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The speech coding scheme based on the simple transform coding and forward adaptive quantization for dis-
crete input signal processing is proposed in this paper. The quasi-logarithmic quantizer is applied for discreti-
zation of continuous input signal, i.e. for preparing discrete input. The application of forward adaptation based 
on the input signal variance provides more efficient bandwidth usage, whereas utilization of transform coding 
provides sub-sequences with more predictable signal characteristics that ensure higher quality of signal re-
construction at the receiving end. In order to provide additional compression, transform coding precedes adap-
tive quantization. As an objective measure of system performance, signal-to-quantization-noise ratio is used. 
System performance is discussed for two typical cases. In the first case, it was considered that the information 
about continuous signal variance is available, whereas the second case considers system performance estima-
tion when only the information about discretized signal variance is present, which means that there is a loss of 
input signal information. The main goal of such performance estimation comparison of the proposed speech 
signal coding model is to explore what is the objectivity of performance if the information about a continuous 
source is absent, which is a common phenomenon in digital systems. The advantages of the proposed coding 
scheme are demonstrated by comparing the performance of the reconstructed signal with other similar exiting 
speech signal coding systems. 
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1. Introduction
Quantization represents the process of mapping the 
range of signal amplitude values, which can be contin-
uous and infinite in general, into a set of  discrete val-
ues and it represents a core method exploited in sig-
nal processing algorithms. It is an indispensable part 
of “lossy” signal compression algorithms, which may 
incorporate additional coding techniques to manipu-
late the presentation of a signal in digital domain. A 
constant need for solutions of less complexity, which 
would require the usage of lower bit-rates but keeping 
the high quality of reconstructed signal, is a demand-
ing challenge with the rapid growth of information 
systems [10], [4], [11], [31], [28]. Quantization is the 
process of preparing a signal in digital domain and 
making it suitable for processing by a computer or any 
digital circuit [9]. Considering the growing interest 
in man-machine communication, speech and voice 
recognition is considered as important [37], [23-24], 
[36], [7], [16], [25]. Recent research and applications, 
which exploit neural networks, commonly incorpo-
rate quantization of weight coefficients and activa-
tion functions. It is shown that scalar quantization is 
suitable for such task as well as for speech recognition 
algorithms using deep convolutional neural networks 
[35], [13]. This paper proposes a speech signal coding 
scheme with scalar quantization implemented, where 
every sample of input signal is processed separately 
using scalar quantizers [6]. Such an approach is less 
complex than a vector quantization based approach, 
which processes input signal samples grouped into 
the vectors (arrays) and where vectors are quantized 
at once [35], [20].
For non-stationary signals coding, such as speech sig-
nal, the usage of adaptive schemes increases quality of 
reconstructed signal in the manner of adapting quan-
tizer design to the varying statistics of an input signal 
frame (mean value or variance typically) to achieve 
better performances. More efficient bandwidth usage 
of the original samples can be provided by including 
transform coding algorithms into the coding scheme 
[14-15], which is a part of several standards in the field 
of high quality wideband speech/audio coding [19]. 
Some of the most well-known transforms are discrete 
wavelet transform (DWT) [17], [34], [12], discrete 
cosine transform (DCT) [8], [26], Karhunen-Loeve 
transform (KLT) [2-3] and Hadamard transform [33]. 

In this paper, we analyze and propose a trans-
form-based adaptive coding scheme based on for-
ward adaptive quantization in the case of discrete 
input signal. The coding process presented in the pro-
posed scheme can be observed as a two stage coding. 
Firstly, the continuous signal is discretized using a 
quasi-logarithmic quantizer Q0, which forms ampli-
tude limited discrete signal that is further coded in 
the stage two. The amplitude limitation of discret-
ized signal causes the absence of overload distortion, 
which is disregarded in the processing of further 
step. In the second stage, discretized signal is encod-
ed using a simple transform coding that decompos-
es wideband speech signal into sub-sequences with 
narrower bandwidth range and it is adapted using 
a forward adaptation technique. The aim of such 
transform-based coding step is to provide additional 
compression before adaptive quantization [32], [30]. 
After that, speech signal is divided into frames whose 
size is 240 samples, which are further adapted to the 
variance framewise [5], [27], [21]. Since the forward 
adaptation is used, the variance is quantized using the 
log-uniform quantizer and this information is trans-
ferred to the receiver [18].
The proposed coding scheme shows suitability for 
speech signal coding as it provides 4.9 – 7.8 [dB] of 
gain comparing to the results which provide the usage 
of quasi-logarithmic quantizer in the second stage 
[29], and up to 10 [dB] of gain comparing to the results 
which provide the usage of uniform quantizer in the 
first and optimal comandor in the second stage [22].
The remaining of the paper is organized as follows: 
in Section 2, a detailed description of the proposed 
quantizer model is provided. Next, numerical results 
and discussion are presented in Section 3. In the end, 
concluding remarks are summed up in Section 4. 

2. Quantizer Design for Discrete 
Input Signal
The proposed coding scheme is shown in Fig. 1. It 
can be seen that the encoder is composed of a qua-
si-logarithmic quantizer Q0, which is exploited for 
discretization of continuous input speech signal, then 
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buffer, variance estimator, transform encoder and for-
ward-adaptive quasi-logarithmic quantizers AQ1 and 
AQ2. The purpose of quasi-logarithmic quantizer Q0 
(R0=8 [bits/sample], µ=255) is to obtain discrete sam-
ples of continuous input speech signal that is further 
fed into the buffer. Although a robust quasi-logarith-
mic quantizer is used, significant errors may occur 
for higher values of variance due to range mismatch, 
resulting a huge difference of estimated performance 
between the cases where the information about con-
tinuous signal is available and when the information 
about discrete signal only is achievable. If the wide 
range of variances is observed, it is not enough to ex-
ploit only one robust quantizer Q0, but it is necessary 
to use two quantizers in pre-processing, where one 
will cover processing of lower bands range while an-
other will be used for processing signals of upper band 
range variances. On the other hand, if uniform quan-
tizers are exploited, which are known as not robust, 
system performance would be much worse. Such an 
analysis has not been done before, and it is therefore 
considered as a significant step forward in the field.
After discretizing continuous signal, discretized signal 
is fed to the buffer which is used to divide signal into 
frames. Consequently, further signal processing is not 
anymore sample-based but frame-based. Next, simple 
transforms t1 and t2 are applied to form two sub-se-
quences y1 and y2, creating two independent signals 
with more predictable characteristics. These trans-

forms are defined similarly as Hadamard transform for 
a group of two samples and their form is [32], [30]:
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In order to achieve higher quality of reconstructed 
signal, adaptive quantization based on the variance of 
the signal has been performed in the next step [15], 
[27]. Firstly, frames that consist of M samples of input 
signal are being loaded into the buffer. The variance of 
M samples in a frame is calculated by using variance 
estimator, then quantized by using log-uniform 
quantizer Q3 and after that it is transmitted to the 
receiving end. It should be noted that log-uniform 
quantizer is actually uniform quantizer designed in 
logarithmic domain which is described in details in 
[15], [27]. Next, variance quantized this way is sent to 
adaptive quantizers AQ1 and AQ2 for support range 
determination for each frame using the following 
expressions: 
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where σ̂  represents quantized standard deviation, ρ is 
correlation coefficient of the input signal whereas xmL 
is initial support range value of quantizer designed for 
Laplacian source with the unit variance, compression 
factor µ and N quantization levels [30], [1]. 
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where xmax is the support range of the quantizer, 
whereas μ is the compression factor. According to the 
μ-logarithmic compression function, decision 
thresholds xi′ and representation levels yi′ are obtained 
[10], [27]. 
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Equation (8) represents general expression for 
obtaining optimal bit-rate where M is the total number 
of branches (independent sub-sequences), whereas t 
can take values 1 or 2 for the proposed model 
(branches 1 and 2), while k presents counter through 
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Among other common objective performance 
measures, in this paper we observe the signal-to-
quantization-noise ratio (SQNR) which is calculated 
for the proposed coding scheme by using a modified 
model that have been proposed in [29]. Estimation is 
performed such that the input signal is divided firstly 
into frames of M samples in order to calculate signal 
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signal dynamics. In order to provide an adequate 
comparison, referent variance is equal to 0 [dB], as it 
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M samples in a frame is calculated by using variance 
estimator, then quantized by using log-uniform quan-
tizer Q3 and after that it is transmitted to the receiving 
end. It should be noted that log-uniform quantizer is 
actually uniform quantizer designed in logarithmic 
domain which is described in details in [15], [27]. 
Next, variance quantized this way is sent to adaptive 
quantizers AQ1 and AQ2 for support range determina-
tion for each frame using the following expressions:
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thresholds xi′ and representation levels yi′ are obtained 
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correlation coefficient of the input signal whereas xmL 
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Laplacian source with the unit variance, compression 
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where xmax is the support range of the quantizer, 
whereas μ is the compression factor. According to 
the μ-logarithmic compression function, decision 
thresholds xi′ and representation levels yi′ are ob-
tained [10], [27].
Commonly, a logarithmic quantizer is suitable to use 
for middle and high bit-rates (N ≥ 8) [10], [27]. As the 
quasi-logarithmic quantizers are exploited for both 
signals, y1 and y2, the quantizers AQ1 and AQ2 are de-
signed for bit-rates defined as [27]:
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dynamic range, limited by σ2
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min. The whole 

range B=60  [dB] (-30 to 30 [dB]) is divided into the 
segments with 2 [dB] step size, whereas input signal 
is divided into frames of M samples as for variance 
determination. Next, for each frame level Li is calcu-
lated. It denotes in which segment the observed frame 
is located. For each segment of the range, the number 
of frame appearances for the observed variance is 
counted, and the mean SQNR value of all frames that 
are located in a certain segment after that is calcu-
lated. Equation (12) shows SQNR for a single frame 
(ith) which is located in the jth segment. SQNR of each 
frame that is located in the segment presents logarith-
mic ratio of signal variance for a certain frame and its 
distortion, and it can be calculated as [29]:
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For the purpose of accuracy consideration of the 
performance measure model, it has been shown the 
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where F is the total number of frames in which the 
signal is divided, SQNR(l). It should be noted that in 
the experimental analysis, M=240 samples per frame 
have been used, whereas the recorded benchmark test 
signal consists of about 4500 frames.  

3. Numerical Results and Analysis 

This section provides an analysis of numerical 
results obtained by theoretical considerations and by 
performing an experiment. As it has been mentioned 
previously, the experiment was performed for sets of 
bit-rates (R1 ϵ {5, 6, 7} bits/sample and R2 ϵ {3, 4, 5} 
[bits/sample]). Since we consider forward adaptive 
quantization, it is necessary to transmit additional 
information about signal variance to the receiving end, 
which is causing additional bits for encoding the 
variance of a frame. The variance is encoded using the 
log-uniform quantizer designed for low and middle 
bit-rates (R3 ϵ {4, 5} [bits/sample]), whereas the frame 
size M is equal to 240 samples. 

Figure 2 shows theoretically obtained SQNR in the 
wide range of signal variances for quasi-logarithmic 
quantizer, without included transform coding (R ϵ {4, 
5, 6} [bits/sample], µ ϵ {20, 255}) designed for 
continuous input signal in the case of bit-rate of the 
log-uniform quantizer R3=4 and R3=5 [bit/sample]. It 
can easily be seen that robustness can be increased by 
increasing R3, as SQNR is higher for lower 
compression factor value. 

 
Figure 2. SQNR in wide range of input signal variances in 
the case of R ϵ {4, 5, 6} [bits/sample] and different µ and 

R3 (R3 = 4 – red line, R3 = 5 – green line) values 

Next, Table 1 shows the average SQNR for the 
same system from Figure 2 (theoretically obtained), 
with additional case of non-adaptive quasi-logarithmic 
quantizer, due to comparison and observing suitability 
of applied adaptation in the proposed coding scheme. 
It can be noticed that adaptive solutions provide from 
2.55 [dB] up to 9.2 [dB] higher SQNR, which can be 
considered as a significant improvement. 

The theoretical comparison to the results in paper 
[29] shows that the proposed speech signal coding 
scheme provides over 3 [dB] higher average SQNR for 
the same bit-rate. 
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Next, Table 1 shows the average SQNR for the 
same system from Figure 2 (theoretically obtained), 
with additional case of non-adaptive quasi-logarithmic 
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performance measure model, it has been shown the 
results of the standard average quality measure 
SQNRavg(st) in the wide range of variances, which do 
not incorporate segmentation of dynamic range. It is 
defined as [29]: 

( ) ( )[ ]dBSQNR1]dB[SQNR
1

stavg ∑
=

=
F

l
l

F
, (16) 

where F is the total number of frames in which the 
signal is divided, SQNR(l). It should be noted that in 
the experimental analysis, M=240 samples per frame 
have been used, whereas the recorded benchmark test 
signal consists of about 4500 frames.  

3. Numerical Results and Analysis 

This section provides an analysis of numerical 
results obtained by theoretical considerations and by 
performing an experiment. As it has been mentioned 
previously, the experiment was performed for sets of 
bit-rates (R1 ϵ {5, 6, 7} bits/sample and R2 ϵ {3, 4, 5} 
[bits/sample]). Since we consider forward adaptive 
quantization, it is necessary to transmit additional 
information about signal variance to the receiving end, 
which is causing additional bits for encoding the 
variance of a frame. The variance is encoded using the 
log-uniform quantizer designed for low and middle 
bit-rates (R3 ϵ {4, 5} [bits/sample]), whereas the frame 
size M is equal to 240 samples. 

Figure 2 shows theoretically obtained SQNR in the 
wide range of signal variances for quasi-logarithmic 
quantizer, without included transform coding (R ϵ {4, 
5, 6} [bits/sample], µ ϵ {20, 255}) designed for 
continuous input signal in the case of bit-rate of the 
log-uniform quantizer R3=4 and R3=5 [bit/sample]. It 
can easily be seen that robustness can be increased by 
increasing R3, as SQNR is higher for lower 
compression factor value. 
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The theoretical comparison to the results in paper 
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additional case of non-adaptive quasi-logarithmic 
quantizer, due to comparison and observing suit-
ability of applied adaptation in the proposed coding 
scheme. It can be noticed that adaptive solutions pro-
vide from 2.55 [dB] up to 9.2 [dB] higher SQNR, which 
can be considered as a significant improvement.
The theoretical comparison to the results in paper 
[29] shows that the proposed speech signal coding 
scheme provides over 3 [dB] higher average SQNR for 
the same bit-rate.
The rest of this section will be dedicated to discus-
sion of the experimental results. As it was mentioned 
previously, the experiment is performed for wideband 
speech signal whose variance is σx

2=0.0021 (sampled 
at 16 kHz) using the proposed coding scheme shown 
in Figure 1.
Quasi-logarithmic quantizer Q0, applied for input 
signal discretization, is designed for the bit-rate R0= 
8 [bits/sample] while compression factor value is 
µ=255 for all cases. Tables 2 and 3 show SQNR val-
ues obtained by using the proposed coding scheme 
for various values of the average bit-rate: Rav =  R+Rv, 
where R  =  (R1+R2)/2 and Rv    =  R3  /M, represent the 
required number of bits per sample to transmit sig-
nal variance for the observed frame. Firstly, Table  2 
shows SQNR values obtained by using the proposed 
coding scheme in the case when quantizer AQ1 is de-
signed for R1=5 [bits/sample], while quantizer AQ2 is 
designed for R2=3 [bits/sample], whereas the signal 
variance is quantized using log-uniform quantizer 
designed for R3=4 [bits/sample].
The main reason for choosing these bit-rates for quan-
tizers AQ1 and AQ2 is convenient comparison with the 
results obtained using the coding scheme without 
transform coding and forward adaptation included 
[22], in order to demonstrate the influence of these 

Table 1 
Theoretically obtained SQNR for quasi-logarithmic quantizer with and without forward adaptation

Rav [bits/
sample]

R3=4 [bits/sample] R3=5 [bits/sample] Non-adaptive logarithmic quantizer 

SQNR
[dB]

µ=255

SQNR
[dB]
µ=20

SQNR
[dB]

µ=255

SQNR
[dB]
µ=20

SQNR
[dB]

µ=255

SQNR
[dB]
µ=20

4 13.8025 17.4037 13.8080 17.4406 11.2086 11.7467

5 19.7970 23.1321 19.8045 23.1819 15.7951 15.7195

6 25.7909 28.8026 25.8009 28.9296 20.2153 19.6486

techniques on coding scheme, i.e. to show the coding 
gain that these techniques provide. By comparing the 
results from Table 2 with the performance from [29], 
it can be seen that the proposed coding scheme pro-
vides 4.9–5.9 [dB] higher SQNR in the case of µ=255 
and 5.8–7.8 [dB] higher SQNR in the case of µ=20, for 
different bit-rates.
The differences between SQNR results obtained us-
ing Equations (15) and (16) that can be noticed are the 
consequences of different way of measuring SQNR. 
Equation (16) applies standard model for coding 
quality measuring that midranges all frames in the 
dynamic variance range while the second model for 
quality measuring, applied in this paper (Equation 
(15)), midranges SQNR values for all frames in every 
segment of dynamic range and after that midranges 
these SQNR values providing the more accurate av-
erage SQNR for dynamic range. It can be noticed that 
the coding quality gain can be increased by increasing 
bit-rate of the log-uniform quantizer. 

Table 2 
Experimental results for the proposed coding scheme in 
the case of R3 = 4 [bits/sample]

Rav  [bits/sample]

µ Input SQNR [dB] 4.01667 5.01667 6.01667

20

Cont. SQNRavg 20.0062 25.6692 31.1689

Disc. SQNRavg 20.7713 27.3206 32.0262

Cont. SQNRavg(st) 20.7398 26.4888 32.2254

Disc. SQNRavg(st) 21.5754 27.7954 33.1885

255

Cont. SQNRavg 16.9248 22.9970 28.9011

Disc. SQNRavg 18.3151 24.5445 30.4459

Cont. SQNRavg(st) 17.3997 23.3876 29.4358

Disc. SQNRavg(st) 19.2437 24.6927 30.8136
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Table 3 shows the results for SQNR obtained using 
both models in the case of log-uniform quantizer’s 
bit-rate R3=5  [bits/sample]. By comparing the re-
sults presented in Table 3 with the corresponding 
one shown in Table 2, it can be seen that by increas-
ing the total average bit-rate of the proposed scheme 
by 0.00416 [bit/sample] (due to exploiting additional 
1 bit for variance coding), the coding quality increas-
es up to 0.9 [dB], depending of compression factor µ 
and total average bit-rate. Next, it can also be noticed 
by observing Table 2 that the value of compression 
factor µ=20 provides higher SQNR comparing to the 
case when µ=255. Furthermore, it can easily be seen 
that the proposed coding scheme estimates 1–3 [dB] 
higher SQNR in the case when there is available in-
formation only about variance of discretized signal, 
for all cases of R and µ, comparing to the case when 
variance of continuous signal is available. Similar 
remarks can be made after observing Table 3. This 
means that the amplitude limitation of the discrete 
signal provides higher coding quality than the case 
of continuous signal coding, because of the huge loss 
of information in the quantizing process of the con-
tinuous signal.
Thus, in this paper, we have shown the numerical re-
sults obtained using Equation (15) for a wide range of 
input signal variances and different bit-rates in Fig-
ures 3 and 4. Both cases are shown: when the infor-
mation about continuous signal variance is present as 

Table 3
Experimental results for the proposed coding scheme in the case of R3 = 5 [bits/sample]

Rav  [bits/sample]

µ Input SQNR [dB] 4.02083 5.02083 6.02083

20

Cont.  SQNRavg 20.1395 25.7187 31.4030

Disc.  SQNRavg 20.9472 27. 7113 32.9634

Cont. SQNRavg(st) 20.8485 26.6353 32.3656

Disc. SQNRavg(st) 21.6146 28.0653 33.9725

255

Cont. SQNRavg 16.9693 23. 0142 29.2311

Disc. SQNRavg 18.4096 24. 8170 30.9516

Cont. SQNRavg(st) 17.4584 23.5475 29.5184

Disc. SQNRavg(st) 19.3170 25.3108 31.3613

Figure 3 
SQNR in wide range of input signal variances in the case of 
different µ and R3 and coding scheme total average bit-rate 
Rav ≈ 4 [bits/sample]  
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Figure 4. SQNR in wide range of input signal variances in 

the case of different µ and R3 and coding scheme total 
average bit-rate Rav ≈ 5 [bits/sample] 

In Fig. 3, it is presented SQNR in the case of total 
average bit-rate of the coding scheme  Rav=4.01667 
[bits/sample] (R1=5, R2=3, R3=4) and Rav=4.02083 
[bits/sample] (R1=5, R2=3, R3=5), whereas in Fig. 4, it 
is presented SQNR in the case of coding scheme total 
average bit-rates of Rav=5.01667 [bits/sample] (R1=6, 
R2=4, R3=4) and Rav=5. 02083 [bits/sample] (R1=6, 
R2=4, R3=5). 

 By observing both figures, it can be noticed that 
estimation of SQNR for the proposed coding scheme 
in the case when the information about discrete input 
signal is available only, provides approximately the 
same SQNR estimation for lower signal variances. 
However, estimation in the case when input signal 
variances are higher than 5 [dB], shows unexpected 
performance improvement, which appears due to 
support range mismatch of quantizer Q0 [29]. 

4. Summary and Conclusions 
 In this paper, we have presented the coding 

scheme for discrete input signal. We have 
experimentally demonstrated its suitability for speech 
signal coding by analysing performances in the cases 
of middle bit-rates. It was demonstrated that 

application of transform coding and forward 
adaptation significantly increase the coding quality 
and provide quality robustness in the wide range of 
input signal variances, which shows its potential for 
application to speech coding algorithms. Furthermore, 
quantizer design and deep analysis of performance 
measures are other main contributions of the paper. 

As it is a common case that the information about 
continuous signal is not available in digitization 
systems and that system performance should be 
estimated using the information about discrete signal 
variance, it has been analyzed performance estimation 
in both cases. It has been shown that the proposed 
coding scheme provides excellent estimation in the 
case of input signal variances lower than 5 [dB] for 
various values of system parameters. However, the 
model overrates the performance for higher variances 
in the case when the information about continuous 
signal is not available, due to support range mismatch 
of quantizer Q0, which will be considered in the future 
research.  
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By observing both figures, it can be noticed that esti-
mation of SQNR for the proposed coding scheme in 
the case when the information about discrete input 
signal is available only, provides approximately the 
same SQNR estimation for lower signal variances. 
However, estimation in the case when input signal 
variances are higher than 5 [dB], shows unexpected 
performance improvement, which appears due to 
support range mismatch of quantizer Q0 [29].

4. Summary and Conclusions
In this paper, we have presented the coding scheme for 
discrete input signal. We have experimentally demon-
strated its suitability for speech signal coding by analys-
ing performances in the cases of middle bit-rates. It was 
demonstrated that application of transform coding and 
forward adaptation significantly increase the coding 
quality and provide quality robustness in the wide range 
of input signal variances, which shows its potential for 
application to speech coding algorithms. Furthermore, 
quantizer design and deep analysis of performance 
measures are other main contributions of the paper.
As it is a common case that the information about con-
tinuous signal is not available in digitization systems 
and that system performance should be estimated us-
ing the information about discrete signal variance, it 
has been analyzed performance estimation in both cas-
es. It has been shown that the proposed coding scheme 
provides excellent estimation in the case of input sig-
nal variances lower than 5 [dB] for various values of 
system parameters. However, the model overrates the 
performance for higher variances in the case when the 
information about continuous signal is not available, 
due to support range mismatch of quantizer Q0, which 
will be considered in the future research. 
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