
71Information Technology and Control 2019/1/48

COBOL Systems Migration to
SOA: Assessing Antipatterns
and Complexity

ITC 1/48
Journal of Information Technology
and Control
Vol. 48 / No. 1 / 2019
pp. 71-89
DOI 10.5755/j01.itc.48.1.21566

COBOL Systems Migration to SOA: Assessing
Antipatterns and Complexity

Received 2018/09/04 Accepted after revision 2018/12/19

 http://dx.doi.org/10.5755/j01.itc.48.1.21566

Corresponding author: cristian.mateos@isistan.unicen.edu.ar

Cristian Mateos, Alejandro Zunino
ISISTAN Research Institute, UNICEN; Paraje Arroyo Seco Str., B7000, Tandil, Argentina; phone: +54 249 4385681;
e-mails: {cristian.mateos,alejandro.zunino}@isistan.unicen.edu.ar
Also CONICET, The National Scientific and Technical Research Council; Godoy Cruz Str. 2290, C1425FQB,
Buenos Aires, Argentina; phone: +5411 4899-5400

Andres Flores
GIISCo Research Group, Faculty of Informatics; National University of Comahue; Buenos Aires Str. 1400, 8300,
Neuquén, Argentina; phone: +54 299 4490300 638; e-mails: andres.flores@fi.uncoma.edu.ar
Also CONICET, The National Scientific and Technical Research Council; Godoy Cruz Str. 2290, C1425FQB,
Buenos Aires, Argentina; phone: +5411 4899-5400

Sanjay Misra
Atilim University, Kızılcaşar Mahallesi Str., 06836, Incek, Ankara, Turkey; phone +90 (312) 586 80 00
Also Covenant University; Km. 10 Idiroko Road, P.M.B 1023, Ota, Nigeria; phone: +234 01 7900724; e-mail: sanjay.
misra@covenantuniversity.edu.ng

SOA and Web Services allow users to easily expose business functions to build larger distributed systems. How-
ever, legacy systems – mostly in COBOL – are left aside unless applying a migration approach. The main ap-
proaches are direct and indirect migration. The former implies wrapping COBOL programs with a thin layer of
a Web Service oriented language/platform. The latter needs reengineering COBOL functions to a modern lan-
guage/platform. In our previous work, we presented an intermediate approach based on direct migration where
developed Web Services are later refactored to improve the quality of their interfaces. Refactorings mainly cap-
ture good practices inherent to indirect migration. For this, antipatterns for WSDL documents (common bad
practices) are detected to prevent issues related to WSDLs understanding and discoverability. In this paper,

Information Technology and Control 2019/1/4872

we assess antipatterns of Web Services’ WSDL documents generated upon the three migration approaches. In
addition, generated Web Services’ interfaces are measured in complexity to attend both comprehension and
interoperability. We apply a metric suite (by Baski & Misra) to measure complexity on services interfaces – i.e.,
WSDL documents. Migrations of two real COBOL systems upon the three approaches were assessed on anti-
patterns evidences and the complexity level of the generated SOA frontiers – a total of 431 WSDL documents.
KEYWORDS: Legacy System Migration, Service-Oriented Architecture, Web Services, Direct Migration, In-
direct Migration, WSDL Antipatterns, WSDL Complexity

1. Introduction
Organizations still relying on out-of-date supporting
systems – e.g., in COBOL – are lately in the urgency
to migrate towards new technologies such as Web 2.0,
Web Services or mobile devices. The need is mainly
driven to avoid high IT operational costs – e.g., main-
frames – while increasing visibility to reach new mar-
kets [28, 34, 42]. System migration implies moving
to new software environments/platforms while pre-
serving legacy data and business functions [1]. Nowa-
days, a common architectural option is SOA (Service
Oriented Architecture) [31], where systems are built
from independent building blocks called services that
can be invoked remotely. Services expose functional-
ity that any system can use within/across the owner
organization boundaries. The Web Services technol-
ogy is the common way to materialize SOA, where
services interfaces are described in WSDL (Web Ser-
vice Description Language) [14]. Then, legacy to SOA
migration mainly produces a SOA frontier, the set of
WSDL documents describing the functionality of a
service oriented system, as shown in Figure 1.
Two main approaches for migration to SOA are: di-
rect and indirect migration [28, 29, 34]. The former
represents a black-box (or bottom-up) approach that
allows organizations to modernize their systems in a
rapid and low cost manner. This is done by adding a
new software layer to wrap the legacy functionality,
which remains implemented with old technologies.
The latter is a white-box (or top-down) approach that
encompasses more elaborated reengineering con-
cepts and techniques, and are often driven by proper-
ties of the desired service-based system from a (non)
functional standpoint – leading to higher time/cost.
According to a recent study in [16], a common prob-
lem of SOA migration in many companies yields on
prioritizing the technology perspective over a busi-
ness one. The business process of the company is ac-
tually run and enforced by the legacy system [35]. A

drastic change when migrating to SOA might affect
such significant business value. In this sense, follow-
ing an indirect migration might lead to a SOA sys-
tem implementation that seriously impacts on busi-
ness a posteriori. The new system architecture that
might appear successful at that time could actually
be not aligned with the company’s business goals [16].
Therefore, both technical and business perspectives
must be carefully attended to avoid such a mistake,
causing a growing cost without return on investment.
In this sense, the key factor is the potential to reuse
the legacy systems as components in SOA by expos-
ing their functionality as services [16, 20] – the SOA
frontier. This implies opening up the hidden business
logic and properly concert it into new services – i.e.,
service abstraction. However, following a direct mi-
gration might not prevent the resulting SOA frontier
from not fulfilling the new strategic business goal to-

Figure 1
SOA frontier and SOA roles

73Information Technology and Control 2019/1/48

wards crossing the company boundaries into a global
shared partnership. Here another key factor involves
service discoverability that benefits the reuse of ex-
posed legacy functions as services.
Attending these issues and key factors, in our previ-
ous work [31], we presented an intermediate approach
based on direct migration in which developed Web Ser-
vices are later improved on their interfaces quality –
attending concerns inherent to an indirect approach.
A quick migration is less costly but WSDL documents
(the SOA frontier) might suffer from antipatterns –
e.g., bad naming conventions and redundant opera-
tions [26] – affecting services readability and discov-
erability. Direct migration to SOA is often performed
via a 1-to-1 mapping between legacy modules and Web
Services. Hence, identifying and avoiding antipatterns
is disregarded [30]. Indirect migration may address
this issue but at a large investment in cost/time. The
intermediate migration approach, called COB2SOA is
focused on COBOL systems, and identifies refactoring
opportunities to be applied on SOA frontiers. Through
an automatic analysis of WSDL documents and CO-
BOL files, antipatterns evidence detection is done. The
antipatterns catalogue in [26] is applied, since it in-
cludes some of the antipatterns most frequently found
in service-based systems [27]. After that, specific re-
factorings from the Fowler et al.’s catalogue [15] are
identified as suggested remedy actions, to increase the
quality level of WSDL documents.
All in all, organizations truly need a suitable approach
to help migrating legacy systems to SOA, which is ca-
pable to ensure best quality of SOA frontiers. Hence,
in this paper we address a specific quality concern
related to the complexity of WSDL documents, which
may seriously affect comprehension and interopera-
bility. This may impact new business opportunities
and partnerships, as services must be consumed from
heterogeneous systems. Tightly closed functional
constraints of data processing implemented in leg-
acy modules are now openly exposed as operational
data exchange protocols through WSDL documents.
The use of XML (eXtensible Markup Language)
documents serve to data message exchange. Certain
message data structure definitions into WSDLs and
XMLs might affect understandability.
Thereby, we make use of a recent metric suite (pro-
posed by Baski & Misra [4]) to measure the complexi-
ty of services interfaces – i.e., WSDL documents. Mea-

surable aspects entail the structure of requesting and
responding messages of WSDLs operations. A factor
that may increase complexity is the number of argu-
ments within a message and their data types. Argu-
ments can include built-in data types or complex data
type structures. However, when similarly-structured
complex types are defined, a familiarity factor arises
that may decrease complexity. As such, this metric
suite produces further trade-off information to be
aware of design decisions about WSDLs. Concretely,
we could prevent from interoperability problems by
measuring the complexity that might be injected on a
SOA frontier by following a migration approach.
Benefits and drawbacks of the three migration ap-
proaches are exposed through the migration of two
real COBOL systems to SOA. According to surveys
and studies by Gartner consulting, over 200 billion
lines of COBOL code are still running worldwide [30].
From this experiment, a clear outcome is given about
assessing both antipatterns and complexity metrics
were performed in different stages during migration.
The SOA frontiers produced by the three approaches
involved 431 WSDL documents.
It is worth noting that this paper is an extension of
our previous paper published in ICIST 2017 [22]. In
this work, we extend such paper by a) significantly ex-
panding the discussion of related works – i.e., direct
and indirect migration approaches and proposals of a
combined strategy; b) extending the description of the
COB2SOA approach and its underpinnings so as to
allow practitioners to materialize COB2SOA in sup-
porting tools; c) evaluating the migration of two real
COBOL systems upon three migration approaches
– i.e., direct, indirect and COB2SOA – detailing both
discovered evidences of antipatterns on generated
WSDL documents and XSD models, and the achieved
complexity level of the delivered SOA frontier. In ad-
dition, a quantitative analysis reveals LOC (Lines of
Code), comments and number of offered operations
from produced WSDL documents as well as the re-
quired migration times.
The rest of the paper is as follows. Section 2 presents
preliminary concepts, including the antipatterns cat-
alog and the complexity metric suite. Section 3 dis-
cusses relevant related work. Section 4 presents de-
tails of the COB2SOA approach. Section 5 describes
the migration experiments performed. Conclusions
and future work are presented afterwards.

Information Technology and Control 2019/1/4874

2. Preliminary Concepts
As Web Services functionality is exposed through
WSDL documents, their proper specification becomes
crucial not to affect understanding and exceed devel-
opment effort and cost to a consumer application. This
can be addressed through identifying antipatterns af-
fecting services interfaces, and measuring their com-
plexity by a set of metrics – e.g. the Baski & Misra met-
ric suite. These two options are presented below.

2.1. Antipatterns
The catalogue of Antipatterns in [26] describes bad
practices that make WSDL documents less readable.
Antipatterns are concerned with how port-types, op-
erations and messages are structured and specified in
WSDLs. The reason behind adopting this antipattern
catalog is three-fold. First, according to the recent
survey in [27] of studies addressing Web Service anti-
patterns, this catalogue includes some of the antipat-
terns that are most frequently found in service-based
systems. Second, this catalogue represents a good
target since it includes antipatterns from several
perspectives: problems related to high-level inter-
face specification, syntactic and semantic issues (e.g.,
identifiers and comments), and message structure.
Last but not least, to the best of our knowledge, this

Categories Antipatterns Symptoms

High-level
service interface
specification

Enclosed data model Type definitions are placed in the WSDL rather than in separate
XSD documents.

Redundant port-types Several port-types offer the same set of operations, on different
binding types (e.g., HTTP, HTTPS, or SOAP).

Redundant data models Many types to represent the same domain objects within a WSDL.

Low cohesive port-type Port-types have operations with weak semantic cohesion.

Comments and
identifiers

Inappropriate or lacking
comments

(1) a WSDL document has no comments, or
(2) comments are non explanatory.

Ambiguous names Ambiguous names are used for denoting the main elements of a
WSDL document.

Service message
exchange

Whatever types A data-type might represent any domain object.

Undercover fault
information Output messages are used to notify service errors.

is the only antipattern catalog that has been deeply
studied in the context of service-based systems de-
rived from legacy code migration.
Table 1 summarizes the catalogue of antipatterns,
classified in three categories: high-level service in-
terface specification, comments and identifiers, and
service message exchange. Consumer application de-
velopers prefer properly designed WSDL documents
[26], so quality should be attended by service provid-
ers when building SOA frontiers. In the context of
legacy to SOA migration scenarios, applying indirect
migration favors achieving good WSDL document
quality [30]. However, software engineers usually
choose between direct or indirect migration based on
classical criteria (e.g., time), disregarding those that
may impact on readability and discoverability of SOA
frontiers.

2.2. Baski and Misra’s Metric Suite
The metric suite (“BM suite”) presented in [4] is con-
cerned with the effort required to understand data
flowing to/from a service interface that can be char-
acterized by the structures of messages used for data
exchange. The BM suite includes four metrics, whose
formulas are shown in Table 2, which can be comput-
ed from a service interface in WSDL. Metrics are ex-
plained as follows.

Table 1
Catalogue of WSDL antipatterns

75Information Technology and Control 2019/1/48

Data Weight metric (DW). This metric, with Formu-
la (1), computes the structural complexity of service
messages data-types. In (1), C(mi)

broadly counts and
weights the various XSD elements (simple/complex
data-types) exchanged by the parts of message mi. Each
element or data-type definition in XSD is assigned
with a weight value wpj

as a complexity degree. This wpj is equals to we if the part references an element declara-
tion in XSD, or wt if the part references an XSD element
definition. In turn, wt depends on the data-type (simple
or complex). See [4] for details about we and wt. Then,
DW values are positive integers. The bigger the DW of a
WSDL is, the more dense the parts of its messages are.
Then, DW values should be kept low.
Distinct Message Ratio metric (DMR). This metric,
with Formula (2), considers that a WSDL may have
many messages with the same structure. As the num-
ber of similarly-structured messages increases, less

Table 2
BM Metric Suite

Metrics Formulas

() ()
1

mn

i
i

DW wsdl C m
=

= ∑

nm: number of messages (input/output) of a WSDL
(1)

()
()#

1

parts m

j
j

C m wp
=

= ∑
wpj: weight value of the j-th part of message m

() ()
m

DMC wsdl
DMR wsdl

n
=

nm: total number of messages in the WSDL

(2)

() () ()()
()

2
1

log
DMC wsdl

i i
i

ME wsdl P m P m
=

= ∗ −∑

() i
i

m

nomP m
n

=

nomi: number of occurrences of the i-th message,
nm: total number of messages in the WSDL

(3)

()
()

1

DMC wsdl
i

i m

nomMRS wsdl
n=

= ∑

nomi: number of occurrences of the i-th message,
nm: total number of messages in the WSDL

(4)

effort is likely needed to reason about them. Repeti-
tive messages might allow to gain familiarity when
inspecting the WSDL. The DMC function counts the
number of distinct-structured messages in a WSDL,
from the () (), #i iC m parts m   pairs, i.e., the com-
plexity value and the total number of parts (input/
output operation arguments) that each message con-
tains. Then, the DMR metric is in range [0, 1], where
0 means that all messages are similarly-structured
(lowest complexity), and 1 means that all messages
are dissimilar (highest complexity). Then, DMR val-
ues should be kept low.
Message Entropy metric (ME). This metric, with For-
mula (3), exploits the percentage of similarly-struc-
tured messages that occur within a given WSDL. ME
also assumes that repetition of the same messages
makes a developer more familiar with the WSDL, but
ME bases on an alternative differentiation among
WSDLs in this respect. The ME metric has values
in the range [0, log2(nm)]. A low ME value means that
messages are consistent in structure, i.e., the com-
plexity of a WSDL is lower than others with equal
DMR values [4]. Then, ME values should be kept low.
Message Repetition Scale metric (MRS). This metric,
with Formula (4), analyzes variety in structures of a
WSDL. MRS measures the consistency of messages
by considering () (), #i iC m parts m  

pairs in the given
WSDL. MRS values are in the range [0, nm]. A high-
er MRS means less effort to reason about messages
structures due to repetition of similarly-structured
messages. Then, MRS values should be kept high.

3. Related Work
Legacy system modernization to SOA has notably at-
tracted research interest in the last decade. The most
representative approaches for migration to SOA (ac-
cording to our goals) are described as follows [29, 34].

3.1. Direct Migration
In [38], an approach is outlined to cut out selected piec-
es of legacy code and to provide them with an XML in-
terface, by wrapping the navigation modules of a legacy
system so that it can be accessed from a standard Web
browser. This XML interface is used to generate a Java
class, which acts as a proxy and creates XML messag-
es returning from the server. The pieces of code are

Information Technology and Control 2019/1/4876

selected, wrapped and reused as Web Services by em-
ploying a seven-step process: Function Mining, Func-
tion Wrapping, XSD Schema Creation, StubaServer
Generation, Client Class Generation, Server Linking,
and Web Service Binding. Individual pieces of lega-
cy code are extracted by using a tool called SoftWrap,
developed to automate the transformation of legacy
program data-types into XML data elements. This tool
supports languages such as PL/I, COBOL, and C/C++.
Although this is highly automated, a prior study must
be done to choose the legacy code to be migrated.
In [36, 37], legacy codes are wrapped with an XML
shell which allows individual functions in the leg-
acy programs to be offered as Web Services. Rele-
vant pieces of functionality within the programs are
identified by applying reverse engineering. For each
piece of functionality to be wrapped, a new program
(a subroutine of the parent program) is built, which
is associated to a WSDL document. The author re-
fers to this program as a subroutine with a call inter-
face [37]. A SOA library is employed to package the
new wrapped functionality. Finally, a proxy (as in the
Proxy object-oriented pattern) is generated to link the
Web Services to the underlying legacy business log-
ic. Since created Web Services are stateful, the main
drawback of the proposal is reentrancy. The state of
the data contained within a wrapped Web Service
is that of the last caller. Thus, if different clients are
using the same service, their data might be mixed up.
Besides, the work is suitable for small programs since
the identification and exposition of the business func-
tionality can be time consuming for bigger programs.
Finally, the work focuses on migration costs and risks
but Web Service interface quality is overlooked.
In [5], Canfora et al. proposed a black-box approach
based on wrapping interactive legacy functionality
and made it accessible as Web Services by using a Fi-
nite State Automaton, which describes the model of
the interaction between users and the legacy system.
The problem of transforming the original GUI of the
system into the request/response scheme of a SOA
system is solved by introducing a wrapper that is able
to interact with the system on behalf of the user. In
a subsequent work [6], the same authors illustrated
how wrapping is used as part of a complete migration
process consisting of the selection of services, wrap-
ping the legacy functionality, and validation of the
wrapped functionality. A main drawback of the work

is that most of the work is done manually [1]. Another
drawback is that the feasibility of state identification
depends on the complexity interaction patterns with-
in the legacy GUI.
Zhang et al. [41] proposed a black-box approach to
export customized interactive functionality in legacy
systems as Web Services using a wrapping technique
suitable to GUI-based legacy systems. The work also
proposes a solution to deploy such Web Services that
consist of a mediation support between users and
legacy systems in a SOA deployment. A distributed
framework that executes Web Services and integrates
graphical user interfaces of legacy systems is also pre-
sented. GUI commands are wrapped as Web Services
placed in a service container. Each Web Service con-
sists of a Python script and a WSDL document. The
authors presented a case study to show the feasibili-
ty of the proposal, where two GUI-based legacy sys-
tems – Rational Rose and Computer Associates Er-
win – were migrated to SOA. A drawback of this work
is that legacy business (logic) code is not considered
to be exposed as Web Services.
The work of Millard et al. [24] presents three design
patterns for wrapping legacy systems as Web Ser-
vices, and suggests implementation guidelines, ap-
plicability and certain consequences of the patterns.
The Lowest Common Denominator Interface, Most
Popular Interface and the Negotiated Interface pat-
terns are used to create a common interface for two or
more software components that share some common
functionality. Similar software components should
be wrapped with a common interface to enable them
to be used modularly within the resulting SOA sys-
tem. The authors derived these patterns from two
Item Bank systems. Item Banks are databases stor-
ing questions that can be queried to provide content
for either summative or formative assessment. Item
Banks have slightly different functionality (i.e., only
queries differ) and use different data formats to store
their questions [24]. This work also deals with candi-
date services identification and grouping similar op-
erations into Web Services. However, the authors do
not include quantitative or qualitative analysis about
the systems obtained by applying these patterns.

3.2. Indirect Migration
Chung et al. [10] described a project in which a legacy
tool called Bertie3 was reengineered to SOA resulting

77Information Technology and Control 2019/1/48

in a new tool, Service-Oriented Bertie (SoBertie). The
core of Bertie3 was hosted on a server and exposed
as a Web Service. Besides, Web Service clients were
created to consume the services by basing on the re-
quired functionality. In a follow-up work [9], the au-
thors presented a reengineering methodology called
Service-Oriented Software Reengineering (SoSR)
designed for migrating legacy systems to SOA. SoSR
is conceptualized from a three service participants
model, a 4+1 view [19] and responsibility assignment
charts. SoSR can be used by software engineers to
modernize highly coupled legacy systems, generating
new decoupled, agile and service-oriented systems.
However, the methodology might be complex due to
the need of using several views. In addition, SoSR
mixes different software architectures: 3-tier for
business logic design, n-tier for service deployment,
and SOA for integrating the legacy system with the
new environment.
Distante et al. [13] presented a generic framework
to re-design legacy systems for the Web, using UWA
[18] and its extended version called UWAT+ [12]. The
UWA design framework offers the designer meta-
models and tools for user-centered design of data and
operation-intensive Web applications. Based on this,
the work in [13] blends design recovery technologies
for capturing the know-how embedded in a legacy
application with forward design methods suited for
Web-based systems. The work consists of designing
technologies for recovering legacy information, by
following a three-step process: Requirement elicita-
tion, Reverse engineering and Forward design. This
work has been evaluated by migrating a legacy sys-
tem to support hiring of personnel. The main disad-
vantage of the work is a lack of hints or guidelines on
the applicable technologies for the above listed three
steps, which forces practitioners to fill this gap.
In [7], an approach based on product feature analy-
sis is proposed for migrating legacy systems to SOA.
A “feature” is a coherent and identifiable bundle of
system functionality that is visible to the user via a
GUI [7]. Then, feature analysis addresses the under-
standing of features in software systems and defines
mechanisms for carrying a feature from the problem
domain into the solution domain. The approach in-
volves detecting desired features and identifying the
legacy modules implementing them, and relies on fea-
ture identification, model feature construction and

feature implementation detection upon the legacy
system. Some of the features considered involve se-
mantic similarity between legacy functions and data
granularity.
Cuadrado et al. [11] proposed a white-box approach
for reengineering legacy code based following a three-
step process, which involves legacy architecture re-
covering, evolution plan creation, and plan execution.
As a clear benefit, the architecture recovering process
includes incorporating documentation. From a tech-
nical perspective, the work uses QAR, a workflow for
architecture recovery based on three main activities:
documentation analysis, static analysis and dynamic
analysis. As a basis for the new architecture the au-
thors propose OGSi [39], a standard framework for
service execution plus facilities for service lifecycle
management. Finally, the evolution is completed by
generating a set of services. According to the authors,
this approach is suitable for medium-sized systems
preferably.
SOAMIG [43] is a COBOL to SOA migration method-
ology and supporting tools. The migration methodol-
ogy consists of four phases, each carried out in several
iterations. The main idea behind SOAMIG is to trans-
form the original system into a SOA system by using
several translation tools. For instance, it proposes to
use a tool that translates COBOL code to Java code,
which is easier to expose as Web Services. However,
this methodology might negatively impact the quali-
ty of the SOA frontier because COBOL code was de-
signed using out-of-date design criteria, and this kind
of tools do not actually redesign the old system. In
addition, COBOL imposes some length limitations to
routine names and comments that might be translat-
ed into a SOA frontier, which in turn might represent
a quality issue for the frontier.

3.3. Combining Direct and Indirect Migration
Architecture Reconstruction and MINing (ARMIN)
[25] is a proposal to identify and use legacy com-
ponents as services. ARMIN uses the information
extracted from legacy code to identify candidate
services based on the dependencies between legacy
components. Dependencies include functional de-
pendencies, where a component uses functionalities
of other system components, and data dependencies,
where global data are shared by several system com-
ponents. Then, ARMIN uses the data to generate a

Information Technology and Control 2019/1/4878

component view. The authors applied ARMIN on a
legacy system written in C++, comprising 800,000
lines of code and 2,500 classes. The authors reported
issues due to implementation and documentation in-
consistencies, indicating the need for deeply studying
the code prior to migration.
In [20, 21, 35], the Service-Oriented and Reuse Tech-
nique (SMART) is discussed. SMART aims at helping
organizations to decide whether their legacy function-
ality can be exposed as Web Services. SMART has been
designed to modernize military systems by applying
wrapping, but it has evolved into a new version, tak-
ing into account those cases where wrapping is not an
option. SMART considers specific interactions pre-
scribed by SOA, and considers any modification to be
performed upon the legacy modules. With SMART, a
wide range of information about legacy components,
the target SOA, and potential services to produce a
service migration strategy is gathered from meetings
with stakeholders. This activity is directed by the Ser-
vice Migration Interview Guide (SMIG), a set of ques-
tions that address the gap between the existing and
the target architecture, design, and source code, and
questions concerning issues that must be addressed in
service migration efforts [21]. SMART starts with an
architectural and design step, followed by a gap anal-
ysis between the target SOA system and the original
system. In particular, the gap analysis suggests trade-
offs between the original and the target architectures.
Finally, a migration technique is selected (e.g., quick
and dirty [21] or wrapping). Interestingly, SMART is
flexible since it allows engineers to combine several
migration approaches, but it does not provide tools for
assisting developers in executing the migration.

4. COB2SOA Migration Approach
COB2SOA relies on refactoring opportunities applied
upon the SOA frontier of a legacy system, by detect-
ing evidences of antipatterns [31]. The hypothesis is
that enhancing the SOA frontier of a wrapped legacy
system can be done in a cheap and fast way by ana-
lyzing legacy source code and WSDL interfaces, and
supplying developers with guidelines (refactoring op-
portunities) for manually refining WSDLs based on
the evidence of antipatterns. The main activities of
COB2SOA are shown in Figure 2.

The input is a legacy system source code (COBOL
files) and the set of WSDL documents that result
from a direct migration. If the legacy system does not
have a SOA frontier yet, a semi-automatic process
generates one Web Service per COBOL program. As
a pre-processing, COBOL data-types are converted
into XSD data-types for WSDLs. Data exchanged by
COBOL programs are manually identified to then cre-
ate a wrapper for it (e.g., using .NET or Java). Then,
the WSDL documents are automatically generated
from the source code of the wrapper. The initial SOA
frontier is automatically analyzed to detect evidences
of WSDL antipatterns. Then a list of concrete sugges-
tions is generated to improve the services frontier. Af-
ter that, developers apply all or some of the suggested
refactoring actions. These steps can be done in suc-
cessive iterations and refinements, where a new and
improved SOA frontier can be obtained.

4.1. Heuristics on Antipatterns Evidences
To detect the antipatterns evidences (root causes),
some heuristics were defined and implemented –
shown in Table 3 – allowing assistance during the sys-

Figure 2
COB2SOA: Main activities

79Information Technology and Control 2019/1/48

tem migration. Most of the heuristics help to analyze
WSDL documents to detect evidences of antipatterns
that may affect service readability and discoverability
(see Section 2).
COB2SOA also focuses on evidences of bad practices
in COBOL source code. Two antipatterns for COBOL
source code were added, namely unused parameters
and shared dependencies among two COBOL programs
representing service implementations. To detect ev-
idences of these two antipatterns, COBOL code files
are reverse engineered with an analysis of the common
area for data-type exchange, called COMMAREA1.
Evidences of antipatterns can be combined to create
refactoring opportunities. Six refactoring opportu-
nities have been defined, referred as Legacy-Sys-
tem-to-SOA (LSSOA) refactorings according to the
following combinations:
 _ E1 ∧ E2 → R1: Remove redundant operations
 _ E2 → R2: Expose shared programs as services

1 The COMMAREA option specifies the name of a data area in
which data are passed to the program being invoked.

Table 3
Heuristics on Antipatterns evidences

Evidences Input Detected when

E1: Shared dependencies among
two service implementations

COBOL Given the list of COBOL programs that are copied, or included, or called
from two or more service implementations; When the list is not empty.

E2: Data overlapping WSDL An XSD complex data-type subsumes another complex XSD data-type, or
a list of parameters subsumes another list of parameters.

E3: Too many input/output
parameters

WSDL At least one operation input/output has more than parameters.

E4: Redundant data-types
 definitions

WSDL At least two XSD data-types are syntactically and structurally identical.

E5: Inconsistent data-types WSDL The name of a parameter denotes a quantity but it is not associated with a
numerical data-type.

E6: Unused parameters COBOL At least one parameter is not associated with a COBOL MOVE statement.

E7: Semantic similarity of
services and operations

WSDL The names (and their documentation) of two services or operations, are
near in a vector space model [38].

E8: Lack of documentation WSDL At least one operation lacks comments in the documentation element.

E9: Inappropriate naming
convention

WSDL
An operation name contains more than one verb, or a parameter name
contains a verb, or a name token is less than 3 in length, or tokens refer to
a specific technology.

E10: Error information being
exchanged as output data

WSDL An output message has tokens like: “error”, “fault”, “fail”, “exception”,
“overflow”, “mistake”, “misplay», etc.

 _ E3 ∨ E4 ∨ E5 ∨ E6 → R3: Improve business object
definitions

 _ E7 → R4: Improve service operations cohesion
 _ E8 ∧ E9 → R5: Improve names and comments
 _ E10 → R6: Improve error handling definitions.

4.2. SOA Refactoring Opportunities

The six refactoring opportunities applicable over a
SOA frontier are now briefly explained. They allow
users to remove the evidences of the ten antipatterns
explained in the previous section. Table 4 shows how
LSSOA refactoring opportunities are related (into
one or more logical combinations) to OO refactorings
from the Fowler et al.’s catalogue [15]. The rationale of
this is that conceptually services are described as OO
interfaces exchanging messages, with data-types de-
scribed using XSD. For specific details concerning re-
factoring opportunities, the reader is referred to [31].
R1: Remove redundant operations. This refactoring is
similar to duplicate code in other contexts [26]. This

Information Technology and Control 2019/1/4880

can be detected both in COBOL source code and in
WSDLs. Each service exposes an interface that wraps
COBOL programs, whose business logic involves an
interface including COBOL data-types and dependen-
cies to other programs. The Extract Method OO refac-
toring may be applied, to create a single operation in a
WSDL (grouping several redundant operations) to be
invoked for all the points where the redundancy was
detected. At the class level, the Extract Class is applied
to generate a new service from the redundant services.
R2: Expose shared programs as services. Usually
some programs/routines contain functionality that
represents core business itself. Such routines might
have several client routines dependents, represent-
ing highly reusable business logic modules. Exposing
these routines as services can reduce the chance of
redundant operations, increasing the possibility of
Web Services composition [2, 17]. The Extract Meth-
od OO refactoring can be applied, which is similar to
having a long method. In SOA, it means generating
new service operations that might help service con-
sumers to identify the requested functionality. If a de-
composition of a long routine exposes several service
operations, a new service could be generated, i.e., by
applying Extract Class.

LSSOA refactorings OO refactorings

R1: Remove redundant operations 1: Extract Method ⇒ Extract Class

R2: Expose shared programs as
services

1: Extract Method ⇒ Extract Class

R3: Improve business object
definitions

1: Convert Procedural Design to Object ; Replace Conditional with Polymorphism
2: Inline Class
3: Extract Class ; Extract Subclass ; Extract Superclass ; Collapse Hierarchy
4: Remove Control Flag ; Remove Parameter
5: Replace Type Code with Class ; Replace Type Code with Subclasses

R4: Improve service operations
cohesion

1: Inline Class ; Rename Method
2: Move Method ⇒ Move Class

R5: Improve names and comments
1: Rename Method ⇒ Preserve Whole Object ⇒
Introduce Parameter Object ⇒ Replace Parameter with Explicit Methods

R6: Improve error handling
definitions

1: Replace Error Code With Exception

Table 4
SOA frontier refactorings and Fowler et al.’s refactorings

Numbers means the steps to be performed to fulfill the OO refactorings.
“⇒” means that only one OO refactoring should applied.
“;” means that all OO refactorings should be applied in that strict order.

R3: Improve business object definitions. This can be
detected with the lack of a single XSD file for a set of
services within the same frontier. This means, a bad
business model definition (or the lack of a unique
data-type schema) hinders the general readability of
services and their reusability. As shown in Table 3, up
to five steps and many OO refactorings should be done
here. In fact, several aspects of a service are involved:
Too many output/input parameters, Redundant da-
ta-types definitions, Data-types with inconsistent
names and types, and Unused parameters. Some of
them can be solved with one OO refactoring, while
others require more than one in alternate combina-
tions. For example, Too many output/input parame-
ters, evidences the use of many variables as parame-
ters of procedural modules, that should be arranged
among different business objects. The Convert Proce-
dural Design to Object OO refactoring can be applied,
to restructure common data-types schema for a set of
Web Services.
R4: Improve service operations cohesion. This im-
provement consists of grouping semantically similar
operations and/or Web Services in terms of business
functionality. For similarity between two services, a
1-to-1 association is assumed between COBOL pro-

81Information Technology and Control 2019/1/48

grams and Web Services, i.e., produced Web Services
contain a single operation. Therefore, this also rep-
resents the similarity between two COBOL programs.
This implies some aspects with different alternatives
as solutions. For example, the Move Method OO re-
factoring can be applied, which is used to re-locate
methods being odd within a class, and mostly invoked
by other classes. In SOA, this would be equivalent to
moving operations between services. When a group of
similar services (of one operation) is identified, a new
service could be built by applying Move Class.
R5: Improve names and comments. WSDLs must pre-
cisely describe how to invoke certain functionality
as well as the meaning of that functionality. This im-
plies to improve names of operations, messages, port-
types, parts and elements present in a WSDL, by add-
ing documentation according to the meaning of the
service. Improving these elements implies dealing
with semantics, and hence they cannot be fully au-
tomated. This situation implies several alternatives.
For example, renaming service operations is equiva-
lent to apply the Rename Method OO refactoring.
R6: Improve error handling definitions. This is related
to improper handling of errors and exceptions in ser-
vices, which occurs when WSDL operations exclude
<fault> elements. Instead, errors are exchanged along
with pure data. Thus, the actual result (correct or er-
ror) from an operation is unknown until invoking the
service. The Re-place Error Code With Exception OO
refactoring can be applied here. This refactoring adds
the missing <fault> elements to WSDLs and the re-
finement of data-types mixing output and error data.
A textual description (string) or a <complexType>
can be used to report details of the error.

5. Experimental Evaluation
This section evaluates the effectiveness of migration
approaches to SOA regarding frontier complexity in
terms of the BM suite (see Section 2). Two case stud-
ies, concerning COBOL systems, have been subject of
migration to SOA by employing the three approaches:
Direct and Indirect migration, and COB2SOA. The
first case study is the legacy system of the largest Ar-
gentinian government agency [30]. The second case
study is a legacy system providing support for mill
sales management [31].

5.1. Direct and Indirect Migration
The first case study involves a 35-year-old system
manages information of the entire population in Ar-
gentina [30]. It runs on an IBM AS/400 mainframe.
Some programs are used via an intranet and others
are grouped in CICS transactions that are consumed
by Web applications. Direct migration was done by
wrapping the CICS-enhanced programs, creating a
preliminary Web Services frontier. One 1-operation
Web Service for each COBOL program was generat-
ed, adding a thin C# .NET service layer. Then, WSDL
files were automatically generated from the C# source
code. Developers migrated 32 COBOL programs, gen-
erating 32 services in about 5 days. Indirect migration
was done to re-implement the 32 COBOL programs in
C#. An indirect SOA frontier was built, consisting of 7
services, and 1 XSD file representing a single data mod-
el. The generated WSDL files were manually refined
until an antipatterns-free SOA frontier was obtained.
The whole migration process demanded 13 months: 1
month to manually define WSDL files, 3 months to an-
alyze legacy functions, 1 month to refine WSDL files, 6
months to rewrite the business logic, and 2 months to
test the obtained indirect SOA frontier.
The Mill Sales Management system provides support
for sales transaction management between clients,
suppliers and creditors [31]. The system comprises
211 COBOL programs and an extra COBOL program
acting as a program selector (menu). No databases or
CICS transactions are involved. Data storage is pro-
grammatically handled via “.dat” files. An indepen-
dent file – the COMMAREA – is used for data defini-
tion of each COBOL program. First, direct migration
was done, generating 211 Web Services by wrapping
each COBOL program via a 1-to-1 mapping strategy.
WSDL interfaces were also generated by building a
thin service layer. The migration to SOA demanded 21
days. Then, indirect migration of the original system
was also done. Similar to the first case study, the goal
was to generate a high quality SOA frontier, i.e., with-
out antipatterns. After 6 months, 50 Web Services
were built – 2 months to analyze the legacy functions,
1 month to design the WSDL files, and 3 months to
refine the WSDL files. Since this case study had ex-
perimental purposes only, no actual deployment was
done. Hence, testing the obtained indirect SOA fron-
tier was left out – which might require more than 2
months compared to case study 1.

Information Technology and Control 2019/1/4882

5.2. COB2SOA Migration
The direct SOA frontiers of both case studies were taken
as input for the COB2SOA approach, to identify refac-
toring opportunities (see Section 4.2). Table 5 summa-
rizes the refactoring opportunities detected. After that,
the new SOA frontier – the set of refactored WSDL doc-
uments – for both case studies were obtained.
For case study 1, there were refactoring opportunities
applicable to all the services/programs and others ap-
plicable to a subset of the services/programs. Besides,
a suggestion came up that the 32 services should be
grouped in just 16 services. One specialist applied
the proposed refactorings in 2 days, to create the new
SOA frontier of 16 services + 1 XSD file. For case study
2, one refactoring opportunity was applicable to all
the services/programs (211) and other was applicable
to most of them (209 services). Finally, after manu-
ally applying the proposed refactorings (in about 1
month), the new SOA frontier was created containing
115 services + 1 XSD file.

5.3. A Comparison of Service Interfaces Quality
SOA frontiers obtained by direct migration strongly
depend on the original system design. In turn, inter-

LSSOA refactoring Case study 1 (32 services) Case study 2 (211 services)

R1: Remove redundant operations 7 redundant operations detected 35 redundant operations detected

R2: Expose shared programs as services 6 COBOL programs to be exposed 0 COBOL programs to be exposed

R3: Improve business object definitions 32 services needed to be improved 209 services needed to be improved

R4: Improve service operations cohesion 16 services identified 115 services identified

R5: Improve names and comments 32 services needed to be improved 211 services needed to be improved

R6: Improve error handling definitions 32 services needed to be improved 0 services needed to be improved

Migration attempt WSDLs Operations Time LOC per file LOC per
operation

Comments per
file

Direct Migration 32 38 5 days 157.25 129 0.00

Indirect Migration 7 + 1 XSD 45 13 months 495.50 88 30.25

COB2SOA 16 + XSD 41 2 days 235.35 97 16.00

Table 5
LSSOA refactorings identified on both case studies

Table 6
Case study 1: General quantitative results

faces obtained by indirect migration might be more
independent [30], since the legacy system function-
ality is re-implemented using modern technologies
and new design criteria. The main goal of this work
is to assess the trade-off between cost/time and ser-
vices frontier quality. Thereby, setting forth empirical
evidence can reveal how a migration approach influ-
ences a SOA frontier quality – mainly focusing on the
complexity level according to the BM suite (see Sec-
tion 2). In addition, a quantitative analysis highlights
some results from the migration processes, as follows.
Quantitative Analysis. The first advantage of indi-
rect migration and COB2SOA compared to direct
migration is the unique XSD document generated, to
share the definition of common data-types across all
WSDL files. In addition, the fewer number of WSDL
files means they include more operations, fostering a
functional definition of related cohesive operations
within a WSDL.
Table 6 shows the quantitative results of case study 1.
The number of offered operations across alternatives
was 38, 45 and 43 for direct migration, indirect mi-
gration and COB2SOA migration, respectively. While
32 COBOL programs were originally migrated, direct

83Information Technology and Control 2019/1/48

migration resulted in 38 operations because one pro-
gram was divided into 7 operations. After manually an-
alyzing the business logic, the expert staff determined
that only 2 of those operations were useful and the re-
maining operations were marked as duplicate. In this
context, indirect migration and COB2SOA migration
resulted in more operations. There are two main rea-
sons for this: disaggregating functionality and expos-
ing shared functionality. Disaggregating functionality
means that certain services/programs, which returned
more than 100 output parameters, had various pur-
poses and were mapped to several purpose-specific
operations. The second reason is that several COBOL
programs shared dependencies, i.e., other COBOL pro-
grams not yet exposed as services.
The number of LOC per operation for indirect migra-
tion was the lowest. Interestingly, COB2SOA migra-
tion resulted in a slightly higher number of LOC per
operation than indirect migration. In contrast, the
number of LOC per operation resulting from applying
direct migration was more than twice the number of
LOC obtained through the other two migration ap-
proaches. Regarding LOC per file –157.25, 495.50 and
235.35 for direct, indirect and COB2SOA migrations,
respectively.
Figure 3 illustrates the differences between the three
approaches. Interestingly, for indirect migration and
COB2SOA migration the number of documents de-
creased in comparison with direct migration. This
means that, after applying direct migration, a service

consumer must read more WSDL code to understand
how to invoke an operation. Regarding COB2SOA, the
LOC is similar to the LOC achieved in indirect migra-
tion, but involving more documents. This means that
COB2SOA ended up with a different operation layout
across services, leading to smaller average LOC per
file.
Table 6 also shows the number of comments per
WSDL/XSD document. The WSDL documents from
direct migration did not include comments because
the tools for generating WSDLs documents in case
study 1 are unable to read COBOL comments and
move them to the WSDL documents through COMTI
wrappers. In addition, developers did not place effort
in including comments manually because of the tight
schedule, which a typical situation in practice when
following direct migration [31]. Figure 3 depicts the
number of comments for each migration. Direct mi-
gration resulted in a total of 5,032 lines, with no com-
ments. In contrast, although the total LOC in indirect
migration and COB2SOA migration was lower, 242
(6.10%) and 272 (6.79%) lines were comments, re-
spectively.
Table 7 shows the quantitative results of case study 2.
Direct migration generated 211 documents because
of the 1-to-1 mapping of COBOL programs for gen-
erating the WSDL documents. In contrast, indirect
migration and COB2SOA migration generated much
less documents. Then, the number of offered opera-
tions was 252, 202 and 206 for direct migration, indi-
rect migration and COB2SOA migration, respectively.
In this case, several COBOL programs were used for
storing clients, suppliers, creditors, payments, and
products. In general, these programs fell into one of
three types of transactions: add, update and delete.
These programs were migrated by providing related
operations according to their type (e.g., add, update,
or delete data). That is the reason why there were 252
operations in 211 services. In turn, indirect migration
and COB2SOA migration resulted in 202 and 206 op-
erations, respectively. There are fewer operations due
to redundant operations, which were removed in both
cases.
Regarding the LOC per operation, direct migration,
indirect migration and COB2SOA migration resulted
in 154, 60 and 80 units, respectively. As depicted in
Table 7, the number of LOC per operation for indirect
migration operation was the lowest. Furthermore,

Figure 3
Case study 1: Total LOC in WSDL/XSD documents

0

200

400

600

800

1000

1200

1400

To
ta

l l
in

es
 o

f W
S

D
L/

X
S

D
 c

od
e

pe
r

se
rv

ic
e

Individual WSDL/XSD documents

5032 lines in 32 documents
(0 lines of comments)

Direct migration Indirect migrationCOB2SOA

3964 lines in 8 documents
(242 lines of comments)

4001 lines in 17 documents
(272 lines of comments)

Information Technology and Control 2019/1/4884

Migration attempt WSDLs Operations Time LOC per file LOC per
operation

Comments per
file

Direct Migration 211 252 21 days 183.42 153 0.00

Indirect Migration 50 + 1 XSD 202 6 months 237.52 60 15.25

COB2SOA 115 + 1 XSD 206 1 month 142.52 80 17.33

Table 7
Case study 2: General quantitative results

similar to case study 1, the COB2SOA migration re-
sulted in a higher number of LOC per operation than
indirect migration, but lower than direct migration
LOC, which was 154.
Moreover, Figure 4 illustrates the total LOC for the
three frontiers. Applying indirect migration resulted
in a total of 12,114 LOC in 51 WSDL/XSD documents.
Similarly, the COB2SOA migration produced a total
of 16,532 LOC in 116 documents. Finally, direct migra-
tion contained a total 38,702 LOC in 211 documents.
In this case, it is also clear that the total LOC for indi-
rect and COB2SOA migrations was smaller than that
of direct migration. In this case study, the number of
documents for indirect and COB2SOA migrations
were smaller in comparison with direct migration.
Finally, the WSDL documents resulting from direct
migration for case study 2 did not contain comments.
The idea was to simulate a real-life situation, where
service developers in general do not write comments

Figure 4
Case study 2: Total LOC in WSDL/XSD documents

0

100

200

300

400

500

600

700

800

To
ta

l l
in

es
 o

f W
S

D
L/

X
S

D
 c

od
e

pe
r

se
rv

ic
e

Individual WSDL/XSD documents
Direct migration COB2SOA Indirect migration

38702 lines in 211 documents
(0 lines of comments)

16532 lines in 116 documents
(2011 lines of comments) 12114 lines in 51 documents

(778 lines of comments)

or the comments are not clear enough to understand
the functionality exposed by the services. In contrast,
as indirect migration and COB2SOA migration are in-
tended for generating high-quality WSDL documents,
documentation was added to the SOA frontiers in
both cases. Related to this fact, Figure 4 shows the
number of comments for each migration alternative
related to the total LOC for each frontier. As it can be
seen, direct migration had a total of 38,702 lines, with
no comments. In contrast, although the total LOC
in indirect migration and COB2SOA migration was
lower (similar to case study 1), 778 (6.55%) and 2011
(12.27%) lines were documentation, respectively.
Antipatterns Assessment. Table 8 summarizes the an-
tipatterns detected when applying direct migration,
indirect migration and COB2SOA migration on both
case studies. A manual review by a specialist on WSDL
documents of the three migration approaches was
made. The results show that the resulting WSDL files
of direct migration have more antipatterns than doc-
uments of COB2SOA migration, while there were no
antipatterns in the WSDL files of indirect migration.
The first row describes an antipattern that is gener-
ated by many code-first software, which force data
models to be included within the generated WSDL
documents. In contrast, neither indirect migration
nor COB2SOA migration were affected by this anti-
pattern. Similarly, the second row describes an anti-
pattern that ties abstract service interfaces to specific
communication protocols or implementations, hin-
dering black-box reuse [32]. In general, this is caused
by the use of defective tools to translate source code
to WSDL code. To avoid this antipattern in C# (case
study 1 language), developers should supply C# ser-
vice codes with special annotations, so they are pro-
cessed by these tools.
The antipattern described in the third row is related
to poor data model designs. Redundant data models

85Information Technology and Control 2019/1/48

usually arise from limitations or bad use of the soft-
ware to generate WSDL documents. This antipattern
only affected WSDL documents generated through
direct migration. Although there were no repeated
data-types at the WSDL documents level, COB2SOA
migration produced repeated data-types at a global
level, i.e., when the data-types in all documents are
taken into account. For example, in case study 1 the
“error” data-type, which consisted of a fault code, ac-
tor and description is repeated in all the WSDL doc-
uments of COB2SOA migration. This is because this
data-type has been derived several times from differ-
ent sub-systems. Finally, this did not happen when
using indirect migration because the WSDL docu-
ment designers had a global view of the system.
The fourth antipattern means having no semantically
related operations within a port-type. This antipattern
did not affect WSDL documents generated through
direct migration or indirect migration. Direct migra-
tion documents were not affected because almost all
WSDL documents included only one operation, while
indirect migration WSDL documents were specifically
designed to group related operations. However, COB-
2SOA migration uses an automated process to select
which operations should be grouped into a specific
port-type. In the experiments, when several related op-
erations in a service used the same unrelated programs

such as text-formatting programs, the COB2SOA mi-
gration suggested that these routines were also a candi-
date operation for that service. This results in services
that had port-types with several related operations, but
few unrelated operations.
The fifth and sixth rows describe antipatterns that
impact on the comments and names in services [32].
Names in the resulting WSDL documents were too
short and difficult to be read. The reason is that names
in COBOL programs have length restrictions and they
were directly mapped to WSDL documents. This also
caused lack of documentation in WSDL documents,
since WSDL generation tools operate on service bina-
ry codes and hence in general disregard service code
comments [33]. On the other hand, ambiguous names
affect WSDL documents in COB2SOA migration only
when the original COBOL program was designed us-
ing control couples. This is because properly putting
representative names and documenting this kind of
couples is known to be a complex task [40].
The antipattern in the last row of the table deals with
errors being transferred as part of output messages,
which for direct migration of case study 1 resulted
from the original transactions that used the same
COMMAREA for returning both output and error
information. In contrast, the WSDL documents of
indirect and COB2SOA migration had an adequate

Antipatterns Direct Migration Indirect Migration COB2SOA

Enclosed data model Always Never Never

Redundant port-types Several communication protocols
are supported Never Never

Redundant data models Two operations use the same
data-types Never Never

Low cohesive port-type Never Never
Several related programs use

an unrelated operation, such as
text formatting routines

Inappropriate or lacking
comments Always Never Never

Ambiguous names Always Never Never

Undercover fault
information

Data-types with names indicating
error messages exchange business

logic data
Never Never

Table 8
Antipatterns detected in WSDL documents of both case studies

Information Technology and Control 2019/1/4886

mechanism for error handling based on standard
fault messages provided by WSDL. For the second
case study, direct WSDL documents did not present
the antipattern, because no data-type was original-
ly defined for exchanging error information. On one
hand, the direct SOA frontier for both case studies did
not contain fault messages in the WSDL documents.
On the other hand, only the direct frontier of the first
case study included undercover error information ex-
changed with the business logic data. For case study 2,
COMMAREAs were embedded in COBOL programs.
By reviewing the DATA DIVISION section of COBOL
programs, where all the variables to be used in the
business logic must be declared, it could be seen that
the business data were completely separated from the
error data structure definitions.
Complexity Measurement. The BM metric suite was
applied on both case studies upon the three migration
approaches. The aim is to evaluate how a migration ap-
proach influences the complexity level of a generated
SOA frontier – with a likely impact on comprehension
and interoperability. Before analyzing measurement
results from both case studies, we recall the expected
(good/bad) values on each metric of the BM suite.
Figure 5 shows the results for case study 1. The COB-
2SOA migration outperforms the direct migration in
both DMR and MRS. However, the indirect migration
obtained the best values for these two metrics – i.e.,
the lowest DMR and the highest MRS. This means

Figure 5
Case Study 1: BM suite metrics upon migration approaches

that refactorings have produced higher use of simi-
larly-structured messages, and this improves WSDL
comprehension. However, the ME metric was affected
by COB2SOA and indirect migration – the worst value
(highest) for indirect migration. This means, a high
distribution of similarly-structured messages, instead
of being consistent in structure. Finally, the DW met-
ric was also affected by COB2SOA and indirect migra-
tion – obtaining higher values than for direct migra-
tion. This means, refactorings have produced a larger
number of complex data types – probably with a goal to
better reflect business domain objects (see Table 4).
Results for case study 2 are shown in Figure 6. The
general trends are quite similar to case study 1 for the
DMR, MRS and DW metrics. However, the ME met-
ric was particularly benefited by COB2SOA, obtaining
the lowest (better) value. Then, after the refactorings,
most WSDL files resulted with few data structures
largely repeated (w.r.t. other similar-structures) being
as such highly consistent within the given WSDL files.
Discussion. From the quantitative and qualitative
analysis above, it can be seen that the COB2SOA
migration approach has a midway performance. Re-
garding the time vs. quality trade-off there is a better
performance, considering a quality trend towards the
indirect approach, but with a time trend very close to
the direct approach and largely far from the indirect
migration. As such, the COB2SOA approach comes up
as an optimized option for the industry when engag-
ing in a COBOL to SOA migration.

87Information Technology and Control 2019/1/48

6. Conclusions and Future Work
This paper studied how direct and indirect COBOL
to SOA migration approaches perform regarding the
quality of the generated SOA frontier. In addition,
an intermediate approach, called COB2SOA, is also
evaluated. Qualities attended by COB2SOA and the
indirect migration are related to readability and dis-
coverability of the produced WSDL documents. In
particular, a set of antipatterns – bad practices – is
considered at the levels of WSDL and COBOL source
code. In this study, we also evaluated the complexity
level of a SOA frontier, by using the BM metric suite.
Complex WSDL documents may impact on compre-
hension and interoperability, which might affect new
business relationships of a target organization. After
a quantitative and qualitative analysis, a conclusive
evidence arises in favor of the COB2SOA approach, in
terms of balanced trade-off between quality and time.

Figure 6
Case study 2: BM suite metrics upon migration approaches

As future work, we expect to conduct another study
concerning well-known OO metrics from Chidamber
& Kemerer [8], from which we have found a correla-
tion with the BM metric suite [3, 23]. By considering
the OO back-ends of the SOA frontiers that are gener-
ated in the three approaches we might early analyze
another refactoring opportunities to then generate
improved WSDLs with lowest complexity – i.e., in-
creasing comprehension and interoperability.

Acknowledgement

This work is supported by the ANPCyT grant no.
PICT-2013-0464, the ANPCyT grant no. PICT-2017-
1725, the CONICET grant no. PIP 2017-2019 GI
11220170100951CO, and the SPU-UNCo grant no.
PIN I 2017-2020 04-F009.

References
1. Almonaies, A., Cordy, J., Dean, T. Legacy System Evolution

Towards Service-Oriented Architecture. Proceedings of
the International Workshop on SOA Migration and Evolu-
tion (SOAME), Madrid, Spain, March 2010, 53-62.

2. Alrifai, M., Skoutas, D., Risse, T. Selecting Skyline
Services for QoS-Based Web Service Composition.
Proceedings of the 19th ACM International Confer-

ence on World Wide Web (WWW), Raleigh, North
Carolina, USA, April 26-30, 2010, 11-20. https://doi.
org/10.1145/1772690.1772693

3. Anabalon, D., Flores, A., Mateos, C., Zunino, A., Misra, S.
Controlling Complexity of Web Services Interfaces through
a Metrics-driven Approach. Proceedings of the IEEE In-
ternational Conference on Computing Networking and

Information Technology and Control 2019/1/4888

Informatics (ICCNI), Lagos, Nigeria, 29-31 October, 2017,
1-9. https://doi.org/10.1109/ICCNI.2017.8123807

4. Baski, D., Misra, S. Metrics Suite for Maintainability of
eXtensible Markup Language Web Services. IET Soft-
ware, 2011, 5(3), 320-341. https://doi.org/10.1049/iet-
sen.2010.0089

5. Canfora, G., Fasolino, A., Frattolillo, G., Tramontana,
P. Migrating Interactive Legacy Systems to Web Ser-
vices. Proceedings of the 10th IEEE European Con-
ference on Software Maintenance and Reengineering
(CSMR), Bari, Italy, 22-24 March, 2006, 24-36. https://
doi.org/10.1109/CSMR.2006.34

6. Canfora, G., Fasolino, A., Frattolillo, G., Tramontana,
P. A Wrapping Approach for Migrating Legacy System
Interactive Functionalities to Service Oriented Archi-
tectures. Journal of Systems and Software, 2008, 81(4),
463-480. https://doi.org/10.1016/j.jss.2007.06.006

7. Chen, F., Li, S., Yang, H., Wang, C.-H., Chu, C.-C. Feature
Analysis for Service-Oriented Reengineering. Proceed-
ings of the 12th IEEE Asia-Pacific Software Engineering
Conference (ASPEC), Taipei, Taiwan, 15-17 December,
2005, 201-208. https://doi.org/10.1109/APSEC.2005.67

8. Chidamber, S., Kemerer, C. A Metrics Suite for Ob-
ject Oriented Design. IEEE Transactions on Soft-
ware Engineering, 1994, 20(6), 476-493. https://doi.
org/10.1109/32.295895

9. Chung, S., An, J., Davalos, S. Service-Oriented Software
Reengineering: SoSR. Proceedings of the 40th IEEE An-
nual Hawaii International Conference on System Sci-
ences (HICSS), Waikoloa, HI, USA, 3-6 January, 2007,
172c–. https://doi.org/10.1109/HICSS.2007.479

10. Chung, S., Young, P., Nelson, J. Service-Oriented Soft-
ware Reengineering: Bertie3 as Web Services. Pro-
ceedings of the IEEE International Conference on Web
Services (ICWS), Orlando, FL, USA, 11-15 July, 2005,
837–838. https://doi.org/10.1109/ICWS.2005.109

11. Cuadrado, F., García, B., Due-as, J., Parada, H. A Case
Study on Software Evolution Towards Service-Ori-
ented Architecture. Proceedings of the 22nd IEEE
International Conference on Advanced Information
Networking and Applications – Workshops (WAINA),
Okinawa, Japan, 25-28 March, 2008, 1399–1404.
https://doi.org/10.1109/WAINA.2008.296

12. Distante, D., Tilley, S. Conceptual Modeling of Web Ap-
plication Transactions: Towards a Revised and Extend-
ed version of the UWA Transaction Design Model. Pro-
ceedings of the 11th International Multimedia Modelling
Conference, Melbourne, Australia, 12-14 January, 2005,
439–445. https://doi.org/10.1109/MMMC.2005.28

13. Distante, D., Tilley, S., Canfora, G. Towards a Holistic
Approach to Redesigning Legacy Applications for the

Web with UWAT+. Proceedings of the 10th IEEE Eu-
ropean Conference on Software Maintenance and Re-
engineering (CSMR), Bari, Italy, 22-24 March, 2006,
295–299. https://doi.org/10.1109/CSMR.2006.55

14. Erl, T. SOA Principles of Service Design. Prentice Hall,
2007.

15. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

16. Galinium, M., Shahbaz, N. Case Studies: Business and
Technical Perspectives in Migration of Legacy Systems
to Service Oriented Architecture. ECTI Transactions
on Computer and Information Technology, 2013, 7(2),
135-145. https://arxiv.org/abs/1412.7959

17. Garriga, M., Flores, A., Cechich, A., Zunino, A. Web Ser-
vices Composition Mechanisms: A Review. IETE Tech-
nical Review, 2015, 32(5), 376-383. https://doi.org/10.10
80/02564602.2015.1019942

18. Garzotto, F. Ubiquitous Web Applications. Proceed-
ings of the 5th East European Conference Advances in
Databases and Information Systems (ABDIS), Vilnius,
Lithuania, Lecture Notes on Computer Science, 2151,
Springer Berlin Heidelberg, 25-28 September, 2001, 1-1.
https://doi.org/10.1007/3-540-44803-9_1

19. Kruchten, P. The 4+1 View Model of Architec-
ture. IEEE Software, 1995, 12(6), 42-50. https://doi.
org/10.1109/52.469759

20. Lewis, G., Morris, E., Smith, D. Analyzing the Reuse
Potential of Migrating Legacy Components to a Ser-
vice-Oriented Architecture. Proceedings of the 10th
European Conference on Software Maintenance and
Reengineering (CMSR), Bari, Italy, 22-24 March, 2006,
15-23. https://doi.org/10.1109/CSMR.2006.9

21. Lewis, G., Morris, E., Smith, D., O’Brien, L. Service-Ori-
ented Migration and Reuse Technique (SMART). Pro-
ceedings of the 13th IEEE International Workshop
on Software Technology and Engineering Practice
(STEP), Budapest, Hungary, 24-25 September, 2005,
222–229. https://doi.org/10.1109/STEP.2005.24

22. Mateos, C., Zunino, A., Misra, S., Anabalon, D., Flores, A.
Migration from COBOL to SOA: Measuring the Impact
on Web Services Interfaces Complexity. Proceedings of
the 23rd International Conference on Information and
Software Technologies (ICIST), Druskininkai, Lithu-
ania, October 12-14, 2017, 266-279. Communications
in Computer and Information Science 756, Springer.
https://doi.org/10.1007/978-3-319-67642-5

23. Mateos, C., Zunino, A., Misra, S., Anabalon, D., Flores, A.
Managing Web Service Interface Complexity via an OO
Metric-based Early Approach. CLEI Electronic Journal,
2017, 20(3), paper #2. https://doi.org/10.19153/cleiej.20.3.2

89Information Technology and Control 2019/1/48

24. Millard, D., Howard, Y., Chennupati, S., Davis, H., Jam,
E., Gilbert, L., Wills, G. Design Patterns for Wrapping
Similar Legacy Systems with Common Service Inter-
faces. Proceedings of the European Conference on Web
Services (ECOWS), Zurich, Switzerland, 4-6 December,
2006, 191-200. https://doi.org/10.1109/ECOWS.2006.14

25. O’Brien, L., Smith, D., Lewis, G. Supporting Migration
to Services Using Software Architecture Reconstruc-
tion. Proceedings of the 13th IEEE International Work-
shop on Software Technology and Engineering Practice
(STEP), Budapest, Hungary, 24-25 September, 2005,
81-91. https://doi.org/10.1109/STEP.2005.29

26. Ordiales, J., Mateos, C., Crasso, M., Zunino, A. Refactor-
ing Code-First Web Services for Early Avoiding WSDL
Anti-Patterns: Approach and Comprehensive Assess-
ment. Science of Computer Programming, 2014, 89, Part
C, 374-407. https://doi.org/10.1016/j.scico.2014.03.015

27. Ouni, A., Kessentini, M., Inoue, K., Ó Cinnéide, M.
Search-Based Web Service Antipatterns Detection.
IEEE Transactions on Services Computing, 2017, 10(4),
603-617. https://doi.org/10.1109/TSC.2015.2502595

28. Paradauskas, B., Laurikaitis, A. Business Knowledge
Extraction from Legacy Information Systems. Infor-
mation Technology and Control, 2006, 35(3), 214-221.
http://itc.ktu.lt/index.php/ITC/article/view/11772

29. Razavian, M., Lago, P. A Systematic Literature Review
on SOA Migration. Journal of Software: Evolution and
Process, 2015, 27(5), 337-372. https://doi.org/10.1002/
smr.1712

30. Rodriguez, J., Crasso, M., Mateos, C., Zunino, A., Campo,
M. Bottom-up and Top-down COBOL System Migra-
tion to Web Services. IEEE Internet Computing, 2013,
17(2), 44-51. https://doi.org/10.1109/MIC.2011.162

31. Rodriguez, J., Crasso, M., Mateos, C., Zunino, A., Campo,
M., Salvatierra, G. The SOA Frontier: Experiences with
3 Migration Approaches. In Ionita, A., Litoiu, M., Lewis,
G. (Eds.), Migrating Legacy Applications: Challenges in
Service-Oriented Architecture and Cloud Computing
Environments, 2013, Chapter 6, 126-152. IGI Global.
https://doi.org/10.4018/978-1-4666-2488-7.ch006

32. Rodriguez, J., Crasso, M., Zunino, A., Campo, M. Improv-
ing Web Service Descriptions for Effective Service Dis-
covery. Science of Computer Programming, 2010, 75(11),
1001-1021. https://doi.org/10.1016/j.scico.2010.01.002

33. Rodriguez, J., Mateos, C., Zunino, A. Assisting Develop-
ers to Build High-Quality Code-First Web Service APIs.
Journal of Web Engineering, 2015, 14(3-4), 251-285,
Rinton Press Inc. http://www.rintonpress.com/jour-
nals/jwe/abstractsJWE14-34.html

34. Salvatierra, G., Mateos, C., Crasso, M., Zunino, A., Cam-
po, M. Legacy System Migration Approaches. IEEE Lat-
in America Transactions, 2013, 11(2), 840-851. https://
doi.org/10.1109/TLA.2013.6533975

35. Smith, D. Migration of Legacy Assets to Service-Ori-
ented Architecture Environments. Proceedings of the
29th IEEE International Conference on Software En-
gineering (ICSE), Minneapolis, MN, USA, 20-26 May,
2007, 174-175. https://doi.org/10.1109/ICSECOMPAN-
ION.2007.48

36. Sneed, H. Integrating Legacy Software into a Service
Oriented Architecture. Proceedings of the 10th IEEE
European Conference on Software Maintenance and
Reengineering (CSMR), Bari, Italy, 22-24 March, 2006,
3-14. https://doi.org/10.1109/CSMR.2006.28

37. Sneed, H. Wrapping Legacy Software for Reuse in a
SOA. Proceedings of the Multikonferenz Wirtschafts-
informatik (MKWI), Passau, Germany, 20-22 February,
2006, 2, 345-360. GITO-Verlag Berlin.

38. Sneed, H., Sneed, S. Creating Web Services from Legacy
Host Programs. Proceedings of the 5th IEEE Interna-
tional Workshop on Web Site Evolution (WSE), Am-
sterdam, Netherlands, 22-22 September, 2003, 59-65.
https://doi.org/10.1109/WSE.2003.1234009

39. The OSGi™ Alliance. About the OSGI Service Platform.
Technical Whitepaper, Revision 4.1, 7 June 2007, 1-20.
https://www.osgi.org/wp-content/uploads/OSGiTech-
nicalWhitePaper1.pdf

40. Yourdon, E., Constantine, L. Structured Design: Funda-
mentals of a Discipline of Computer Program and Sys-
tems Design. Prentice-Hall, Inc., 1st edition, 1979.

41. Zhang, B., Bao, L., Zhou, R., Hu, S., Chen, P. A Black-
Box Strategy to Migrate GUI-Based Legacy Systems to
Web Services. Proceedings of the IEEE International
Symposium on Service-Oriented System Engineering
(SOSE), Jhongli, Taiwan, 18-19 December, 2008, 25-31.
https://doi.org/10.1109/SOSE.2008.8

42. Zhang, Z., Liu, R., Yang, H. Service Identification and
Packaging in Service Oriented Reengineering. Proceed-
ings of the 17th International Conference on Software
Engineering and Knowledge Engineering (SEKE), Tai-
pei, Taiwan, July 14-16, 2005, 620-625.

43. Zillmann, C., Winter, A., Herget, A., Teppe, W., Theurer,
M., Fuhr, A., Horn, T., Riediger, V., Erdmenger, U., Kai-
ser, U., Uhlig, D., Zimmermann, Y. The SOAMIG Process
Model in Industrial Applications. Proceedings of the
15th IEEE European Conference on Software Mainte-
nance and Reengineering (CSMR), Oldenburg, Germa-
ny, 1-4 March, 2011, 339-342. https://doi.org/10.1109/
CSMR.2011.4

