
Information Technology and Control 2019/2/48250

A Comparison of the Control 
Schemes of Human Response to a 
Dynamic Virtual 3D Face

ITC 2/48
Journal of Information Technology  
and Control
Vol. 48 / No. 2 / 2019
pp. 250-267
DOI 10.5755/j01.itc.48.2.21667

A Comparison of the Control Schemes of Human  
Response to a Dynamic Virtual 3D Face

Received 2018/09/18 Accepted after revision 2019/04/30

    http://dx.doi.org/10.5755/j01.itc.48.2.21667 

Corresponding author: edgaras.sciglinskas@vdu.lt

V. Kaminskas, E. Ščiglinskas
Faculty of Informatics; Vytautas Magnus University; Vileikos Str. 8, LT-Kaunas, Lithuania;  
phone: +37064632139; e-mails: vytautas.kaminskas@vdu.lt, edgaras.sciglinskas@vdu.lt

This paper introduces the application of predictor-based control principles for the control of human response 
to a virtual 3D face. A dynamic woman 3D face is observed in virtual reality. We use changing distance-be-
tween-eyes in a 3D face as a stimulus – control signal. Human responses to the stimulus are observed using 
EEG-based excitement signals – output signal. The technique of dynamic systems identification which en-
sures stability and possible higher gain of the model for building a predictive input-output model of control 
plant is applied. Three predictor-based control schemes with a minimum variance or a generalized minimum 
variance control quality and constrained control signal magnitude and change rate are developed. High predic-
tion accuracies and control quality are demonstrated by modelling results.
KEYWORDS: Virtual 3D Face, Human Excitement, Predictive Input-Output Model, Minimum variance and 
Generalized Minimum Variance Control with Constraints.

1. Introduction
Emotions are very important to human experience 
because they play an important role in human dai-
ly lives – communication, rational decision making 
and learning [35], [38]. New advanced technologies 
and sensors allowed to create devices, which could be 
used not only in the laboratories and medical insti-
tutions [11], [33]. These devices allow to obtain EEG 
signals and extract emotions in real time and could be 

used in normal live situations – listening to the music 
[30], playing games [13], [47], watching movies [36], 
stabilizing concentration of the critical systems op-
erators – making communication more intuitive with 
human-computer interfaces [43].
This research field because of its potential and possi-
ble various applications is growing rapidly. Emotions 
as reaction to the various stimuli analysis [3], model-
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ling [45], recognition [44] and investigation of a feed-
back systems [31] are expanding. Individual emotion-
al responses vary greatly and a single emotional model 
cannot be developed for a group of people, so for this 
purpose a control mechanism is necessary [10].
The most popular way to observe a human emotion in 
real time is to monitor EEG-based signals as response 
to stimuli (visual, audio, etc.) [11], [39]. EEG-based 
emotion signals (excitement, frustration, engage-
ment/boredom and meditation) are characterized 
as reliable and quick response signals. Therefore, it 
is relevant to construct and investigate methods and 
models of recognition and estimation dependencies 
between emotion signals and different stimuli and to 
design the emotion feedback systems based on these 
models [29], [31], [43].
Linear and nonlinear predictive models of the in-
put-output structure were proposed and investigated 
for exploring dependencies of the EEG-based emo-
tion signals as a human response to a dynamic virtual 
3D face features when a virtual 3D face is observed 
without a virtual reality headset [24], [26], [46]. The 
technique of dynamic systems identification which 
ensures stability of the models is applied to build 
these models [14].
Predictive models are necessary in the design of pre-
dictor-based control systems [5], [6], [7], [15-17], [37]. 
Predictor-based control principles were applied to the 
control of human emotion signals when a 3D face was 
observed without a virtual reality headset [25], [27].
In this paper, three predictor-based control schemes 
with a minimum variance or a generalized minimum 
variance control quality, constrained control signal 
magnitude and changing rate are developed for the 
control of human excitement as response to a dynam-
ic 3D face when it is observed using virtual reality 
headset. The first results of experiments in this di-
rection were published in [28]. Different generalized 
minimum variance control criterion is used in this 
paper. Stability and systematic control error of the 
closed loop system are investigated. Selection of the 
weight coefficient of a generalized minimum variance 
criterion is based on stability condition of closed loop 
system and admissible value of systematic control 
error. The technique of systems identification which 
ensures stability and possible higher gain of the pre-
dictive models of the control plant is applied. More-
over, quantity of volunteers is expanded on purpose 

to increase reliability of the experimental control 
schemes comparison results.

2. Control Plant
A virtual 3D face of woman was used as a stimulus for 
eliciting human reaction. Three types of 3D face fea-
tures (distance-between-eyes, nose width and chin 
width) were used for human reaction elicitation and 
four EEG-based response signals (excitement, frus-
tration, engagement/boredom and meditation) were 
observed and analyzed in previous research [46]. Anal-
ysis of the results has shown that all three types of the 
3D face feature have triggered similar human reaction 
signals, accordingly distance-between-eyes was select-
ed and used as a dynamic 3D face feature in further re-
search [24], [26], [28]. From observed four EEG-based 
response signals, excitement is the most variable signal.
A virtual 3D face of woman with changing dis-
tance-between-eyes was used for input (control sig-
nal) and EEG-based pre-processed excitement signal 
was measured as output (Figure 1) in this research. 
The output signal was recorded with Emotiv Epoc 
device. This device records EEG inputs from 14 chan-
nels (in accordance with the international 10-20 loca-
tions): AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, 
F4, F8, AF4 [34]. Values of the excitement signal vary 
from 0 to 1. If excitement is low, the value is close to 0 
and if it is high, the value is close to 1.
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Figure 2 
A virtual 3D face of the woman with changing (the smallest 
(right), normal (middle) and the largest (left)) distance-
between-eyes
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the absolute value. 

The numerical algorithms for computing the 
estimates as a solution of the minimization 
problem (5)-(9) were investigated in [24], [26], 
[28]. 

 

 

4. Control with Constraints 
Schemes 

The control law synthesis for stochastic 
control plant (1) is often based on minimizing 
variance of the deviation between the 
observed output signal and the reference 
signal (minimum variance control) [1], [12], 
[41]. Generalized minimum variance control 
is obtained by introducing control costing [2], 
[4], [6, 7], [37], [42]. 

Basic techniques of a minimum variance or 
generalized minimum variance control are 
developed without evaluation of possible 
control signal constraints. Accordingly, 
techniques and schemes with constrained 
control signal magnitude and change rate for 
linear and nonlinear plants were constructed 
[15-23]. 

Applying this technique for the control plant 
(1), the control law is obtained from the 
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T is a vector transpose sign, sign | | denotes the abso-
lute value.
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The numerical algorithms for computing the esti-
mates as a solution of the minimization problem (5)-
(9) were investigated in [24], [26], [28].

4. Control with Constraints Schemes
The control law synthesis for stochastic control plant 
(1) is often based on minimizing variance of the devia-
tion between the observed output signal and the refer-
ence signal (minimum variance control) [1], [12], [41]. 
Generalized minimum variance control is obtained 
by introducing control costing [2], [4], [6, 7], [37], [42].
Basic techniques of a minimum variance or general-
ized minimum variance control are developed with-
out evaluation of possible control signal constraints. 
Accordingly, techniques and schemes with con-
strained control signal magnitude and change rate for 
linear and nonlinear plants were constructed [15-23].
Applying this technique for the control plant (1), the 
control law is obtained from the condition

 
 

 

there is a relative high correlation between 
observations of the EEG-based excitement signal 
and changing distance-between-eyes in virtual 3D 
face [28]. The shift of the maximum values of the 
cross-correlations in relation to the origin allows 
stating that there exist linear dynamic relations 
between input and output signals. Accordingly, 
dependency between human excitement as 
response to a virtual 3D face with changing 
distance-between-eyes is described by a linear 
input-output structure model [24] 

A(z-1)yt= θ0+B(z-1)xt+εt, (1) 

where 

A(z-1) = 1 +� aiz-i,
n

i = 1

 

 B(z-1) =� bjz-j,        m ≤ n
m

j = 0
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(2) 

yt  is an output (excitement), xt  is input (distance-
between-eyes) signals, respectively, observed as 

yt = y(tT0),   xt = x(tT0) 
with a sampling period T0, εt denotes the equation 
error of white-noise type, z-1 is the backward-shift 
operator (z-1xt = xt-1.) and θ0 is a constant value.  

Model (1) with permanent component θ0 > 0, which 
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different from ordinary linear dynamic model.  
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of the polynomials (2) and constant θ0) of the model 
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observations obtained during the experiments with 
the volunteers. 

Basic techniques of system identification and 
numerical schemes of computing the estimates [8], 
[9], [32], [40] do not ensure stability of the dynamic 
models. As a solution to this problem, the 
techniques and numerical methods of dynamic 
system identification were developed [14]. 

Applying this technique, the current estimates of 
the parameters are obtained from the condition 
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1

t - n
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2 (c)   
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is a vector of the coefficients of the 
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is one-step-ahead output prediction error, 

Ωc= �ai:    � zi
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is stability domain (unity disk) for the model 
(1),  zi

A are the roots of the polynomial 
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A:  A(z) = 0,     i = 1,….,n, 

A(z) = znA(z-1) 
(9) 

𝑇𝑇𝑇𝑇  is a vector transpose sign, sign | | denotes 
the absolute value. 

The numerical algorithms for computing the 
estimates as a solution of the minimization 
problem (5)-(9) were investigated in [24], [26], 
[28]. 
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The control law synthesis for stochastic 
control plant (1) is often based on minimizing 
variance of the deviation between the 
observed output signal and the reference 
signal (minimum variance control) [1], [12], 
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is obtained by introducing control costing [2], 
[4], [6, 7], [37], [42]. 

Basic techniques of a minimum variance or 
generalized minimum variance control are 
developed without evaluation of possible 
control signal constraints. Accordingly, 
techniques and schemes with constrained 
control signal magnitude and change rate for 
linear and nonlinear plants were constructed 
[15-23]. 

Applying this technique for the control plant 
(1), the control law is obtained from the 
condition 

xt+1
* :  Qt(xt+1)→ min

xt+1∈Ωx
,  (10) (10)

  

Qt(xt+1) = E ��yt +1 - yt+1
* �2

+ q(xt+1- ut+1)2�, (11) 

Ωx = �xt+1:   xmin ≤ xt+1 ≤ xmax,  
(12) 

�xt+1- xt
*� ≤ δt� 

 

where E  is an expectation operator, yt+1
*  is a 

reference output signal (reference trajectory for 
excitement), ut+1 marks the reference trajectory for 
the control signal (distance-between-eyes), 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
and xmax  are control signal boundaries (smallest 
and largest distance-between-eyes), δt > 0 are the 
restriction values for the change rate of the control 
signal, sign | | denotes absolute value, and q ≥ 0 is 
weight coefficient. 

Then solving the minimization problem (10)-(12) 
for one-step ahead prediction model (4), the control 
law is described by equation 

xt+1 
* =

⎩
⎪
⎨

⎪
⎧ min{xmax, xt

* + δt, x�t+1} ,
                                   if x� t+1 ≥ xt

*,
max{xmin, xt

*- δt, x�t+1} ,
                                  if x�t+1< xt
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 (13) 

B�(z-1)x�t+1 = -L(z-1)yt + yt+1
* - θ0 

                                           + λut+1, 
(14) 

L(z-1) = z[1 - A(z-1)], (15) 

B�(z-1) = λ + B(z-1),     λ = q/b0. (16) 

If the roots of polynomial 

B�(z) = zmB�(z-1) (17) 

are in the unity disk 

�zj
B� < 1,    zj

B:  B�(z) = 0,  j = 1, …, m, (18) 

then from (14) and (16) the following equation is 
correct 

x� t+1=
1

b0+λ
�� aiyt+1-i -� bjxt+1-j

*
m

j = 1

- θ0  
n

i = 1

 
(19) 

+ yt+1
*  + λut+1�. 

If a part or all of polynomial (17) roots do not 
belong to the unity disk, weight factor |λ| (weight 
coefficient in (11)) needs to be increased until all 
roots are in the unity disk. 

When inserting the control signal, which is 
described by Equation (14), to the model (1), we get 
a closed-loop system equation 

[B(z-1) + λA(z-1)]yt= λθ0 + 

B(z-1)�yt
*+λut� + (B(z-1) + λ)εt 

(20) 

It is clear from Equation (20) that stability of 
the closed-loop system is dependent on 
characteristic polynomial roots 

D(z) = zn D(z-1), 
D(z-1) = B(z-1) + λA(z-1), 

(21) 

all roots must be inside the unity disk 

�zi
D� ≤ 1,   zi

D:   D(z) = 0,     i = 1, 2,…, n. (22) 

The analysis of characteristic polynomial 
Equation (21) allows to state that having a 
stable model in the process of the 
identification (5)-(9), stability of a closed-loop 
system is obtained with any arrangement of 
roots of the polynomial B(z-1) , when the 
weight factor |λ| is increased. 

From Equation (20), we get the permanent 
component of output signal in stationary 
regime (yt

*= y*, ut = u*) is 

y = Kp�y*+ θ�0 + λu*�,  θ�0=
λθ0

B(1)
 (23) 

where 

Kp=
B(1)

B(1) + λA(1) 
 (24) 

is a gain of the transfer function of the 
reference signal yt

*  in a closed – loop 

Wp(z-1) =
B(z-1)

B(z-1) + λA(z-1)
. (25) 

Considering the expression (24), the weight 
factor λ is calculated by equation 

λ =
K0(1 - Kp)

Kp
, (26) 

where 

K0 = 
B(1)
A(1)

 (27) 

is a gain of the transfer function of the input-
output model (1) 

W0(z-1) = 
B(z-1)
A(z-1)

. (28) 

From Equation (23) follows systematic control 
error 
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where E is an expectation operator, yt+1 *  is a reference 
output signal (reference trajectory for excitement), 
ut+1 marks the reference trajectory for the control sig-
nal (distance-between-eyes), xmin and xmax are control 
signal boundaries (smallest and largest distance-be-
tween-eyes), δt > 0 are the restriction values for the 
change rate of the control signal, sign |   | denotes ab-
solute value, and q ≥ 0  is weight coefficient.
Then solving the minimization problem (10)-(12) for 
one-step ahead prediction model (4), the control law 
is described by equation
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If the roots of polynomial 

B�(z) = zmB�(z-1) (17) 

are in the unity disk 

�zj
B� < 1,    zj

B:  B�(z) = 0,  j = 1, …, m, (18) 

then from (14) and (16) the following equation is 
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(19) 

+ yt+1
*  + λut+1�. 

If a part or all of polynomial (17) roots do not 
belong to the unity disk, weight factor |λ| (weight 
coefficient in (11)) needs to be increased until all 
roots are in the unity disk. 

When inserting the control signal, which is 
described by Equation (14), to the model (1), we get 
a closed-loop system equation 

[B(z-1) + λA(z-1)]yt= λθ0 + 

B(z-1)�yt
*+λut� + (B(z-1) + λ)εt 

(20) 

It is clear from Equation (20) that stability of 
the closed-loop system is dependent on 
characteristic polynomial roots 

D(z) = zn D(z-1), 
D(z-1) = B(z-1) + λA(z-1), 

(21) 

all roots must be inside the unity disk 

�zi
D� ≤ 1,   zi

D:   D(z) = 0,     i = 1, 2,…, n. (22) 

The analysis of characteristic polynomial 
Equation (21) allows to state that having a 
stable model in the process of the 
identification (5)-(9), stability of a closed-loop 
system is obtained with any arrangement of 
roots of the polynomial B(z-1) , when the 
weight factor |λ| is increased. 

From Equation (20), we get the permanent 
component of output signal in stationary 
regime (yt

*= y*, ut = u*) is 

y = Kp�y*+ θ�0 + λu*�,  θ�0=
λθ0

B(1)
 (23) 

where 

Kp=
B(1)

B(1) + λA(1) 
 (24) 

is a gain of the transfer function of the 
reference signal yt

*  in a closed – loop 

Wp(z-1) =
B(z-1)

B(z-1) + λA(z-1)
. (25) 

Considering the expression (24), the weight 
factor λ is calculated by equation 

λ =
K0(1 - Kp)

Kp
, (26) 

where 

K0 = 
B(1)
A(1)

 (27) 

is a gain of the transfer function of the input-
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. (28) 
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error 
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and xmax  are control signal boundaries (smallest 
and largest distance-between-eyes), δt > 0 are the 
restriction values for the change rate of the control 
signal, sign | | denotes absolute value, and q ≥ 0 is 
weight coefficient. 

Then solving the minimization problem (10)-(12) 
for one-step ahead prediction model (4), the control 
law is described by equation 
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+ yt+1
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If a part or all of polynomial (17) roots do not 
belong to the unity disk, weight factor |λ| (weight 
coefficient in (11)) needs to be increased until all 
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When inserting the control signal, which is 
described by Equation (14), to the model (1), we get 
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(20) 

It is clear from Equation (20) that stability of 
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If a part or all of polynomial (17) roots do not 
belong to the unity disk, weight factor |λ| (weight 
coefficient in (11)) needs to be increased until all 
roots are in the unity disk. 

When inserting the control signal, which is 
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+ yt+1
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If a part or all of polynomial (17) roots do not 
belong to the unity disk, weight factor |λ| (weight 
coefficient in (11)) needs to be increased until all 
roots are in the unity disk. 

When inserting the control signal, which is 
described by Equation (14), to the model (1), we get 
a closed-loop system equation 

[B(z-1) + λA(z-1)]yt= λθ0 + 

B(z-1)�yt
*+λut� + (B(z-1) + λ)εt 

(20) 

It is clear from Equation (20) that stability of 
the closed-loop system is dependent on 
characteristic polynomial roots 

D(z) = zn D(z-1), 
D(z-1) = B(z-1) + λA(z-1), 

(21) 

all roots must be inside the unity disk 

�zi
D� ≤ 1,   zi

D:   D(z) = 0,     i = 1, 2,…, n. (22) 

The analysis of characteristic polynomial 
Equation (21) allows to state that having a 
stable model in the process of the 
identification (5)-(9), stability of a closed-loop 
system is obtained with any arrangement of 
roots of the polynomial B(z-1) , when the 
weight factor |λ| is increased. 

From Equation (20), we get the permanent 
component of output signal in stationary 
regime (yt

*= y*, ut = u*) is 

y = Kp�y*+ θ�0 + λu*�,  θ�0=
λθ0

B(1)
 (23) 

where 

Kp=
B(1)

B(1) + λA(1) 
 (24) 

is a gain of the transfer function of the 
reference signal yt

*  in a closed – loop 

Wp(z-1) =
B(z-1)

B(z-1) + λA(z-1)
. (25) 

Considering the expression (24), the weight 
factor λ is calculated by equation 

λ =
K0(1 - Kp)

Kp
, (26) 

where 

K0 = 
B(1)
A(1)

 (27) 

is a gain of the transfer function of the input-
output model (1) 

W0(z-1) = 
B(z-1)
A(z-1)

. (28) 

From Equation (23) follows systematic control 
error 

(17)

are in the unity disk

  

Qt(xt+1) = E ��yt +1 - yt+1
* �2

+ q(xt+1- ut+1)2�, (11) 

Ωx = �xt+1:   xmin ≤ xt+1 ≤ xmax,  
(12) 

�xt+1- xt
*� ≤ δt� 

 

where E  is an expectation operator, yt+1
*  is a 

reference output signal (reference trajectory for 
excitement), ut+1 marks the reference trajectory for 
the control signal (distance-between-eyes), 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
and xmax  are control signal boundaries (smallest 
and largest distance-between-eyes), δt > 0 are the 
restriction values for the change rate of the control 
signal, sign | | denotes absolute value, and q ≥ 0 is 
weight coefficient. 

Then solving the minimization problem (10)-(12) 
for one-step ahead prediction model (4), the control 
law is described by equation 

xt+1 
* =

⎩
⎪
⎨

⎪
⎧ min{xmax, xt

* + δt, x�t+1} ,
                                   if x� t+1 ≥ xt

*,
max{xmin, xt

*- δt, x�t+1} ,
                                  if x�t+1< xt

*,

 (13) 

B�(z-1)x�t+1 = -L(z-1)yt + yt+1
* - θ0 

                                           + λut+1, 
(14) 

L(z-1) = z[1 - A(z-1)], (15) 

B�(z-1) = λ + B(z-1),     λ = q/b0. (16) 

If the roots of polynomial 

B�(z) = zmB�(z-1) (17) 

are in the unity disk 

�zj
B� < 1,    zj

B:  B�(z) = 0,  j = 1, …, m, (18) 

then from (14) and (16) the following equation is 
correct 

x� t+1=
1

b0+λ
�� aiyt+1-i -� bjxt+1-j

*
m

j = 1

- θ0  
n

i = 1

 
(19) 

+ yt+1
*  + λut+1�. 

If a part or all of polynomial (17) roots do not 
belong to the unity disk, weight factor |λ| (weight 
coefficient in (11)) needs to be increased until all 
roots are in the unity disk. 

When inserting the control signal, which is 
described by Equation (14), to the model (1), we get 
a closed-loop system equation 

[B(z-1) + λA(z-1)]yt= λθ0 + 

B(z-1)�yt
*+λut� + (B(z-1) + λ)εt 

(20) 

It is clear from Equation (20) that stability of 
the closed-loop system is dependent on 
characteristic polynomial roots 

D(z) = zn D(z-1), 
D(z-1) = B(z-1) + λA(z-1), 

(21) 

all roots must be inside the unity disk 

�zi
D� ≤ 1,   zi

D:   D(z) = 0,     i = 1, 2,…, n. (22) 

The analysis of characteristic polynomial 
Equation (21) allows to state that having a 
stable model in the process of the 
identification (5)-(9), stability of a closed-loop 
system is obtained with any arrangement of 
roots of the polynomial B(z-1) , when the 
weight factor |λ| is increased. 

From Equation (20), we get the permanent 
component of output signal in stationary 
regime (yt

*= y*, ut = u*) is 

y = Kp�y*+ θ�0 + λu*�,  θ�0=
λθ0

B(1)
 (23) 

where 

Kp=
B(1)

B(1) + λA(1) 
 (24) 

is a gain of the transfer function of the 
reference signal yt

*  in a closed – loop 

Wp(z-1) =
B(z-1)

B(z-1) + λA(z-1)
. (25) 

Considering the expression (24), the weight 
factor λ is calculated by equation 

λ =
K0(1 - Kp)

Kp
, (26) 

where 

K0 = 
B(1)
A(1)

 (27) 

is a gain of the transfer function of the input-
output model (1) 

W0(z-1) = 
B(z-1)
A(z-1)

. (28) 

From Equation (23) follows systematic control 
error 

(18)

then from (14) and (16) the following equation is cor-
rect

x� t+1=
1

b0+λ
��aiyt+1-i -�bjxt+1-j

*
m

j = 1

- θ0  
n

i = 1

 + yt+1
*  + λut+1�. 

(19)

If a part or all of polynomial (17) roots do not belong 
to the unity disk, weight factor |λ | (weight coefficient 
in (11)) needs to be increased until all roots are in the 
unity disk.
When inserting the control signal, which is described 
by Equation (14), to the model (1), we get a closed-
loop system equation

[B(z-1) + λA(z-1)]yt= λθ0 + B(z-1)�yt
*+λut� + (B(z-1) + λ)εt 

(20)

It is clear from Equation (20) that stability of the 
closed-loop system is dependent on characteristic 
polynomial roots

  

Qt(xt+1) = E ��yt +1 - yt+1
* �2

+ q(xt+1- ut+1)2�, (11) 

Ωx = �xt+1:   xmin ≤ xt+1 ≤ xmax,  
(12) 

�xt+1- xt
*� ≤ δt� 

 

where E  is an expectation operator, yt+1
*  is a 

reference output signal (reference trajectory for 
excitement), ut+1 marks the reference trajectory for 
the control signal (distance-between-eyes), 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
and xmax  are control signal boundaries (smallest 
and largest distance-between-eyes), δt > 0 are the 
restriction values for the change rate of the control 
signal, sign | | denotes absolute value, and q ≥ 0 is 
weight coefficient. 

Then solving the minimization problem (10)-(12) 
for one-step ahead prediction model (4), the control 
law is described by equation 

xt+1 
* =

⎩
⎪
⎨

⎪
⎧ min{xmax, xt

* + δt, x�t+1} ,
                                   if x� t+1 ≥ xt

*,
max{xmin, xt

*- δt, x�t+1} ,
                                  if x�t+1< xt

*,

 (13) 

B�(z-1)x�t+1 = -L(z-1)yt + yt+1
* - θ0 

                                           + λut+1, 
(14) 

L(z-1) = z[1 - A(z-1)], (15) 

B�(z-1) = λ + B(z-1),     λ = q/b0. (16) 

If the roots of polynomial 

B�(z) = zmB�(z-1) (17) 

are in the unity disk 

�zj
B� < 1,    zj

B:  B�(z) = 0,  j = 1, …, m, (18) 

then from (14) and (16) the following equation is 
correct 

x� t+1=
1

b0+λ
�� aiyt+1-i -� bjxt+1-j

*
m

j = 1

- θ0  
n

i = 1

 
(19) 

+ yt+1
*  + λut+1�. 

If a part or all of polynomial (17) roots do not 
belong to the unity disk, weight factor |λ| (weight 
coefficient in (11)) needs to be increased until all 
roots are in the unity disk. 

When inserting the control signal, which is 
described by Equation (14), to the model (1), we get 
a closed-loop system equation 

[B(z-1) + λA(z-1)]yt= λθ0 + 

B(z-1)�yt
*+λut� + (B(z-1) + λ)εt 

(20) 

It is clear from Equation (20) that stability of 
the closed-loop system is dependent on 
characteristic polynomial roots 

D(z) = zn D(z-1), 
D(z-1) = B(z-1) + λA(z-1), 

(21) 

all roots must be inside the unity disk 

�zi
D� ≤ 1,   zi

D:   D(z) = 0,     i = 1, 2,…, n. (22) 

The analysis of characteristic polynomial 
Equation (21) allows to state that having a 
stable model in the process of the 
identification (5)-(9), stability of a closed-loop 
system is obtained with any arrangement of 
roots of the polynomial B(z-1) , when the 
weight factor |λ| is increased. 

From Equation (20), we get the permanent 
component of output signal in stationary 
regime (yt

*= y*, ut = u*) is 

y = Kp�y*+ θ�0 + λu*�,  θ�0=
λθ0

B(1)
 (23) 

where 

Kp=
B(1)

B(1) + λA(1) 
 (24) 

is a gain of the transfer function of the 
reference signal yt

*  in a closed – loop 

Wp(z-1) =
B(z-1)

B(z-1) + λA(z-1)
. (25) 

Considering the expression (24), the weight 
factor λ is calculated by equation 

λ =
K0(1 - Kp)

Kp
, (26) 

where 

K0 = 
B(1)
A(1)

 (27) 

is a gain of the transfer function of the input-
output model (1) 

W0(z-1) = 
B(z-1)
A(z-1)

. (28) 

From Equation (23) follows systematic control 
error 

(21)

all roots must be inside the unity disk

  

Qt(xt+1) = E ��yt +1 - yt+1
* �2

+ q(xt+1- ut+1)2�, (11) 

Ωx = �xt+1:   xmin ≤ xt+1 ≤ xmax,  
(12) 

�xt+1- xt
*� ≤ δt� 

 

where E  is an expectation operator, yt+1
*  is a 

reference output signal (reference trajectory for 
excitement), ut+1 marks the reference trajectory for 
the control signal (distance-between-eyes), 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
and xmax  are control signal boundaries (smallest 
and largest distance-between-eyes), δt > 0 are the 
restriction values for the change rate of the control 
signal, sign | | denotes absolute value, and q ≥ 0 is 
weight coefficient. 

Then solving the minimization problem (10)-(12) 
for one-step ahead prediction model (4), the control 
law is described by equation 

xt+1 
* =

⎩
⎪
⎨

⎪
⎧ min{xmax, xt

* + δt, x�t+1} ,
                                   if x� t+1 ≥ xt

*,
max{xmin, xt

*- δt, x�t+1} ,
                                  if x�t+1< xt

*,

 (13) 

B�(z-1)x�t+1 = -L(z-1)yt + yt+1
* - θ0 

                                           + λut+1, 
(14) 

L(z-1) = z[1 - A(z-1)], (15) 

B�(z-1) = λ + B(z-1),     λ = q/b0. (16) 

If the roots of polynomial 

B�(z) = zmB�(z-1) (17) 

are in the unity disk 

�zj
B� < 1,    zj

B:  B�(z) = 0,  j = 1, …, m, (18) 

then from (14) and (16) the following equation is 
correct 

x� t+1=
1

b0+λ
�� aiyt+1-i -� bjxt+1-j

*
m

j = 1

- θ0  
n

i = 1

 
(19) 

+ yt+1
*  + λut+1�. 

If a part or all of polynomial (17) roots do not 
belong to the unity disk, weight factor |λ| (weight 
coefficient in (11)) needs to be increased until all 
roots are in the unity disk. 

When inserting the control signal, which is 
described by Equation (14), to the model (1), we get 
a closed-loop system equation 

[B(z-1) + λA(z-1)]yt= λθ0 + 

B(z-1)�yt
*+λut� + (B(z-1) + λ)εt 

(20) 

It is clear from Equation (20) that stability of 
the closed-loop system is dependent on 
characteristic polynomial roots 

D(z) = zn D(z-1), 
D(z-1) = B(z-1) + λA(z-1), 

(21) 

all roots must be inside the unity disk 

�zi
D� ≤ 1,   zi

D:   D(z) = 0,     i = 1, 2,…, n. (22) 

The analysis of characteristic polynomial 
Equation (21) allows to state that having a 
stable model in the process of the 
identification (5)-(9), stability of a closed-loop 
system is obtained with any arrangement of 
roots of the polynomial B(z-1) , when the 
weight factor |λ| is increased. 

From Equation (20), we get the permanent 
component of output signal in stationary 
regime (yt

*= y*, ut = u*) is 

y = Kp�y*+ θ�0 + λu*�,  θ�0=
λθ0

B(1)
 (23) 

where 

Kp=
B(1)

B(1) + λA(1) 
 (24) 

is a gain of the transfer function of the 
reference signal yt

*  in a closed – loop 

Wp(z-1) =
B(z-1)

B(z-1) + λA(z-1)
. (25) 

Considering the expression (24), the weight 
factor λ is calculated by equation 

λ =
K0(1 - Kp)

Kp
, (26) 

where 

K0 = 
B(1)
A(1)

 (27) 

is a gain of the transfer function of the input-
output model (1) 

W0(z-1) = 
B(z-1)
A(z-1)

. (28) 

From Equation (23) follows systematic control 
error 

(22)

The analysis of characteristic polynomial Equation 
(21) allows to state that having a stable model in the 
process of the identification (5)-(9), stability of a 
closed-loop system is obtained with any arrangement 
of roots of the polynomial B(z-1), when the weight fac-
tor | λ | is increased.
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From Equation (20), we get the permanent component 
of output signal in stationary regime (yt

*= y*, ut = u*) is

  

Qt(xt+1) = E ��yt +1 - yt+1
* �2

+ q(xt+1- ut+1)2�, (11) 

Ωx = �xt+1:   xmin ≤ xt+1 ≤ xmax,  
(12) 

�xt+1- xt
*� ≤ δt� 

 

where E  is an expectation operator, yt+1
*  is a 

reference output signal (reference trajectory for 
excitement), ut+1 marks the reference trajectory for 
the control signal (distance-between-eyes), 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
and xmax  are control signal boundaries (smallest 
and largest distance-between-eyes), δt > 0 are the 
restriction values for the change rate of the control 
signal, sign | | denotes absolute value, and q ≥ 0 is 
weight coefficient. 

Then solving the minimization problem (10)-(12) 
for one-step ahead prediction model (4), the control 
law is described by equation 

xt+1 
* =

⎩
⎪
⎨

⎪
⎧ min{xmax, xt

* + δt, x�t+1} ,
                                   if x� t+1 ≥ xt

*,
max{xmin, xt

*- δt, x�t+1} ,
                                  if x�t+1< xt

*,

 (13) 

B�(z-1)x�t+1 = -L(z-1)yt + yt+1
* - θ0 

                                           + λut+1, 
(14) 

L(z-1) = z[1 - A(z-1)], (15) 

B�(z-1) = λ + B(z-1),     λ = q/b0. (16) 

If the roots of polynomial 

B�(z) = zmB�(z-1) (17) 

are in the unity disk 

�zj
B� < 1,    zj

B:  B�(z) = 0,  j = 1, …, m, (18) 

then from (14) and (16) the following equation is 
correct 

x� t+1=
1

b0+λ
�� aiyt+1-i -� bjxt+1-j

*
m

j = 1

- θ0  
n

i = 1

 
(19) 

+ yt+1
*  + λut+1�. 

If a part or all of polynomial (17) roots do not 
belong to the unity disk, weight factor |λ| (weight 
coefficient in (11)) needs to be increased until all 
roots are in the unity disk. 

When inserting the control signal, which is 
described by Equation (14), to the model (1), we get 
a closed-loop system equation 

[B(z-1) + λA(z-1)]yt= λθ0 + 

B(z-1)�yt
*+λut� + (B(z-1) + λ)εt 

(20) 

It is clear from Equation (20) that stability of 
the closed-loop system is dependent on 
characteristic polynomial roots 

D(z) = zn D(z-1), 
D(z-1) = B(z-1) + λA(z-1), 

(21) 

all roots must be inside the unity disk 

�zi
D� ≤ 1,   zi

D:   D(z) = 0,     i = 1, 2,…, n. (22) 

The analysis of characteristic polynomial 
Equation (21) allows to state that having a 
stable model in the process of the 
identification (5)-(9), stability of a closed-loop 
system is obtained with any arrangement of 
roots of the polynomial B(z-1) , when the 
weight factor |λ| is increased. 

From Equation (20), we get the permanent 
component of output signal in stationary 
regime (yt

*= y*, ut = u*) is 

y = Kp�y*+ θ�0 + λu*�,  θ�0=
λθ0

B(1)
 (23) 

where 

Kp=
B(1)

B(1) + λA(1) 
 (24) 

is a gain of the transfer function of the 
reference signal yt

*  in a closed – loop 

Wp(z-1) =
B(z-1)

B(z-1) + λA(z-1)
. (25) 

Considering the expression (24), the weight 
factor λ is calculated by equation 

λ =
K0(1 - Kp)

Kp
, (26) 

where 

K0 = 
B(1)
A(1)

 (27) 

is a gain of the transfer function of the input-
output model (1) 

W0(z-1) = 
B(z-1)
A(z-1)

. (28) 

From Equation (23) follows systematic control 
error 

, (23)

where

  

Qt(xt+1) = E ��yt +1 - yt+1
* �2

+ q(xt+1- ut+1)2�, (11) 

Ωx = �xt+1:   xmin ≤ xt+1 ≤ xmax,  
(12) 

�xt+1- xt
*� ≤ δt� 

 

where E  is an expectation operator, yt+1
*  is a 

reference output signal (reference trajectory for 
excitement), ut+1 marks the reference trajectory for 
the control signal (distance-between-eyes), 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
and xmax  are control signal boundaries (smallest 
and largest distance-between-eyes), δt > 0 are the 
restriction values for the change rate of the control 
signal, sign | | denotes absolute value, and q ≥ 0 is 
weight coefficient. 

Then solving the minimization problem (10)-(12) 
for one-step ahead prediction model (4), the control 
law is described by equation 

xt+1 
* =

⎩
⎪
⎨

⎪
⎧ min{xmax, xt

* + δt, x�t+1} ,
                                   if x� t+1 ≥ xt

*,
max{xmin, xt

*- δt, x�t+1} ,
                                  if x�t+1< xt

*,

 (13) 

B�(z-1)x�t+1 = -L(z-1)yt + yt+1
* - θ0 

                                           + λut+1, 
(14) 

L(z-1) = z[1 - A(z-1)], (15) 

B�(z-1) = λ + B(z-1),     λ = q/b0. (16) 

If the roots of polynomial 

B�(z) = zmB�(z-1) (17) 

are in the unity disk 

�zj
B� < 1,    zj

B:  B�(z) = 0,  j = 1, …, m, (18) 

then from (14) and (16) the following equation is 
correct 

x� t+1=
1

b0+λ
�� aiyt+1-i -� bjxt+1-j

*
m

j = 1

- θ0  
n

i = 1

 
(19) 

+ yt+1
*  + λut+1�. 

If a part or all of polynomial (17) roots do not 
belong to the unity disk, weight factor |λ| (weight 
coefficient in (11)) needs to be increased until all 
roots are in the unity disk. 

When inserting the control signal, which is 
described by Equation (14), to the model (1), we get 
a closed-loop system equation 

[B(z-1) + λA(z-1)]yt= λθ0 + 

B(z-1)�yt
*+λut� + (B(z-1) + λ)εt 

(20) 

It is clear from Equation (20) that stability of 
the closed-loop system is dependent on 
characteristic polynomial roots 

D(z) = zn D(z-1), 
D(z-1) = B(z-1) + λA(z-1), 

(21) 

all roots must be inside the unity disk 

�zi
D� ≤ 1,   zi

D:   D(z) = 0,     i = 1, 2,…, n. (22) 

The analysis of characteristic polynomial 
Equation (21) allows to state that having a 
stable model in the process of the 
identification (5)-(9), stability of a closed-loop 
system is obtained with any arrangement of 
roots of the polynomial B(z-1) , when the 
weight factor |λ| is increased. 

From Equation (20), we get the permanent 
component of output signal in stationary 
regime (yt

*= y*, ut = u*) is 

y = Kp�y*+ θ�0 + λu*�,  θ�0=
λθ0

B(1)
 (23) 

where 

Kp=
B(1)

B(1) + λA(1) 
 (24) 

is a gain of the transfer function of the 
reference signal yt

*  in a closed – loop 

Wp(z-1) =
B(z-1)

B(z-1) + λA(z-1)
. (25) 

Considering the expression (24), the weight 
factor λ is calculated by equation 

λ =
K0(1 - Kp)

Kp
, (26) 

where 

K0 = 
B(1)
A(1)

 (27) 

is a gain of the transfer function of the input-
output model (1) 

W0(z-1) = 
B(z-1)
A(z-1)

. (28) 

From Equation (23) follows systematic control 
error 

(24)

is a gain of the transfer function of the reference sig-
nal  yt

* in a closed – loop

  

Qt(xt+1) = E ��yt +1 - yt+1
* �2

+ q(xt+1- ut+1)2�, (11) 

Ωx = �xt+1:   xmin ≤ xt+1 ≤ xmax,  
(12) 

�xt+1- xt
*� ≤ δt� 

 

where E  is an expectation operator, yt+1
*  is a 

reference output signal (reference trajectory for 
excitement), ut+1 marks the reference trajectory for 
the control signal (distance-between-eyes), 𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
and xmax  are control signal boundaries (smallest 
and largest distance-between-eyes), δt > 0 are the 
restriction values for the change rate of the control 
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component of output signal in stationary 
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From Equation (23) follows systematic control error

ep= y*- y = �1 - Kp�y* + Kp(θ�o-  λu*) (29)

grows if Kp is significantly lower than unit (weight 
factor |λ | in Equation (16) or (19) of the control law or 
weight coefficient q  in control criterion (11) is high).
The gain Kp is selected from an interval

Kp∈[0.8, 1], if (b0 > 0) ˄ (K0 > 0) or  
(b0 < 0) ˄ (K0 < 0)   (30)

or

Kp∈[1, 1.2], if (b0 > 0) ˄ (K0 < 0) or  
(b0 < 0) ˄ (K0 > 0). (31)

When Kp =1 (λ = 0, q = 0), we get a minimum variance 
control, in other cases – a generalized minimum vari-
ance control quality. In this research, generalized 
minimum variance control, when

ut+1= xt
* (the first scheme),   t =1, 2, … (32)

or

ut+1= 0 (the second scheme),    t =1, 2,… (33)

and minimum variance control are compared. 
The structures of a minimum variance and general-
ized minimum variance controllers with constraints 
are illustrated in Figures 3-5. 
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Directly implicit predictive model (4) was used only 
for the solution of the optimization problem (10)-(12) 
in the law of a generalized minim variance control 
(13)-(16). Predictive model may also be constructed 
as [15-17], [23]
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Figure 5. The scheme of a constrained minimum variance control (13)-(16) and λ = 0

Directly implicit predictive model (4) was used 
only for the solution of the optimization problem 
(10)-(12) in the law of a generalized minim variance 
control (13)-(16). Predictive model may also be 
constructed as [15-17], [23] 

A(z-1)yt+1|t = θ0+B(z-1)xt+1+ z[1- A(z-1)]εt|t-1, (34) 

where 

εt|t-1 = yt- yt|t-1 (35) 

is one-step-ahead output prediction error. Then, in 
control law (13)-(16), Equations (14) and (16) are 
replaced by the following equations, respectively, 

B�(z-1)x�t+1 = - L(z-1)εt|t -1- θ0 + A(z-1)(y�t+1+ λut+1), (36) 

B�(z-1) = B(z-1) + λA(z-1), (37) 

where 

y�k+1= �
yk+1, 

*         if   k = t,         
      yk+1|k,        if  k = t - 1,…,t - n (38) 

is a modified reference signal, considering 
that one-step-ahead output prediction could 
not reach a reference signal due to the 
restrictions to the control signal. 

The scheme of a constrained generalized 
minimum variance with predictor control 
(13), (15), (32) and (34)-(38) is illustrated in 
Figure 6. Predictive model (4) for predictor 
design could be also used in this scheme [15-
17]. 
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Figure 7 
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in Figure 8. 
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5 Female 0.0151 0.0029 -0.9701 7.2% 80 0.69 
6 Male 0.0467 -0.0171 -0.9764 9.5% 50 0.86 
7 Male 0.0294 0.0078 -0.8014 8.0% 20 0.55 
8 Male 0.0411 -0.0089 -0.9896 7.5% 90 0.76 
9 Male 0.0186 -0.0049 -0.9512 4.6% 50 0.85 
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14 Male 0.0224 -0.0092 -0.9021 7.3% 60 0.70 
15 Male 0.0252 -0.0058 -0.9934 7.3% 100 0.83 
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These average measures (44) and (45) are given in 
Tables 2 and 3. Examples of the excitement control 
results are demonstrated in Figures 9-13. The 
restriction values δt  for the change rate of the 
control signal are selected as: at the highest value 
δt = 6 (12/s) , the control signal can pass from 
minimum xmin  to maximum value xmax  with one 
discrete time step T0 = 0.5 s and vice versa, whereas 
at the smallest value δt = 0.15 (0.3/s) control signal 
change speed is equivalent to the change rate of the 
testing signal (Figure 7). 

Results of control efficiency in Table 2 demonstrate 
that compared to relative measure (44), all three 
control schemes assure sufficiently good control 
quality of excitement signal – maintained signal 
level is, on average, 83% (constrained minimum 
variance control and constrained generalized 
minimum variance with gain of closed-loop 

Kp = 0.95) higher compared to a testing signal. 
Then gain decreases to Kp = 0.8, efficiency of 
generalized minimum variance control 
decreases to about 80% for the first scheme 
and to about 70% for the second scheme. 

This control efficiency is reached if limited 
control signal change speed is higher  – 
δt ≥ 1 (2/s) .At lower signal change speed – 
δt ≥ 0.6 (1.2/s) , control quality of excitement 
signal decreases from about 67% (minimum 
variance and the first scheme of generalized 
minimum variance control) to about 56% for 
the second scheme, when gain Kp= 0.8 . The 
first scheme is not sensitive to the decrease of 
the gain Kp  and is close to the scheme of 
constrained minimum variance control. 

Results of control efficiency in Table 3 
demonstrate that, compared to relative 
measure (45) (that characterizes average 
absolute relative control error), the first 
scheme of generalized control is not sensitive 
to the decrease of the gain Kp if delta δt  ≥ 0.6 
(1.2/s) . When limited signal change speed 
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relative control error grows and almost does 
not depend on change of the gain Kp, and all 
three schemes are equivalent. 
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Results of control efficiency in Table 3 demonstrate 
that, compared to relative measure (45) (that char-
acterizes average absolute relative control error), the 
first scheme of generalized control is not sensitive 
to the decrease of the gain Kp if delta δt ≥ 0.6 (1.2/s ). 
When limited signal change speed decreases (δt ≤ 0.3), 
the average absolute relative control error grows and 
almost does not depend on change of the gain Kp, and 
all three schemes are equivalent.
Experiment results of the excitement control (Fig-
ures 9-13) demonstrated possibility to decrease 
variations of the control signal using a limited signal 
change speed (when constant δt of the admissible do-
main (12) decreases) or a generalized minimum vari-
ance control with lower gain Kp (increasing weight 
factor |λ| (26) in control law (13)-(16) or weight coef-
ficient in criterion (11) is used). Variation of the con-
trol signal in the minimum variance control scheme 
is higher compared to variation in the first scheme at 
the same δt  values.

6. Conclusions
Experiment planning and cross correlation analysis 
results demonstrated that each volunteer reacted to 
the stimuli individually and response (EEG-based 
excitement signal) to dynamic virtual 3D face (with 
changing distance-between-eyes) can be described by 
the linear dynamic model (1) with different estimates 
of parameters. The numerical schemes of computing 
the current estimates of parameters are based on sys-
tem identification technique which ensures stability 
and possible higher gain (42) of the model (1). Analy-
sis of the results of a one-step-ahead prediction with 
the first order model (4) demonstrates that excite-
ment signal can be predicted on average with about 
8% average absolute relative prediction error (43). 
Accordingly, model (1) in the predictive form (4) can 
be applied to the design of predictor-based control 
system for stabilization of the excitement signal.
Three different schemes of the prediction-based con-
trol with constraints were developed for controlling 
a human excitement signal as response to a dynamic 
virtual 3D face. In these schemes, controllers design is 
based on minimum variance or generalized  minimum 

Table 2 
The average of the control efficiency measure (44) (after 
each δt value, upper row – the first scheme, lower – the 
second scheme of constrained generalized minimum 
variance control)

δt\ Kp 1 0.95 0.9 0.85 0.8

6 83.3%
82.6% 82.5% 82.0% 81.5%

80.9% 77.7% 73.8% 69.5%

3 83.0%
82.6% 82.5% 82.0% 81.6%

80.9% 77.7% 73.8% 69.4%

1 81.0%
80.8% 80.8% 80.3% 80.0%

79.5% 76.4% 72.6% 68.4%

0.6 66.6%
66.7% 66.9% 66.7% 66.2%

65.9% 63.0% 59.7% 56.1%

0.3 67.6%
66.8% 66.8% 67.1% 67.2%

65.3% 62.8% 59.4% 55.7%

0.15 66.6%
66.6% 66.8% 66.9% 66.8%

65.4% 63.0% 59.2% 55.4%

Table 3 
The average of the control efficiency measure (45) (after each δt 
value, upper row – the first scheme, lower – the second scheme 
of constrained generalized minimum variance control)

δt\ Kp 1 0.95 0.9 0.85 0.8

6 13.0%
13.9% 14.5% 15.1% 15.8%

14.6% 16.4% 18.4% 20.3%

3 13.2%
14.0% 14.5% 15.1% 15.8%

14.6% 16.4% 18.4% 20.3%

1 14.8%
14.9% 15.2% 15.6% 16.2%

15.1% 16.8% 18.6% 20.5%

0.6 16.0%
16.0% 16.2% 16.5% 17.1%

15.7% 17.3% 19.1% 21.0%

0.3 20.0%
20.2% 20.4% 20.5% 20.7%

18.2% 18.7% 20.1% 21.8%

0.15 25.9%
25.7% 25.6% 25.6% 25.6%

23.5% 22.0% 22.2% 23.3%
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Figure 9 
Examples of excitement constrained generalized minimum variance control for volunteer No. 4 (female, the first scheme). 
Output: solid line denotes reference signal yt*, dotted line – simulated output signal ŷ t as response to the control signal, 
and dashed line – observed output yt as response to the testing input. Input: solid line denotes control signal xt* and dashed 
lines denote testing input xt

  

 
Figure 9. Examples of excitement constrained generalized minimum variance control for volunteer No. 4 (female, the first scheme). 
Output: solid line denotes reference signal yt

*, dotted line – simulated output signal y�t as response to the control signal, and dashed line 
– observed output 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 as response to the testing input. Input: solid line denotes control signal xt

* and dashed lines denote testing input 
xt. 
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Figure 10
Examples of excitement constrained generalized minimum variance control for volunteer No. 4 (female, the second 
scheme). Output: solid line denotes reference signal yt* , dotted line – simulated output signal ŷ t  as response to the control 
signal, and dashed line – observed output yt as response to the testing input. Input: solid line denotes control signal xt*  and 
dashed lines – testing input xt
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Experiment results of the excitement control 
(Figures 9-13) demonstrated possibility to decrease 
variations of the control signal using a limited 
signal change speed (when constant δt  of the 
admissible domain (12) decreases) or a generalized 
minimum variance control with lower gain Kp 

(increasing weight factor |λ|  (26) in control 
law (13)-(16) or weight coefficient in criterion 
(11) is used). Variation of the control signal in 
the minimum variance control scheme is 
higher compared to variation in the first 
scheme at the same δt values. 
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Figure 11. Examples of excitement constrained-generalized minimum variance control results with the first scheme for volunteer No. 10 
(male, the first scheme). Output: solid line denotes reference signal yt

*, dotted line – simulated output signal y�t as response to the control 
signal, and dashed line – observed output yt; as response to the testing input; Input: solid line denotes control signal 𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡∗ and dashed lines 
– testing input xt. 
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Figure 11 
Examples of excitement constrained-generalized minimum variance control results with the first scheme for volunteer 
No. 10 (male, the first scheme). Output: solid line denotes reference signal yt*, dotted line – simulated output signal ŷ t  as 
response to the control signal, and dashed line – observed output yt;  as response to the testing input; Input: solid line 
denotes control signal xt* and dashed lines – testing input xt
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Figure 12 
Examples of excitement constrained generalized minimum variance control for volunteer No. 10 (male, the second 
scheme). Output: solid line denotes reference signal yt*, dotted line – simulated output signal ŷ t  as response to the control 
signal, and dashed line – observed output yt as response to the testing input. Input: solid line denotes control signal xt*  and 
dashed lines – testing input xt
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*, dotted line – simulated output signal y�t as response to the control signal, and dashed line 
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6. Conclusions 
Experiment planning and cross correlation analysis 
results demonstrated that each volunteer reacted to 
the stimuli individually and response (EEG-based 
excitement signal) to dynamic virtual 3D face (with 
changing distance-between-eyes) can be described 
by the linear dynamic model (1) with different 
estimates of parameters. The numerical schemes of 
computing the current estimates of parameters are 
based on system identification technique which 
ensures stability and possible higher gain (42) of the 
model (1). Analysis of the results of a one-step- 

 

ahead prediction with the first order model (4) 
demonstrates that excitement signal can be 
predicted on average with about 8% average 
absolute relative prediction error (43). 
Accordingly, model (1) in the predictive form 
(4) can be applied to the design of predictor-
based control system for stabilization of the 
excitement signal. 

Three different schemes of the prediction-
based control with constraints were 
developed for controlling a human excitement 
signal as response to a dynamic virtual 3D 
face. In these schemes, controllers design is 
based on minimum variance or generalized  
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Figure 13
Examples of excitement control results with constrained minimum variance scheme for volunteer No.4 (female, left) and 
No. 10 (male, right). Output: solid line denotes reference signal yt*, dotted line – simulated output signal ŷ t  as response to 
the control signal, and dashed line – observed output yt  as response to the testing input. Input: solid line denotes control 
signal xt*  and dashed lines – testing input xt  

 
Figure 13. Examples of excitement control results with constrained minimum variance scheme for volunteer No.4 (female, left) and 
No. 10 (male, right). Output: solid line denotes reference signal yt

*, dotted line – simulated output signal y�t as response to the control 
signal, and dashed line – observed output yt as response to the testing input. Input: solid line denotes control signal xt

* and dashed lines 
– testing input xt. 

minimum variance control criteria in an 
admissible domain for control signal – changing 
distance-between-eyes in a 3D face. Numerical 
calculation method of the weight factor λ in 
constrained generalized minimum variance 
control law (13) – (16) or the weight coefficient q 
in control criterion (11) is proposed. This method 
is based on an admissible value of the systematic 
control error (29), which defines gain (24) of the 
closed-loop transfer functions (25). 

Analysis of the results of the experiments 
demonstrates sufficiently good control quality of 

excitement signal – stabilized excitement signal 
level is on average 70-80% higher compared to 
the average of observed response as reaction to 
the testing input. The first scheme of the 
constrained generalized minimum variance 
control is not sensitive to the decrease of the gain 
(24) and is close to the scheme of constrained 
minimum-variance-control. Experiment results 
demonstrated possibility to decrease variations 
of the changing distance between-eyes in 3D face 
using a limited signal change speed and using a 
generalized minimum variance control with 
lower gain (24). 
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variance control criteria in an admissible domain for 
control signal – changing distance-between-eyes in a 
3D face. Numerical calculation method of the weight 
factor in constrained generalized minimum vari-
ance control law (13) – (16) or the weight coefficient  
in control criterion (11) is proposed. This method is 
based on an admissible value of the systematic con-
trol error (29), which defines gain (24) of the closed-
loop transfer functions (25).
Analysis of the results of the experiments demon-
strates sufficiently good control quality of excitement 

signal – stabilized excitement signal level is on av-
erage 70-80% higher compared to the average of ob-
served response as reaction to the testing input. The 
first scheme of the constrained generalized minimum 
variance control is not sensitive to the decrease of the 
gain (24) and is close to the scheme of constrained 
minimum-variance-control. Experiment results 
demonstrated possibility to decrease variations of 
the changing distance between-eyes in 3D face using 
a limited signal change speed and using a generalized 
minimum variance control with lower gain (24).
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