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Previous studies have shown that complex cells in primary visual cortex (V1) respond selectively to the bars and 
edges in a specific location and orientation emerged from the natural image rather than random stimuli. In this 
paper, we proposed an adaptive independent subspace analysis (AISA) algorithm based on the maximum like-
lihood estimation of super-gaussian distribution of the norm of the partially independent components involv-
ing difference to efficiently study the characteristics of complex cells. The multiple parameters are updated with 
different restrictions by contrast divergence (CD) method based on the super-gaussian (sparse) distribution. In 
terms of the AISA results from the natural image, the inside and outside subspace of energy correlation illustrate 
the properties of independence. Furthermore, AISA features, similar to the response characteristics of complex 
cells in V1, have phase and shift-invariant, as well as frequency and orientation selectivity via the energy function 
of receptive fields (RFs) emerged from the tuning curve test via the sinusoidal function. Compared with the prin-
cipal component analysis (PCA) filters and other ICA filters, AISA filters are analogous to Gabor filters for edge 
detection and human visual system via varying the frequency and orientation representation.
KEYWORDS: Independent component, phase and shift-invariant features, sparsity, gabor-like filters.
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1. Introduction and Motivation
Recent advances in artificial intelligence methods 
have revolutionized that we process information 
through V1 cells by simulating how we effectively ob-
serve the physical world through the visual system to 
reveal the human brain’s potential [16, 27, 32]. Human 
visual system is a computational modeling for explor-
ing the structures of the information processing in 
brain based on the natural image rather than random 
stimulus [23, 39].
The dependent is one of the basic statistics proper-
ties generally exiting in natural image [19]. However, 
the features are abstractly extracted by the cells from 
lower layers to advance layers with a combination of 
linear and nonlinear transformations in human vi-
sual system [25]. The recent advances indicate the 
fractional areas via the response characteristics of 
mammal V1 neurons via the electrochemical stimu-
lation from the visual inputs in brain [1, 33]. For in-
stance, analyses and applications on natural image 
have already identified the advantages of simple cells 
in V1 with linear model that have adjacent elongated 
regions of excitation and inhibition [28]. 
The exploration of complex cells accelerates the fur-
ther implementation of artificial intelligence (AI). 
Observed in the anesthetized adult cat, a small num-
ber of subunits are used to describe each RF of com-
plex cells with a nonlinear technique, the correlation 
of the spike-triggered ensemble [39]. Meanwhile, 
complex cells are also studied by spike-triggered co-
variance, where the stimulus sequence are applied to 
identify features with trigger spikes in neurons of the 
anesthetized monkey with RFs containing multiple 
linear subunits that combine nonlinearly [15]. With 
the stimulus records of mammals, the complex cells 
respond selectively to bars and edges at a particular 
location and orientation kin to simple cells in V1 [35]. 
However, they are constant relative to the spatial 
phase of the stimulus [7, 36]. 
Independent component analysis (ICA) [3, 30] is 
stemmed from the blind source separation (BSS), and 
motivated by the human beings autonomously select-
ing the interesting information and ignoring the use-
less noise or background. The independence of ran-
dom variables, as a basic concept in statistics is hard 
to compute and distinguish, hence, how to approxi-
mately calculate independence is of great significance 

on the results of BSS. In addition, ICA, a classical 
unsupervised learning algorithm, gives the effective 
results on the signal processing. For example, based 
on the different physical technology of the modern 
medicine, the received brain imaging assists medics 
to conduct in-depth research on patients’ conditions 
with mixing signals, such as electroencephalogram 
(EEG) [40], functional near-infrared spectroscopy 
(FNIRS) [43], functional magnetic resonance imag-
ing (MRI) [11] and so on.
The sparse representation has already applied on im-
age processing as a common technique of feature ex-
traction, such as image super-resolution [29, 46]; and 
image restoration [42]. Moreover, the RFs produced 
by sparsity maximization is quite similar to those of 
simple cells when the inputs are natural image. In 
fact, the independent features from the natural image 
could generate a sparse representation since in some 
aspect the super-gaussianity is equivalent to sparse-
ness [45]. The conventional ICA attempts to illumi-
nate sparse coding analysis via approximating the 
independence of the variables.
However, the factorization of multiple variables can-
not be directly applied on the conventional indepen-
dent features learning algorithm owing to the ambigu-
ity of the nongaussianity. Hence, in the conventional 
ICA, a major of works are about the approximate mea-
sure of the  independence or non-gaussianity of dif-
ferent variables, such as the mutual information [40], 
kurtosis [10], negentropy [37] and mutual informa-
tion rate [18]. 
Ordinarily the complicated relationship and diversity 
of data originate in the multiple factors of practical is-
sue and clarify via signal processing in V1. For simple 
and complex cells in V1, there simultaneously exists 
the linear and nonlinear transformations in order to 
extract the features and imitate the demixing process 
in the real scenarios [35]. 
Therefore, partial independence implies that the de-
pendent features exist inside the independent sub-
space through a linear transformation rather than 
the simplified mutual independence in conventional 
ICA. Laplace pdf are regarded as the super-gaussian 
(sparse) pdf in approximately seeking for the features 
by independent subspace analysis (ISA), where the 
independence cannot be quantified [34]. 
Some of the independent filters resemble Gabor fil-
ters as the perception of edge detectors in the human 
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visual system from the natural image data [35]. In 
addition, the characteristic of conventional ICA fea-
tures are thought to be similar with the RFs of simple 
cells in V1 [18, 20, 34].
In this paper, we are motivated to relax the constraints 
of ICA by involving the difference of the independent 
subspace and realize the operation mechanism of the 
brain in V1 based on the natural images to modify the 
complex cells. The rest of the paper is organized as fol-
lows. Section 2 illustrates how to redeclare the connec-
tion between independence and non-gaussianity with 
the change of independence assumption and how to val-
idate the properties of complex cells based on the char-
acters of complex cells in V1. In Section 3, the maximum 
likelihood of supergaussian pdf optimize complete fea-
tures AISA model updating the multiple parameters by 
CD algorithm. The experiments in Section 4 are applied 
on the pixel blocks clipped from natural image to learn 
the features and filters of AISA after dimensional re-
duction and whitened or sphering preprocessing. The 
energy correlation of the AISA results illustrates the 
differences on independence between inside subspace 
and outside subspace. Compared with the features of 
other ICA, the features of AISA are invariant to phase 
and shift and selectivity to frequency and orientation 
successfully verified by tuning curve test.

2. Background
More than eighty percent of the external information 
perceived by the human brain are derived from the vi-
sual channel and handled by millions of cells in brain 
with nervous impulse [25]. Initially, the indepen-
dence involved is attempted to imitate the informa-
tion processing that human beings can autonomously 
select the useful information, and simultaneously ig-
nore the useless noise or background [3, 18, 40]. The 
distinct types of independence among the variables 
directly influence the complex relationship of sources 
and determine a specific approach to explore the con-
nection between the independence and non-gaussi-
anity. In addition, the primary visual cortex (V1) im-
pacts on the perception of human beings with both 
simple cells and complex cells, where tuning curve 
test is used for verifying the properties of complex 
cells explored by electrochemical stimulation based 
on neuroscience [5,20].

2.1. Non-Gaussianity
The mutually independent sources in conventional ICA, 
should be either non-gaussian random variables, in-
cluding only super-gaussian and sub-gaussian random 
variables, or no more than one gaussian random vari-
able in terms of central limit theorem [5]. The scholars 
have conducted in-depth researches on the equivalency 
between the mutual independence and non-gaussian-
ity [22, 40], and successfully applied the negentropy, a 
measure of non-gaussianity to approximate indepen-
dence on BSS problem [18]. However, it is not confined 
to the practical issues with the strong assumption of the 
independence among the variables [4, 9].
The partial independence is based on the process of 
abstract practical problems, and the main purpose is 
to relax the completely independent constraint of ICA 
and maintain the dependence of subspace. However, 
the problem with the local independence hypothesis is 
how to maximize the unknown transformation in the 
subspace and the independence outside the subspace.
The general form of the super-gaussian distribution 
[34] is given by

( ) ( )r   ,p x exp xα β= − + (1)

where α > 0 and r∈ (0, 2). According to the  normaliza-
tion of (1), βis expressed as

1
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rr

r
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Excess kurtosis [47] as a measure of the tailedness of 
a real-valued random variable is a descriptor of the 
steep shape of a probability distribution relative to a 
standard normal distribution
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where x denotes the mean of x, s represents the stan-
dard  deviation of x, and Nindicates the number of 
data points. For example, a positive excess kurtosis of 
any univariable distribution is a super-gaussian dis-
tribution. The steep shape of the pdf depends on the 
multi-parameters α and r respectively in (1), where 
the kurtosis of super-gaussian pdf stay the same when 
α is less than 3, and shown in Figure 1.
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Figure 1 
Kurtosis of super-gaussian pdf. The kurtosis in (2) is 
calculated by 10,000 data sampling from the super-gaussian 
pdf according to (1) with _ ∈ [1; 5] and r ∈[0:01; 1:99]

  

 

 
 

Moreover, sparseness is basically consistent with the 
super-gaussianity since its property are close to zero  
while the super-gaussian pdf has a peak at zero with 
a positive excess kurtosis [41]. As a consequence, the 
norm of recovery sources in the independent sub-
space obeys the super-gaussian pdf. 
However, the projection of data in one subspace plays 
a modest role in influencing the sparseness [15, 31]. 
Therefore, for simplicity, the features in one subspace 
are related with each other based on linear transfor-
mation, somewhat analogous to the assumption of 
linear transformation in conventional ICA.
Since the diversity of data normally exists and obeys 
the super-gaussian distribution, the super-gaussi-
anity is prevalent to study the process of the hidden 
information in the mixing signals in order to discrim-
inate the different sources. Consequently, the diver-
sity of partial independence have been introduced to 
obtain an adaptive independent subspaces analysis 
(AISA) algorithm involving the general form of the 
super-gaussian pdf in Section 3. 

2.2. Primary Visual Cortex
Artificial intelligence (AI) increasingly prevails in 
processing the information by imitating the unique 
approaches of human beings [24]. Most neurons in 
V1 respond strongly to the oriented lines (edges or 

bars) moving into a preferred direction, and are se-
lective to line orientation for a great extent by the re-
ceptive field structure (RFs) [8, 14]. An active area of 
advances aims at building a realistic models of RFs 
that could clarify neuronal responses to the differ-
ent stimulus. Information processing initially orig-
inates with most of inputs from luminous stimulus 
into electrochemical signals repeatedly transformed 
by the algorithms of both bottom-up and top-down 
processing in brain.
The primary visual area (V1) of cerebral cortex is 
deemed to be the first stage of cortical processing of 
visual information. The RFs of neurons involved in V1 
are a complicated combination of linear and nonlin-
ear transformation and therefore hard to character-
ize in mathematics, especially in the context of natu-
ral stimulus [38]. The linear RFs of simple cells have 
spatial summation within both the excitatory and 
inhibitory regions [27]. Moreover, the nonlinear RFs 
of complex cells are invariant to phase and selective 
to the orientation or spatial frequency tuning of the 
neurons [39]. 
Tuning curves are extensively applied to portray the 
responses of neurons in V1 for the external (natu-
ral) stimulus when the stimulus at their peak, which 
evoke the highest firing rates, are the most significant 
to a neuron. Tuning curve test (analysis of selectivity) 
is applied to characterize complex cells based on the 
grating function, i.e. sinusoidal function [44] 

1

2

( , ) sin(2 ( ( ) ( ) ))
,

( , ) cos(2 ( ( ) ( ) ))
f x y sin x cos y
f x y sin x cos y

πα θ θ
πα θ θ

= +
 = +

(3)

where the frequency α, orientation or angle θ  deter-
mine the oscillation and the x axis is corresponding 
to θ = 0. The two functions f1, f2 obtain two oscillation 
in quadrature-phase (90 degrees phase) in precise. 
In order to accomplish tuning curve test, these grat-
ing functions are firstly computed and normalized 
to unite norm for a large number of orientations and 
frequencies. Then, the optimal frequency αopt and ori-
entation θopt are obtained by maximizing the sum of 
squares of the corresponding functions f1, f2 by using 
the two dot-product between the features in the sub-
space and each grating. Similarly, the selectivity of 
the phase is analyzed with the optimal frequency and 
orientation.
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3. The Adaptive Learning Rule
In this section, the constraint of mutual independence 
in conventional ICA is relaxed by involving the mutual 
independent subspace and introducing the disparity of 
subspaces with the general form of super-gaussian pdf 
rather than the Laplace pdf in ISA [34].
Analogous to the linear transformation in ICA [5, 13, 
37], the features are assumed to have linear relation 
with others in interior subspace. 
Thereinto, the square of the norm of the linear projec-
tion of data zj is given by

2 2,
j j

j j i
i S i S

z y w X
∈ ∈

= = < >∑ ∑ (4)

with the received mixing data X and jth subspace com-
posed by wi, i ∈ Sj.
Then, the adaptive independent subspace analysis 
model is built on the super-gaussianity of zj in basis of 
the sparseness of the norm of projection of visual data 
on any subspace [15]. The learning rule is conceived in 
terms of estimating multi- parameter that maximize the 
likelihood of  zj  based on the general super-gaussian pdf. 
Rather than the factorability of independent 
multi-variable

1 2
1

( ) ( , , , ) ( )
n

n j
j

P X P x x x P x
=

= = ∏ (5)

mutual information, kurtosis and negentropy are 
originally applied to approximately calculate the in-
dependence of sources. Nevertheless, we apply su-
per-gaussian distribution via the factorability of inde-
pendent multi-variable on the norm of the projection 
of data in the independent subspace. Therefore, the 
complete AISA model is given by 
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where 2( ) ( )j
j

r
j j jP z exp zα β= − +‖‖ , 1 2( , , , )nα α αΛ =  , 

(0, )jα ∈ +∞ , 1 2( , , , )nR r r r= ⋅  , (0,1)jr ∈  and the row of W 
is 1 2( , , , )i i i niw w w w=  . According to the normaliza-
tion of super-gauss distribution, the expectation like-
lihood function E of the partial independent compo-
nent Z  is given by: 
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where  ( )( , , )
jj i i S j jw rθ α∈= .

The independent subspace , 1,2, ,jS j n=   in (4) are 
hard to count, similar to the number of the function-
al neurons in brain. The subspace size has the am-
bition composed by the uniform elements of square 
sub-matrix. According to a constant subspace size for 
the sake of simplicity, for instance, on the basis of 2−
dimensional subspace, the matrix H conducts as the 
independent subspace in AISA and is depicted by the 
second order square matrix with uniform elements in 
the following block diagonal matrix.
Now therefore, the complete AISA model (6) is re-
written by

 
 

 

1

2

( , ) sin(2 ( ( ) ( ) ))
,

( , ) cos(2 ( ( ) ( ) ))
f x y sin x cos y
f x y sin x cos y

πα θ θ
πα θ θ

= +
 = +

       (3) 

 2 2,
j j

j j i
i S i S

z y w X
∈ ∈

= = < >∑ ∑               (4) 

   1 2
1

( ) ( , , , ) ( )
n

n j
j

P X P x x x P x
=

= =∏

        (5) 

        

 , , 1
{ ( )} {log( ( ))}

. .   

   

      

   
n

X jW R j

T

E L Z E p z

s t W W I

Λ
=

=

=

∑     (6) 

2( ) ( )j
j

r
j j jP z exp zα β= − +‖ ‖

 1

1

1{ ( )} {log exp( ( ) )}
( )

                ( log ( ) { ( ) }),     

j

j

n
r

X X j j
j j

n
r

j X j j
j

E L Z E z
E

E E z

α
θ

θ α

=

=

= −

= − −

∏

∑

     (7) 

( )( , , )
jj i i S j jw rθ α∈=

 

2

, , 1 1
max ( log ( ) ( ( , ) ))

. .      ,                                       

 

         

  

  

j
j

Sn
r

j X j iW R j i

T

E E w X

s t W W I

θ α
Λ

= =

− − < >

=

∑ ∑  (8) 

              

max  

(8)

where 1 2( , , , )nα α αΛ =   and R 1 2( , , , ).nR r r r=   
Whitened or sphering preprocessing as a basic trick 
in ICA in terms of { } 0E X =  and { }TE XX I= ,  where 
I is the identity matrix, and the normalization factor 

( )jE θ  is explained in Appendix A in details. The ap-
proximate expectation of 

jr
j j
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∂
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by MCMC resampling method with k steps under 
( ; )j jP z θ . In consequence, instead of the basic gra-

dient of the multi-parameter Λ  and R in (8), the ap-
proximation CD method facilitates to obtain the fast 
updating formulas given as following:
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where ,
jkZ< ⋅ ⋅ >  is the is the expectation with k steps re-

sampling jkZ  under ( ; )j jP z θ . 
Then ,i jw i S∈  should be optimized in sequence un-
der the assumption of the subspace matrix H. Hence, 
after the updating multi-parameters jα  and jr  in the 
subspace jS , ,i jw i S∈ , is updated by the gradient of (8) 
given by:
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At last, W should be ensured after the each iterative 
update in accordance with the constraint in formula 
(8) since that the orthonormality of Woriginates from 
the whitened processing for the sake of the ambiguity 
of independent source in ICA.

4. The Experiment
In this section, AISA features based on the natural 
image patches are ultimately verified with the phase 
and shift-invariance as well as frequency and orien-
tation-selectivity.
Then the studies of AISA results make comparisons 
on the histogram of energy correlations both inside 
subspace and outside subspace, respectively. More-
over the sparseness is an another aspect to this prop-
erty compared with the (log−)pdf ’s approximation of 
ISA features via Laplace pdf.

4.1. Natural Image Data
Natural images statistics are motivated by exploring 
the structures and working mechanism of biological 
visual systems in mammalian cerebral cortex. Simul-
taneously, the key to design a theoretical framework 
is to import the properties of the visual system so as 
to probe into the statistical structure of natural image 
data on account of evolutionary adaptation processes. 
Consequently, natural image data1, including 13 pho-
tos with different size (256 ×  512 and 512 ×  256), have 
not any man-made architectures concerning the wild 
scene for research into natural image statistics, shown 
in Fig. 2(a). In Fig. 2(b), a 32 × 32 pixel block clips at the 
top left corner of the photo in the purple rectangle box. 
Then, four pixels are shifted in row and column in or-
der to crop the photos into pixels blocks by the green 
rectangle and blue rectangle box, respectively. At last, 
50, 000 image patches are randomly sampled from the 
above pixel blocks to obtain AISA feature and AISA fil-
ters via AISA algorithm. Due to the expectation of sam-
ples in (8), the arrangement of 50,000 image paths has 
few influence on the AISA results. 
AISA features learning via the natural image data are 
more effective for driving complex cells, though the 
RFs measured with natural images were similar to 
those measured with random stimulus [39]. Hence, the 

Figure 2 
Natural image data used as the stimulus to characterize omplex 
cells 

Left:13 photos are an accurate portrayal of natural surroundings without 
any man-made architectures, where these photos with different sizes (256 
× 512 and 512 × 256) are applied on AISA learning rules to characterize 
complex cells and achieve the RFs of  complex cells. Right: A 32 × 32 pixel 
block starts at the top left corner of the photo in the purple rectangle box. 
Then four pixels are shifted in row and column in order to crop the photos 
into 32 × 32 pixel blocks by the green rectangle and blue rectangle boxes, 
respectively. At last, 50; 000 image patches are randomly sampled from 
the above 32 × 32 pixel blocks in order to obtain AISA feature and AISA 
filters via AISA algorithm

natural image data are applied to learn AISA features 
as well as AISA filters in the following experiments.

4.2. The Partially Independent Features 
Learning from AISA
The principle component analysis (PCA) is com-
monly used for the dimension reduction in image 
processing in terms of removing the uncorrelation of 
variables. In accordance with the ambiguities of scale 
and direction in ICA, the whitened or sphering pre-
processing also becomes a necessary and significant 
prerequisite for these image patches in AISA. The 
covariance matrix of these image patches X could be 
decomposed by singular value decomposition (SVD)

{ } ,T TE XX U U= Σ (11)

where U  is an orthogonal matrix and Σ   is a positive 
diagonal matrix. Therefore, the combined prepro-
cessing of the dimensionality reduction and whitened 
or sphering proceeds simultaneously by the project 

 , where  mΣ  is the first m row in matrix  
Σ . For simplicity, X is represented again after the 
combined preprocessing in the subsequent context.
In these experiments, the subspace dimensions jS  
are set at 2, 4, 8, respectively, and the dimensionality 
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are reduced to 256. Moreover, X  are used for updating 
the multiparameter , , ( )j j i jr w i Sα ∈  via (9) and (10) 
after the combined preprocessing with original learn-
ing rate 0.1µ = , adjustable parameter of learning rate 

3 / 4τ =   and the maximum iteration  500γ =  in or-
der to maximize AISA model (8).
The partially independent features, as well as filters 
are achieved by AISA based on 50, 000 image patches 
of 32 ×  32 pixels blocks randomly sampling from nat-
ural image data. The filters of AISA in one subspace 
of 2−dimensional, 4−dimensional, 8−dimensional are 
one kind of Gabor filter located in the similar places as 
‘edge detectors’ with the distinct frequencies, orien-
tations and phases, especially 2-dimensional shown 
in Figure 3(a). The multi-group bases have a visual 
representation of the mixing matrix (AISA filters), 
where the bases in one group exists in the same sub-
space at the left of (a). The AISA filters in the same 
subspace demonstrate the ‘edge detectors’ in the dis-

Figure 3 
The filters and features learning from AISA algorithm when 
trained on 50; 000 image patches under the assumption of 
2−dimensional subspace. A visualizations of all groups of bases 
are produced by mixing matrix (AISA filters), where one group 
of bases exists in the same subspace at the left of (a). The AISA 
filters in the same subspace demonstrate the ‘edge detectors’ 
in the distinct frequencies, orientations and phases, similar 
to the Gabor filter, magnified at the right of (a). AISA features 
are shown at the left of (b), where six groups have the different 
edge information with varying the frequency, location and 
orientation, respectively, zooming in at the right of (b)

 
 

 

     

          

  

 

 
 

 

     

          

  

 

(a) AISA Filters

(b) AISA Features

Figure 4 
The energy correlation analysis based on AISA features. 
According to the energy correlations of AISA results (a), the 
correlation of inside and outside subspace are generated by 
the column-value histogram in (b) and (c), respectively

(a) The energy correlations of AISA results

(b) Inside subspace correlations in AISA

(c) Outside subspace correlations in AISA
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tinct frequencies, orientations and phases, similar to 
the Gabor filter, magnified at the right of (a). Mean-
while, as can be seen in each group of bases in one 
subspace, AISA features acquire the boundary or edge 
information from the natural image patches, shown at 
the left of Figure 3 (b), where six groups have the dif-
ferent edge information with varying the frequencies, 
orientations and phases, zooming in at the right of (b).
According to the AISA results, the bases in one    group 
have the similar shape of gratings with a small differ-
ence on the frequency, location and phase. Based on the 
AISA features, the energy correlations of AISA results 
or partial independent sources in one subspace are 
shown in Figure 4(a). The histogram is shown in Fig-
ure 4(c) that the energy correlations between the dif-
ferent subspace remain mostly close to zero, while the 
mid-value of energy correlations among the same sub-
space are approaching to 0.25, shown in Figure 4(b).

4.3. The Sparseness Measurement
According to the results of multiple parameters in 
AISA calculated by the CD algorithm,  histogram of jr  
and jα  are shown in Figure 5. Thereinto, values of jr  
arrange unevenly from 0 to 1, while it is restricted to 
a specific value in ISA [34]). And the amounts of jα  
decline with value increasing instead of ignoring it in  
ISA. The multiple parameters jr  and jα  have a signif-
icant influence on the sparsity in the super-gaussian 
pdf in Figure 1.

A series of (log−) non-gaussian pdfs or sparse func-
tions are fixed with ( ) ( )( ) h x log cosh x=  in ICA [13, 
37] and ( ) ( ) ) (p x log exp x= −  in ISA. Instead, our 
proposed AISA algorithm are adaptive to update the 
sparse function via the multiple parameters 

jr  
and 

.jα  
The maximum likelihood estimation prompts the 

sparseness or super-gaussianity of partially indepen-
dent sources in (8). 
In principle, the maximum likelihood estimation is 
calculated with the original random initialization of rj  
and αj by updating ,i jw i S∈  . And then the likelihood 
function is recomputed by updating rj and αj with 
the optimal ,i jw i S∈ , where rj and αj determine the 
steep degree of super-gaussian pdf. The (log−) pdf ’s 

Figure 5 
The value histogram of multiple parameters in AISA. After 
the AISA updating formulas, the multiple parameters are 
achieved, where the values of rj arrange unevenly from 0 to 
1 increasing, and the amounts of αj decline with the value

  

 

 

        

  

 

 

        

(a) rj (b) αj 

Figure 6 
Estimation of the optimal (log−) pdf’s nonlinear function in  the first 3 subspaces. Top row: feature. Bottom row: log−pdf’s function
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Figure 7 
The response of the first 10 features learning from AISA algorithm varying its three degrees of freedom: phase, frequency 
and orientation, respectively. The x-axes are variations in phase/frequency/orientation. The y-axes are the normalized 
activations of cells. According to tuning curve of the response energy detectors, features of AISA algorithm are selective to 
frequency and orientation, invariant to phase

( , , )j j j jh zα β  is given by:

                ( , ,  (1) log ( ) 2)jr
j j j j j j j jh z p z zα β α β= = − + (12)

According to AISA updating formula (9) and (10), 
( , , )j j j jh zα β  could be a sparseness measure.

From the first 3 subspaces in Figure 3(b), the estima-
tion of the optimal (log−) pdf ’s nonlinear function 

, 1,2,3jh j =  are shown in Figure 6.  

4.4. The Emergence of Phase and  
Shift-Invariant Feature
The phase and shift-invariant features embody the 
hallmark properties of complex cells in V1 that re-

sponds for the bar or edge of some particular orien-
tation and location. Namely, the response of complex 
cells is unaltered with the bars or simulations of a se-
ries of changes in direction.
Tuning curve test (analysis of selectivity) is routinely 
executed by using drifting gratings with the maximum 
response of complex cells in V1. The optimal phase, 
frequency and orientation are calculated by the tra-
versing method. The achieved respondence curves of 
the first ten AISA features separately vary one of the 
three optimal degrees of freedom: phase (translation), 
frequency and orientation (rotation), shown in Figure 
7. The two AISA features respond to the energy detec-
tors of tuning curve with phase-invariance, frequen-
cy- and orientation-selectivity.
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In reality, it is difficult to distinguish between 
phase-invariance and position invariance, also kno-
wn as shift-invariance. In other words, the features 
learning via AISA algorithm are robust to local trans-
lation (phase) while being selective to frequency and 
orientation (rotation). This combination of robust-
ness and selectivity makes features learned by AISA 
algorithm highly invariant [6, 21, 44]. This shows that 
AISA demonstrates emergence of properties similar 
to those of complex cells.

5. Conclusion
We proposed an adaptive independent subspace anal-
ysis to learn phase and shift-invariant features which 
characterize complex cells in V1. Rather than the 
conventional ‘independent component’, the partial 
independent component are depicted by the general 
form of super-gaussian distribution function. CD al-
gorithm is used to solve AISA model and update the 
sparseness measure function jh .
The properties of independence by higher order sta-
tistic are much stronger than the properties of un-cor-
relatedness that form principle component analysis 
(PCA) based on the second order statistic [45]. The 
filters and features learning from PCA generates the 
spatially global properties (the whole) instead of the 
local properties (details, parts) based on ICA. In the 
brain and cognitive sciences, the cells firstly extract 
the essential local features accompanied with ig-
noring the shift and rotation transformation. Then a 
global structure is constructed with the combination 
of the local feature so as to improve the effectiveness 
in coping with practice issues. 
ICA makes a strong constraint on the mutual indepen-
dence to simplify the practice issues. And the features 
characterize the properties of simple cell with the as-
sumption of linear transformation in the mixing and 
demixing proceeding. Nevertheless, the properties of 
partial independence make a more approximation on 
the complex information processing in the brain cells.
Independent subspace analysis (ISA) focus on a com-
mon case where partial independent is considered 
rather than independent completely and regardless of 
the difference in the subspace. The updating rule are 
derived from the special super-gaussian distribution, 
Laplace distribution, with an approximate solution. 

The combination of independence and invariant sub-
space in ISA overcomes the constraints of the nonlin-
ear transformation. 
Our proposed AISA is more pervasive rather than 
ICA and ISA. Firstly, the phase and shift-invariance 
of AISA features are verified via the tuning curve test. 
AISA focus on a common situation with partial inde-
pendent less than independent completely with the 
subspace difference. Furthermore, ISA is a special 
case of AISA, when the parameters of standard su-
per-gaussian pdf in AISA is fixed. Later we attempt 
to apply the AISA algorithm into classification task 
based on the local information in details.
At last, we will relax the constraint of subspace size 
and extend the model with label information in the 
future works.
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Appendix
The norm of the projection of visual data on practi-
cally any subspace has a supergaussian distribution. 
Meanwhile, pdf of independence of multi-variable is 
equal to the factorization of the variables.
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where 1( ) ( )
( )

jr
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α
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1 2( , , , )nR r r r= ⋅ , (0,1)ir ∈  and the row of W is 

1 2( , , , )T
i i i niw w w w=  .

The formula is too long. I want to use this short one to replace it. 
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The gradient for jα  and jr  is given by:
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Then how to resample from the ( )P Z  is essential for 
AISA algorithm. According to { }   TE XX I= , the 
mean of jz  can be obtained
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where jS‖‖   is the cardinal number of the set  Sj . In or-
der to simply the problem, we could define the jth  sub-
space Sj in advance by matrix H.
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As for the discrete variable, the integration could be 
rewritten as

The formula is too long. I want to use this short one to replace it. 
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