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Abstract. Aksomaitis and Burauskaite-Harju [Information Technology and Control, 38, 2009, 301-302] studied 
the distribution of max(X1, X2,..., Xp) when (X1, X2,..., Xp)  follows the multivariate normal distribution. Here, we study 
the moments of min(X1, X2,..., Xp) and max(X1, X2,..., Xp) when (X1, X2,..., Xp) follows the most commonly known 
multivariate Pareto distribution. Multivariate Pareto distributions are most relevant for modeling extreme values. 
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1. Introduction 
Let (𝑋1,𝑋2, . . . ,𝑋𝑝)  be a continuous random vector 

with means 𝜇1, 𝜇2, . . . , 𝜇𝑝  variances 𝜎12,𝜎22, . . . ,𝜎𝑝2  and 
correlation coefficient 𝜌 . The extreme values o f 
( 𝑋1,𝑋2, . . . ,𝑋𝑝 )  are 𝑀 = 𝑚𝑚𝑚(𝑋1,𝑋2, . . . ,𝑋𝑝)  and 
𝑚 = 𝑚𝑚𝑚(𝑋1,𝑋2, . . . ,𝑋𝑝) . It is often of interest to 
know how 𝐸(𝑀) and 𝐸(𝑚) vary with respect to the 
means, variances and the correlation coefficient. For 
example, Smith and Sardeshmukh (2000) find that 
"The change of variance is associated both with 
altered skewness and a change in high and low 
extremes". Griffiths et al. (2005) use the change in 
mean temperature as a predictor of extreme 
temperature change in the Asia-Pacific region. Karl et 
al. (2008) observe that "A relatively small shift in the 
mean produces a larger change in the number of 
extremes for both temperature and precipitation". 
Nicholls (2008) argues the need for careful statistical 
analysis "since the likelihood of individual extremes, 
such as a late spring frost, could change due to 
changes in variability as well as changes in the mean 
climate". Burton and Allsop (2009) observe that "In 
recent years, there has been an increasing tendency to 
use mean speeds to predict extremes". 

In the extreme value literature, only four papers 
have studied the distributions of 𝑀 and 𝑚 with respect 

to the means, variances and the correlation coefficient: 
Ker (2001), Lien (2005), Aksomaitis and Burauskaite-
Harju (2009), and Hakamipour et al. (2011). Ker 
(2001) supposes that (𝑋1,𝑋2) has a bivariate normal 
distribution. Lien (2005) supposes that (𝑋1,𝑋2) has a 
bivariate lognormal distribution. Aksomaitis and 
Burauskaite-Harju (2009) suppose that (𝑋1,𝑋2, . . . ,𝑋𝑝) 
has a multivariate normal distribution. Hakamipour et 
al. (2011) suppose that ( 𝑋1,𝑋2, . . . ,𝑋𝑝 ) follows a 
multivariate Pareto distribution due to Muliere and 
Scarsini (1987). As we can see, the first two of these 
papers are limited to the case 𝑝 = 2. The distributions 
considered by the first three papers (bivariate normal, 
bivariate lognormal, and multivariate normal) are not 
the most appropriate ones for modeling extreme 
values. Muliere and Scarsini’s (1987) multivariate 
Pareto distribution, the distribution considered by the 
fourth paper, suffers from discontinuity and has 
limited applicability. 

Bivariate and multivariate Pareto distributions 
have been the most popular distributions for modeling 
extremes. Among these, the most commonly known 
distribution due to Arnold (1983, Chapter 6) has the 
joint survivor function specified by 

𝐹� (𝑚1, 𝑚2, . . . , 𝑚𝑝)  = �1 + ∑ 𝑥𝑖
𝜃𝑖

𝑝
𝑖=1 �

−𝛼
 (1.1) 
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for 𝑚𝑖 > 0, 𝑚 = 1, 2, . . . , 𝑝, 𝜃𝑖 > 0,  𝑚 =  1,2, … , 𝑝  and 
𝛼 > 0 . This distribution has received widespread 
attention: Yeh (2004) studies extreme order statistics 
of (1.1); Li (2006) investigates tail dependence 
properties of (1.1); Cai and Tan (2007) propose (1.1) 
as a model for dependent risks; Vernic (2011) uses 
(1.1) to estimate tail conditional expectation, a popular 
measure of risk. 

For the multivariate Pareto distribution given by 
(1.1), standard calculations show that 

𝜇𝑖 = 𝜃𝑖
𝛼−1

,𝛼 > 1, (1.2) 

𝜎𝑖2 = 𝛼𝜃𝑖
2

(𝛼−1)2(𝛼−1) 
, 𝛼 > 2 (1.3) 

𝜌 = 1
𝛼
 (1.4) 

The aim of this short note is to study how 𝐸(𝑀) 
and 𝐸(𝑚) vary with respect to the means, variances 
and the correlation coefficient. The main results are 
Theorem 2.1, Theorem 2.2 and Theorem 2.3. 

The level of mathematics required in Section 2 is 
not high, but not less elementary than the mathematics 
used in Ker (2001), Lien (2005), Aksomaitis and 
Burauskaite-Harju (2009), and Hakamipour et al. 
(2011). We feel that the given results are important 
because of the prominence of multivariate Pareto 
distributions and because of the prominence of (1.1) in 
modeling extreme values. Besides, the results known 
on this topic have so far been limited for the bivariate 
case or distributions which are not most significant in 
modeling extreme values. 

2. Main results 
The main results in this section need the following 

lemma. 

Lemma 2.1. Define 

𝐼(𝑘, 𝑚,𝛼) = � 𝑚𝑘−1(1 + 𝑚𝑚)−𝛼𝑑𝑚
∞

0
. 

Then, 
𝐼(𝑘, 𝑚,𝛼) = 𝑚−𝑘𝐵(𝛼−𝑘,𝑘) 

for 𝑚 > 0 and 0 < 𝑘 < 𝛼, where 𝐵(𝑚, 𝑏) denotes the 
beta function defined by 

𝐵(𝑚, 𝑏) = � 𝑡𝑎−1(1 − t)b−1𝑑𝑡
1

0
 . 

▼Proof. Setting 𝑦 = 1/(1 + 𝑚𝑚), we can write 

𝐼(𝑘, 𝑚,𝛼) = � 𝑚𝑘−1(1 + 𝑚𝑚)−𝛼𝑑𝑚
∞

0
= 

= 𝑚−𝑘 � 𝑦𝛼−𝑘−1(1 − 𝑦)𝑘−1𝑑𝑦
1

0
 

= 𝑚−𝑘𝐵(𝛼 − 𝑘, 𝑘), 
where the final equality follows from the definition of 
the beta function.▲ 

Theorem 2.1 derives explicit expressions for the 
cumulative distribution functions of 𝑀 =
𝑚𝑚𝑚(𝑋1,𝑋2, . . . ,𝑋𝑝)  and 𝑚 = 𝑚𝑚𝑚(𝑋1,𝑋2, . . . ,𝑋𝑝) . 
Theorem 2.2 derives explicit expressions for the 𝑚th 
moment of 𝑀 = 𝑚𝑚𝑚(𝑋1,𝑋2, . . . ,𝑋𝑝)  and 𝑚 =
𝑚𝑚𝑚(𝑋1,𝑋2, . . . ,𝑋𝑝). Theorem 2.3 shows how 𝐸(𝑀𝑛) 
and 𝐸(𝑚𝑛) vary with respect to the means, variances 
and the correlation coefficient in (1.2)-(1.4).  

Theorem 2.1. L e t  ( 𝑋1,𝑋2, . . . ,𝑋𝑝 )  be distributed 
according to (1.1). Let 𝑀 =
𝑚𝑚𝑚(𝑋1,𝑋2, . . . ,𝑋𝑝)  and 𝑚 =
𝑚𝑚𝑚(𝑋1,𝑋2, . . . ,𝑋𝑝).  Then, 

Pr  (𝑀 ≤ 𝑚) = 1 −� �1 +
𝑚
𝜃𝑖
�
−𝛼𝑝

𝑖=1
 

+ � �1 +
𝑚
𝜃𝑖

+
𝑚
𝜃𝑗
�
−𝛼

1≤𝑖<𝑗≤𝑝

 

− � �1 +
𝑚
𝜃𝑖

+
𝑚
𝜃𝑗

+
𝑚
𝜃𝑘
�
−𝛼

1≤𝑖<𝑗<𝑘≤𝑝

 

+⋯+ (−1)𝑝 �1 + �
𝑚
𝜃𝑖

𝑝

𝑖=1
�
−𝛼

 

and  

Pr (𝑚 ≤ 𝑚) = 1 − �1 + �
𝑚
𝜃𝑖

𝑝

𝑖=1
�
−𝛼

 

for 𝑚 > 0. 
▼Proof. We have  

Pr  (𝑀 ≤ 𝑚) = Pr  �max�𝑋1, … ,𝑋𝑝� ≤ 𝑚� 

= Pr ��(𝑋𝑖 ≤ 𝑚)
𝑝

𝑖=1

� 

= 1 − Pr��(𝑋𝑖 > 𝑚)
𝑝

𝑖=1

� 

= 1 −�Pr (𝑋𝑖 > 𝑚)
𝑝

𝑖=1

 

 + � Pr �𝑋𝑖 > 𝑚�𝑋𝑗 > 𝑚�
1≤𝑖<𝑗≤𝑝

 

− � Pr �𝑋𝑖 > 𝑚�𝑋𝑗 > 𝑚�𝑋𝑘 > 𝑚� 
1≤𝑖<𝑗<𝑘≤𝑝

 

+⋯  + (−1)𝑝Pr ��(𝑋𝑖 > 𝑚)
𝑝

𝑖=1

� 

= 1 −��1 +
𝑚
𝜃𝑖
�
−𝛼

𝑝

𝑖=1

 

+ � �1 +
𝑚
𝜃𝑖

+
𝑚
𝜃𝑗
�
−𝛼

1≤𝑖<𝑗≤𝑝
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− � �1 +
𝑚
𝜃𝑖

+
𝑚
𝜃𝑗

+
𝑚
𝜃𝑘
�
−𝛼

1≤𝑖<𝑗<𝑘≤𝑝

 

+⋯  + (−1)𝑝 �1 + �
𝑚
𝜃𝑖

𝑝

𝑖=1

�

−𝛼

 

and  
Pr  (𝑚 ≤ 𝑚) = 1 − Pr (𝑚 > 𝑚) 

= 1 − Pr  (min(𝑋1, … ,𝑋𝑛) > 𝑚) 

= 1 − Pr��(𝑋𝑖 > 𝑚)
𝑝

𝑖=1

� 

= 1 − �1 + �
𝑚
𝜃𝑖

𝑝

𝑖=1

�

−𝛼

. 

The proof is complete.▲ 

Theorem 2.2. Let ( 𝑋1,𝑋2, . . . ,𝑋𝑝 ) be distributed 
according to (1.1). Let 𝑀 =
𝑚𝑚𝑚(𝑋1,𝑋2, . . . ,𝑋𝑝)  and 𝑚 =
𝑚𝑚𝑚(𝑋1,𝑋2, . . . ,𝑋𝑝). Let 

𝐴𝑖1 …𝑖𝑘 = �
1
𝜃𝑖𝑙

𝑘

𝑙=1

 

for 1 ≤ 𝑚1 < ⋯ < 𝑚𝑘 ≤ 𝑝. Then, 
 
 
 

 
 

𝐸(𝑀𝑛 ) = 𝑚𝐵(𝛼 − 𝑚,𝑚) ��𝐴𝑖−𝑛
𝑝

𝑖=1

− � 𝐴𝑖𝑗−𝑛

1≤𝑖<𝑗≤𝑝

+ � 𝐴𝑖𝑗𝑘−𝑛

1≤𝑖<𝑗<𝑘≤𝑝

− ⋯− (−1)𝑝𝐴1⋯𝑝−𝑛 � 

and 
𝐸(𝑚𝑛) = 𝑚𝐵(𝛼 − 𝑚,𝑚)𝐴1⋯𝑝−𝑛  

for 𝑚 < 𝛼. 
▼Proof. Using Theorem 2.1, we can write 

𝐸(𝑀𝑛) = 𝑚� 𝑚𝑛−1𝑃𝑃(𝑀 > 𝑚)𝑑𝑚
∞

0
 

= 𝑚�� 𝑚𝑛−1 �1 +
𝑚
𝜃𝑖
�
−𝛼
𝑑𝑚

∞

0

𝑝

𝑖=1

− 𝑚 � � 𝑚𝑛−1 �1 +
𝑚
𝜃𝑖

+
𝑚
𝜃𝑗
�
−𝛼

𝑑𝑚
∞

01≤𝑖<𝑗≤𝑝

 

+𝑚 � � 𝑚𝑛−1 �1 +
𝑚
𝜃𝑖

+
𝑚
𝜃𝑗

+
𝑚
𝜃𝑘
�
−𝛼

𝑑𝑚
∞

01≤𝑖<𝑗<𝑘≤𝑝

−⋯− 𝑚(−1)𝑝 � 𝑚𝑛−1 �1 + �
𝑚
𝜃𝑖

𝑝

𝑖=1

�

−𝛼

𝑑𝑚
∞

0
 

= 𝑚� I(𝑚,𝐴𝑖 ,𝛼)
𝑝

𝑖=1

− 𝑚 � I(𝑚,𝐴𝑖 ,𝛼)
1≤𝑖<𝑗≤𝑝

+ 𝑚 � I�𝑚,𝐴𝑖𝑗𝑘 ,𝛼�
1≤𝑖<𝑗<𝑘≤𝑝

− ⋯− 𝑚(−1)𝑝𝐼�𝑚,𝐴1⋯𝑝,𝛼� 

= 𝑚�𝐴𝑖−𝑛𝐵(𝛼 − 𝑚,𝑚)
𝑝

𝑖=1

− � 𝐴𝑖𝑗−𝑛𝐵(𝛼 − 𝑚,𝑚)
1≤𝑖<𝑗≤𝑝

 

+𝑚 � 𝐴𝑖𝑗𝑘−𝑛𝐵(𝛼 − 𝑚,𝑚)
1≤𝑖<𝑗<𝑘≤𝑝

− ⋯− 𝑚(−1)𝑝𝐴1⋯𝑝−1 𝐵(𝛼 − 𝑚,𝑚), 

 
where the last step follows from Lemma 2.1. Also 
using Theorem 2.1, we can write 

𝐸(𝑚𝑛) = 𝑚� 𝑚𝑛−1 Pr(𝑚 > 𝑚)
∞

0
𝑑𝑚 

= 𝑚� 𝑚𝑛−1 �1 + �
𝑚
𝜃𝑖

𝑝

𝑖=1

�

−𝛼

𝑑𝑚 
∞

0
 

= 𝑚𝐼�𝑚,𝐴1⋯𝑝,𝛼� 

= 𝑚𝐴1⋯𝑝−𝑛 𝐵(𝛼 − 𝑚,𝑚), 

where the last step follows from Lemma 2.1. The 
proof is complete.▲ 

Theorem 2.3. Let ( 𝑋1,𝑋2, . . . ,𝑋𝑝 ) be distributed 
according to (1.1). Let 𝑀 =
𝑚𝑚𝑚(𝑋1,𝑋2, . . . ,𝑋𝑝)  and 𝑚 =
𝑚𝑚𝑚(𝑋1,𝑋2, . . . ,𝑋𝑝). Then, 

(a) E(Mn) is an increasing function of ρ for ρ < 1/n; 
(b) E(mn) is an increasing function of ρ for ρ < 1/n; 
(c) E(mn) is an increasing function of µi; 
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(d) E(mn) is an increasing function of σi; 
(e) V ar(m) is an increasing function of ρ for ρ < 1/2; 
(f ) V ar(m) is an increasing function of µi; 
(g) V ar(m) is an increasing function of σi. 

▼Proof. Since 

 
 
 
 

𝐸(𝑀𝑛) = 𝑚𝐵(𝛼 − 𝑚,𝑚) ��𝐴𝑖−𝑛
𝑝

𝑖=1

− � 𝐴𝑖𝑗−𝑛

1≤𝑖<𝑗≤𝑝

+ � 𝐴𝑖𝑗𝑘−𝑛

1≤𝑖<𝑗<𝑘≤𝑝

− ⋯− (−1)𝑝𝐴1⋯𝑝−𝑛 � 

= 𝑚
𝛤(𝛼 − 𝑚)𝛤(𝑚) 

𝛤(𝛼) ��𝐴𝑖−𝑛
𝑝

𝑖=1

− � 𝐴𝑖𝑗−𝑛

1≤𝑖<𝑗≤𝑝

+ � 𝐴𝑖𝑗𝑘−𝑛

1≤𝑖<𝑗<𝑘≤𝑝

− ⋯− (−1)𝑝𝐴1⋯𝑝−𝑛 � 

=
𝑚!

(𝛼 − 𝑚)⋯ (𝛼 − 1) ��𝐴𝑖−𝑛
𝑝

𝑖=1

− � 𝐴𝑖𝑗−𝑛

1≤𝑖<𝑗≤𝑝

+ � 𝐴𝑖𝑗𝑘−𝑛

1≤𝑖<𝑗<𝑘≤𝑝

− ⋯− (−1)𝑝𝐴1⋯𝑝−𝑛 �, 

 
we see that 𝐸(𝑀𝑛) is a decreasing function of 𝛼 for 
𝛼 > 𝑚  and hence an increasing function of ρ  for 
ρ < 1/n. Since 

𝐸(𝑚𝑛) = 𝑚𝐵(𝛼 − 𝑚,𝑚)𝐴1⋯𝑃−𝑁  

= 𝑁𝐴1⋯𝑃−𝑁 𝛤(𝛼 − 𝑚)𝛤(𝑚) 
𝛤(𝛼)  

= 𝐴1⋯𝑃−𝑁 𝑚!
(𝛼 − 𝑚)⋯ (𝛼 − 1), 

we see that 𝐸(𝑚𝑛) is a decreasing function of 𝛼 for 
𝛼 > 𝑚  and hence an increasing function of ρ  for 
ρ < 1/n. Since 

𝐸(𝑚𝑛) = 𝑚𝐵(𝛼 − 𝑚,𝑚)𝐴1⋯𝑃−𝑁  

= 𝑁𝐵(𝛼 − 𝑚,𝑚)��
1
𝜃𝑖

𝑝

𝑖=1

�

−𝑛

 

= 𝑚𝐵(𝛼 − 𝑚,𝑚)(𝛼 − 1)𝑛 ��
1
𝜇𝑖

𝑝

𝑖=1

�

−𝑛

, 

where the last equality follows by (1.2), we see that 
𝐸(𝑚𝑛) is an increasing function of 𝜇𝑖. Since 

𝐸(𝑚𝑛) = 𝑚𝐵(𝛼 − 𝑚,𝑚)��
1
𝜃𝑖

𝑝

𝑖=1

�

−𝑛

 

= 𝑚𝐵(𝛼 − 𝑚,𝑚)
(𝛼 − 1)𝑛(𝛼 − 2)𝑛/2

𝛼𝑛/2 ��
1
𝜎𝑖

𝑝

𝑖=1

�

−𝑛

, 

where the last equality follows by (1.3), we see that 
𝐸(𝑚𝑛) is an increasing function of 𝜎𝑖. Since 

𝑉 𝑚𝑃(𝑚) = 𝐸(𝑚2) − 𝐸2(𝑚) 
= 𝐴1⋯𝑝−2 [2𝐵(𝛼 − 2,2) − 𝐵2(𝛼 − 1,1)] 

= 𝐴1⋯𝑝−2 �
2Γ(𝛼 − 2) 

Γ(𝛼) −
Γ2(𝛼 − 2) 
Γ2(𝛼) � 

= 𝐴1⋯𝑝−2 𝛼
(𝛼 − 1)2(𝛼 − 2) , 

we see that 𝑉 𝑚𝑃(𝑚) is a decreasing function of 𝛼 for 
𝛼 > 2  and hence an increasing function of ρ  for 
ρ < 1/2. Since 

𝑉 𝑚𝑃(𝑚) = 𝐴1⋯𝑝−2 𝛼
(𝛼 − 1)2(𝛼 − 2) 

= ��
1
𝜇𝑖

𝑝

𝑖=1

�

−2
𝛼

𝛼 − 2
 , 

where the last equality follows by (1.2), we see that 
𝑉 𝑚𝑃(𝑚) is an increasing function of 𝜇𝑖. Since 

𝑉 𝑚𝑃(𝑚) = 𝐴1⋯𝑝−2 𝛼
(𝛼 − 1)2(𝛼 − 2) = ��

1
𝜎𝑖

𝑝

𝑖=1

�

−2

, 

where the last equality follows by (1.3), we see that 
𝑉 𝑚𝑃(𝑚) is an increasing function of 𝜎𝑖.▲ 
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