded in a set of execution traces.
As a running example we use the Sanity Android ap-
plication to better explain the trace-encoding process
needed to set up the behavioural model inference
challenge.
Figure 1 shows one of the possible input sequences
that, once given to the SUT, let the automatic explo-
ration reach the main Sanity app screen starting from
the initial one. This scenario of execution is encoded
in the trace below:

.

321Information Technology and Control 2019/2/48

...
(a, set of available GUI events from screen 2)
(b, set of available GUI events from screen 3)
(c, set of available GUI events from screen 4)
...

Figure 1
An automatic GUI exploration

Table 1
GUI events labels

GUI event label GUI input action

‘a’ Click on Button Ok of screen 1

‘b’ Click on Button Ok of screen 2

‘c’ Click on Button CANCEL of screen 3

of the GUI to build an ELTS behavioural model of the
SUT. The learned model is then used with the aim of
guiding the generation of new test inputs to discover
as quickly as possible unseen parts of the subject sys-
tem. Generally speaking, an active learning algorithm
for inferring finite state machines iteratively asks
for additional observations to complete its task and
often implies a teacher-student relationship [12]. In
our scenario, indeed, the designed testing with model
learning procedure is thought to act as a teacher. It ex-
ecutes the SUT on specific test event sequences to get
answers to two kind of different queries, membership
and equivalence queries. Membership queries aim to
realize whether the GUI app can trigger in order a
particular sequence of events, whereas equivalence
queries are intended to check if the current model
hypothesis is consistent with the observed system
behaviour, without the aid of formal specifications.
Moreover, according to the taxonomy presented by
Utting et al. [36], the overall testing procedure is de-
fined as online in the sense that test generation and
test execution are iteratively performed on-the-fly.
The testing with model learning process is described
by Algorithm 1. It is based on the following practical
assumptions:
 _ it is possible to detect the set of available user

inputs at each app screen,
 _ the testing algorithm is able to restart the SUT,

send events to the subject system and record its
reaction.

According to Definition 1 this execution trace con-
sists of a sequence of pairs (shown on a different line)
of input event labels and GUI events available in the
current app screen. Each event label represents a spe-
cific GUI event sent to the SUT as detailed in Table 1.

4.Testing with Model Learning
In this Section, the proposed fully automatic online
black-box testing technique for GUI applications is
described. The key idea is to combine testing with
model learning to obtain a test input set capable of
intensively exercising the functional behaviour of the
SUT. To reach this goal, an active learning algorithm
is used in conjunction with a systematic exploration

Information Technology and Control 2019/2/48322

Algorithm 1: Testing with Model Learning Algorithm

Input: the SUT
Output: the set of execution traces T, the ELTS M
modelling the sequential behaviour of the SUT

At each iteration, the testing algorithm exercises new
functionalities of the GUI via a model-based explora-
tion strategy.
Definition 5 [Frontier model-state]. A state q in an
ELTS model is a frontier-state if and only if there ex-
ists

available GUI events is modelled as the state labelling function value in p ( p ) (line 1). We use throughout the rest of this
Section s to refer to the current app-state (current GUI screen) and p to indicate its corresponding abstract state in the model.
At each iteration, the testing algorithm exercises new functionalities of the GUI via a model-based exploration strategy.

Definition 5 [Frontier model-state] A state q in an ELTS model is a frontier-state if and only if there exists a  q  such

that q 
a

 u is not true for any u Q [33].

The findFrontierState function is responsible of choosing a frontier-state q in the ELTS model that can be reached
starting from the current model-state p, then the algorithm selects a sequence of event labels l that leads to q starting from p
(lines 4-5). We heuristically pick the frontier-state q as follows:

 if during the exploration an app-state s is reached whose corresponding model-state p is a frontier-state in M, then
p is selected as the next frontier-state to explore,

 otherwise, the algorithm selects the frontier-state q for which the number of diverse states to traverse, in the path
that leads from p to q, is the greatest one.

Starting from s, the algorithm executes the SUT on the sequence of GUI events corresponding to l and obtains a trace
of execution t (line 6). If t is consistent with the current model hypothesis M (Definition 3), the algorithm randomly picks an
unexplored outgoing transition a from q (), executes the app on the corresponding GUI action and updates
both the current app-state s and the actual execution trace t (lines 7-9). If the state labelling function of an existing M state
agrees with the set of available GUI events of the newly reached app-state s, a merge operation is performed in the model,
otherwise a new fresh model-state p that abstracts s is added to M (lines 10-14). Two app-states are considered equivalent if
they exhibit the same set of GUI components (enabled in the same boxes of screen coordinates). This is formally reflected in
the ELTS state labelling function. Therefore, two model-states are compatible if they agree on .

The above mentioned approximate check of equivalence between two app-states and their corresponding model-
states results in an aggressive merging strategy because it cannot take into account any future behaviour of the SUT starting
from the states considered for merging. This approach may introduce an inconsistency between the model and the behaviour
of the subject system observed so far. Indeed, if an inconsistency is found in the current ELTS model, the algorithm adds the
current execution trace t to the set of traces T and refines M via passive learning (lines 17-18). The inferELTS function is
exhaustively described by Algorithm 3 of Section 6. Whenever the selected frontier-state q is not reachable from the current
model-state p, the testing algorithm updates the set of traces T with t, initialises t and restarts the app under test (lines 21-22)
to select a new frontier-state and continue with the GUI exploration. The systematic exploration goes on until no more frontier-
states are available in M, meaning that every transition from each state in the model has been taken (model-based coverage
termination criterion), or that the predefined testing time budget is expired. In the first case, it is needed to check whether the
resulting ELTS M is equivalent to the SUT. This is performed by generating a predefined number of random walks on the
ELTS model that do not represent a subsequence of any  t  . The SUT is then executed on these sequences of events and if
a counterexample is found, the model is refined using the set of traces T observed so far to continue with the exploration.

4.1. Comparison with SwiftHand
Our proposed testing with model learning algorithm exploits the basic steps of the learning-guided testing algorithm

designed by Choi et al. in [9]. In this paper, the authors present an automated testing technique called SwiftHand for generating
sequences of test inputs for Android apps. A key feature of SwiftHand is that it achieves significantly better code coverage
than traditional random testing and active learning-based testing by reducing the number of restarts needed to complete the
systematic GUI app exploration process.

Here we want to highlight the main differences between our testing technique and SwiftHand. First of all SwiftHand
randomly chooses the next frontier-state to explore, whereas our heuristic GUI exploration strategy moves in the direction of
enhancing both the test depth and the ELTS state-coverage while minimizing the number of app restarts needed to complete
the learning task. Indeed, we decide to make the exploration process as fluid as possible by privileging the choice of the
current model-state as the next frontier-state to explore if possible or to maximize, with a different selection, the number of
model states to traverse when it is not. Another relevant distinction concerns with the merging strategy adopted in the active
model learning stage. Whenever more than one model-state is compatible for merging with the current one, then SwiftHand
heuristically selects the nearest ancestor between them. The authors claim that this choice often avoids refining the model in
future. However, in order to generalize the testing procedure, we randomly pick a model-state for merging and whenever an
inconsistency is introduced into the model, due to an aggressive merging operation, we use the proposed passive learning

 such that

available GUI events is modelled as the state labelling function value in p ( p ) (line 1). We use throughout the rest of this
Section s to refer to the current app-state (current GUI screen) and p to indicate its corresponding abstract state in the model.
At each iteration, the testing algorithm exercises new functionalities of the GUI via a model-based exploration strategy.

Definition 5 [Frontier model-state] A state q in an ELTS model is a frontier-state if and only if there exists a  q  such

that q a u is not true for any u Q [33].

The findFrontierState function is responsible of choosing a frontier-state q in the ELTS model that can be reached
starting from the current model-state p, then the algorithm selects a sequence of event labels l that leads to q starting from p
(lines 4-5). We heuristically pick the frontier-state q as follows:

 if during the exploration an app-state s is reached whose corresponding model-state p is a frontier-state in M, then
p is selected as the next frontier-state to explore,

 otherwise, the algorithm selects the frontier-state q for which the number of diverse states to traverse, in the path
that leads from p to q, is the greatest one.

Starting from s, the algorithm executes the SUT on the sequence of GUI events corresponding to l and obtains a trace
of execution t (line 6). If t is consistent with the current model hypothesis M (Definition 3), the algorithm randomly picks an
unexplored outgoing transition a from q (), executes the app on the corresponding GUI action and updates
both the current app-state s and the actual execution trace t (lines 7-9). If the state labelling function of an existing M state
agrees with the set of available GUI events of the newly reached app-state s, a merge operation is performed in the model,
otherwise a new fresh model-state p that abstracts s is added to M (lines 10-14). Two app-states are considered equivalent if
they exhibit the same set of GUI components (enabled in the same boxes of screen coordinates). This is formally reflected in
the ELTS state labelling function. Therefore, two model-states are compatible if they agree on .

The above mentioned approximate check of equivalence between two app-states and their corresponding model-
states results in an aggressive merging strategy because it cannot take into account any future behaviour of the SUT starting
from the states considered for merging. This approach may introduce an inconsistency between the model and the behaviour
of the subject system observed so far. Indeed, if an inconsistency is found in the current ELTS model, the algorithm adds the
current execution trace t to the set of traces T and refines M via passive learning (lines 17-18). The inferELTS function is
exhaustively described by Algorithm 3 of Section 6. Whenever the selected frontier-state q is not reachable from the current
model-state p, the testing algorithm updates the set of traces T with t, initialises t and restarts the app under test (lines 21-22)
to select a new frontier-state and continue with the GUI exploration. The systematic exploration goes on until no more frontier-
states are available in M, meaning that every transition from each state in the model has been taken (model-based coverage
termination criterion), or that the predefined testing time budget is expired. In the first case, it is needed to check whether the
resulting ELTS M is equivalent to the SUT. This is performed by generating a predefined number of random walks on the
ELTS model that do not represent a subsequence of any  t  . The SUT is then executed on these sequences of events and if
a counterexample is found, the model is refined using the set of traces T observed so far to continue with the exploration.

4.1. Comparison with SwiftHand
Our proposed testing with model learning algorithm exploits the basic steps of the learning-guided testing algorithm

designed by Choi et al. in [9]. In this paper, the authors present an automated testing technique called SwiftHand for generating
sequences of test inputs for Android apps. A key feature of SwiftHand is that it achieves significantly better code coverage
than traditional random testing and active learning-based testing by reducing the number of restarts needed to complete the
systematic GUI app exploration process.

Here we want to highlight the main differences between our testing technique and SwiftHand. First of all SwiftHand
randomly chooses the next frontier-state to explore, whereas our heuristic GUI exploration strategy moves in the direction of
enhancing both the test depth and the ELTS state-coverage while minimizing the number of app restarts needed to complete
the learning task. Indeed, we decide to make the exploration process as fluid as possible by privileging the choice of the
current model-state as the next frontier-state to explore if possible or to maximize, with a different selection, the number of
model states to traverse when it is not. Another relevant distinction concerns with the merging strategy adopted in the active
model learning stage. Whenever more than one model-state is compatible for merging with the current one, then SwiftHand
heuristically selects the nearest ancestor between them. The authors claim that this choice often avoids refining the model in
future. However, in order to generalize the testing procedure, we randomly pick a model-state for merging and whenever an
inconsistency is introduced into the model, due to an aggressive merging operation, we use the proposed passive learning

 is not true for any

available GUI events is modelled as the state labelling function value in p ( p ) (line 1). We use throughout the rest of this
Section s to refer to the current app-state (current GUI screen) and p to indicate its corresponding abstract state in the model.
At each iteration, the testing algorithm exercises new functionalities of the GUI via a model-based exploration strategy.

Definition 5 [Frontier model-state] A state q in an ELTS model is a frontier-state if and only if there exists a  q  such

that q 
a

 u is not true for any u Q [33].

The findFrontierState function is responsible of choosing a frontier-state q in the ELTS model that can be reached
starting from the current model-state p, then the algorithm selects a sequence of event labels l that leads to q starting from p
(lines 4-5). We heuristically pick the frontier-state q as follows:

 if during the exploration an app-state s is reached whose corresponding model-state p is a frontier-state in M, then
p is selected as the next frontier-state to explore,

 otherwise, the algorithm selects the frontier-state q for which the number of diverse states to traverse, in the path
that leads from p to q, is the greatest one.

Starting from s, the algorithm executes the SUT on the sequence of GUI events corresponding to l and obtains a trace
of execution t (line 6). If t is consistent with the current model hypothesis M (Definition 3), the algorithm randomly picks an
unexplored outgoing transition a from q (), executes the app on the corresponding GUI action and updates
both the current app-state s and the actual execution trace t (lines 7-9). If the state labelling function of an existing M state
agrees with the set of available GUI events of the newly reached app-state s, a merge operation is performed in the model,
otherwise a new fresh model-state p that abstracts s is added to M (lines 10-14). Two app-states are considered equivalent if
they exhibit the same set of GUI components (enabled in the same boxes of screen coordinates). This is formally reflected in
the ELTS state labelling function. Therefore, two model-states are compatible if they agree on .

The above mentioned approximate check of equivalence between two app-states and their corresponding model-
states results in an aggressive merging strategy because it cannot take into account any future behaviour of the SUT starting
from the states considered for merging. This approach may introduce an inconsistency between the model and the behaviour
of the subject system observed so far. Indeed, if an inconsistency is found in the current ELTS model, the algorithm adds the
current execution trace t to the set of traces T and refines M via passive learning (lines 17-18). The inferELTS function is
exhaustively described by Algorithm 3 of Section 6. Whenever the selected frontier-state q is not reachable from the current
model-state p, the testing algorithm updates the set of traces T with t, initialises t and restarts the app under test (lines 21-22)
to select a new frontier-state and continue with the GUI exploration. The systematic exploration goes on until no more frontier-
states are available in M, meaning that every transition from each state in the model has been taken (model-based coverage
termination criterion), or that the predefined testing time budget is expired. In the first case, it is needed to check whether the
resulting ELTS M is equivalent to the SUT. This is performed by generating a predefined number of random walks on the
ELTS model that do not represent a subsequence of any  t  . The SUT is then executed on these sequences of events and if
a counterexample is found, the model is refined using the set of traces T observed so far to continue with the exploration.

4.1. Comparison with SwiftHand
Our proposed testing with model learning algorithm exploits the basic steps of the learning-guided testing algorithm

designed by Choi et al. in [9]. In this paper, the authors present an automated testing technique called SwiftHand for generating
sequences of test inputs for Android apps. A key feature of SwiftHand is that it achieves significantly better code coverage
than traditional random testing and active learning-based testing by reducing the number of restarts needed to complete the
systematic GUI app exploration process.

Here we want to highlight the main differences between our testing technique and SwiftHand. First of all SwiftHand
randomly chooses the next frontier-state to explore, whereas our heuristic GUI exploration strategy moves in the direction of
enhancing both the test depth and the ELTS state-coverage while minimizing the number of app restarts needed to complete
the learning task. Indeed, we decide to make the exploration process as fluid as possible by privileging the choice of the
current model-state as the next frontier-state to explore if possible or to maximize, with a different selection, the number of
model states to traverse when it is not. Another relevant distinction concerns with the merging strategy adopted in the active
model learning stage. Whenever more than one model-state is compatible for merging with the current one, then SwiftHand
heuristically selects the nearest ancestor between them. The authors claim that this choice often avoids refining the model in
future. However, in order to generalize the testing procedure, we randomly pick a model-state for merging and whenever an
inconsistency is introduced into the model, due to an aggressive merging operation, we use the proposed passive learning

[33].
The findFrontierState function is responsible of
choosing a frontier-state q in the ELTS model that can
be reached starting from the current model-state p,
then the algorithm selects a sequence of event labels l
that leads to q starting from p (lines 4-5). We heuristi-
cally pick the frontier-state q as follows:
 _ if during the exploration an app-state s is reached

whose corresponding model-state p is a frontier-
state in M, then p is selected as the next frontier-
state to explore,

 _ otherwise, the algorithm selects the frontier-state
q for which the number of diverse states to traverse,
in the path that leads from p to q, is the greatest one.

Starting from s, the algorithm executes the SUT on
the sequence of GUI events corresponding to l and
obtains a trace of execution t (line 6). If t is consistent
with the current model hypothesis M (Definition 3),
the algorithm randomly picks an unexplored outgo-
ing transition a from

available GUI events is modelled as the state labelling function value in p ( p ) (line 1). We use throughout the rest of this
Section s to refer to the current app-state (current GUI screen) and p to indicate its corresponding abstract state in the model.
At each iteration, the testing algorithm exercises new functionalities of the GUI via a model-based exploration strategy.

Definition 5 [Frontier model-state] A state q in an ELTS model is a frontier-state if and only if there exists a  q  such

that q 
a

 u is not true for any u Q [33].

The findFrontierState function is responsible of choosing a frontier-state q in the ELTS model that can be reached
starting from the current model-state p, then the algorithm selects a sequence of event labels l that leads to q starting from p
(lines 4-5). We heuristically pick the frontier-state q as follows:

 if during the exploration an app-state s is reached whose corresponding model-state p is a frontier-state in M, then
p is selected as the next frontier-state to explore,

 otherwise, the algorithm selects the frontier-state q for which the number of diverse states to traverse, in the path
that leads from p to q, is the greatest one.

Starting from s, the algorithm executes the SUT on the sequence of GUI events corresponding to l and obtains a trace
of execution t (line 6). If t is consistent with the current model hypothesis M (Definition 3), the algorithm randomly picks an
unexplored outgoing transition a from q (), executes the app on the corresponding GUI action and updates
both the current app-state s and the actual execution trace t (lines 7-9). If the state labelling function of an existing M state
agrees with the set of available GUI events of the newly reached app-state s, a merge operation is performed in the model,
otherwise a new fresh model-state p that abstracts s is added to M (lines 10-14). Two app-states are considered equivalent if
they exhibit the same set of GUI components (enabled in the same boxes of screen coordinates). This is formally reflected in
the ELTS state labelling function. Therefore, two model-states are compatible if they agree on .

The above mentioned approximate check of equivalence between two app-states and their corresponding model-
states results in an aggressive merging strategy because it cannot take into account any future behaviour of the SUT starting
from the states considered for merging. This approach may introduce an inconsistency between the model and the behaviour
of the subject system observed so far. Indeed, if an inconsistency is found in the current ELTS model, the algorithm adds the
current execution trace t to the set of traces T and refines M via passive learning (lines 17-18). The inferELTS function is
exhaustively described by Algorithm 3 of Section 6. Whenever the selected frontier-state q is not reachable from the current
model-state p, the testing algorithm updates the set of traces T with t, initialises t and restarts the app under test (lines 21-22)
to select a new frontier-state and continue with the GUI exploration. The systematic exploration goes on until no more frontier-
states are available in M, meaning that every transition from each state in the model has been taken (model-based coverage
termination criterion), or that the predefined testing time budget is expired. In the first case, it is needed to check whether the
resulting ELTS M is equivalent to the SUT. This is performed by generating a predefined number of random walks on the
ELTS model that do not represent a subsequence of any  t  . The SUT is then executed on these sequences of events and if
a counterexample is found, the model is refined using the set of traces T observed so far to continue with the exploration.

4.1. Comparison with SwiftHand
Our proposed testing with model learning algorithm exploits the basic steps of the learning-guided testing algorithm

designed by Choi et al. in [9]. In this paper, the authors present an automated testing technique called SwiftHand for generating
sequences of test inputs for Android apps. A key feature of SwiftHand is that it achieves significantly better code coverage
than traditional random testing and active learning-based testing by reducing the number of restarts needed to complete the
systematic GUI app exploration process.

Here we want to highlight the main differences between our testing technique and SwiftHand. First of all SwiftHand
randomly chooses the next frontier-state to explore, whereas our heuristic GUI exploration strategy moves in the direction of
enhancing both the test depth and the ELTS state-coverage while minimizing the number of app restarts needed to complete
the learning task. Indeed, we decide to make the exploration process as fluid as possible by privileging the choice of the
current model-state as the next frontier-state to explore if possible or to maximize, with a different selection, the number of
model states to traverse when it is not. Another relevant distinction concerns with the merging strategy adopted in the active
model learning stage. Whenever more than one model-state is compatible for merging with the current one, then SwiftHand
heuristically selects the nearest ancestor between them. The authors claim that this choice often avoids refining the model in
future. However, in order to generalize the testing procedure, we randomly pick a model-state for merging and whenever an
inconsistency is introduced into the model, due to an aggressive merging operation, we use the proposed passive learning

, executes
the app on the corresponding GUI action and updates
both the current app-state s and the actual execution
trace t (lines 7-9). If the state labelling function of an
existing M state agrees with the set of available GUI
events of the newly reached app-state s, a merge op-
eration is performed in the model, otherwise a new
fresh model-state p that abstracts s is added to M
(lines 10-14). Two app-states are considered equiva-
lent if they exhibit the same set of GUI components
(enabled in the same boxes of screen coordinates).
This is formally reflected in the ELTS state labelling
function. Therefore, two model-states are compatible
if they agree on λ.
The above mentioned approximate check of equiva-
lence between two app-states and their correspond-
ing model-states results in an aggressive merging
strategy because it cannot take into account any fu-
ture behaviour of the SUT starting from the states
considered for merging. This approach may intro-
duce an inconsistency between the model and the be-

different queries, membership and equivalence queries. Membership queries aim to realize whether the GUI app can trigger
in order a particular sequence of events, whereas equivalence queries are intended to check if the current model hypothesis is
consistent with the observed system behaviour, without the aid of formal specifications. Moreover, according to the taxonomy
presented by Utting et al. [36], the overall testing procedure is defined as online in the sense that test generation and test
execution are iteratively performed on-the-fly.

The testing with model learning process is described by Algorithm 1. It is based on the following practical
assumptions:

 it is possible to detect the set of available user inputs at each app screen,
 the testing algorithm is able to restart the SUT, send events to the subject system and record its reaction.

Algorithm 1: Testing with Model Learning Algorithm

Input: the SUT
Output: the set of execution traces T, the ELTS M modelling the sequential behaviour of the SUT
1. M, p, s, T, t  initialisation()
2. stop  false
3. while  (timeBudget()  stop) do
4. if q  findFrontierState(M) then
5. if l  isReachable(q, p, M) then
6. (s, t)  execute(s, t, l)
7. if t is consistent with M then
8. a  selectNextInput()
9. (s, t)  execute(s, t, a)
10. if there exists r in M s.t.  r    s  then
11. M  addTransition(q, a, r)
12. else
13. M  addState(r)
14. M  addTransition(q, a, r)
15. end if
16. else
17. (T, t)  updateTraces(t)
18. M  inferELTS(T)
19. end if
20. else
21. (T, t)  updateTraces(t)
22. (p, s)  restart()
23. end if
24. else if (l, stop)  equivalenceCheck(projections(T)) then
25. (s, t)  execute(s, t, l)
26. if t is not consistent with M then
27. (T, t)  updateTraces(t)
28. M  inferELTS(T)
29. end if
30. else
31. return T, M
32. end if
33. end while
34. return T, M

Due to the fact that no prior knowledge is available about the hidden state transition structure of SUT, an initial
ELTS model of the Android GUI app is needed to start with the the model-based test input generation process. Therefore, the
initialisation function launches the app to reach the initial system-state and queries the set of available GUI actions. The initial
app-state s is abstracted as the initial ELTS model M containing the corresponding model-state p, whereas the detected set of

Due to the fact that no prior knowledge is available
about the hidden state transition structure of SUT, an
initial ELTS model of the Android GUI app is needed
to start with the the model-based test input genera-
tion process. Therefore, the initialisation function
launches the app to reach the initial system-state and
queries the set of available GUI actions. The initial
app-state s is abstracted as the initial ELTS model M
containing the corresponding model-state p, whereas
the detected set of available GUI events is modelled
as the state labelling function value in p (λ(p)) (line 1).
We use throughout the rest of this Section s to refer
to the current app-state (current GUI screen) and p to
indicate its corresponding abstract state in the model.

323Information Technology and Control 2019/2/48

haviour of the subject system observed so far. Indeed,
if an inconsistency is found in the current ELTS mod-
el, the algorithm adds the current execution trace t to
the set of traces T and refines M via passive learning
(lines 17-18). The inferELTS function is exhaustively
described by Algorithm 3 of Section 6. Whenever the
selected frontier-state q is not reachable from the cur-
rent model-state p, the testing algorithm updates the
set of traces T with t, initialises t and restarts the app
under test (lines 21-22) to select a new frontier-state
and continue with the GUI exploration. The system-
atic exploration goes on until no more frontier-states
are available in M, meaning that every transition
from each state in the model has been taken (mod-
el-based coverage termination criterion), or that the
predefined testing time budget is expired. In the first
case, it is needed to check whether the resulting ELTS
M is equivalent to the SUT. This is performed by gen-
erating a predefined number of random walks on the
ELTS model that do not represent a subsequence of
any π(t). The SUT is then executed on these sequenc-
es of events and if a counterexample is found, the
model is refined using the set of traces T observed so
far to continue with the exploration.

4.1. Comparison with SwiftHand
Our proposed testing with model learning algorithm
exploits the basic steps of the learning-guided testing
algorithm designed by Choi et al. in [9]. In this paper,
the authors present an automated testing technique
called SwiftHand for generating sequences of test
inputs for Android apps. A key feature of SwiftHand
is that it achieves significantly better code coverage
than traditional random testing and active learn-
ing-based testing by reducing the number of restarts
needed to complete the systematic GUI app explora-
tion process.
Here we want to highlight the main differences be-
tween our testing technique and SwiftHand. First
of all SwiftHand randomly chooses the next fron-
tier-state to explore, whereas our heuristic GUI ex-
ploration strategy moves in the direction of enhanc-
ing both the test depth and the ELTS state-coverage
while minimizing the number of app restarts needed
to complete the learning task. Indeed, we decide to
make the exploration process as fluid as possible by
privileging the choice of the current model-state as
the next frontier-state to explore if possible or to max-

imize, with a different selection, the number of model
states to traverse when it is not. Another relevant dis-
tinction concerns with the merging strategy adopted
in the active model learning stage. Whenever more
than one model-state is compatible for merging with
the current one, then SwiftHand heuristically selects
the nearest ancestor between them. The authors claim
that this choice often avoids refining the model in fu-
ture. However, in order to generalize the testing pro-
cedure, we randomly pick a model-state for merging
and whenever an inconsistency is introduced into the
model, due to an aggressive merging operation, we use
the proposed passive learning algorithm to refine it.
Both the testing strategies terminate by means of an
equivalence check between the ELTS inferred model
and the SUT but they differ in the way they implement
it. In absence of specifications, as is the case here, the
equivalence check is implemented executing untried
scenarios until a counter-example is found because
the ELTS model cannot be validity checked against
formal specifications of the SUT. As soon as the ELTS
model is complete, SwiftHand performs this check
by executing a sequence of events l starting from the
current model-state and by ensuring that l is not a
subsequence of any trace projection π(t)∈ π(T). More-
over, if multiple transition sequences are available,
SwiftHand uses a random walk strategy to select one
of them. This heuristic to approximate the equiva-
lence query suffers of the following drawback: if the
current model-state corresponds to a terminal state,
no subsequence would be found and SwiftHand termi-
nates without executing any equivalence check. Our
approximate check of equivalence between the ELTS
model and the SUT consists of executing a predefined
number of acceptance tests. Starting from the current
model-state, we generate a set of random walks then
we randomly pick a sequence of events that is not a
subsequence for any trace projection. In the case the
current model state is a terminal state, we restart the
app under test and iteratively evaluate new paths.
Finally, the two strategies are totally different regard-
ing the inductive inference algorithm used to re-learn
the model whenever an inconsistency is found be-
tween the learned model and the SUT. SwiftHand re-
fines the model via the Evidence-Driven State Merg-
ing (EDSM) algorithm with the Blue-fringe control
strategy and exploits the idea of blocking constraints
introduced by [23]. Our passive learning algorithm

Information Technology and Control 2019/2/48324

adopts the basic steps of the EDSM algorithm in the
“blue fringe” framework and introduces a novel heu-
ristic approach according to the order in which state
pairs are chosen for merging as described in Section 6.

5. The Synthesis of Software
Behaviour Models
To better understand our inductive learning algo-
rithm, we first give a brief review of the DFA induc-
tion problem in the learning from an informant set-
ting [12]. The automatic learning of behaviour models
from scenarios of interaction between the SUT and
its environment can be interpreted as a Determinis-
tic Finite Automaton (DFA) induction problem [15].
Starting from a set of system execution traces, the
derived scenarios of interaction can be represented
as strings over a finite alphabet of events (∑) and they
can be generalized to form a language of acceptable
behaviours. Indeed, whenever behaviours are repre-
sented as finite-state machines, the problem is equiv-
alent to induce a DFA from positive and negative

strings. State-merging is the foundation for most suc-
cessful techniques in inferring DFA from positive (S+)
and negative (S–) examples. These algorithms start by
building an initial automaton called Prefix Tree Ac-
ceptor (PTA) [12] accepting exactly S+ and successive-
ly merge states to generalize the induced language.

5.1. State-Merging and Quotient Automaton
The generalization operation obtained by merging
states of an original automaton A is formally defined
through the concept of quotient automaton [15]. The
set of possible generalizations which can be obtained
by merging states of the original automaton can be
searched through a lattice of partitions Lat(A) [14].
Figure 2 shows how, starting from the PTA S+() (Fig-
ure 2a), states belonging to the same subset, or block,
of π are merged in the quotient automaton (Figure 2b).
Accepting states are represented as light grey nodes.
Merging blocks B(0, π) and B(1, π) belonging to the
initial partition π defined on the PTA states set (Fig-
ure 2a) leads to a nondetermistic quotient automaton.
Therefore, a recursive process of merging blocks is
needed to obtain the deterministic quotient automa-
ton shown in Figure 2b.

Figure 2
Generalization process

 PTA S+()with

algorithm to refine it. Both the testing strategies terminate by means of an equivalence check between the ELTS inferred
model and the SUT but they differ in the way they implement it. In absence of specifications, as is the case here, the
equivalence check is implemented executing untried scenarios until a counter-example is found because the ELTS model
cannot be validity checked against formal specifications of the SUT. As soon as the ELTS model is complete, SwiftHand
performs this check by executing a sequence of events l starting from the current model-state and by ensuring that l is not a
subsequence of any trace projection  t    T . Moreover, if multiple transition sequences are available, SwiftHand uses
a random walk strategy to select one of them. This heuristic to approximate the equivalence query suffers of the following
drawback: if the current model-state corresponds to a terminal state, no subsequence would be found and SwiftHand terminates
without executing any equivalence check. Our approximate check of equivalence between the ELTS model and the SUT
consists of executing a predefined number of acceptance tests. Starting from the current model-state, we generate a set of
random walks then we randomly pick a sequence of events that is not a subsequence for any trace projection. In the case the
current model state is a terminal state, we restart the app under test and iteratively evaluate new paths.

Finally, the two strategies are totally different regarding the inductive inference algorithm used to re-learn the model
whenever an inconsistency is found between the learned model and the SUT. SwiftHand refines the model via the Evidence-
Driven State Merging (EDSM) algorithm with the Blue-fringe control strategy and exploits the idea of blocking constraints
introduced by [23]. Our passive learning algorithm adopts the basic steps of the EDSM algorithm in the “blue fringe”
framework and introduces a novel heuristic approach according to the order in which state pairs are chosen for merging as
described in Section 6.

5. The Synthesis of Software Behaviour Models
To better understand our inductive learning algorithm, we first give a brief review of the DFA induction problem in

the learning from an informant setting [12]. The automatic learning of behaviour models from scenarios of interaction between
the SUT and its environment can be interpreted as a Deterministic Finite Automaton (DFA) induction problem [15]. Starting
from a set of system execution traces, the derived scenarios of interaction can be represented as strings over a finite alphabet
of events () and they can be generalized to form a language of acceptable behaviours. Indeed, whenever behaviours are
represented as finite-state machines, the problem is equivalent to induce a DFA from positive and negative strings. State-
merging is the foundation for most successful techniques in inferring DFA from positive (S) and negative (S) examples.
These algorithms start by building an initial automaton called Prefix Tree Acceptor (PTA) [12] accepting exactly S and
successively merge states to generalize the induced language.

5.1. State-Merging and Quotient Automaton
The generalization operation obtained by merging states of an original automaton A is formally defined through the

concept of quotient automaton [15]. The set of possible generalizations which can be obtained by merging states of the original
automaton can be searched through a lattice of partitions Lat(A) [14]. Figure 2 shows how, starting from the PTA S  (Figure
2a), states belonging to the same subset, or block, of  are merged in the quotient automaton (Figure 2b). Accepting states are
represented as light grey nodes.

(a) PTA S with S   ,aaa, aaba,bba,bbaba  and  denoting the empty string. The initial partition

  0 , 1 , 2 , , 10   is defined on the PTA states set.

 and ε denoting the empty string. The initial partition

algorithm to refine it. Both the testing strategies terminate by means of an equivalence check between the ELTS inferred
model and the SUT but they differ in the way they implement it. In absence of specifications, as is the case here, the
equivalence check is implemented executing untried scenarios until a counter-example is found because the ELTS model
cannot be validity checked against formal specifications of the SUT. As soon as the ELTS model is complete, SwiftHand
performs this check by executing a sequence of events l starting from the current model-state and by ensuring that l is not a
subsequence of any trace projection  t    T . Moreover, if multiple transition sequences are available, SwiftHand uses
a random walk strategy to select one of them. This heuristic to approximate the equivalence query suffers of the following
drawback: if the current model-state corresponds to a terminal state, no subsequence would be found and SwiftHand terminates
without executing any equivalence check. Our approximate check of equivalence between the ELTS model and the SUT
consists of executing a predefined number of acceptance tests. Starting from the current model-state, we generate a set of
random walks then we randomly pick a sequence of events that is not a subsequence for any trace projection. In the case the
current model state is a terminal state, we restart the app under test and iteratively evaluate new paths.

Finally, the two strategies are totally different regarding the inductive inference algorithm used to re-learn the model
whenever an inconsistency is found between the learned model and the SUT. SwiftHand refines the model via the Evidence-
Driven State Merging (EDSM) algorithm with the Blue-fringe control strategy and exploits the idea of blocking constraints
introduced by [23]. Our passive learning algorithm adopts the basic steps of the EDSM algorithm in the “blue fringe”
framework and introduces a novel heuristic approach according to the order in which state pairs are chosen for merging as
described in Section 6.

5. The Synthesis of Software Behaviour Models
To better understand our inductive learning algorithm, we first give a brief review of the DFA induction problem in

the learning from an informant setting [12]. The automatic learning of behaviour models from scenarios of interaction between
the SUT and its environment can be interpreted as a Deterministic Finite Automaton (DFA) induction problem [15]. Starting
from a set of system execution traces, the derived scenarios of interaction can be represented as strings over a finite alphabet
of events () and they can be generalized to form a language of acceptable behaviours. Indeed, whenever behaviours are
represented as finite-state machines, the problem is equivalent to induce a DFA from positive and negative strings. State-
merging is the foundation for most successful techniques in inferring DFA from positive (S) and negative (S) examples.
These algorithms start by building an initial automaton called Prefix Tree Acceptor (PTA) [12] accepting exactly S and
successively merge states to generalize the induced language.

5.1. State-Merging and Quotient Automaton
The generalization operation obtained by merging states of an original automaton A is formally defined through the

concept of quotient automaton [15]. The set of possible generalizations which can be obtained by merging states of the original
automaton can be searched through a lattice of partitions Lat(A) [14]. Figure 2 shows how, starting from the PTA S  (Figure
2a), states belonging to the same subset, or block, of  are merged in the quotient automaton (Figure 2b). Accepting states are
represented as light grey nodes.

(a) PTA S with S   ,aaa, aaba,bba,bbaba  and  denoting the empty string. The initial partition

  0 , 1 , 2 , , 10   is defined on the PTA states set. is defined on the PTA states set

A quotient automaton where

(b) A quotient automaton where A  PTA / and   0,1,3,5 , 2,6 , 4 , 7 , 8 , 9 , 10  

Figure 2. Generalization process.

Merging blocks B 0,  and B 1,  belonging to the initial partition  defined on the PTA states set (Figure 2a)

leads to a nondetermistic quotient automaton. Therefore, a recursive process of merging blocks is needed to obtain the
deterministic quotient automaton shown in Figure 2b.

5.2. Evidence-Driven State Merging
Evidence-Driven State Merging (EDSM) is considered to be the state of the art with respect to the inference of DFAs

from positive and negative examples. It won the Abbadingo competition [24] and was used as a baseline for the STAMINA
one [38]. The idea behind the EDSM approach is fairly straightforward. Given a sample, a PTA is built based on positive
examples, then two states are iteratively selected and merged unless compatibility is broken. The state-merging challenge is
to identify pairs of states in the current DFA hypothesis that represent equivalent states. It is critically important to obtain
correct algorithm’s early decisions, and hence a good strategy is to first perform those merges that are supported by the most
evidence. A heuristic for choosing the pair of states to merge, can be realized in many ways. We show in Algorithm 2, the
implementation of EDSM using the “blue-fringe” control strategy (state-merging ordering) [24].

Algorithm 2: EDSM Algorithm with Blue-fringe control strategy

Input: S  S ,S 
Output:
1. A  buildPTA(S)

2. Red  q0 ; Blue  qa :a   Pref S  

3. while Blue  0 do
4. promotion  false; bs  
5. for qb Blue do
6. if  promotion then
7. atleastonemerge  false
8. for qr Red do
9. s  calculateScore merge qr , qb , A , S , S 
10. if s  ∞ then
11. atleastonemerge  true
12. end if
13. if s  bs then
14. bs  s; qr  qr ;qb  qb
15. end if
16. end for
17. if  atleastonemerge then
18. promotion  true
19. Red, Blue  promote qb , A, Red, Blue 
20. end if

 and

(b) A quotient automaton where A  PTA / and   0,1,3,5 , 2,6 , 4 , 7 , 8 , 9 , 10  

Figure 2. Generalization process.

Merging blocks B 0,  and B 1,  belonging to the initial partition  defined on the PTA states set (Figure 2a)

leads to a nondetermistic quotient automaton. Therefore, a recursive process of merging blocks is needed to obtain the
deterministic quotient automaton shown in Figure 2b.

5.2. Evidence-Driven State Merging
Evidence-Driven State Merging (EDSM) is considered to be the state of the art with respect to the inference of DFAs

from positive and negative examples. It won the Abbadingo competition [24] and was used as a baseline for the STAMINA
one [38]. The idea behind the EDSM approach is fairly straightforward. Given a sample, a PTA is built based on positive
examples, then two states are iteratively selected and merged unless compatibility is broken. The state-merging challenge is
to identify pairs of states in the current DFA hypothesis that represent equivalent states. It is critically important to obtain
correct algorithm’s early decisions, and hence a good strategy is to first perform those merges that are supported by the most
evidence. A heuristic for choosing the pair of states to merge, can be realized in many ways. We show in Algorithm 2, the
implementation of EDSM using the “blue-fringe” control strategy (state-merging ordering) [24].

Algorithm 2: EDSM Algorithm with Blue-fringe control strategy

Input: S  S ,S 
Output:
1. A  buildPTA(S)

2. Red  q0 ; Blue  qa :a   Pref S  

3. while Blue  0 do
4. promotion  false; bs  
5. for qb Blue do
6. if  promotion then
7. atleastonemerge  false
8. for qr Red do
9. s  calculateScore merge qr , qb , A , S , S 
10. if s  ∞ then
11. atleastonemerge  true
12. end if
13. if s  bs then
14. bs  s; qr  qr ;qb  qb
15. end if
16. end for
17. if  atleastonemerge then
18. promotion  true
19. Red, Blue  promote qb , A, Red, Blue 
20. end if

(a)

(b)

325Information Technology and Control 2019/2/48

5.2. Evidence-Driven State Merging
Evidence-Driven State Merging (EDSM) is considered
to be the state of the art with respect to the inference of
DFAs from positive and negative examples. It won the
Abbadingo competition [24] and was used as a baseline
for the STAMINA one [38]. The idea behind the EDSM
approach is fairly straightforward. Given a sample,
a PTA is built based on positive examples, then two
states are iteratively selected and merged unless com-
patibility is broken. The state-merging challenge is to
identify pairs of states in the current DFA hypothesis
that represent equivalent states. It is critically import-
ant to obtain correct algorithm’s early decisions, and
hence a good strategy is to first perform those merges
that are supported by the most evidence. A heuristic for
choosing the pair of states to merge, can be realized in
many ways. We show in Algorithm 2, the implementa-
tion of EDSM using the “blue-fringe” control strategy
(state-merging ordering) [24].

Algorithm 2: EDSM Algorithm with Blue-fringe con-
trol strategy

Input:

(b) A quotient automaton where A  PTA / and   0,1,3,5 , 2,6 , 4 , 7 , 8 , 9 , 10  

Figure 2. Generalization process.

Merging blocks B 0,  and B 1,  belonging to the initial partition  defined on the PTA states set (Figure 2a)

leads to a nondetermistic quotient automaton. Therefore, a recursive process of merging blocks is needed to obtain the
deterministic quotient automaton shown in Figure 2b.

5.2. Evidence-Driven State Merging
Evidence-Driven State Merging (EDSM) is considered to be the state of the art with respect to the inference of DFAs

from positive and negative examples. It won the Abbadingo competition [24] and was used as a baseline for the STAMINA
one [38]. The idea behind the EDSM approach is fairly straightforward. Given a sample, a PTA is built based on positive
examples, then two states are iteratively selected and merged unless compatibility is broken. The state-merging challenge is
to identify pairs of states in the current DFA hypothesis that represent equivalent states. It is critically important to obtain
correct algorithm’s early decisions, and hence a good strategy is to first perform those merges that are supported by the most
evidence. A heuristic for choosing the pair of states to merge, can be realized in many ways. We show in Algorithm 2, the
implementation of EDSM using the “blue-fringe” control strategy (state-merging ordering) [24].

Algorithm 2: EDSM Algorithm with Blue-fringe control strategy

Input: S  S ,S 
Output:
1. A  buildPTA(S)

2. Red  q0 ; Blue  qa :a   Pref S  

3. while Blue  0 do
4. promotion  false; bs  
5. for qb Blue do
6. if  promotion then
7. atleastonemerge  false
8. for qr Red do
9. s calculateScore merge qr , qb , A , S , S 
10. if s  ∞ then
11. atleastonemerge  true
12. end if
13. if s  bs then
14. bs  s; qr  qr ;qb  qb
15. end if
16. end for
17. if  atleastonemerge then
18. promotion  true
19. Red, Blue  promote qb , A, Red, Blue 
20. end if

Output:

(b) A quotient automaton where A  PTA / and   0,1,3,5 , 2,6 , 4 , 7 , 8 , 9 , 10  

Figure 2. Generalization process.

Merging blocks B 0,  and B 1,  belonging to the initial partition  defined on the PTA states set (Figure 2a)

leads to a nondetermistic quotient automaton. Therefore, a recursive process of merging blocks is needed to obtain the
deterministic quotient automaton shown in Figure 2b.

5.2. Evidence-Driven State Merging
Evidence-Driven State Merging (EDSM) is considered to be the state of the art with respect to the inference of DFAs

from positive and negative examples. It won the Abbadingo competition [24] and was used as a baseline for the STAMINA
one [38]. The idea behind the EDSM approach is fairly straightforward. Given a sample, a PTA is built based on positive
examples, then two states are iteratively selected and merged unless compatibility is broken. The state-merging challenge is
to identify pairs of states in the current DFA hypothesis that represent equivalent states. It is critically important to obtain
correct algorithm’s early decisions, and hence a good strategy is to first perform those merges that are supported by the most
evidence. A heuristic for choosing the pair of states to merge, can be realized in many ways. We show in Algorithm 2, the
implementation of EDSM using the “blue-fringe” control strategy (state-merging ordering) [24].

Algorithm 2: EDSM Algorithm with Blue-fringe control strategy

Input: S  S ,S 
Output:
1. A  buildPTA(S)

2. Red  q0 ; Blue  qa :a   Pref S  

3. while Blue  0 do
4. promotion  false; bs  
5. for qb Blue do
6. if  promotion then
7. atleastonemerge  false
8. for qr Red do
9. s calculateScore merge qr , qb , A , S , S 
10. if s  ∞ then
11. atleastonemerge  true
12. end if
13. if s  bs then
14. bs  s; qr  qr ;qb  qb
15. end if
16. end for
17. if  atleastonemerge then
18. promotion  true
19. Red, Blue  promote qb , A, Red, Blue 
20. end if

It begins by composing the positive sample (S+) in
the form of a PTA (line 1) and then continues merg-
ing states in order to produce a compact and gener-
alized final DFA hypothesis. Starting from the PTA,
the root is coloured red, its children are blue and the
remaining states are white (line 2). At each iteration,
the algorithm selects a set of pairs of states (one red,
the other blue) as candidates for merging. The calcu-
lateScore function (line 9) then computes, for every
selected pair of states, the score of that merge as the
number of strings that end in the same state if that
merge is done. To do that, the strings from S+ and
S– have to be parsed. If by doing that merge (line 9),
a conflict arises (a negative string ends in a final ac-
cepting state or a positive string is rejected) the score
is equal to

21. end if
22. end for
23. if  promotion then
24.
25. end if
26. end while
27. for x S do

28.
29. end for
30. for x S do

31.
32. end for
33. return A

It begins by composing the positive sample (S) in the form of a PTA (line 1) and then continues merging states in
order to produce a compact and generalized final DFA hypothesis. Starting from the PTA, the root is coloured red, its children
are blue and the remaining states are white (line 2). At each iteration, the algorithm selects a set of pairs of states (one red, the
other blue) as candidates for merging. The calculateScore function (line 9) then computes, for every selected pair of states,
the score of that merge as the number of strings that end in the same state if that merge is done. To do that, the strings from
S and S have to be parsed. If by doing that merge (line 9), a conflict arises (a negative string ends in a final accepting
state or a positive string is rejected) the score is equal to  . Finally, the merge with the highest score is chosen (line 24).
If during the generalization process, a blue node is unmergeable with a red one then it is promoted to the red set (line 17-20)
and the algorithm continues by considering new candidates for merging until no further pairs of equivalent states can be found,
which indicates convergence at the final DFA hypothesis. At the end of Algorithm 2, the final accepting and rejecting states
are marked by parsing strings from S and S and the final DFA hypothesis is returned (lines 27-33). The overall
generalization process is controlled by the negative sample S to prevent merging those states that would lead to build an
inconsistent machine, that is a DFA which accepts at least one negative string [12]. The availability of negative information
is theoretically motivated since positive and negative samples are required to identify in the limit any super-finite class of
languages, including the regular language class [19]. We use the basic steps of Algorithm 2 as a basis for our ELTS passive
learning algorithm; however, a novel heuristic approach according to the order in which pairs of states are chosen for merging
is introduced.

6. ELTS Model Refinement via Inductive Inference
This Section describes the state-merging algorithm used to refine the ELTS model from scratch as soon as an

inconsistency between the learned model and the SUT is found. Unlike many similar machine learning techniques, we cannot
presume the presence of negative examples. In our setting, we only have execution traces to work from which represent
possible behaviours (positive examples) for the SUT. In case of few or no negative examples, one can sometimes rely on
another kind of knowledge to prevent merging incompatible states, which is typically provided by the application domain
[23].

When learning a GUI model, two user interface states can be considered equivalent if they have the same set of
enabled user inputs. This information is modelled by the state labelling function () in our ELTS model. In the absence of
negative examples, the key idea of our approach is to let the generalization process be controlled by  and to perform those
merges that are supported by the most evidence. This aspect is dealt with in more detail in subsection 6.1.

Algorithm 3 describes the proposed ELTS inductive learning algorithm. It begins by arranging the set of traces
projections  T  (Definition 2) into an initial PTA M. It is a tree-shaped ELTS whose states are the set of all traces prefixes
in  T  (line 1). Starting from the PTA, the algorithm iteratively chooses a pair of states deemed to be a suitable merge-
candidate in the blue-fringe framework (line 14). Each selected pair is then scored by the calculateScore function (line 9).
The higher is this score, the higher the evidence that the candidate states for merging are equivalent. Therefore, the pair of

. Finally, the merge with the highest
score is chosen (line 24). If during the generalization
process, a blue node is unmergeable with a red one
then it is promoted to the red set (line 17-20) and the
algorithm continues by considering new candidates
for merging until no further pairs of equivalent states
can be found, which indicates convergence at the final
DFA hypothesis. At the end of Algorithm 2, the final
accepting and rejecting states are marked by parsing
strings from S+ and S– and the final DFA hypothesis
is returned (lines 27-33). The overall generalization
process is controlled by the negative sample S– to pre-
vent merging those states that would lead to build an
inconsistent machine, that is a DFA which accepts at
least one negative string [12]. The availability of nega-
tive information is theoretically motivated since pos-
itive and negative samples are required to identify in
the limit any super-finite class of languages, including
the regular language class [19]. We use the basic steps
of Algorithm 2 as a basis for our ELTS passive learn-
ing algorithm; however, a novel heuristic approach
according to the order in which pairs of states are
chosen for merging is introduced.

1. A  buildPTA(S)

2. Red  q0 ; Blue  qa :a   Pref S  

3. while Blue  0 do
4. promotion  false; bs  
5. for qb Blue do
6. if  promotion then
7. atleastonemerge  false
8. for qr Red do
9. s calculateScore merge qr , qb , A , S , S 
10. if s  ∞ then
11. atleastonemerge  true
12. end if
13. if s  bs then
14. bs  s; qr  qr ;qb  qb
15. end if
16. end for
17. if  atleastonemerge then
18. promotion  true
19. Red, Blue  promote qb , A, Red, Blue 
20. end if

21. end if
22. end for
23. if  promotion then
24.
25. end if
26. end while
27. for x S do

28.
29. end for
30. for x S do

31.
32. end for
33. return A

It begins by composing the positive sample (S) in the form of a PTA (line 1) and then continues merging states in
order to produce a compact and generalized final DFA hypothesis. Starting from the PTA, the root is coloured red, its children
are blue and the remaining states are white (line 2). At each iteration, the algorithm selects a set of pairs of states (one red, the
other blue) as candidates for merging. The calculateScore function (line 9) then computes, for every selected pair of states,
the score of that merge as the number of strings that end in the same state if that merge is done. To do that, the strings from
S and S have to be parsed. If by doing that merge (line 9), a conflict arises (a negative string ends in a final accepting
state or a positive string is rejected) the score is equal to  . Finally, the merge with the highest score is chosen (line 24).
If during the generalization process, a blue node is unmergeable with a red one then it is promoted to the red set (line 17-20)
and the algorithm continues by considering new candidates for merging until no further pairs of equivalent states can be found,
which indicates convergence at the final DFA hypothesis. At the end of Algorithm 2, the final accepting and rejecting states
are marked by parsing strings from S and S and the final DFA hypothesis is returned (lines 27-33). The overall
generalization process is controlled by the negative sample S to prevent merging those states that would lead to build an
inconsistent machine, that is a DFA which accepts at least one negative string [12]. The availability of negative information
is theoretically motivated since positive and negative samples are required to identify in the limit any super-finite class of
languages, including the regular language class [19]. We use the basic steps of Algorithm 2 as a basis for our ELTS passive
learning algorithm; however, a novel heuristic approach according to the order in which pairs of states are chosen for merging
is introduced.

6. ELTS Model Refinement via Inductive Inference
This Section describes the state-merging algorithm used to refine the ELTS model from scratch as soon as an

inconsistency between the learned model and the SUT is found. Unlike many similar machine learning techniques, we cannot
presume the presence of negative examples. In our setting, we only have execution traces to work from which represent
possible behaviours (positive examples) for the SUT. In case of few or no negative examples, one can sometimes rely on
another kind of knowledge to prevent merging incompatible states, which is typically provided by the application domain
[23].

When learning a GUI model, two user interface states can be considered equivalent if they have the same set of
enabled user inputs. This information is modelled by the state labelling function () in our ELTS model. In the absence of
negative examples, the key idea of our approach is to let the generalization process be controlled by  and to perform those
merges that are supported by the most evidence. This aspect is dealt with in more detail in subsection 6.1.

Algorithm 3 describes the proposed ELTS inductive learning algorithm. It begins by arranging the set of traces
projections  T  (Definition 2) into an initial PTA M. It is a tree-shaped ELTS whose states are the set of all traces prefixes
in  T  (line 1). Starting from the PTA, the algorithm iteratively chooses a pair of states deemed to be a suitable merge-
candidate in the blue-fringe framework (line 14). Each selected pair is then scored by the calculateScore function (line 9).
The higher is this score, the higher the evidence that the candidate states for merging are equivalent. Therefore, the pair of

21. end if
22. end for
23. if  promotion then
24.
25. end if
26. end while
27. for x S do

28.
29. end for
30. for x S do

31.
32. end for
33. return A

It begins by composing the positive sample (S) in the form of a PTA (line 1) and then continues merging states in
order to produce a compact and generalized final DFA hypothesis. Starting from the PTA, the root is coloured red, its children
are blue and the remaining states are white (line 2). At each iteration, the algorithm selects a set of pairs of states (one red, the
other blue) as candidates for merging. The calculateScore function (line 9) then computes, for every selected pair of states,
the score of that merge as the number of strings that end in the same state if that merge is done. To do that, the strings from
S and S have to be parsed. If by doing that merge (line 9), a conflict arises (a negative string ends in a final accepting
state or a positive string is rejected) the score is equal to  . Finally, the merge with the highest score is chosen (line 24).
If during the generalization process, a blue node is unmergeable with a red one then it is promoted to the red set (line 17-20)
and the algorithm continues by considering new candidates for merging until no further pairs of equivalent states can be found,
which indicates convergence at the final DFA hypothesis. At the end of Algorithm 2, the final accepting and rejecting states
are marked by parsing strings from S and S and the final DFA hypothesis is returned (lines 27-33). The overall
generalization process is controlled by the negative sample S to prevent merging those states that would lead to build an
inconsistent machine, that is a DFA which accepts at least one negative string [12]. The availability of negative information
is theoretically motivated since positive and negative samples are required to identify in the limit any super-finite class of
languages, including the regular language class [19]. We use the basic steps of Algorithm 2 as a basis for our ELTS passive
learning algorithm; however, a novel heuristic approach according to the order in which pairs of states are chosen for merging
is introduced.

6. ELTS Model Refinement via Inductive Inference
This Section describes the state-merging algorithm used to refine the ELTS model from scratch as soon as an

inconsistency between the learned model and the SUT is found. Unlike many similar machine learning techniques, we cannot
presume the presence of negative examples. In our setting, we only have execution traces to work from which represent
possible behaviours (positive examples) for the SUT. In case of few or no negative examples, one can sometimes rely on
another kind of knowledge to prevent merging incompatible states, which is typically provided by the application domain
[23].

When learning a GUI model, two user interface states can be considered equivalent if they have the same set of
enabled user inputs. This information is modelled by the state labelling function () in our ELTS model. In the absence of
negative examples, the key idea of our approach is to let the generalization process be controlled by  and to perform those
merges that are supported by the most evidence. This aspect is dealt with in more detail in subsection 6.1.

Algorithm 3 describes the proposed ELTS inductive learning algorithm. It begins by arranging the set of traces
projections  T  (Definition 2) into an initial PTA M. It is a tree-shaped ELTS whose states are the set of all traces prefixes
in  T  (line 1). Starting from the PTA, the algorithm iteratively chooses a pair of states deemed to be a suitable merge-
candidate in the blue-fringe framework (line 14). Each selected pair is then scored by the calculateScore function (line 9).
The higher is this score, the higher the evidence that the candidate states for merging are equivalent. Therefore, the pair of

Information Technology and Control 2019/2/48326

6. ELTS Model Refinement via
Inductive Inference
This Section describes the state-merging algorithm
used to refine the ELTS model from scratch as soon as
an inconsistency between the learned model and the
SUT is found. Unlike many similar machine learn-
ing techniques, we cannot presume the presence of
negative examples. In our setting, we only have exe-
cution traces to work from which represent possible
behaviours (positive examples) for the SUT. In case of
few or no negative examples, one can sometimes rely
on another kind of knowledge to prevent merging in-
compatible states, which is typically provided by the
application domain [23].
When learning a GUI model, two user interface states
can be considered equivalent if they have the same set
of enabled user inputs. This information is modelled
by the state labelling function (λ) in our ELTS mod-
el. In the absence of negative examples, the key idea
of our approach is to let the generalization process be
controlled by λ and to perform those merges that are
supported by the most evidence. This aspect is dealt
with in more detail in Subsection 6.1.
Algorithm 3 describes the proposed ELTS inductive
learning algorithm. It begins by arranging the set of
traces projections π(T) (Definition 2) into an initial
PTA M. It is a tree-shaped ELTS whose states are the
set of all traces prefixes in π(T) (line 1). Starting from
the PTA, the algorithm iteratively chooses a pair of
states deemed to be a suitable merge-candidate in the
blue-fringe framework (line 14). Each selected pair
is then scored by the calculateScore function (line 9).
The higher is this score, the higher the evidence that
the candidate states for merging are equivalent. There-
fore, the pair of states with the highest score is deemed
to be most likely to be equivalent, and is merged (line
24). In this setting, the merge operation always occurs
between a red state and a blue state (one of the two can-
didate nodes is always the root of a tree, resulting in a
simple algorithm for merging two nodes).

Algorithm 3: ELTS Inductive Learning Algorithm
Input: T
Output: M

The state-merging operation frequently introduces
non-determinism into the ELTS hypothesis, which
can then be removed by the classical determinisation
procedure (as shown in Figure 2). The symmetri-
cal merging operation, which requires determinisa-
tion through a cascade of merges is here replaced by
the simpler asymmetric folding operation as in [12].
As described in [24], red states correspond to those
states that have already been analysed by the gener-
alization procedure and will be the states of the final
ELTS. Blue states, instead, are the candidate states
to consider for merging with a red one. If during the
generalization process, the algorithm discovers that
a blue state is unmergeable with any red node, it is
promoted to the red states set (line 19). The gener-
alization process continues until no further pairs of
equivalent states can be found, which indicates con-
vergence at the final ELTS hypothesis.

6.1. Heuristic State-Merging Ordering
Due to the lack of negative examples, the generaliza-
tion operation performed by Algorithm 3 cannot be
controlled in the same way as Algorithm 2 does to pre-

states with the highest score is deemed to be most likely to be equivalent, and is merged (line 24). In this setting, the merge
operation always occurs between a red state and a blue state (one of the two candidate nodes is always the root of a tree,
resulting in a simple algorithm for merging two nodes).

Algorithm 3: ELTS Inductive Learning Algorithm

Input: T
Output: M
1. M  buildPTA( T )
2. Red  q0 ; Blue  qa :a  Pref  T   

3. while Blue  0 do
4. promotion  false; bs  
5. for qb Blue do
6. if  promotion then
7. atleastonemerge  false
8. for qr Red do
9. score calculateScore M , qr ,qb 
10. if score  ∞ then
11. atleastonemerge  true
12. end if
13. if score  bs then
14. bs  score; qr  qr;qb  qb
15. end if
16. end for
17. if  atleastonemerge then
18. promotion  true
19. Red, Blue  promote qb , M, Red, Blue 
20. end if
21. end if
22. end for
23. if  promotion then
24.
25. end if
26. end while
27. return M

The state-merging operation frequently introduces non-determinism into the ELTS hypothesis, which can then be

removed by the classical determinisation procedure (as shown in Figure 2). The symmetrical merging operation, which
requires determinisation through a cascade of merges is here replaced by the simpler asymmetric folding operation as in [12].
As described in [24], red states correspond to those states that have already been analysed by the generalization procedure
and will be the states of the final ELTS. Blue states, instead, are the candidate states to consider for merging with a red one.
If during the generalization process, the algorithm discovers that a blue state is unmergeable with any red node, it is promoted
to the red states set (line 19). The generalization process continues until no further pairs of equivalent states can be found,
which indicates convergence at the final ELTS hypothesis.

6.1. Heuristic State-Merging Ordering
Due to the lack of negative examples, the generalization operation performed by Algorithm 3 cannot be controlled

in the same way as Algorithm 2 does to prevent merging incompatible states. In our scenario, two ELTS states are considered
to be incompatible if they disagree on the state labelling function (). Therefore, states having the same  may be merged but
states that disagree on  must not be merged. This clearly explains how the generalization process is possible even if there is

states with the highest score is deemed to be most likely to be equivalent, and is merged (line 24). In this setting, the merge
operation always occurs between a red state and a blue state (one of the two candidate nodes is always the root of a tree,
resulting in a simple algorithm for merging two nodes).

Algorithm 3: ELTS Inductive Learning Algorithm

Input: T
Output: M
1. M  buildPTA( T )
2. Red  q0 ; Blue  qa :a  Pref  T   

3. while Blue  0 do
4. promotion  false; bs  
5. for qb Blue do
6. if  promotion then
7. atleastonemerge  false
8. for qr Red do
9. score calculateScore M , qr ,qb 
10. if score  ∞ then
11. atleastonemerge  true
12. end if
13. if score  bs then
14. bs  score; qr  qr;qb  qb
15. end if
16. end for
17. if  atleastonemerge then
18. promotion  true
19. Red, Blue  promote qb , M, Red, Blue 
20. end if
21. end if
22. end for
23. if  promotion then
24.
25. end if
26. end while
27. return M

The state-merging operation frequently introduces non-determinism into the ELTS hypothesis, which can then be

removed by the classical determinisation procedure (as shown in Figure 2). The symmetrical merging operation, which
requires determinisation through a cascade of merges is here replaced by the simpler asymmetric folding operation as in [12].
As described in [24], red states correspond to those states that have already been analysed by the generalization procedure
and will be the states of the final ELTS. Blue states, instead, are the candidate states to consider for merging with a red one.
If during the generalization process, the algorithm discovers that a blue state is unmergeable with any red node, it is promoted
to the red states set (line 19). The generalization process continues until no further pairs of equivalent states can be found,
which indicates convergence at the final ELTS hypothesis.

6.1. Heuristic State-Merging Ordering
Due to the lack of negative examples, the generalization operation performed by Algorithm 3 cannot be controlled

in the same way as Algorithm 2 does to prevent merging incompatible states. In our scenario, two ELTS states are considered
to be incompatible if they disagree on the state labelling function (). Therefore, states having the same  may be merged but
states that disagree on  must not be merged. This clearly explains how the generalization process is possible even if there is

327Information Technology and Control 2019/2/48

vent merging incompatible states. In our scenario, two
ELTS states are considered to be incompatible if they
disagree on the state labelling function (λ). Therefore,
states having the same λ may be merged but states
that disagree on λ must not be merged. This clearly
explains how the generalization process is possible
even if there is no notion of negative information. In
order to obtain correct algorithm’s early decisions,
we propose a novel heuristic approach according to
the order in which state pairs are chosen for merging
that aims to identify as soon as possible incompatible
states in the ELTS hypothesis. For each red-blue pair
of states a score is computed measuring the evidence
that the two candidates states are equivalent. This is
done without actually performing the merge opera-
tion as classical state-merging algorithms do.
Let (qr ,qb) be a red-blue pair of candidate states for
merging in the current ELTS hypothesis M. Accord-
ing to Definition 4, we define L M , qr() and L M , qb()
as the languages of M in qr and qb respectively, there-
fore

no notion of negative information. In order to obtain correct algorithm’s early decisions, we propose a novel heuristic approach
according to the order in which state pairs are chosen for merging that aims to identify as soon as possible incompatible states
in the ELTS hypothesis. For each red-blue pair of states a score is computed measuring the evidence that the two candidates
states are equivalent. This is done without actually performing the merge operation as classical state-merging algorithms do.

Let (qr ,qb) be a red-blue pair of candidate states for merging in the current ELTS hypothesis M. According to
Definition 4, we define L M , qr  and L M , qb  as the languages of M in qr and qb respectively, therefore
Li  L M ,qr  L M ,qb  represents the set of common words w accepted by M when starting from states qr and qb .
Formally, the measure of evidence associated to (qr ,qb) is computed as follows:

 a null score is associated if Li is the empty set,
 provided that states qr and qb have the same s, a positive score is associated if, when processing each wLi

starting from qr and qb , no target states with different s are encountered in the outgoing paths. In this case the
score is equal to the Li cardinality (Li),

 a negative score is associated if states qr and qb have different s or in the case that, when processing at least one
word wLi starting from qr and qb , two target states that disagree on  are encountered in the outgoing paths.
In this case the score is equal to ∞ .

For example, let M  Q, qo,  ,  ,   be the current ELTS hypothesis shown in Figure 3 and 0 , 1,5  , the

current red and blue states sets respectively. Let qr ,qb   0,1  be a candidate pair of states for merging. They agree on  as
shown in Table 2 and the initial score is set equal to 0. The set of common words Li recognized by M when starting from
states 0 and 1 is Li  'a ', 'aa ', 'aae ', 'aaee ', 'e ', 'ee ', 'b '  . In order to compute the score for qr ,qb   0,1 , each word w in
Li is evaluated starting from both qr and qb . Let us suppose we are interested in processing the word w=‘aae’, we obtain

. All the traversed pair of states in the outgoing paths from states 0 and 1, leading to states
1 and 11, agree on  as it is shown in Table 2, therefore the score is incremented by one.

Table 2. ELTS M state labelling function ()

M states 
{0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12} {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’}
{8, 10, 14} {‘a’, ‘h’, ‘b’, ‘g’}
{13, 15} {‘a’, ‘b’}

Figure 3. Current ELTS hypothesis

 represents the set of
common words w accepted by M when starting from
states qr and qb . Formally, the measure of evidence
associated to (qr ,qb) is computed as follows:
 _ a null score is associated if Li is the empty set,
 _ provided that states qr and qb have the same λs, a

positive score is associated if, when processing each

no notion of negative information. In order to obtain correct algorithm’s early decisions, we propose a novel heuristic approach
according to the order in which state pairs are chosen for merging that aims to identify as soon as possible incompatible states
in the ELTS hypothesis. For each red-blue pair of states a score is computed measuring the evidence that the two candidates
states are equivalent. This is done without actually performing the merge operation as classical state-merging algorithms do.

Let (qr ,qb) be a red-blue pair of candidate states for merging in the current ELTS hypothesis M. According to
Definition 4, we define L M , qr  and L M , qb  as the languages of M in qr and qb respectively, therefore
Li  L M ,qr  L M ,qb  represents the set of common words w accepted by M when starting from states qr and qb .
Formally, the measure of evidence associated to (qr ,qb) is computed as follows:

 a null score is associated if Li is the empty set,
 provided that states qr and qb have the same s, a positive score is associated if, when processing each wLi

starting from qr and qb , no target states with different s are encountered in the outgoing paths. In this case the
score is equal to the Li cardinality (Li),

 a negative score is associated if states qr and qb have different s or in the case that, when processing at least one
word wLi starting from qr and qb , two target states that disagree on  are encountered in the outgoing paths.
In this case the score is equal to ∞ .

For example, let M  Q, qo,  ,  ,   be the current ELTS hypothesis shown in Figure 3 and 0 , 1,5  , the

current red and blue states sets respectively. Let qr ,qb   0,1  be a candidate pair of states for merging. They agree on  as
shown in Table 2 and the initial score is set equal to 0. The set of common words Li recognized by M when starting from
states 0 and 1 is Li  'a ', 'aa ', 'aae ', 'aaee ', 'e ', 'ee ', 'b '  . In order to compute the score for qr ,qb   0,1 , each word w in
Li is evaluated starting from both qr and qb . Let us suppose we are interested in processing the word w=‘aae’, we obtain

. All the traversed pair of states in the outgoing paths from states 0 and 1, leading to states
1 and 11, agree on  as it is shown in Table 2, therefore the score is incremented by one.

Table 2. ELTS M state labelling function ()

M states 
{0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12} {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’}
{8, 10, 14} {‘a’, ‘h’, ‘b’, ‘g’}
{13, 15} {‘a’, ‘b’}

Figure 3. Current ELTS hypothesis

 starting from qr and qb , no target states with
different λs are encountered in the outgoing paths. In
this case the score is equal to the Li cardinality (Li),

 _ a negative score is associated if states qr and qb have
different λs or in the case that, when processing at
least one word

no notion of negative information. In order to obtain correct algorithm’s early decisions, we propose a novel heuristic approach
according to the order in which state pairs are chosen for merging that aims to identify as soon as possible incompatible states
in the ELTS hypothesis. For each red-blue pair of states a score is computed measuring the evidence that the two candidates
states are equivalent. This is done without actually performing the merge operation as classical state-merging algorithms do.

Let (qr ,qb) be a red-blue pair of candidate states for merging in the current ELTS hypothesis M. According to
Definition 4, we define L M , qr  and L M , qb  as the languages of M in qr and qb respectively, therefore
Li  L M ,qr  L M ,qb  represents the set of common words w accepted by M when starting from states qr and qb .
Formally, the measure of evidence associated to (qr ,qb) is computed as follows:

 a null score is associated if Li is the empty set,
 provided that states qr and qb have the same s, a positive score is associated if, when processing each wLi

starting from qr and qb , no target states with different s are encountered in the outgoing paths. In this case the
score is equal to the Li cardinality (Li),

 a negative score is associated if states qr and qb have different s or in the case that, when processing at least one
word wLi starting from qr and qb , two target states that disagree on  are encountered in the outgoing paths.
In this case the score is equal to ∞ .

For example, let M  Q, qo,  ,  ,   be the current ELTS hypothesis shown in Figure 3 and 0 , 1,5  , the

current red and blue states sets respectively. Let qr ,qb   0,1  be a candidate pair of states for merging. They agree on  as
shown in Table 2 and the initial score is set equal to 0. The set of common words Li recognized by M when starting from
states 0 and 1 is Li  'a ', 'aa ', 'aae ', 'aaee ', 'e ', 'ee ', 'b '  . In order to compute the score for qr ,qb   0,1 , each word w in
Li is evaluated starting from both qr and qb . Let us suppose we are interested in processing the word w=‘aae’, we obtain

. All the traversed pair of states in the outgoing paths from states 0 and 1, leading to states
1 and 11, agree on  as it is shown in Table 2, therefore the score is incremented by one.

Table 2. ELTS M state labelling function ()

M states 
{0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12} {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’}
{8, 10, 14} {‘a’, ‘h’, ‘b’, ‘g’}
{13, 15} {‘a’, ‘b’}

Figure 3. Current ELTS hypothesis

 starting from qr and qb , two
target states that disagree on λ are encountered in the
outgoing paths. In this case the score is equal to –-∞ .

For example, let

no notion of negative information. In order to obtain correct algorithm’s early decisions, we propose a novel heuristic approach
according to the order in which state pairs are chosen for merging that aims to identify as soon as possible incompatible states
in the ELTS hypothesis. For each red-blue pair of states a score is computed measuring the evidence that the two candidates
states are equivalent. This is done without actually performing the merge operation as classical state-merging algorithms do.

Let (qr ,qb) be a red-blue pair of candidate states for merging in the current ELTS hypothesis M. According to
Definition 4, we define L M , qr  and L M , qb  as the languages of M in qr and qb respectively, therefore
Li  L M ,qr  L M ,qb  represents the set of common words w accepted by M when starting from states qr and qb .
Formally, the measure of evidence associated to (qr ,qb) is computed as follows:

 a null score is associated if Li is the empty set,
 provided that states qr and qb have the same s, a positive score is associated if, when processing each wLi

starting from qr and qb , no target states with different s are encountered in the outgoing paths. In this case the
score is equal to the Li cardinality (Li),

 a negative score is associated if states qr and qb have different s or in the case that, when processing at least one
word wLi starting from qr and qb , two target states that disagree on  are encountered in the outgoing paths.
In this case the score is equal to ∞ .

For example, let M  Q, qo,  ,  ,   be the current ELTS hypothesis shown in Figure 3 and 0 , 1,5  , the

current red and blue states sets respectively. Let qr ,qb   0,1  be a candidate pair of states for merging. They agree on  as
shown in Table 2 and the initial score is set equal to 0. The set of common words Li recognized by M when starting from
states 0 and 1 is Li  'a ', 'aa ', 'aae ', 'aaee ', 'e ', 'ee ', 'b '  . In order to compute the score for qr ,qb   0,1 , each word w in
Li is evaluated starting from both qr and qb . Let us suppose we are interested in processing the word w=‘aae’, we obtain

. All the traversed pair of states in the outgoing paths from states 0 and 1, leading to states
1 and 11, agree on  as it is shown in Table 2, therefore the score is incremented by one.

Table 2. ELTS M state labelling function ()

M states 
{0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12} {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’}
{8, 10, 14} {‘a’, ‘h’, ‘b’, ‘g’}
{13, 15} {‘a’, ‘b’}

Figure 3. Current ELTS hypothesis

 be the current
ELTS hypothesis shown in Figure 3 and 0{ }, 1,5{ },
the current red and blue states sets respectively. Let

qr ,qb() = 0,1() be a candidate pair of states for merg-
ing. They agree on λ as shown in Table 2 and the ini-
tial score is set equal to 0. The set of common words
Li recognized by M when starting from states 0 and

1 is Li = 'a ', 'aa ', 'aae ', 'aaee ', 'e ', 'ee ', 'b '{ } . In order to
compute the score for qr ,qb() = 0,1(), each word w
in Li is evaluated starting from both qr and qb . Let
us suppose we are interested in processing the word
w=‘aae’, we obtain . All the

traversed pair of states in the outgoing paths from
states 0 and 1, leading to states 1 and 11, agree on λ
as it is shown in Table 2, therefore the score is incre-
mented by one.

Table 2
ELTS M state labelling function (λ)

M states λ

{0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12} {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f ’}

{8, 10, 14} {‘a’, ‘h’, ‘b’, ‘g’}

{13, 15} {‘a’, ‘b’}

This evaluation process is performed for each word
w in Li . In this case, no conflict arises on λ when pro-
cessing all

no notion of negative information. In order to obtain correct algorithm’s early decisions, we propose a novel heuristic approach
according to the order in which state pairs are chosen for merging that aims to identify as soon as possible incompatible states
in the ELTS hypothesis. For each red-blue pair of states a score is computed measuring the evidence that the two candidates
states are equivalent. This is done without actually performing the merge operation as classical state-merging algorithms do.

Let (qr ,qb) be a red-blue pair of candidate states for merging in the current ELTS hypothesis M. According to
Definition 4, we define L M , qr  and L M , qb  as the languages of M in qr and qb respectively, therefore
Li  L M ,qr  L M ,qb  represents the set of common words w accepted by M when starting from states qr and qb .
Formally, the measure of evidence associated to (qr ,qb) is computed as follows:

 a null score is associated if Li is the empty set,
 provided that states qr and qb have the same s, a positive score is associated if, when processing each wLi

starting from qr and qb , no target states with different s are encountered in the outgoing paths. In this case the
score is equal to the Li cardinality (Li),

 a negative score is associated if states qr and qb have different s or in the case that, when processing at least one
word wLi starting from qr and qb , two target states that disagree on  are encountered in the outgoing paths.
In this case the score is equal to ∞ .

For example, let M  Q, qo,  ,  ,   be the current ELTS hypothesis shown in Figure 3 and 0 , 1,5  , the

current red and blue states sets respectively. Let qr ,qb   0,1  be a candidate pair of states for merging. They agree on  as
shown in Table 2 and the initial score is set equal to 0. The set of common words Li recognized by M when starting from
states 0 and 1 is Li  'a ', 'aa ', 'aae ', 'aaee ', 'e ', 'ee ', 'b '  . In order to compute the score for qr ,qb   0,1 , each word w in
Li is evaluated starting from both qr and qb . Let us suppose we are interested in processing the word w=‘aae’, we obtain

. All the traversed pair of states in the outgoing paths from states 0 and 1, leading to states
1 and 11, agree on  as it is shown in Table 2, therefore the score is incremented by one.

Table 2. ELTS M state labelling function ()

M states 
{0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12} {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’}
{8, 10, 14} {‘a’, ‘h’, ‘b’, ‘g’}
{13, 15} {‘a’, ‘b’}

Figure 3. Current ELTS hypothesis

, then a score equal to Li = 7 is
associated to the pair of states qr ,qb() = 0,1(). Let
qr ,qb() = 0,5() be the other candidate pair of states

for merging. The set of common words Li accepted by
M when starting from states 0 and 5 is Li = 'bb ', 'e '{ }.
A score of – -∞ is computed for this pair of states because
when processing w=‘e’ starting from 0 and 5 two traver-
sed states (5 and 10) that disagree on λ are encountered.

Figure 3
Current ELTS hypothesis

Figure 4
Updated ELTS hypothesis

Information Technology and Control 2019/2/48328

Finally, the pair of states 0,1() is chosen for merging,
resulting in the updated ELTS hypothesis of Figure
4. The scoring procedure is described in Algorithm 4.
From an implementation point of view, the calculate-
Score function operates by counting the number of
transitions in the outgoing paths from the two argu-
ment states (qr ,qb) that share the same labels, (this
is always finite because one of the states is always the
root of a tree [39, 23]) provided that the target states
of such equivalent transitions agree on λ.
The strength of our approach is that it can evaluate a
priori the evidence that two states are equivalent or
incompatible, differently from the control strategy
described in [9] where the authors claim to use the
classical blue-fringe ordering [24] with the idea of
blocking constraints introduced in [23]. Due to the
lack of negative examples, the proposed control strat-
egy strongly takes into account the future behaviour
in the outgoing paths of the candidates states for
merging to evaluate the evidence that they are equiv-
alent. Moreover, it does not need an unroll procedure
and drastically reduces the total number of merges
operation needed to obtain the target machine be-
cause the merge of a pair of states is executed if and
only if the resulting score is positive.

Algorithm 4: CalculateScore

Input: qr , qb , M
Output: score

specification. In our case, we address the problem of
producing a test input set for EDS that are black-box-
es, and for which neither formal specifications nor
source code are available. Exhaustively executing the
SUT on every test input is infeasible for most realistic
software systems, and conventional random testing
often fails to reach those system-states that are most
likely to elicit an unexpected behaviour. Our goal is
not to demonstrate that the behaviour of the subject
system is functionally correct. This is practically im-
possible without a complete specification or a reliable
test model. Instead, here the aim is to generate and
execute a test input set that fully exercises the SUT
in terms of its observable behaviour. Conceptually, a
success in this direction allows us to infer a model of
the sequential behavioural of the SUT using tests as
queries. The definition of “observable behaviour” is
strictly related with the characteristics of the SUT.
For instance, the behaviour of a GUI mobile app is
manifested in the variation of the GUI state in re-
sponse to different GUI actions. The inferred model
is then the result of what we learn from test execu-
tion, therefore it provides a functional perspective on
the test set. Having said that, in this work we use the
ELTS model as a basis for measuring the functional
coverage in a similar way as in [37]. The reason behind
this is that a larger model implies that a broad range of
SUT behaviour is exercised. Therefore, we estimate
the functional coverage by counting the number of in-
dividual transitions in the model. Moreover, it is gen-
erally acknowledged that longer test sequences tend
to lead to a higher level of coverage. They are able to
reach system-states that would remain unreachable
otherwise. For this reason, the average length of the
generated tests is recorded at the end of the testing
procedure.
In this Section, technical details regarding the im-
plementation of our testing with model learning
technique are provided. Moreover, the experimental
results obtained in the context of event-based func-
tional testing of Android applications are compared
to those achieved by a random testing approach and
SwiftHand.

7.1. Implementation
The proposed testing with model learning algorithm
(Algorithm 1) is written in the Python language. It
does not need Android bytecode instrumentation for

7. Implementation and Experimental
Results
Conventional coverage-driven testing approaches
fully exercise the SUT in terms of its source code or

This evaluation process is performed for each word w in Li . In this case, no conflict arises on  when processing all

w Li , then a score equal to Li  7 is associated to the pair of states qr ,qb   0,1 . Let qr ,qb   0,5  be the other
candidate pair of states for merging. The set of common words Li accepted by M when starting from states 0 and 5 is
Li  'bb ', 'e '  . A score of ∞ is computed for this pair of states because when processing w=‘e’ starting from 0 and 5 two
traversed states (5 and 10) that disagree on  are encountered.

Figure 4. Updated ELTS hypothesis

Finally, the pair of states 0,1  is chosen for merging, resulting in the updated ELTS hypothesis of Figure 4. The
scoring procedure is described in Algorithm 4. From an implementation point of view, the calculateScore function operates
by counting the number of transitions in the outgoing paths from the two argument states (qr ,qb) that share the same labels,
(this is always finite because one of the states is always the root of a tree [39, 23]) provided that the target states of such
equivalent transitions agree on .

The strength of our approach is that it can evaluate a priori the evidence that two states are equivalent or incompatible,
differently from the control strategy described in [9] where the authors claim to use the classical blue-fringe ordering [24]
with the idea of blocking constraints introduced in [23]. Due to the lack of negative examples, the proposed control strategy
strongly takes into account the future behaviour in the outgoing paths of the candidates states for merging to evaluate the
evidence that they are equivalent. Moreover, it does not need an unroll procedure and drastically reduces the total number of
merges operation needed to obtain the target machine because the merge of a pair of states is executed if and only if the
resulting score is positive.

Algorithm 4: CalculateScore

Input: qr , qb , M
Output: score
1. score  0
2. if  qr    qb  then

3. return score  
4. else
5. for t1,t2  equivalentTransitions qr ,qb  do
6. score  score + 1
7. d1  qr ,t1 ; d2  qb,t2 
8. score  score + calculateScore (M, d1, d2)
9. end for
10. end if
11. return score

7. Implementation and Experimental Results
Conventional coverage-driven testing approaches fully exercise the SUT in terms of its source code or specification.

In our case, we address the problem of producing a test input set for EDS that are black-boxes, and for which neither formal
specifications nor source code are available. Exhaustively executing the SUT on every test input is infeasible for most realistic

329Information Technology and Control 2019/2/48

the app under test to work and only uses the Android
Debug Bridge (ADB) command tool to interact with
the SUT. To proceed with the systematic exploration
of the app, we need to dynamically extract the set of
GUI components at each screen (GUI Tree), send
events to the SUT and restart the app whenever it is
required. These three activities are performed using
the ADB tool. More in detail, the restart operation is
implemented as follows: first, all data associated with
the app package is deleted, then the app under test
is launched again. To demonstrate the effectiveness
of our solution, a comparison with two baseline ap-
proaches is performed. The first one is a random test-
ing technique that is aware of the set of available GUI
actions at each app-state. Indeed, during the app ex-
ploration, this strategy randomly executes a GUI ac-
tion from the set of detected GUI events and only re-
starts the SUT when a terminal app-state is reached.
All the scenarios of interaction between the automat-
ic procedure and the SUT are recorded in a set of exe-
cution traces that is returned at the end of the testing
procedure. The second testing technique we compare
to is a Python implementation of the SwiftHand tool.
SwiftHand [9] consists of a front-end module which
performs a bytecode instrumentation of the app un-
der test, and a back-end one which is responsible for
the test input generation. Due to the technical limita-
tions of its basic framework, we cannot use the orig-
inal version available at https://github.com/wtchoi/
SwiftHand, therefore we have implemented its back-
end module. In order to perform an objective com-
parison of the three testing techniques and due to the
fact that the random testing approach is not based on
model learning, a time budget is chosen as the com-
mon termination criterion. As soon as the time-bud-
get expires, the execution traces collected by the ran-
dom testing algorithm are given to Algorithm 3 with
the aim of inferring an ELTS model and estimate the
functional coverage also in this case.

7.2. Experimental Setup
Our benchmark-suite consists of twelve Android apps
available on the Google Play Store (see Table 3). All
the experiments have been performed on a Samsung
smartphone running the Android operating system
(version 8.0.0) and using a 2.6 GHz Intel Core i5 Mac
OS machine with 8Gb RAM. Moreover, we adopted
0.5 and 1 hours test budgets per app for each strategy.

7.3. Experimental Results
Tables 4 and 5 summarize the results of applying
the three different testing strategies to the selected
Android apps with a time budget of 0.5 and 1 hours
respectively. All values are the average of 10 exper-
iments run for each testing algorithm. In the tables
we use TML, R and SH to respectively denote the de-
signed testing with model learning technique, random
testing and our implementation of SwiftHand. For
each app in the list, #Functional Coverage columns
report the model-based estimation of the function-
al coverage, #Test Depth columns show the average
length of the generated test set, #Restarts columns
report the number of the app resets executed during
the automatic exploration and finally #Model-States
columns show the number of states discovered in the
ELTS model.
The proposed testing with model learning technique
always achieves better functional coverage than both
random testing and SwiftHand within a time budget
of 0.5 hour (Table 4). The gap even increases when the
apps are executed within a time budget of 1 hour (Ta-
ble 5), meaning that the designed testing technique
achieves functional coverage at a faster rate than that
of random testing and SwiftHand. This is an import-
ant aspect to consider when the available time budget
for testing is strictly limited. For all the tested apps,

Table 3
Benchmark Apps

Name Category Size (MB)

Sanity communication 0.63

Alarm Klock tools 0.59

EP Mobile medical 2.2

FillUp maps and navigation 0.93

TomDroid productivity 1.1

TippyTipper finance 0.8

Pedometer health and fitness 7.5

My Expenses finance 6.9

Weight Chart health and fitness 3.3

Timetable education 4.5

ToDoList productivity 4.3

BMI health and fitness 3.4

Information Technology and Control 2019/2/48330

Table 4
Comparison Experiments (time budget = 0.5 hour)

App
Functional Coverage #Test Depth #Restarts #Model-States

TML R SH TML R SH TML R SH TML R SH

Sanity 50.3 39.4 28.1 12.7 7.6 4.6 6.1 10.0 13.7 17.8 16.0 12.7

Alarm Klock 46.6 45.2 33.8 23.3 14.5 6.4 3.6 5.5 11.4 11.8 13.0 11.8

EP Mobile 72.0 64.25 34.0 26.5 52.5 5.0 2.5 1.1 14.5 28.0 23.7 16.5

FillUp 55.8 50.7 29.2 24.2 18.7 4.9 2.9 4.6 13.7 18.7 17.3 10.4

TomDroid 57.6 54.7 29.8 24.8 17.0 4.9 2.8 4.4 14.9 21.2 20.6 13.3

TippyTipper 48.6 40.6 33.9 20.7 15.7 6.0 3.4 4.5 11.5 11.6 9.7 9.9

Pedometer 41.7 38.7 32.3 8.7 3.7 4.3 8.0 15.7 14.7 24.3 17.3 13.7

My Expenses 57.8 56.9 33.5 23.4 21.9 6.5 2.8 3.5 10.5 25.4 23.2 16.0

Weight Chart 51.0 49.0 34.3 20.0 15.6 5.6 3.5 6.8 12.7 14.9 14.0 13.3

Timetable 50.4 48.6 27.1 13.5 9.6 3.9 5.0 9.0 15.6 19.4 17.3 13.4

ToDoList 56.8 52.8 24.0 9.8 7.6 3.0 6.8 12.0 17.0 22.2 19.2 10.5

BMI 40.6 29.3 37.5 15.0 9.7 9.7 4.8 8.3 11.0 12.8 9.7 11.0

Table 5
Comparison Experiments (time budget = 1 hour)

App
Functional Coverage #Test Depth #Restarts #Model-States

TML R SH TML R SH TML R SH TML R SH

Sanity 88.3 59.2 48.6 14.1 7.5 4.9 11.3 22.2 26.1 30.0 21.0 18.0

Alarm Klock 86.9 69.6 64.0 29.5 14.3 8.7 4.6 12.6 17.5 21.4 20.1 22.6

EP Mobile 125.3 114.6 55.0 31.0 62.0 6.0 4.6 2.2 25.0 44.6 40.0 24.0

FillUp 86.1 73.7 52.7 27.4 15.9 5.8 5.1 11.8 23.7 25.2 20.7 15.7

TomDroid 87.1 83.2 54.9 28.5 21.2 6.7 5.1 8.6 22.9 30.0 28.6 21.5

TippyTipper 82.8 71.6 58.6 23.6 16.1 6.4 6.9 9.4 22.4 17.5 16.4 15.0

Pedometer 91.3 60.3 48.7 9.7 4.5 4.7 15.7 27.3 28.3 52.3 25.0 22.0

My Expenses 102.2 98.3 51.0 30.3 28.6 6.7 4.6 5.6 27.0 38.3 35.2 24.0

Weight Chart 84.3 75.8 58.0 29.9 26.3 6.3 4.8 9.7 22.3 16.7 16.1 16.0

Timetable 88.7 85.5 46.3 19.0 11.6 5.0 6.3 17.7 24.7 29.5 27.2 17.3

ToDoList 97.0 95.3 47.7 17.0 10.3 3.8 8.4 16.3 31.7 32.8 30.3 18.5

BMI 82.0 80.3 67.0 16.5 10.3 10.6 9.5 22.3 24 21.0 19.6 21.5

331Information Technology and Control 2019/2/48

our solution performs a deeper exploration of the
SUT than that of SwiftHand by generating longer test
event sequences as it is shown by the #Test Depth col-
umns values. As a consequence, SwiftHand restarts
the app under test more frequently than our testing
algorithm. The same analysis holds for the random
testing strategy except if we consider the EP Mobile
app. This app has few terminal states, therefore the
random testing algorithm rarely performs resets.
However, due to the GUI app structure this aspect is
not reflected in the estimated functional coverage. In
addition, to confirm the above analysis, we also con-
sider measuring the method coverage. Indeed, Table
6 shows a further comparison in terms of method cov-
erage between the different testing strategies. Even if
the proposed testing with model learning technique
does not need app bytecode instrumentation to work,
it is only applied for the purpose of measuring the
method coverage during the test execution. Given
an Android application package (apk) file, the pro-
cess consists of injecting debugging statements into
it and prints a log message whenever an instrument-
ed method is executed. We use the Soot library [22]
to perform the instrumentation process. During the
testing process, all the log messages are collected and
then used to evaluate the method coverage. However,
Table 6 measurements are coherent with the trend of

Table 6
Method Coverage (time budget = 1 hour)

App # IM
% Method Coverage

TML R SH

Sanity 1408 19.4 16.8 16.2

Alarm Klock 7856 2.8 2.5 2.0

EP Mobile 9561 8.0 7.8 6.9

FillUp 1783 36.7 28.8 17.3

TomDroid 1186 29.1 28.7 24.1

TippyTipper 5473 12.1 10.9 10.8

Pedometer 39594 17.0 16.3 16.8

My Expenses 47412 10.9 9.9 9.5

Weight Chart 2991 41.2 34.7 7.7

Timetable 23908 18.3 17.0 14.4

ToDoList 34682 12.8 12.3 12.3

BMI 31138 19.4 18.6 16.6

previous analysis. This also implies the goodness of
the criterion adopted to estimate the functional cov-
erage based on the learned ELTS model.

TML R SH

TML - 0.03805 0.00100

R - - 0.44041

(a) Model-States

TML R SH

TML - 0.03805 0.00100

R - - 0.03805

(c) Functional Coverage

TML R SH

TML - 0.03805 0.00100

R - - 0.15772

(b) Test Depth

Table 7
Pairwise Comparison: p-values

To ensure that the result is significant from a statisti-
cal point of view, we performed the Friedman test with
the Nemenyi post-hoc test (α = 0.05) [13]. First, Fried-
man test checks the hypothesis of “no difference” (null
hypothesis) among the compared testing techniques,
then the Nemenyi post-hoc analysis is performed to
detect which of the considered techniques significant-
ly differs from the others. Table 7 lists the results. The
analysis, which has been carried out on the #Function-
al Coverage, #Test Depth and #Model-States columns
values of Table 5 (1 hour test budget), confirms that the
proposed approach is statistically significant in terms
of functional coverage, test depth and number of mod-
el-states discovered during the testing process.

8. Conclusions
High-quality and reliable software has nowadays
become the exception rather than the rule. This is
especially the case of mobile apps whose demand
is growing faster and faster. A knee-jerk reaction to
guarantee qualitative and robust software is often to
add resources to testing teams and perform intensive

Information Technology and Control 2019/2/48332

testing. However, testing black-box event-driven sys-
tems require formal specifications or models that are
rarely written out by developers in the current agile
context. When neither complete specifications nor
reliable test models are available, the test input gen-
eration problem becomes a very challenging task to
solve because there is no basis upon which to select
suitable inputs that properly investigate the subject
system behaviour. To tackle this issue, we proposed
an innovative learning-based testing technique for
automatically generating test input sets for event-
based driven systems and we demonstrated its ef-
fectiveness in the context of event-based functional
testing of Android GUI applications. Our idea is to
combine active learning with a systematic explo-
ration strategy of the GUI and inductive inference.
The proposed testing algorithm probes the system
behaviour with tests and uses the test results to auto-
matically learn a behavioural model of the SUT in the
form of a deterministic ELTS. Based on the learned
model, the procedure generates further tests to reach
unseen parts of the running app. As soon as an in-
consistency between the current model hypothesis
and the observed behaviour of the subject system is
discovered, the testing algorithm refines the inferred
model via a state-merging based learning algorithm
using the set of execution traces observed so far. With
reference to the passive learning algorithm designed
to refine the ELTS model, we introduced an effective
heuristic according to the order in which state pairs
are chosen for merging that drastically reduces the
number of required merge operations to reach the
target machine. We highlight that our goal is not to
demonstrate that the subject system behaviour is

functionally correct since the test oracle problem
cannot automatically be solved in the absence of for-
mal specifications. Instead, the aim is to generate and
execute a test input set that fully exercises the SUT
in terms of its observable behaviour. Therefore, the
effectiveness of the testing technique is measured in
terms of the test set adequacy and compared with that
of two baseline testing strategies, SwiftHand and ran-
dom testing. The test adequacy has been expressed
via model-based estimation of functional coverage,
test depth and discovered ELTS model states during
the testing process. Moreover, measurements of the
app restarts needed by the different approaches to
explore the SUT and the method coverage have been
preformed. The experimental results show that the
presented testing with model learning approach is
better than the compared ones at exploring the SUT
behaviour within the same time budget. The reason
behind this has to be found in the designed GUI explo-
ration strategy that systematically tries to discover as
soon as possible unseen system states. It also results
in a better test depth and in few restarts when com-
pared with the considered approaches. An evaluation
of the statistical significance of the experimental re-
sults has been performed via rank-based statistical
testing and presented. First, Friedman test has been
carried out to test hypothesis of no differences among
the compared testing techniques, then the Nemenyi
post-hoc analysis has been performed to detect which
of the considered techniques significantly differs
from the others. The analysis confirms that the pro-
posed approach is statistically significant in terms of
functional coverage, test depth and number of mod-
el-states discovered during the testing process.

References
1. Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F.,

Verwer, S. Learning and Testing the Bounded Retrans-
mission Protocol. Proceedings of the Eleventh Interna-
tional Conference on Grammatical Inference, 2012, 21,
4-18.

2. Amalfitano, D., Amatucci, N., Memon, A. M., Tramon-
tana, P., Fasolino, A. R. A General Framework for Com-
paring Automatic Testing Techniques of Android Mo-
bile Apps. Journal of Systems and Software, 2017, 125,
322-343. https://doi.org/10.1016/j.jss.2016.12.017

3. Amalfitano, D., Amatucci, N., Fasolino, A. R., Tramon-
tana, P., Kowalczyk, E., Memon, A. M. Exploiting the
Saturation Effect in Automatic Random Testing of An-
droid Applications. 2nd ACM International Conference
on Mobile Software Engineering and Systems, 2015, 33-
43. https://doi.org/10.1109/MobileSoft.2015.11

4. Amalfitano, D., Fasolino, A. R., Tramontana, P., De Car-
mine, S., Imparato, G. A toolset for GUI testing of An-
droid applications. 28th IEEE International Confer-
ence on Software Maintenance (ICSM), 2012, 650-653.
https://doi.org/10.1109/ICSM.2012.6405345

https://doi.org/10.1016/j.jss.2016.12.017
https://doi.org/10.1109/MobileSoft.2015.11
https://doi.org/10.1109/ICSM.2012.6405345

333Information Technology and Control 2019/2/48

5. Amalfitano, D., Fasolino, A. R., Tramontana, P., De Car-
mine, S., Memon, A. M. Using GUI Ripping for Auto-
mated Testing of Android Applications. Proceedings of
the 27th IEEE/ACM International Conference on Au-
tomated Software Engineering, 2012, 258-261. https://
doi.org/10.1145/2351676.2351717

6. Amalfitano, D., Fasolino, A. R., Tramontana, P., Ta, B. D.,
Memon, A. M. MobiGUITAR: Automated Model-Based
Testing of Mobile Apps. IEEE Software, 2015, 32(5), 53-
59. https://doi.org/10.1109/MS.2014.55

7. Azim, T., Neamtiu, I. Targeted and Depth-first Explo-
ration for Systematic Testing of Android Apps. Pro-
ceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems
Languages &. Applications, 2013, 641-660. http://
doi.acm.org/10.1145/2509136.2509549.

8. Cao, Y., Wu, G., Chen, W., Wei, J. CrawlDroid: Ef-
fective Model-based GUI Testing of Android Apps.
Proceedings of the Tenth Asia-Pacific Sympo-
sium on Internetware, 2018, 19:1-19:6. https://doi.
org/10.1145/3275219.3275238

9. Choi, W., Necula, G., Sen, K. Guided GUI Testing of
Android Apps with Minimal Restart and Approximate
Learning. SIGPLAN Not., 2013, 623-640. https://doi.
org/10.1145/2544173.2509552

10. Choudhary, S. R., Gorla, A., Orso, A. Automated Test
Input Generation for Android: Are We There Yet? (E).
Proceedings of the 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
2015, 429-440. https://doi.org/10.1109/ASE.2015.89

11. Coppola, R., Morisio, M., Torchiano, M. Mobile GUI
Testing Fragility: A Study on Open-Source Android
Applications. IEEE Transactions on Reliability, 2018,
1-24. https://doi.org/10.1109/TR.2018.2869227

12. de la Higuera, C. Grammatical Inference: Learning Au-
tomata and Grammars. Cambridge University Press,
2010. https://doi.org/10.1017/CBO9781139194655

13. Demšar, J. Statistical Comparisons of Classifiers over
Multiple Data Sets. Journal of Machine Learning Re-
search, 2006, 7, 1-30.

14. Dupont, P., Miclet, L., Vidal, E. What is the Search Space
of the Regular Inference? Grammatical Inference and
Applications. Springer Berlin Heidelberg, 1994, 25-37.
https://doi.org/10.1007/3-540-58473-0_134

15. Dupont, P., Lambeau, B., Damas, C., van Lamsweerde,
A. The QSM Algorithm and Its Application to Soft-
ware Behavior Model Induction. Applied Artifi-
cial Intelligence, 2008, 22(1-2), 77-115. https://doi.
org/10.1080/08839510701853200

16. Esparcia-Alcázar, A. I., Almenar, F., Martínez, M., Rue-
da, U., Vos, T. E. J. Q-Learning Strategies for Action Se-
lection in the TESTAR Automated Testing Tool. 6th In-
ternational Conference on Metaheuristics and Nature
Inspired Computing (META 2016), 2016, 130-137.

17. Feng, L., Lundmark, S., Meinke, K., Niu, F., Sindhu, M.
A., Wong, P. Y. H., Case Studies in Learning-Based Test-
ing. Testing Software and Systems, Springer Berlin
Heidelberg, 2013, 164-179. https://doi.org/10.1007/978-
3-642-41707-8_11

18. Fraser, G., Walkinshaw, N. Assessing and Generating
Test Sets in Terms of Behavioural Adequacy. Software
Testing, Verification and Reliability, John Wiley and
Sons Ltd., 2015, 25(8), 749-780. https://doi.org/10.1002/
stvr.1575

19. Gold, E. M. Language Identification in the Limit. Infor-
mation and Control, 1967, 10(5), 447-474. https://doi.
org/10.1016/S0019-9958(67)91165-5

20. Hu, C., Neamtiu, I. Automating GUI Testing for Android
Applications. Proceedings of the 6th International
Workshop on Automation of Software Test, ACM, 2011,
77-83. https://doi.org/10.1145/1982595.1982612

21. Kong, P., Li, L., Gao, J., Liu, K. , Bissyandé, T. F., Klein, J.
Automated Testing of Android Apps: A Systematic Lit-
erature Review. IEEE Transactions on Reliability, 2018,
1-22. https://doi.org/10.1109/TR.2018.2865733

22. Lam, P., Bodden, E., Hendren L., Technische Universi-
tät Darmstadt. The Soot Framework for Java Program
Analysis: a Retrospective, 2011

23. Lambeau, B., Damas, C., Dupont, P. State-Merging DFA
Induction Algorithms with Mandatory Merge Con-
straints. Grammatical Inference: Algorithms and Ap-
plications: 9th International Colloquium, ICGI 2008
Saint-Malo, France, September 22-24, 2008 Proceed-
ings,Springer Berlin Heidelberg, 2008, 139-153. https://
doi.org/10.1007/978-3-540-88009-7_11

24. Lang, K. J., Pearlmutter, B. A., Price, R. A. Results of the
Abbadingo one DFA Learning Competition and a New
Evidence-Driven State Merging Algorithm. Grammat-
ical Inference: 4th International Colloquium, ICGI-
98 Ames, Iowa, USA, July 12-14, 1998 Proceedings,
Springer Berlin Heidelberg, 1998, 1-12. https://doi.
org/10.1007/BFb0054059

25. Li, Y., Yang, Z., Guo, Y., Chen, X. DroidBot: A Lightweight
UI-Guided Test Input Generator for Android. Proceed-
ings of the 39th International Conference on Software
Engineering Companion (ICSE-C’17), IEEE Press,
2017, 23-26. https://doi.org/10.1109/ICSE-C.2017.8

https://doi.org/10.1145/2351676.2351717
https://doi.org/10.1145/2351676.2351717
https://doi.org/10.1109/MS.2014.55
https://doi.org/10.1145/3275219.3275238
https://doi.org/10.1145/3275219.3275238
https://doi.org/10.1145/2544173.2509552
https://doi.org/10.1145/2544173.2509552
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/TR.2018.2869227
https://doi.org/10.1017/CBO9781139194655
https://doi.org/10.1007/3-540-58473-0_134
https://doi.org/10.1080/08839510701853200
https://doi.org/10.1080/08839510701853200
https://doi.org/10.1007/978-3-642-41707-8_11
https://doi.org/10.1007/978-3-642-41707-8_11
https://doi.org/10.1002/stvr.1575
https://doi.org/10.1002/stvr.1575
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1145/1982595.1982612
https://doi.org/10.1109/TR.2018.2865733
https://doi.org/10.1007/978-3-540-88009-7_11
https://doi.org/10.1007/978-3-540-88009-7_11
https://doi.org/10.1007/BFb0054059
https://doi.org/10.1007/BFb0054059
https://doi.org/10.1109/ICSE-C.2017.8

Information Technology and Control 2019/2/48334

26. Liu, C. A Compatibility Testing Platform for Android
Multimedia Applications. Multimedia Tools and Ap-
plications, 2018. https://doi.org/10.1007/s11042-018-
6268-y

27. Liu, Z., Gao, X., Long, X. Adaptive Random Testing of
Mobile Application. 2nd International Conference on
Computer Engineering and Technology, 2010, 2, 297-
301. 10.1109/ICCET.2010.5485442.

28. Machiry, A., Tahiliani, R., Naik, M. Dynodroid: An Input
Generation System for Android Apps. Proceedings of
the 2013 9th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2013), ACM, 2013, 224-234.
https://doi.org/10.1145/2491411.2491450

29. Meiliana, Septian, I., Alianto, R. S., Daniel. Compar-
ison Analysis of Android GUI Testing Frameworks
by Using an Experimental Study. Procedia Computer
Science, 2018, 135, 736 - 748. https://doi.org/10.1016/j.
procs.2018.08.211

30. Meinke, K., Sindhu, M. A. Incremental Learning-Based
Testing for Reactive Systems. Tests and Proofs,
Springer Berlin Heidelberg, 2011, 134-151. https://doi.
org/10.1007/978-3-642-21768-5_11

31. Morgado, I. C., Paiva, A. C. R. The iMPAcT Tool: Test-
ing UI Patterns on Mobile Applications. 30th IEEE/
ACM International Conference on Automated Soft-
ware Engineering (ASE), 2015, 876-881. https://doi.
org/10.1109/ASE.2015.96

32. Muangsiri, W., Takada, S. Random GUI Testing of An-
droid Application Using Behavioral Model. The 29th
International Conference on Software Engineering and
Knowledge Engineering, Wyndham Pittsburgh Univer-
sity Center, Pittsburgh, PA, USA, July 5-7, 2017, 266-
271.https://doi.org/10.18293/SEKE2017-099

33. Novella, L., Tufo, M., Fiengo, G. Improving Test Suites
via a Novel Testing with Model Learning Approach.
IEEE 27th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enter-
prises (WETICE), 2018. https://doi.org/10.1109/WET-
ICE.2018.00051

34. Packevičius, Š., Barisas, D., Ušaniov, A., Guogis, E., Ba-
reiša, E. Text Semantics and Layout Defects Detection
in Android Apps Using Dynamic Execution and Screen-
shot Analysis. Information and Software Technolo-
gies, Springer International Publishing, 2018, 279-292.
https://doi.org/10.1007/978-3-319-99972-2_22

35. UI/Application Exerciser Monkey. http://developer.an-
droid.com/tools/help/monkey.html.

36. Utting, M., Pretschner, A., Legeard, B. A Taxonomy of
Model-based Testing Approaches. Software Testing,
Verification and Reliability, John Wiley and Sons Ltd,
2012, 22(5), 297-312. https://doi.org/10.1002/stvr.456

37. Walkinshaw, N., Bogdanov, K., Derrick, J., Paris, J.
Increasing Functional Coverage by Inductive Test-
ing: A Case Study. Testing Software and Systems,
Springer Berlin Heidelberg, 2010, 126-141. https://doi.
org/10.1007/978-3-642-16573-3_10

38. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K.,
Dupont, P. STAMINA: A Competition to Encourage
the Development and Assessment of Software Model
Inference Techniques. Empirical Software Engineer-
ing, Kluwer Academic Publishers, 2013, 18(4), 791-824.
https://doi.org/10.1007/s10664-012-9210-3

39. Walkinshaw, N., Taylor, R., Derrick, J. Inferring Extend-
ed Finite State Machine Models from Software Exe-
cutions. Empirical Software Engineering, 2016, 21(3),
811-853. https://doi.org/10.1007/s10664-015-9367-7

40. Wang, P., Liang, B., You, W., Li, J., Shi, W. Automatic
Android GUI Traversal with High Coverage. Fourth
International Conference on Communication Systems
and Network Technologies. 2014, 1161-1166. https://doi.
org/10.1109/CSNT.2014.236

41. Wetzlmaier, T., Ramler, R., Putschögl, W. A Frame-
work for Monkey GUI Testing. IEEE International
Conference on Software Testing, Verification and Val-
idation (ICST), 2016, 416-423. https://doi.org/10.1109/
ICST.2016.51

42. Weyuker, E. J. Assessing Test Data Adequacy Through
Program Inference. ACM Transactions on Program-
ming Languages and Systems, 1983, 5(4), 641-655.
https://doi.org/10.1145/69575.357231

43. Yang, W., Prasad, M. R., Xie, T. A Grey-Box Approach for
Automated GUI-Model Generation of Mobile Applica-
tions. Fundamental Approaches to Software Engineer-
ing, Springer Berlin Heidelberg, 2013, 250-265. https://
doi.org/10.1007/978-3-642-37057-1_19

44. Zhauniarovich, Y., Philippov, A., Gadyatskaya, O., Cris-
po, B., Massacci, F. Towards Black Box Testing of An-
droid Apps. 10th International Conference on Avail-
ability, Reliability and Security, 2015, 501-510. https://
doi.org/10.1109/ARES.2015.70

https://doi.org/10.1007/s11042-018-6268-y
https://doi.org/10.1007/s11042-018-6268-y
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1016/j.procs.2018.08.211
https://doi.org/10.1016/j.procs.2018.08.211
https://doi.org/10.1007/978-3-642-21768-5_11
https://doi.org/10.1007/978-3-642-21768-5_11
https://doi.org/10.1109/ASE.2015.96
https://doi.org/10.1109/ASE.2015.96
https://doi.org/10.18293/SEKE2017-099
https://doi.org/10.1109/WETICE.2018.00051
https://doi.org/10.1109/WETICE.2018.00051
https://doi.org/10.1007/978-3-319-99972-2_22
https://doi.org/10.1002/stvr.456
https://doi.org/10.1007/978-3-642-16573-3_10
https://doi.org/10.1007/978-3-642-16573-3_10
https://doi.org/10.1007/s10664-012-9210-3
https://doi.org/10.1007/s10664-015-9367-7
https://doi.org/10.1109/CSNT.2014.236
https://doi.org/10.1109/CSNT.2014.236
https://doi.org/10.1109/ICST.2016.51
https://doi.org/10.1109/ICST.2016.51
https://doi.org/10.1145/69575.357231
https://doi.org/10.1007/978-3-642-37057-1_19
https://doi.org/10.1007/978-3-642-37057-1_19
https://doi.org/10.1109/ARES.2015.70
https://doi.org/10.1109/ARES.2015.70

