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Malicious applications are widespread for Android despite the taken serious actions by the operating system. 
Static and dynamic analysis techniques are utilized to detect malware by identifying the signatures of malicious 
applications by inspecting both the resources and behaviors of malware, respectively. In this study, what static 
analysis can utmost offer to detect malware in Android ecosystem is discussed and experimented on common-
ly used datasets in the literature by proposing a novel Android malware detection approach based on static 
analysis techniques. With the proposed study, the effectiveness of novel static analysis features’ in terms of 
detecting malware in Android ecosystem are proved. These features were underestimated by the related work 
in the literature. The experimental result shows that the proposed Android malware detection approach is very 
effective in terms of detecting Android malware. Each feature used by the proposed approach is evaluated by 
using different types of machine learning techniques in order to highlight its impact on detecting malware and 
inform the digital investigators. The accuracy of the proposed static analysis approach is calculated as high as 
0.987 for 10,865 applications.
KEYWORDS: Android malware, Android malware detection, static analysis, machine learning, Android.

1. Introduction
Android is an open source mobile operating sys-
tem which is owned by Google and powered by the 
contribution of eighty-four technology and mobile 
companies under a group named Open Handset Alli-
ance (OHA)1. During Google I/O 2017, Google has an-

1  https://www.openhandsetalliance.com

nounced that there are more than 2 billion monthly 
active Android devices in use around the world [15, 
59]. According to a recent report by Statista, with be-
ing used by 87.7% of smartphones, Android has dom-
inated the global smartphone market in the second 
quarter of 2017 [73]. The reasons behind this domina-
tion can be listed as follows: (1) Being an open source 
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operating system which makes it possible to install 
and customize for free [85], (2) ability to extend the 
default features of operating system by installing a 
large number of applications which are available in 
the official application market (namely Play Store2) 
[46], (3) being powered by a group of eighty-four com-
panies which contain some widely used hardware 
manufacturers such as Samsung, LG, Sony. Unfortu-
nately, this huge popularity attracts the attention of 
malicious application developers. According to the 
security researchers at Check Point, about 2 million 
Android users are affected from a malware dubbed as 
‘FalseGuide’ which hides its malicious action in over 
forty fake companion guide applications for popular 
mobile games such as Pokemon Go and FIFA Mobile 
[47]. The Android malware ‘Judy’ is thought to reach 
as many as 36.5 million users on Play Store [53, 78]. 
Android malware aims (1) privilege escalation, (2) 
turning the infected devices into bots for remote con-
trol, (3) causing financial charges to infected users, 
and (4) sensitive information collection [7, 29, 35, 40, 
45, 57, 62, 69, 76, 81, 82, 84-87, 90]. Despite this popu-
larity and the level of threat, many researchers report 
the lack of security awareness of Android users [9, 27, 
33, 38, 41, 45, 54, 72,  85]. Android application devel-
opers are required to explicitly declare the permis-
sions that the developed application needs to demand 
from users through the use of provided classes and 
methods of Android API (Application Programming 
Interface). The practice recommended by Android 
official documentation while developing Android 
applications is minimizing the number of permis-
sions that the application requires which are defined 
in application manifest file (AndroidManifest.xml) 
[68]. Since when a necessary permission is not de-
fined in AndroidManifest.xml the application crashes, 
developers tend to demand more permissions than 
the application actually needs [30]. For this reason, 
some tools such as PScout [79] and Androguard3 are 
proposed. Despite the existence of these tools, An-
droid application developers cannot solely rely on 
these tools since (1) Android API is being updated 
regularly, and (2) these tools are based on program 
analysis [10]. Also, it is reported that some research-

2 https://play.google.com/store

3 https://github.com/androguard/androguard

ers find the official Android documentation is incom-
plete which leads applications to be overprivileged 
[30, 79]. The Android security mechanism is solely 
based on permissions which are needed to be grant-
ed by the users in order to let Android applications 
access sensitive contents such as contacts, messages 
or hardware such as camera, telephony [11, 24, 30, 4, 
51]. Despite its importance, a report that measures 
the awareness and interest level of Android users for 
the permissions mechanism shows that while 42% 
of participants are even unaware of the existence of 
permissions, only 17% of participants pay attention 
to permissions during the installation process [31]. 
Google Play Protect is announced during Google I/O 
2017 which is an always-on service bundled with the 
Play Store application and scans the installed appli-
cations on device regularly in order to ensure that the 
applications remain benign over the time [4, 21]. Ac-
cording to Android Security Center, Google Play Pro-
tect checks applications, settings and critical securi-
ty data from over 2 billion Android devices and over 
than 50 billion applications are verified per day by 
comparing application behavior across these devices 
thanks to the used machine learning techniques [67]. 
Android malware detection approaches are gener-
ally divided into two categories: (1) Static analysis, 
and (2) dynamic analysis. Static analysis approaches 
use reverse engineering techniques to obtain appli-
cation source files in order to detect malicious appli-
cations without executing applications [3, 27, 32, 34, 
90]. The other one, dynamic analysis approaches ex-
ecute applications in a controlled and instrumented 
environment such as a sandbox or a virtual machine 
in order to monitor their runtime behavior such as 
network access, memory modifications, and track 
dynamic taint 76]. The main objective of this study 
is revealing what can static analysis utmost offer for 
Android malware detection with the use of resources 
of applications. For this reason, a novel static analysis 
approach is proposed which introduces some nov-
el features. The proposed approach combines these 
static analysis features with various machine learn-
ing techniques. The proposed approach is evaluat-
ed on large and commonly used datasets in order to 
make a conclusion about the effectiveness of the used 
static analysis features. The rest of the paper is struc-
tured as follows: Section 2 presents the related work. 
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Section 3 describes the proposed static analysis tech-
nique with explaining how each feature is extracted. 
Section 4 discusses the findings and the experimental 
result. Finally, Section 5 concludes the paper with fu-
ture directions.

2. Related Work
In this section, Android malware detection approach-
es are briefly reviewed. Android malware detection 
approaches are generally classified through the tech-
nique they use: (1) Static analysis techniques, and (2) 
dynamic analysis techniques.

2.1. Static Analysis
Kirin [27] is a security service that evaluates an ap-
plication’s demanded permissions and checks them 
against a set of security rules to mitigate malware at 
installation time by modifying the Android Applica-
tion Installer. Kirin solely relies on the permissions 
defined in AndroidManifest.xml file rather than ex-
amining whether these permissions are actually 
used by the application. SCanDroid [32] extracts the 
information from the Android manifest file and ap-
plication source code which are used to decide if the 
application may lead to unwanted information flows. 
Stowaway [30] uses static analysis techniques in or-
der to detect the overprivilege by mapping the set of 
API calls that an application uses with the related 
permissions. Stowaway is evaluated with a set of 940 
applications and the experimental result shows that 
one-third of these applications are overprivileged. 
DroidAPIMiner [1] conducts a frequency analysis 
to capture the most relevant API calls and utilizes 
top malware used APIs as features. Then these fea-
tures are used within KNN (K-Nearest Neighbors) 
algorithm to classify applications as malicious or 
benign. Drebin [6] uses static analysis to gather the 
characteristics of Android applications. Then Drebin 
utilizes SVM (Support Vector Machines) to classify 
applications as malicious or benign. Apex [55] makes 
dynamic permission revocation possible which lets 
the user revoke granted permissions when the ap-
plication is installed. APK Auditor [39] is a permis-
sion-based static analysis system which extracts the 
permissions of application defined on the Android 
manifest file and calculates a novel malware score for 

each application based on the usage of permissions. 
The calculated score is compared to the malware 
threshold limit which is determined by using logistic 
regression on the database that stores previously an-
alyzed both malicious and benign applications. Then 
APK Auditor classifies an application as malicious if 
the calculated score exceeds the malware threshold 
limit. SAMADroid [8] proposes Android malware de-
tection model based on the three different levels such 
as (1) static and dynamic analysis, (2) local and the re-
mote host, and (3) machine learning intelligence. The 
static analysis features that SAMADroid are based 
on both the AndroidManifest.xml file (e.g., requested 
hardware components, requested permissions, and 
application components) and the detected API calls. 
Sayfullani et al. [66] presented a static algorithm 
based on the extraction of resources from the .apk file 
of applications, namely, (1) AndroidManifest.xml, (2) 
classes.dex which contains the compiled source files 
in .dex format, and (3) resources.arsc which contains 
the compiled resources. They propose Normalized 
Bernoulli Naive Bayes classifier which is an improved 
Naive Bayes classifier that resulted in higher accura-
cy according to the experimental result. Bao et al. [10] 
proposed two static analysis approaches which are 
(1) the approach that utilizes a collaborative filtering 
technique inspired by the intuition that applications 
that have similar features usually demand similar 
permissions, (2) the approach recommends permis-
sions thanks to a technique that utilizes Naive Bayes 
multinomial classification algorithm to build a pre-
diction model by analyzing the descriptions of appli-
cations which are available on Play Store. The limita-
tions of this approach are (1) it detects API usages by 
the existence of related import statements but not ev-
ery declared import statement is used by source code 
which is also known as unused import statement, and 
(2) it only considers classes from Android SDK and 
Java standard libraries but developers define their 
own classes thanks to the inheritance mechanism 
provided by Java programming language. APPSPEAR 
[48] is an automated Android unpacking system for 
both Dalvik and ART (Android Runtime) Android 
application runtime environments that are proposed 
to overcome code protections which are commonly 
used by malware to hide their malicious aims as Sy-
mantec reports that the ratio of packed malware has 
increased to 25% by August 2016 [70]. DroidDet [91] 
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is a static analysis tool that utilizes Rotation Forest as 
the machine learning algorithm based on the static 
analysis features such as permissions, system events, 
and the rate of sensitive APIs.

2.2. Dynamic Analysis

Crowdroid [14] traces Linux system calls, converts 
them into feature vector in order to use as the features 
of utilized K-means clustering algorithm. MADAM (a 
Multi-level Anomaly Detector for Android Malware) 
[25] is a dynamic analysis tool that combines fea-
tures at the kernel-level and at the application level 
and utilizes machine learning techniques to perform 
malware analysis. The major drawback of MADAM is 
that it performs monitoring and analyzing processes 
on the device which is not applicable since mobile de-
vices generally have limited computation (e.g., CPU) 
and storage capabilities (e.g., memory, disk, battery) 
[25, 50, 77]. Some dynamic analysis approaches [13, 
37, 44] utilize power consumption as the main feature 
for malware detection. This approach surely is use-
ful to detect malware which is specifically designed 
to consume the battery of device but this approach 
is very limited when the large varieties of Android 
malware are considered [3, 88]. TaintDroid [26] is 
dynamic taint-tracking and analysis system that si-
multaneously tracks sensitive data such as location, 
microphone, and camera. They report that 15 appli-
cations of randomly selected 30 popular applications 
have reported locations of users to a remote server 
for advertising. In addition to that, approximately 
one-third of the applications have exposed some in-
formation about the phone which is specific to the 
device. Paranoid Android [60] transfers the execution 
trace recorded by a tracer located in the smartphone 
to a server located in the cloud which replays the ex-
ecution trace within the replica of the mobile phone. 
Canfora et al. [17] proposed an Android malware de-
tection approach based on sequences of system calls. 
They use machine learning techniques in order to 
associate sequences of system calls with malicious 
behaviors. The biggest advantage of this approach is 
that it is able to cope with the dynamism of the mo-
bile application ecosystem which is commonly un-
derestimated by the related work since it can detect 
unknown malware. SAMADroid [8] analyzes the trac-
es generated by system calls during the execution of 

an Android application. DroidTrace [89] is a ptrace4 
based dynamic analysis system with forward execu-
tion capability which utilizes the ptrace to monitor 
calls of a process in order to classify the payloads be-
haviors through the system calls.

3. Material and Method
In this section, the detail of the proposed approach 
and the dataset which is used to evaluate it are de-
scribed in the following subsections. 

3.1. Data Collection Process
The approach proposed in [38] is used to fetch appli-
cations from Play Store which constructs the benign 
application dataset of the proposed approach. Appli-
cations stored in Play Store are downloaded by the 
usage of a website named APKPure which provides 
an introduction webpage that contains information 
about each application. Alongside that, this webpage 
also provides a link to download the apk (Android 
Package) file of the application which is an archive file 
that contains whole resources of the application. The 
applications that construct the benign dataset of the 
proposed approach are selected from top charts in or-
der to decrease the probability of being malicious [17] 
and belong to different categories (e.g., games, edu-
cation, business, family, communication, medical) in 
order to reflect the variety of applications in Android 
ecosystem. Applications’ titles are retrieved from the 
website of Play Store utilizing web mining techniques 
and the related package names are extracted from the 
Play Store URLs (Unified Resource Locator) of appli-
cations which can be retrieved from the path variable 
“id”. Then the APKPure introduction webpage of the 
related application is retrieved programmatically us-
ing the following URL pattern: “https://apkpure.com/
application-title/package_name” with converting the 
title to lowercase format with replacing the spaces 
with “_”. Similar to the application’s title, the down-
load link of each application is extracted from APK-
Pure utilizing web mining techniques since APKPure 
does not provide any APIs to retrieve the metadata 
about an Android application which is stored on its 
knowledge-base. The whole process of downloading 
applications from Play Store is presented in Fig. 1.

4  ptrace is a Unix system call which enables one process to ob-
serve and control the execution of another process.
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Figure 1
The whole process of downloading applications from Play Store

Table 1 
The overview of the constructed dataset used by the 
proposed static analysis approach

Dataset Type Number of 
Samples

Applications collected 
from Play Store Benign 2,902

Drebin [6] Malicious 5,373

Android Genome Project 
[90] Malicious 1,260

F-Droid [28] Malicious 1,123

3.2. Dataset Information
Malicious applications are obtained from datasets 
which are widely used in the literature such as Dre-
bin [6], Android Genome Project, and F-Droid [28]. To 
the best of my knowledge, Drebin is one of the biggest 
Android malware datasets available which contains 
malware that belong to 179 different malware fam-
ilies. As a total, the whole dataset used by the pro-
posed static analysis approach contains 10,658 appli-
cations as the overview of the constructed dataset is 
listed in Table 1.

3.3. The Features of Proposed Static Analysis 
Approach
The features of the proposed static analysis approach 
are obtained from both (1) AndroidManifest.xml which 
is the file that contains declarations for the applica-
tion’s core components (e.g., activities, services, per-
missions), and (2) the application source code files 
(Java files) which are obtained by using reverse engi-
neering techniques. The features extracted from the 
AndroidManifest.xml are (1) the number of activities, 
(2) the number of services, (3) the number of receivers, 
(4) the number of features, (5) the number of dangerous 
permissions, (6) the number of custom permissions, and 
(7) the number of other permissions. Unlike the other 
related static analysis approaches, the feature number 
of permissions are divided into three categories as (1) 
“dangerous” permissions which require users to grant 
them explicitly [63], (2) “custom” permissions which 
are defined by developers and not the ones Android 
operating system defines [23], and (3) “other” permis-
sions indicate the permissions which do not belong 
to the first two categories. The only feature which is 
obtained from the decompiled Java source files is the 
number of lines of code (loc) of the application. To the 
best of our knowledge, this feature is novel since it has 
not been used by any related work. The features which 
are used by the proposed static analysis approach are 
listed in Table 2 with their sources and descriptions.
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3.4. Extracting Features from APK File
The downloaded apk files are extracted using an open 
source third-party tool named Apktool [5]. Apktool 
extracts the AndroidManifest.xml and the compiled 
dex (Dalvik executable) file (classes.dex) from the 

Table 2 
The features which are used by the proposed static analysis approach with their sources and descriptions

Feature Source Description

Number of activities AndroidManifest.xml The number of activities defined on the AndroidManifest.xml file

Number of services AndroidManifest.xml The number of services defined on the AndroidManifest.xml file
Number of receivers AndroidManifest.xml The number of receivers defined on the AndroidManifest.xml file
Number of features AndroidManifest.xml The number of features defined on the AndroidManifest.xml file
Number of dangerous 
permissions AndroidManifest.xml The number of dangerous permissions defined on the 

AndroidManifest.xml file
Number of custom 
permissions AndroidManifest.xml The number of custom permissions defined on the 

AndroidManifest.xml file
Number of other 
permissions AndroidManifest.xml The number of other permissions defined on the 

AndroidManifest.xml file
Number of lines of 
code Decompiled source code files The total number of lines of code that decompiled Java source 

files contain

apk file. The aapt (Android Asset Packaging Tool) is 
a command line utility which comes bundled with 
Android SDK (Software Development Kit) [65]. A 
service, which is implemented using Java program-
ming language, is used to (1) extract the apk file using 

Figure 2 
The whole process of extracting features of the proposed static analysis approach
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Apktool, (2) read the contents of the extracted An-
droidManifest.xml file using the aapt utility, and (3) 
extract the number of lines of code of the application. 
In order to extract the feature number of lines of code 
of the application, the implemented service decom-
piles the extracted dex file into the jar (Java archive) 
using an open source third-party tool named dex2jar 
[61].  Then the jar file is extracted into the Java source 
files using another open source third-party command 
line tool named jd-cmd [16]. Finally, the implement-
ed service counts the number of lines of code of each 
extracted Java file recursively. The whole process of 
extracting features of the proposed static analysis ap-
proach is presented in Fig. 2.

4. Result and Discussion
The proposed static analysis approach was utilized 
with various machine learning algorithms in order 
to reveal which algorithm provides the best perfor-
mance in terms of accuracy. Since the problem is a 
classification problem, the performance of the pro-
posed system can be evaluated by using the confusion 
matrix. While positive means malicious applications, 
negative means benign applications. The terms TP 
(True Positive), TN (True Negative), FP (False Posi-
tive), and FN (False Negative) refer to the number of 
true positive instances, the number of true negative 
instances, the number of false positive instances, and 
the number of false negative instances, respectively. 
The performance of the proposed static analysis ap-
proach is evaluated by using five indexes namely ac-
curacy, precision, recall, F-measure, and MCC (Mat-
thews Correlation Coefficient) which are calculated as 
the following equations:
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experimental results listed in Table 3 show the novel feature number of lines of code provides the best information 
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Precision is the proportion of the number of correct-
ly identified malware to the total number of malware. 

Recall or true-positive rate (TPR) is the percentage of 
malware correctly identified. F-measure is the har-
monic mean of the precision and recall. MCC is a cor-
relation coefficient between the observed and predict-
ed binary classifications, and is a value between -1 and 
1. Whilst a coefficient of 1 indicates a perfect predic-
tion, -1 indicates an inverse prediction. A coefficient of 
0 indicates an average random prediction [64].

4.1. Feature Selection
Feature selection is a key process of machine learn-
ing in order to increase the accuracy of the system’s 
prediction. For this reason, the information gain of 
each feature is experimented. In order to experiment 
the information gain each used feature provides, Cor-
relationAttributeEval attribute evaluator, which eval-
uates the worth of an attribute by measuring the cor-
relation between it and the class [12, 20, 42, 43, 56], is 
used with the Ranker search method. As the experi-
mental results listed in Table 3 show the novel feature 
number of lines of code provides the best information 
gain. Also, the feature number of other permissions 
provides the worst information gain which proves 
the categorization of permissions is useful in order to 
effectively classify applications through the permis-
sions they demand.

Table 3
Information gain of each feature used by the proposed 
static analysis approach

Feature Information Gain

Number of lines of code 0.808

Number of activities 0.363

Number of services 0.326

Number of receivers 0.324

Number of dangerous permissions 0.224

Number of custom permissions 0.177

Number of features 0.166

Number of other permissions 0.061

4.2. Evaluation of Machine Learning 
Algorithms
Various machine learning (ML) algorithms are uti-
lized in order to compare their performance in terms 
of detecting malware. For this reason, the proposed 
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static analysis approach is evaluated with ten differ-
ent machine learning algorithms namely (1) KNN, 
(2) BayesNet, (3) NaiveBayes, (4) Logistic Regres-
sion, (5) SVM, (6) J48, (7) RandomForest, (8) Ran-
domTree, (9) Bootstrap Aggregation (Bagging), and 
(10) AdaBoost. KNN is configured according to the 
number of neighbors. For the experiment, the num-
ber of neighbors is set to 1, 5, and the algorithms are 
named KNN1, KNN5, respectively. Random Forest is 
a forest that consists of configurable number of de-
cision trees [80]. For the experiment, the number of 
decision trees is set to 100, 1000, and the algorithms 
are named RandomForest100, RandomForest1000, 
respectively. SMO (Sequential Minimal Optimiza-
tion) algorithm is an improved training algorithm 
for SVM [58, 71] which is provided by Weka5, an 
open source widely used data mining software. 
SMO-npolykernel (SMO-normalizedpolykernel) and 
SMO-polykernel are implementations of the SMO 
algorithm according to the related kernel functions 
which are provided by Weka. 10-fold cross-valida-
tion is employed for the evaluation of each algorithm. 

Thus, 9,539 samples are used for training, while the 
remaining 1,065 samples are used for testing. In 10-
fold cross-validation, the dataset is randomly parti-
tioned into ten equal sized parts where a single part 
is used for testing and the remaining nine parts are 
used for training. Since this process is repeated ten 
times, the whole dataset is used for both training and 
testing with ensuring that all samples are used once 
for validation [52]. The metrics that are used for the 
evaluation of each algorithm are precision, recall, 
F-measure, and MCC because of they are commonly 
used evaluation metrics by the related work [2, 10, 19, 
22, 36, 46, 52, 74,  80,  83,  85, 87-88]. As the evaluation 
result of the proposed static analysis approach when 
it is utilized with a wide range of algorithms is list-
ed in Table 4, the precision, recall, and F-measure of 
the proposed static analysis approach are calculated 
as high as 0.987 when the system is utilized with the 
RandomForest algorithm and the number of decision 
trees is set to 1,000. The same configuration produces 
the highest MCC value (0.966) as well.

Table 4
Performance comparison of the proposed static analysis approach when it is evaluated with various machine 
learning algorithms

ML Algorithm Precision Recall F-measure MCC

KNN1 0.977 0.977 0.977 0.943

KNN5 0.977 0.977 0.977 0.942

BayesNet 0.974 0.974 0.974 0.934

NaiveBayes 0.969 0.968 0.968 0.921

Logistic Regression 0.983 0.983 0.983 0.957

SMO-polykernel 0.976 0.975 0.975 0.938

SMO-npolykernel 0.967 0.967 0.967 0.917

J48 0.982 0.982 0.982 0.953

RandomForest100 0.986 0.986 0.986 0.965

RandomForest1000 0.987 0.987 0.987 0.966

RandomTree 0.98 0.98 0.98 0.951

Bagging 0.984 0.984 0.984 0.961

AdaBoost 0.982 0.982 0.982 0.954
5

5 https://www.cs.waikato.ac.nz/ml/weka/
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Table 5 
Comparison of the proposed work with the related work in terms of utilized analysis technique and used features

Related Work Analysis Technique Used Features

SCanDroid [32] Static analysis Android manifest file and decompiled application source code

Stowaway [30] Static analysis Android manifest file and decompiled application source code

DroidAPIMiner [1] Static analysis Decompiled application source code

Drebin [6] Static analysis Android manifest file and decompiled application source code

APK Auditor [39] Static analysis Android manifest file

DroidDet [91] Static analysis Android manifest file and decompiled application source code

Crowdroid [14] Dynamic analysis Monitored system calls

MADAM [25] Dynamic analysis Monitored system calls and system resources

[13], [37], [44] Dynamic analysis Monitored power consumption

TaintDroid [26] Dynamic analysis Tracked taints during program execution

Paranoid Android [60] Dynamic analysis Execution trace of the program

[17] Dynamic analysis Monitored system calls

SAMADroid [8] Dynamic analysis Traces generated by system calls

DroidTrace [89] Dynamic analysis Monitored process calls

When the Android malware is investigated, it has 
been noticed that Android malware vary by the way 
they target to harm the device. Whilst some malicious 
applications tend to harm end-users through the pro-
vided activities which let users interact with the ap-
plication like a benign one (i.e. playing a video game, 
sending a message, etc.), some others tend to utilize 
the services and receivers which contain some pow-
erful features that Android SDK provides to complete 
malicious actions in the background. The way that 
a malware completes its malicious action changes 
through the version of the Android operating system 
that is running on the victim’s device as the security 
mechanism of Android operating system evaluates. 
The main security mechanism of the Android op-
erating system that is applied to applications is per-
missions as it is discussed in Introduction. Hence, 
the permissions of each application are extracted 
and specifically categorized in a similar way Android 
operating system itself categorizes permissions. The 
proposed system’s malware detection mechanism is 
specifically designed not to base on a signature da-
tabase that consists of several signatures of malware 
since being able to detect zero-day malware.

There are many Android malware detection ap-
proaches based on static analysis techniques as some 
of these approaches are briefly described in Section 
2. Since the dataset used to evaluate the proposed 
Android malware detection approach is unique, it is 
not possible to directly compare the performances of 
related work in terms of malware detection accura-
cy. Instead of that, a comparison of the proposed ap-
proach with the related work in terms of utilized anal-
ysis technique and used features are listed in Table 5.

5. Conclusion
Static analysis techniques use static resources which 
are available before the installation and execution 
of Android applications. Since these resources con-
tain all the resources the applications use in order 
to perform their actions, techniques based on static 
analysis are very effective in terms of malware detec-
tion. In addition to that, static analysis is lightweight 
compared to dynamic analysis since there is no need 
to monitor the executions of applications which re-
quires various monitoring approaches to track taints 
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and monitor system resources. In this study, what 
static analysis can utmost offer for Android malware 
detection is experimented with the proposed ap-
proach which extracts features from static resourc-
es and utilizes various machine learning algorithms 
to detect malicious applications in a large dataset of 
10,658 Android applications which is combined from 
both widely-used datasets and a collected dataset of 
applications available in Play Store. According to the 
experimental result, the proposed approach’s accura-
cy is calculated as high as 0.987. The contributions of 
this study can be listed as follows:
 _ Effective malware detection. The proposed novel 

static analysis approach, which utilizes different 
types of machine learning algorithms, is capable of 
identifying Android malware with high accuracy.

 _ Zero-day malware detection. Since the proposed 
approach does not detect malicious applications 
through a signature database that consists of 
several signatures of malicious applications, it is 
designed to detect zero-day malware.

 _ Novel features. The proposed system uses some 
novel features such as the number of lines of code.

 _ Lightweight analysis. Linear time analysis and 
learning techniques are applied for efficiency. 
The proposed approach is capable of detecting 
malicious applications in larger datasets in a 
reasonable time.

 _ Explainable approach. The features used to train 
the proposed approach are explained and evaluated 
in order to reveal the efficiency of each feature. The 
feature which is utilized by the proposed approach 

for the first time “the number of lines of code” 
provides the best information gain alongside the 
used features which proves its efficiency.

 _ Expandable knowledge base. The proposed system’s 
knowledge base is expandable since it is capable of 
downloading Android applications from Play Store 
automatically.

 _ Fully automated mechanism. The proposed system 
is fully automated as the system accepts an apk file 
as the input and extracts all the features thanks to 
the developed pipeline architecture.

As a future work, the proposed approach may be en-
hanced by source code analysis in order to interpret 
the real intentions of API calls. Also, the proposed 
system’s knowledge base may be updated by includ-
ing newer malicious application datasets when they 
exist.
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