
179Information Technology and Control 2019/2/48

Optimized RRT-A* Path Planning
Method for Mobile Robots in
Partially Known Environment

ITC 2/48
Journal of Information Technology
and Control
Vol. 48 / No. 2 / 2019
pp. 179-194
DOI 10.5755/j01.itc.48.2.2139

Optimized RRT-A* Path Planning Method for Mobile Robots in
Partially Known Environment

Received 2018/08/05 Accepted after revision 2019/04/06

 http://dx.doi.org/10.5755/j01.itc.48.2.21390

Corresponding author: seraph_mx@163.com

Ben Beklisi Kwame Ayawli
College of Electrical Engineering and Control Science, Nanjing Tech University, China.
Computer Science Department, Sunyani Technical University, Sunyani, Ghana, email: bbkayawli@yahoo.com

Xue Mei, Mouquan Shen
College of Electrical Engineering and Control Science, Nanjing Tech University, China

Albert Yaw Appiah, Frimpong Kyeremeh
College of Electrical Engineering and Control Science, Nanjing Tech University, China.
Electrical and Electronic Engineering Department, Sunyani Technical University, Sunyani, Ghana

This paper presents an optimized rapidly exploring random tree A* (ORRT-A*) method to improve the perfor-
mance of RRT-A* method to compute safe and optimal path with low time complexity for mobile robots in par-
tially known complex environments. ORRT-A* method combines morphological dilation, goal-biased RRT, A*
and cubic spline algorithms. Goal-biased RRT is modified by introducing additional step-size to speed up the
generation of the tree towards the goal after which A* is applied to obtain the shortest path. Morphological di-
lation technique is used to provide safety for the robots while cubic spline interpolation is used to smoothen the
path for easy navigation. Results indicate that ORRT-A* method demonstrates improved path quality compared
to goal-biased RRT and RRT-A* methods. ORRT-A* is, therefore, a promising method in achieving autonomous
ground vehicle navigation in partially known environments.
KEYWORDS: Rapidly exploring random tree (RRT); mobile robots; path planning; morphological dilation; au-
tonomous ground vehicles.

1. Introduction
In recent years, mobile robot path planning research
has been an active research area gaining considerable
attention [6, 26, 35]. Despite the immense research in

the area, achieving complete autonomous navigation
in complex environment remains a challenge [2, 17].
Roadmap path planning methods are gaining popular-

mailto:obodovskiy58@gmail.com

Information Technology and Control 2019/2/48180

ity in addressing mobile robot path planning problems
[20]. Notable among these methods include probabi-
listic roadmap (PRM) [33], voronoi diagram (VD) [4,
5] and rapidly exploring random tree (RRT) path plan-
ning methods [1, 7, 9, 13, 14, 24, 25, 34, 37, 39]. Consid-
eration is given to RRT path planning in this paper.
RRT is a single query incremental algorithm [22] that
generates a tree in a free configuration space until the
defined target is reached [7, 18]. RRT is described as a
fast path planning method that performs well in com-
plex and high dimensional workspace [14, 39]. RRT is
a good method for motion planning for mobile robots
because of its strength in controlling inputs compu-
tation [13]. It seeks to find a path between an initial
state and target in a free configuration space with-
out the representation of the entire environment.
Recently, mobile robot path planning research using
RRT and its variants has been widely considered.
RRT trajectory planning method for car-like robots
was proposed in [13], where uniform and goal-biased
sampling technique was employed to generate the
tree. Consideration was given to controlling input se-
lection for the trajectory planning in urban, office and
landscape environments. Generally, the major chal-
lenge of the RRT method is the inability to control
path quality [19, 21, 37]. However, no consideration
was given by the authors to address the path quality
problem. Although RRT is probabilistic complete,
generated path is described to be far from optimal,
because it tries to ensure computational efficiency at
the expense of optimality [7, 37].
Intense study to improve the performance of RRT
path planning method has been carried out over the
years. RRT* algorithm, an extension of RRT was pro-
posed in [19] which tried to improve path quality by
computing asymptotically sub-optimal path. The tree
structure of RRT* is flexible making it easy to improve
path quality. Even though the RRT* ensures asymp-
totic optimality [20] and performs better than RRT in
terms of path optimality, it has high time complexity
due to the continuous execution of the local planner
during the generation of the tree [7]. It is reported to
be difficult to perform dynamic path replanning us-
ing RRT* [39]. Islam et al. [16] took advantage of the
asymptotic optimality provision by RRT* to present
RRT*-smart approach to increase the convergence
rate of RRT method to improve path quality with
low time complexity. To address slow convergence

rate and large sampling space requirement of RRT*,
RRT*-adjustable bounds approach was presented in
[27] for off-line path planning in cluttered environ-
ment. In [31], a triangular geometrized RRT* (TG-
RRT*) method was presented to address the high
processing time and iterations requirement of RRT*
to obtain optimal result. The geometrical center of
the initial state, the target position and the sample
for the RRT were considered in generating the tree.
Compared to RRT*, results were described to be bet-
ter in terms of efficiency. The TG-RRT* method was
meant for static environment, and the validation of
the method was done in a less complex environment.
Human-guided RRT* motion planning approach was
proposed in [11] with the aim of reducing path length
and the cost of planning the path of a quadrotor. The
approach requires a user to guide the motion planning
instead of it performing planning autonomously. Park
and Kuipers [30] considered handling non-holonom-
ic constraints of mobile robot’s motion planning and
presented a method that used a non-holonomic dis-
tance function to extend RRT* for unicycle-based ro-
bots. The purpose was to obtain feasible and smooth
path. The method was validated using simulation in
static environment with sparse obstacles. No compar-
ison was made to any existing method to determine
its efficiency. In [36], parallel RRT* motion planning
architecture design was proposed. Nodes for the tree
were kept in distinct pipelines to prevent traversing
of all nodes involved in the iteration to generate the
tree. Implementation was done on field programma-
ble gate arrays (FPGA), and results were described to
be better compared to software RRT*. Instead of ob-
taining a path between two defined positions, Correia
et al. [9] presented RRT-Edge method aimed at ob-
taining a compact representation of the environment
using dispersion of RRT nodes where only the goal
position is defined. The main purpose of the RRT-
Edge method was to reduce memory requirement. To
enhance the expanding speed of the tree generation,
Li et al. [25] proposed Liveness-based RRT method
for autonomous underwater vehicles (AUVs) motion
planning. Although splined-based RRT* method pro-
posed in [37] could find a path according to the au-
thors, it requires the generation of the tree to cover
the entire configuration space. This results in gener-
ation of large number of nodes; hence, increasing the
time and space complexity of the method. Recent-
ly, Otte and Frazzoli [28] proposed RRTx algorithm

181Information Technology and Control 2019/2/48

which performs continuous path update during the
navigation of the robot. Despite research progress to
minimize the probability of RRT path generation and
to enhance path construction, difficulty of controlling
path quality still exists [28, 37].
In recent years, RRT method has been combined with
other path planning methods to help improve path
quality. In [38], Gaussian process occupancy map was
combined with RRT to plan secure path in cluttered
environment. Tusi and Chung [34] combined RRT
and artificial bee colony (ABC) methods. RRT algo-
rithm was used in this method to generate nodes in
the free configuration space and the best nodes were
considered by applying ABC method to move the bees.
The method was described to have performed bet-
ter compared to particle swarm optimization (PSO)
method. Any-angle search algorithm was combined
with RRT to present theta*-RRT motion planning
method for non-holonomic wheeled robots [29].
Theta*-RRT method was described to have generated
shorter paths in shorter time compared to other RRT
methods. To obtain near-optimal path of nonlinear
dynamic mobile robots, Li et al. [23] combined neu-
ral network and RRT to present NoD-RRT method.
The authors considered the nonlinear kinodynamic
constraints of the vehicles and revised RRT to per-
form reconstruction to deal with the kinodynamic
constraints problem. Results showed that NoD-RRT
performed better compared to RRT and RRT*. An-
other recent hybrid method involving RRT is RRT-A*
motion planning method presented in [24]. The
method focused on optimizing RRT path generation
for non-holonomic mobile robots in known environ-
ment. A* heuristic algorithm was used to decide the
selection of the nearest node during the generation of
the tree. The authors acknowledged the fact that the
method suffered local minima problem. The authors
indicated that the path length obtained using RRT-A*
method was more optimal compared to goal-biased
RRT method. This analysis, however, compared Man-
hattan based RRT-A* to Euclidean based goal-bi-
ased RRT which are of different metric functions
as demonstrated in the paper. Comparing Euclide-
an-based RRT-A* to Euclidean-based goal-biased
RRT from their results, the proposed method utilized
849% of the time to achieve 6% path length improve-
ment in sparse environment. In dense environment,
222% time was used to achieve 4.27% path length
improvement over Euclidean-based goal biased RRT.

But the rate of time used compared to achieved results
indicates the method lacks some efficiency. The path
quality problem of RRT and challenges identified in
[24] motivated this research to optimize and extend
RRT-A* method to produce better results.
Therefore, this paper presents an optimized RRT-A*
path planning method based on morphological dila-
tion (MD), goal-biased RRT, A* heuristic algorithm
and cubic spline interpolation to compute safe and
optimal path for autonomous mobile robots in par-
tially known complex environment. A step size is
usually used in goal-biased RRT for the generation of
the RRT. In this paper, additional step-size is intro-
duced to speed up the generation of the tree towards
the goal based on the random sample value. In [24],
A* heuristic function was applied at every iteration to
select the nearest node during the generation of the
tree which had high time cost in path computation.
In this paper, the A* heuristic algorithm is used to
optimize and obtain the shortest path after the path
is generated using the modified goal-biased RRT. To
provide safe and smooth path for feasible navigation,
MD technique is used to inflate the obstacles before
generating the path, and cubic spline interpolation
(CSI) is used to smoothen the path. Path replanning
is provided by generating new path from a current po-
sition of the robot when a random obstacle obstructs
its navigation path. ORRT-A* approach addresses the
local minima problem reported with RRT-A* [24] and
generates safe and optimal path with low time cost in
partially known environment.
The rest of this paper is organized as follows. Problem
formulation is given in Section 2. Section 3 describes
the proposed methods: obtaining and processing map,
computing the roadmap, path query and optimization,
path smoothening, and replanning. The simulation re-
sults and discussion are presented in Sections 4 and 5,
respectively. Finally, Section 6 concludes the paper.

2. Problem Formulation
The configuration space CS of the mobile robot is
represented in Figure 1. The CS is made up of re-
gions with obstacles, obsCS and free configuration
space freeCS . In this paper, environment of 2D where

2CS ⊆ is considered. Hence, obsCS CS⊆ and each
vertex of obsCS can be represented as ()obs i obsv C∈ .
The freeCS can be obtained using \free obsCS CS CS=

Information Technology and Control 2019/2/48182

Figure 1
The configuration space of a robot with sample obstacles
and RRT path from the initial position v0 to the target vt

applied at every iteration to select the nearest
node during the generation of the tree which had
high time cost in path computation. In this paper,
the A* heuristic algorithm is used to optimize and
obtain the shortest path after the path is generated
using the modified goal-biased RRT. To provide
safe and smooth path for feasible navigation, MD
technique is used to inflate the obstacles before
generating the path, and cubic spline
interpolation (CSI) is used to smoothen the path.
Path replanning is provided by generating new
path from a current position of the robot when a
random obstacle obstructs its navigation path.
ORRT-A* approach addresses the local minima
problem reported with RRT-A* [24] and generates
safe and optimal path with low time cost in
partially known environment.

The rest of this paper is organized as follows.
Problem formulation is given in Section 2. Section
3 describes the proposed methods: obtaining and
processing map, computing the roadmap, path
query and optimization, path smoothening, and
replanning. The simulation results and discussion
are presented in Sections 4 and 5, respectively.
Finally, Section 6 concludes the paper.

2. Problem Formulation
The configuration space CS of the mobile robot is
represented in Figure 1. The CS is made up of
regions with obstacles, obsCS and free
configuration space freeCS . In this paper,
environment of 2D where 2CS R is considered.
Hence, obsCS CS and each vertex of obsCS can
be represented as ()obs i obsv C . The freeCS can be
obtained using \free obsCS CS CS and each vertex
of freeCS is given as ()free i freev CS . The RRT is
generated in the freeCS such that collision with

obsCS is avoided. The generation of the tree starts
at the initial position of the vehicle and expands
towards the target. Given the vertices of the tree
from the initial state to the target as

0 1 2 3(, , , ,...,)i tV v v v v v , iV represents positions in
the freeCS . 0v is the initial position of the tree

while tv represents the target or the iteration
limit of the tree generation.

Figure 1

The configuration space of a robot with sample
obstacles and RRT path from the initial position v0 to
the target vt

CSfree

CSobs1

v0

vt

CSobs2

CSobs6 CSobs3

CSobs4

v1
v2

v3

v4v5

v6

This paper focuses on computing safe, shortest
and smooth path in freeCS from 0v to tv using
less time in partially known environment. At the
initial state, the environment of the vehicle is
assumed known during path computation. As the
vehicle navigates to its target based on the
computed path, random obstacles can obstruct the
path leading to collision. This paper provides a
reactive path replanning to avoid obstacles that
obstruct the path of the vehicle during navigation
in real-time.

3. Proposed Method
The general algorithms of the method presented
in this paper are demonstrated in a workflow
diagram in Figure 2. The path planning method
presented in this paper has been divided into five
steps: obtaining and processing map, computing
the RRT roadmap, path query and optimization,
path smoothening and path replanning.

Figure 2
Workflow diagram of the proposed method

and each vertex of freeCS is given as ()free i freev CS∈ .
The RRT is generated in the freeCS such that colli-
sion with obsCS is avoided. The generation of the tree
starts at the initial position of the vehicle and expands

Figure 2

Workflow diagram of the proposed method

3.1 Step 1: Obtaining and Processing Map

The map of the workspace could be obtained
using camera or scanning laser range finder. The
captured map of the environment is processed to
give binary representations of the obsCS and the

freeCS of the CS . To ensure safety of the mobile

robots during navigation such that the generated
path is not too close to obstacles in the workspace
to cause collisions, obstacles in the map are
inflated before constructing the RRT roadmap
using MD technique given in [12]. The dimension
of the vehicle and other safety requirements are
considered in inflating the obstacles. The MD
equation denoted by P Q is given as:

{ | () }i rP Q r Q P , (1)

 where P represents the map, Q represents the

structure element for the dilation, r is the set of all
nodes of the map and iQ denotes the reflection of
the set Q. The MD of a given binary map with the
matrix, (,)bmap x y and a structuring element
q(,)x y can therefore, be calculated using Equation
(2):

() max{ () () | (R),

& },bmap q
bmap q R bmap R x q x x

S S

 (2)

where S and R denote the dimension of the map
and the translated radius representing the robot’s
safety space required, respectively. Equation (2) is
used to inflate the obstacles on the map before
generating the tree to ensure safe navigation.

3.2 Step 2: Computing the RRT Roadmap

Details of basic RRT algorithm are given in [1, 7,

Path Replanning

spath(x,y)

newmap(i,j),dist
sensors

Yes

Navigate & track
obstacle

Goal reached

End

Re-compute Path

Obtain and process
map using MD

S/T on Obstacle Compute RRT
roadmap

Path exists
Query and Optimize

path with A*
Smoothen path using

cubic spline

End

End

Start

dist ≤ d1

Ra =Psame ?
Determine obstacle

direction

dist ≤ d2

Stop, wait

imap(i,j) imap(i,j)

T,unearest
unew

No

Sensor distance (dist)

No

apath(x,y)

spath(x,y)

spath(x,

Yes
No

 T,unearest, unew

dist

Yes

Yes

Yes

No

No

newmap(i,j)
 sensors

newmap(i,j),Ra

newmap(i,j),old_source,
,new_source

Initial path planning

No

spath(x,y)

Yes

towards the target. Given the vertices of the tree from
the initial state to the target as 0 1 2 3(, , , ,...,)i tV v v v v v= ,

iV represents positions in the freeCS . 0v is the initial
position of the tree while tv represents the target or
the iteration limit of the tree generation.
This paper focuses on computing safe, shortest and
smooth path in freeCS from 0v to tv using less time in
partially known environment. At the initial state, the en-
vironment of the vehicle is assumed known during path
computation. As the vehicle navigates to its target based
on the computed path, random obstacles can obstruct
the path leading to collision. This paper provides a reac-
tive path replanning to avoid obstacles that obstruct the
path of the vehicle during navigation in real-time.

3. Proposed Method
The general algorithms of the method presented in
this paper are demonstrated in a workflow diagram in
Figure 2. The path planning method presented in this

183Information Technology and Control 2019/2/48

paper has been divided into five steps: obtaining and
processing map, computing the RRT roadmap, path
query and optimization, path smoothening and path
replanning.

3.1. Step 1: Obtaining and Processing Map
The map of the workspace could be obtained using
camera or scanning laser range finder. The captured
map of the environment is processed to give binary
representations of the obsCS and the freeCS of the
CS. To ensure safety of the mobile robots during nav-
igation such that the generated path is not too close
to obstacles in the workspace to cause collisions, ob-
stacles in the map are inflated before constructing the
RRT roadmap using MD technique given in [12]. The
dimension of the vehicle and other safety require-
ments are considered in inflating the obstacles. The
MD equation denoted by P Q⊕ is given as:

Figure 2

Workflow diagram of the proposed method

3.1 Step 1: Obtaining and Processing Map

The map of the workspace could be obtained
using camera or scanning laser range finder. The
captured map of the environment is processed to
give binary representations of the obsCS and the

freeCS of the CS . To ensure safety of the mobile

robots during navigation such that the generated
path is not too close to obstacles in the workspace
to cause collisions, obstacles in the map are
inflated before constructing the RRT roadmap
using MD technique given in [12]. The dimension
of the vehicle and other safety requirements are
considered in inflating the obstacles. The MD
equation denoted by P Q⊕ is given as:

{ | () }i rP Q r Q P⊕ = ∩ ≠ ∅ , (1)

 where P represents the map, Q represents the

structure element for the dilation, r is the set of all
nodes of the map and iQ denotes the reflection of
the set Q. The MD of a given binary map with the
matrix, (,)bmap x y and a structuring element
q(,)x y can therefore, be calculated using Equation
(2):

() max{ () () | (R),

& },bmap q

bmap q R bmap R x q x x
S S

⊕ = − + −
∈ ∈ (2)

where S and R denote the dimension of the map
and the translated radius representing the robot’s
safety space required, respectively. Equation (2) is
used to inflate the obstacles on the map before
generating the tree to ensure safe navigation.

3.2 Step 2: Computing the RRT Roadmap

Details of basic RRT algorithm are given in [1, 7,

Path Replanning

spath(x,y)

newmap(i,j),dist
sensors

Yes

Navigate & track
obstacle

Goal reached

End

Re-compute Path

Obtain and process
map using MD

S/T on Obstacle Compute RRT
roadmap

Path exists
Query and Optimize

path with A*
Smoothen path using

cubic spline

End

End

Start

dist ≤ d1

Ra =Psame ?
Determine obstacle

direction

dist ≤ d2

Stop, wait

imap(i,j) imap(i,j)

T,unearest

unew

No

Sensor distance (dist)

No

apath(x,y)

spath(x,y)

spath(x,

Yes
No

 T,unearest, unew

dist

Yes

Yes

Yes

No

No

newmap(i,j)
 sensors

newmap(i,j),Ra

newmap(i,j),old_source,
,new_source

Initial path planning

No

spath(x,y)

Yes

(1)

where P represents the map, Q represents the struc-
ture element for the dilation, r is the set of all nodes of
the map and iQ denotes the reflection of the set Q. The
MD of a given binary map with the matrix, (,)bmap x y
and a structuring element q(,)x y can therefore, be
calculated using Equation (2):

() max{ () () | (R),

& },bmap q

bmap q R bmap R x q x x
S S

⊕ = − + −
∈ ∈ (2)

where S and R denote the dimension of the map and
the translated radius representing the robot’s safety
space required, respectively. Equation (2) is used to
inflate the obstacles on the map before generating the
tree to ensure safe navigation.

3.2. Step 2: Computing the RRT Roadmap
Details of basic RRT algorithm are given in [1, 7,
13, 24, 25, 34, 37, 39]. This paper modifies and uses
goal-biased RRT to generate the roadmap ensuring
that the tree is rapidly generated towards the goal.
The generation of the tree is biased towards the target
when the random value rand to determine the compu-
tation of the sample is less than the random threshold
rt. Two different step sizes, sz1 and sz2 are used with
sz2 assigned higher value than sz1. sz2 is used for the
growth of the tree when the growth is biased to the
target. This is aimed at reducing the number of nodes
to be generated before reaching the target, thereby

reducing the time and space complexity of the algo-
rithm. The algorithm used in this paper to generate
the roadmap is given in Algorithm 1.

Input: Step sizes sz1, sz2, Distance threshold dth
 Attempts allowed faa, Attempts fattempts,
 Initial state source, rand threshold rt, map,
target
Output: Tree T, unearest, unew
1. Begin
2. Initialize: 0 1, 1, 2, , , ,

0tt t

rt sz sz dth faa source
target f
< <

=
3 ((,) (,))obsimap map i j map i j R← ⊕ //Equation (2)
4. (,)T source← ∅ ;
5. while attemptsf faa<
6. (, ,);sample rand imap target // Equation (3)
7. ;randu sample←
8. (,);nearest randu Nearest T u← // Equation (4)
9. (,sz1,sz 2,);new nearestu u θ // Equation (6)
10. if ~ (,)obs newCS u imap
11 if ,newu target dth<
12 ; ;return pathfound TRUE break=
13 end if
14 min min(, ,);newdist T u← ∅
15 if min, ()newu T dist dth<
16 1; ;attempts attemptsf f continue← +
17 end if
18 0;attemptsf ←
19 _ (,)newT add node T u←
20 end if
21 else
22 1; ;attempts attemptsf f continue← +
23 end else
24 if attempts aaf f≥
25 ; ;return pathfound FALSE break=
26 end if
27 end while
28 End

The initial position of the robot represents the root of
the tree, (,)T source← ∅ . The sample for generating
the tree is computed as:

13, 24, 25, 34, 37, 39]. This paper modifies and uses
goal-biased RRT to generate the roadmap
ensuring that the tree is rapidly generated
towards the goal. The generation of the tree is
biased towards the target when the random value
rand to determine the computation of the sample
is less than the random threshold rt. Two different
step sizes, sz1 and sz2 are used with sz2 assigned
higher value than sz1. sz2 is used for the growth
of the tree when the growth is biased to the target.
This is aimed at reducing the number of nodes to
be generated before reaching the target, thereby
reducing the time and space complexity of the
algorithm. The algorithm used in this paper to
generate the roadmap is given in Algorithm 1.

The initial position of the robot represents the root
of the tree, (,)T source← ∅ . The sample for
generating the tree is computed as:

{
(, ,)

.(0,1)* ()
sample rand imap target

rand size imap if rand rt
target otherwise

=
< (3)

The random value rand generated is compared to
the random threshold rt. If rand < rt, a random
sample is computed as given in Equation (3). The
target is taken as the sample when rand ≥ rt to bias
the growth of the tree towards the target. The
nearest node, (,)randNearest T u is computed using
k-nearest neighbor (KNN) given as:

2
() ()

1

(,) min () ,
k

rand i rand i
i

Nearest T u T u
=

 = −

∑ (4)

where randu sample= as given in Equation (3). The
direction θ to extend the sample to create new
node is computed using Equation (5):

2(),rand nearestatan u uθ = − (5)
where (, u)nearest randu Nearest T= as given in
Equation (4). The position of the new node newu is
calculated using Equation (6):

{
(, 1, 2,)

2*[sin cos], ,1*[sin cos],

new nearest
nearest rand
nearest

u u sz sz
u sz if u target
u sz otherwise

θ
θ θ
θ θ

=
+ =
+

 (6)

where sz1 and sz2 denote the step size 1 and 2,
respectively. If ,randu target= sz2 is used to

Algorithm 1
 Computing the roadmap

Input: Step sizes sz1, sz2, Distance threshold dth
 Attempts allowed faa, Attempts fattempts,
 Initial state source, rand threshold rt, map,
target
Output: Tree T, unearest, unew
1. Begin
2. Initialize: 0 1, 1, 2, , , ,

0tt t

rt sz sz dth faa source
target f
< <

=
3 ((,) (,))obsimap map i j map i j R← ⊕ //Equation (2)
4. (,)T source← ∅ ;
5. while attemptsf faa<
6. (, ,);sample rand imap target // Equation (3)
7. ;randu sample←
8. (,);nearest randu Nearest T u← // Equation (4)
9. (,sz1,sz 2,);new nearestu u θ // Equation (6)
10. if ~ (,)obs newCS u imap
11 if ,newu target dth<
12 ; ;return pathfound TRUE break=
13 end if
14 min min(, ,);newdist T u← ∅
15 if min, ()newu T dist dth<
16 1; ;attempts attemptsf f continue← +
17 end if
18 0;attemptsf ←
19 _ (,)newT add node T u←
20 end if
21 else
22 1; ;attempts attemptsf f continue← +
23 end else
24 if attempts aaf f≥
25 ; ;return pathfound FALSE break=
26 end if
27 end while
28 End

compute the position of the new node newu
towards the target with a higher step size. This is
to facilitate the growth of the tree towards the
target at a faster rate with reduced number of
nodes. Collision checks are performed to ensure
that the tree is generated within the freeCS . The

growth of the tree ends once the target point is
reached, or the iteration attempts attemptsf exceed

the failed attempts allowed aaf .

(3)

The random value rand generated is compared to the
random threshold rt. If rand < rt, a random sample is
computed as given in Equation (3). The target is tak-
en as the sample when rand ≥ rt to bias the growth

Algorithm 1
Computing the roadmap

Information Technology and Control 2019/2/48184

of the tree towards the target. The nearest node,
(,)randNearest T u is computed using k-nearest neigh-

bor (KNN) given as:

13, 24, 25, 34, 37, 39]. This paper modifies and uses
goal-biased RRT to generate the roadmap
ensuring that the tree is rapidly generated
towards the goal. The generation of the tree is
biased towards the target when the random value
rand to determine the computation of the sample
is less than the random threshold rt. Two different
step sizes, sz1 and sz2 are used with sz2 assigned
higher value than sz1. sz2 is used for the growth
of the tree when the growth is biased to the target.
This is aimed at reducing the number of nodes to
be generated before reaching the target, thereby
reducing the time and space complexity of the
algorithm. The algorithm used in this paper to
generate the roadmap is given in Algorithm 1.

The initial position of the robot represents the root
of the tree, (,)T source← ∅ . The sample for
generating the tree is computed as:

{
(, ,)

.(0,1)* ()
sample rand imap target

rand size imap if rand rt
target otherwise

=
< (3)

The random value rand generated is compared to
the random threshold rt. If rand < rt, a random
sample is computed as given in Equation (3). The
target is taken as the sample when rand ≥ rt to bias
the growth of the tree towards the target. The
nearest node, (,)randNearest T u is computed using
k-nearest neighbor (KNN) given as:

2
() ()

1

(,) min () ,
k

rand i rand i
i

Nearest T u T u
=

 = −

∑ (4)

where randu sample= as given in Equation (3). The
direction θ to extend the sample to create new
node is computed using Equation (5):

2(),rand nearestatan u uθ = − (5)
where (, u)nearest randu Nearest T= as given in
Equation (4). The position of the new node newu is
calculated using Equation (6):

{
(, 1, 2,)

2*[sin cos], ,1*[sin cos],

new nearest
nearest rand
nearest

u u sz sz
u sz if u target
u sz otherwise

θ
θ θ
θ θ

=
+ =
+

 (6)

where sz1 and sz2 denote the step size 1 and 2,
respectively. If ,randu target= sz2 is used to

Algorithm 1
 Computing the roadmap

Input: Step sizes sz1, sz2, Distance threshold dth
 Attempts allowed faa, Attempts fattempts,
 Initial state source, rand threshold rt, map,
target
Output: Tree T, unearest, unew
1. Begin
2. Initialize: 0 1, 1, 2, , , ,

0tt t

rt sz sz dth faa source
target f
< <

=
3 ((,) (,))obsimap map i j map i j R← ⊕ //Equation (2)
4. (,)T source← ∅ ;
5. while attemptsf faa<
6. (, ,);sample rand imap target // Equation (3)
7. ;randu sample←
8. (,);nearest randu Nearest T u← // Equation (4)
9. (,sz1,sz 2,);new nearestu u θ // Equation (6)
10. if ~ (,)obs newCS u imap
11 if ,newu target dth<
12 ; ;return pathfound TRUE break=
13 end if
14 min min(, ,);newdist T u← ∅
15 if min, ()newu T dist dth<
16 1; ;attempts attemptsf f continue← +
17 end if
18 0;attemptsf ←
19 _ (,)newT add node T u←
20 end if
21 else
22 1; ;attempts attemptsf f continue← +
23 end else
24 if attempts aaf f≥
25 ; ;return pathfound FALSE break=
26 end if
27 end while
28 End

compute the position of the new node newu
towards the target with a higher step size. This is
to facilitate the growth of the tree towards the
target at a faster rate with reduced number of
nodes. Collision checks are performed to ensure
that the tree is generated within the freeCS . The

growth of the tree ends once the target point is
reached, or the iteration attempts attemptsf exceed

the failed attempts allowed aaf .

(4)

where randu sample= as given in Equation (3). The di-
rection θ to extend the sample to create new node is
computed using Equation (5):

13, 24, 25, 34, 37, 39]. This paper modifies and uses
goal-biased RRT to generate the roadmap
ensuring that the tree is rapidly generated
towards the goal. The generation of the tree is
biased towards the target when the random value
rand to determine the computation of the sample
is less than the random threshold rt. Two different
step sizes, sz1 and sz2 are used with sz2 assigned
higher value than sz1. sz2 is used for the growth
of the tree when the growth is biased to the target.
This is aimed at reducing the number of nodes to
be generated before reaching the target, thereby
reducing the time and space complexity of the
algorithm. The algorithm used in this paper to
generate the roadmap is given in Algorithm 1.

The initial position of the robot represents the root
of the tree, (,)T source← ∅ . The sample for
generating the tree is computed as:

{
(, ,)

.(0,1)* ()
sample rand imap target

rand size imap if rand rt
target otherwise

=
< (3)

The random value rand generated is compared to
the random threshold rt. If rand < rt, a random
sample is computed as given in Equation (3). The
target is taken as the sample when rand ≥ rt to bias
the growth of the tree towards the target. The
nearest node, (,)randNearest T u is computed using
k-nearest neighbor (KNN) given as:

2
() ()

1

(,) min () ,
k

rand i rand i
i

Nearest T u T u
=

 = −

∑ (4)

where randu sample= as given in Equation (3). The
direction θ to extend the sample to create new
node is computed using Equation (5):

2(),rand nearestatan u uθ = − (5)
where (, u)nearest randu Nearest T= as given in
Equation (4). The position of the new node newu is
calculated using Equation (6):

{
(, 1, 2,)

2*[sin cos], ,1*[sin cos],

new nearest
nearest rand
nearest

u u sz sz
u sz if u target
u sz otherwise

θ
θ θ
θ θ

=
+ =
+

 (6)

where sz1 and sz2 denote the step size 1 and 2,
respectively. If ,randu target= sz2 is used to

Algorithm 1
 Computing the roadmap

Input: Step sizes sz1, sz2, Distance threshold dth
 Attempts allowed faa, Attempts fattempts,
 Initial state source, rand threshold rt, map,
target
Output: Tree T, unearest, unew
1. Begin
2. Initialize: 0 1, 1, 2, , , ,

0tt t

rt sz sz dth faa source
target f
< <

=
3 ((,) (,))obsimap map i j map i j R← ⊕ //Equation (2)
4. (,)T source← ∅ ;
5. while attemptsf faa<
6. (, ,);sample rand imap target // Equation (3)
7. ;randu sample←
8. (,);nearest randu Nearest T u← // Equation (4)
9. (,sz1,sz 2,);new nearestu u θ // Equation (6)
10. if ~ (,)obs newCS u imap
11 if ,newu target dth<
12 ; ;return pathfound TRUE break=
13 end if
14 min min(, ,);newdist T u← ∅
15 if min, ()newu T dist dth<
16 1; ;attempts attemptsf f continue← +
17 end if
18 0;attemptsf ←
19 _ (,)newT add node T u←
20 end if
21 else
22 1; ;attempts attemptsf f continue← +
23 end else
24 if attempts aaf f≥
25 ; ;return pathfound FALSE break=
26 end if
27 end while
28 End

compute the position of the new node newu
towards the target with a higher step size. This is
to facilitate the growth of the tree towards the
target at a faster rate with reduced number of
nodes. Collision checks are performed to ensure
that the tree is generated within the freeCS . The

growth of the tree ends once the target point is
reached, or the iteration attempts attemptsf exceed

the failed attempts allowed aaf .

(5)

where (, u)nearest randu Nearest T= as given in Equation
(4). The position of the new node newu is calculated
using Equation (6):

13, 24, 25, 34, 37, 39]. This paper modifies and uses
goal-biased RRT to generate the roadmap
ensuring that the tree is rapidly generated
towards the goal. The generation of the tree is
biased towards the target when the random value
rand to determine the computation of the sample
is less than the random threshold rt. Two different
step sizes, sz1 and sz2 are used with sz2 assigned
higher value than sz1. sz2 is used for the growth
of the tree when the growth is biased to the target.
This is aimed at reducing the number of nodes to
be generated before reaching the target, thereby
reducing the time and space complexity of the
algorithm. The algorithm used in this paper to
generate the roadmap is given in Algorithm 1.

The initial position of the robot represents the root
of the tree, (,)T source← ∅ . The sample for
generating the tree is computed as:

{
(, ,)

.(0,1)* ()
sample rand imap target

rand size imap if rand rt
target otherwise

=
< (3)

The random value rand generated is compared to
the random threshold rt. If rand < rt, a random
sample is computed as given in Equation (3). The
target is taken as the sample when rand ≥ rt to bias
the growth of the tree towards the target. The
nearest node, (,)randNearest T u is computed using
k-nearest neighbor (KNN) given as:

2
() ()

1

(,) min () ,
k

rand i rand i
i

Nearest T u T u
=

 = −

∑ (4)

where randu sample= as given in Equation (3). The
direction θ to extend the sample to create new
node is computed using Equation (5):

2(),rand nearestatan u uθ = − (5)
where (, u)nearest randu Nearest T= as given in
Equation (4). The position of the new node newu is
calculated using Equation (6):

{
(, 1, 2,)

2*[sin cos], ,1*[sin cos],

new nearest
nearest rand
nearest

u u sz sz
u sz if u target
u sz otherwise

θ
θ θ
θ θ

=
+ =
+

 (6)

where sz1 and sz2 denote the step size 1 and 2,
respectively. If ,randu target= sz2 is used to

Algorithm 1
 Computing the roadmap

Input: Step sizes sz1, sz2, Distance threshold dth
 Attempts allowed faa, Attempts fattempts,
 Initial state source, rand threshold rt, map,
target
Output: Tree T, unearest, unew
1. Begin
2. Initialize: 0 1, 1, 2, , , ,

0tt t

rt sz sz dth faa source
target f
< <

=
3 ((,) (,))obsimap map i j map i j R← ⊕ //Equation (2)
4. (,)T source← ∅ ;
5. while attemptsf faa<
6. (, ,);sample rand imap target // Equation (3)
7. ;randu sample←
8. (,);nearest randu Nearest T u← // Equation (4)
9. (,sz1,sz 2,);new nearestu u θ // Equation (6)
10. if ~ (,)obs newCS u imap
11 if ,newu target dth<
12 ; ;return pathfound TRUE break=
13 end if
14 min min(, ,);newdist T u← ∅
15 if min, ()newu T dist dth<
16 1; ;attempts attemptsf f continue← +
17 end if
18 0;attemptsf ←
19 _ (,)newT add node T u←
20 end if
21 else
22 1; ;attempts attemptsf f continue← +
23 end else
24 if attempts aaf f≥
25 ; ;return pathfound FALSE break=
26 end if
27 end while
28 End

compute the position of the new node newu
towards the target with a higher step size. This is
to facilitate the growth of the tree towards the
target at a faster rate with reduced number of
nodes. Collision checks are performed to ensure
that the tree is generated within the freeCS . The

growth of the tree ends once the target point is
reached, or the iteration attempts attemptsf exceed

the failed attempts allowed aaf .

(6)

where sz1 and sz2 denote the step size 1 and 2, respec-
tively. If ,randu target= sz2 is used to compute the po-
sition of the new node newu towards the target with a
higher step size. This is to facilitate the growth of the
tree towards the target at a faster rate with reduced
number of nodes. Collision checks are performed to
ensure that the tree is generated within the freeCS .
The growth of the tree ends once the target point is
reached, or the iteration attempts attemptsf exceed the
failed attempts allowed aaf .

3.3. Step 3: Path Query and Optimization
A path is generated from the initial position of the
RRT roadmap to the target using the set of nearestu
and the T nodes obtained during the generation of
the tree. The algorithm used in generating the path is
given in Algorithm 2. A sample path generated using
Algorithm 2 is demonstrated in Figure 3a. A* algo-
rithm applied in [24] was used to optimize the path
in Figure 3a to obtain the path in Figure 3b. In [24],
the A* heuristic function was used at every iteration
to select the nearest node during the generation of
the tree. In this paper, the A* heuristic algorithm is
used to optimize and obtain the shortest path after
the roadmap is generated using the modified goal-bi-
ased RRT. A* heuristic function is good at finding a
path on a graph with the least cost provided a path

exists [32]. The A* heuristic cost function employed
is represented as:

3.3 Step 3: Path Query and Optimization

A path is generated from the initial position of the
RRT roadmap to the target using the set of nearestu
and the T nodes obtained during the generation of
the tree. The algorithm used in generating the
path is given in Algorithm 2. A sample path
generated using Algorithm 2 is demonstrated in
Figure 3a. A* algorithm applied in [24] was used
to optimize the path in Figure 3a to obtain the
path in Figure 3b. In [24], the A* heuristic function
was used at every iteration to select the nearest
node during the generation of the tree. In this
paper, the A* heuristic algorithm is used to
optimize and obtain the shortest path after the
roadmap is generated using the modified goal-
biased RRT. A* heuristic function is good at
finding a path on a graph with the least cost
provided a path exists [32]. The A* heuristic cost
function employed is represented as:

() () (),f p g p h p= + (7)

where () (,)g p c s p= is the path cost c from the
initial position s to node p, h(p) is the heuristic
component of the cost function which estimates
the cheapest cost from node p to the target. h(p) is
computed using Euclidean distance metric as:

2 2() () ()p target p targeth p x x y y= − + − , (8)

where 0 1 2(, , ,...,)np p p p p= represents points on
the path.

A* is considered because it is both complete and
optimal. It is complete as once a path exists in the

freeCS , A* can find the path. A* is admissible and

consistent. Admissibility and consistency are
properties of optimality. With g(p) being the
actual cost to get to point p, f(p) would therefore
not overestimate the cost to reach the target. This
makes A* admissible. Considering c(p, p') as the
cost from point p to p’, consistency is achieved
since () (, ') (')h p c p p h p≤ + and admissibility is
achieved since for all arcs of the path,

(, ') 0c p p ε≥ > .

Algorithm 2
 Path query and optimization algorithm

Input: nearestu , T, target from Algorithm 1
Output: apath
1. Begin
2. p target←
3. for 1 ()nearestj to size u←
4. ()nearestprevious u j←
5. while 0j >
6. (();)p T previous p←
7. end while
8. end for
9. ()apath f p← // Equation (7)
10 ()spath P apath← // Equation (11)
11. End

Figure 3
Generated path on a map with inflated obstacles:(a) A
generated path using modified goal-biased RRT; (b) An
optimized path using A* algorithm
 (a) (b)

3.4 Step 4: Path Smoothening

The path obtained after applying A* algorithm
(see Figure 3b) is not smooth enough to enable
easy navigation of the autonomous vehicle. CSI is
employed to enhance the smoothness of the
optimized path. With cubic spline, the function of
a curve is represented using different cubic
functions for each of the data points intervals [3].
Considering m data points, the function of the
spline ()S x can be defined as in Equation (9):

0 11
1
1

()
() () ,

()
i i i
m m m

x x xP x
S x P x x x x

P x x x x
−
−

≤ ≤= ≤ ≤
≤ ≤

 (9)

where Pi represents the cubic function. Generally,
cubic spline is defined as:

(7)

where () (,)g p c s p= is the path cost c from the initial
position s to node p, h(p) is the heuristic component of
the cost function which estimates the cheapest cost
from node p to the target. h(p) is computed using Eu-
clidean distance metric as:

3.3 Step 3: Path Query and Optimization

A path is generated from the initial position of the
RRT roadmap to the target using the set of nearestu
and the T nodes obtained during the generation of
the tree. The algorithm used in generating the
path is given in Algorithm 2. A sample path
generated using Algorithm 2 is demonstrated in
Figure 3a. A* algorithm applied in [24] was used
to optimize the path in Figure 3a to obtain the
path in Figure 3b. In [24], the A* heuristic function
was used at every iteration to select the nearest
node during the generation of the tree. In this
paper, the A* heuristic algorithm is used to
optimize and obtain the shortest path after the
roadmap is generated using the modified goal-
biased RRT. A* heuristic function is good at
finding a path on a graph with the least cost
provided a path exists [32]. The A* heuristic cost
function employed is represented as:

() () (),f p g p h p= + (7)

where () (,)g p c s p= is the path cost c from the
initial position s to node p, h(p) is the heuristic
component of the cost function which estimates
the cheapest cost from node p to the target. h(p) is
computed using Euclidean distance metric as:

2 2() () ()p target p targeth p x x y y= − + − , (8)

where 0 1 2(, , ,...,)np p p p p= represents points on
the path.

A* is considered because it is both complete and
optimal. It is complete as once a path exists in the

freeCS , A* can find the path. A* is admissible and

consistent. Admissibility and consistency are
properties of optimality. With g(p) being the
actual cost to get to point p, f(p) would therefore
not overestimate the cost to reach the target. This
makes A* admissible. Considering c(p, p') as the
cost from point p to p’, consistency is achieved
since () (, ') (')h p c p p h p≤ + and admissibility is
achieved since for all arcs of the path,

(, ') 0c p p ε≥ > .

Algorithm 2
 Path query and optimization algorithm

Input: nearestu , T, target from Algorithm 1
Output: apath
1. Begin
2. p target←
3. for 1 ()nearestj to size u←
4. ()nearestprevious u j←
5. while 0j >
6. (();)p T previous p←
7. end while
8. end for
9. ()apath f p← // Equation (7)
10 ()spath P apath← // Equation (11)
11. End

Figure 3
Generated path on a map with inflated obstacles:(a) A
generated path using modified goal-biased RRT; (b) An
optimized path using A* algorithm
 (a) (b)

3.4 Step 4: Path Smoothening

The path obtained after applying A* algorithm
(see Figure 3b) is not smooth enough to enable
easy navigation of the autonomous vehicle. CSI is
employed to enhance the smoothness of the
optimized path. With cubic spline, the function of
a curve is represented using different cubic
functions for each of the data points intervals [3].
Considering m data points, the function of the
spline ()S x can be defined as in Equation (9):

0 11
1
1

()
() () ,

()
i i i
m m m

x x xP x
S x P x x x x

P x x x x
−
−

≤ ≤= ≤ ≤
≤ ≤

 (9)

where Pi represents the cubic function. Generally,
cubic spline is defined as:

(8)

where 0 1 2(, , ,...,)np p p p p= represents points on the
path.

Algorithm 2
Path query and optimization algorithm

Figure 3
Generated path on a map with inflated obstacles:(a) A
generated path using modified goal-biased RRT; (b) An
optimized path using A* algorithm

3.3 Step 3: Path Query and Optimization

A path is generated from the initial position of the
RRT roadmap to the target using the set of nearestu
and the T nodes obtained during the generation of
the tree. The algorithm used in generating the
path is given in Algorithm 2. A sample path
generated using Algorithm 2 is demonstrated in
Figure 3a. A* algorithm applied in [24] was used
to optimize the path in Figure 3a to obtain the
path in Figure 3b. In [24], the A* heuristic function
was used at every iteration to select the nearest
node during the generation of the tree. In this
paper, the A* heuristic algorithm is used to
optimize and obtain the shortest path after the
roadmap is generated using the modified goal-
biased RRT. A* heuristic function is good at
finding a path on a graph with the least cost
provided a path exists [32]. The A* heuristic cost
function employed is represented as:

() () (),f p g p h p= + (7)

where () (,)g p c s p= is the path cost c from the
initial position s to node p, h(p) is the heuristic
component of the cost function which estimates
the cheapest cost from node p to the target. h(p) is
computed using Euclidean distance metric as:

2 2() () ()p target p targeth p x x y y= − + − , (8)

where 0 1 2(, , ,...,)np p p p p= represents points on
the path.

A* is considered because it is both complete and
optimal. It is complete as once a path exists in the

freeCS , A* can find the path. A* is admissible and

consistent. Admissibility and consistency are
properties of optimality. With g(p) being the
actual cost to get to point p, f(p) would therefore
not overestimate the cost to reach the target. This
makes A* admissible. Considering c(p, p') as the
cost from point p to p’, consistency is achieved
since () (, ') (')h p c p p h p≤ + and admissibility is
achieved since for all arcs of the path,

(, ') 0c p p ε≥ > .

Algorithm 2
 Path query and optimization algorithm

Input: nearestu , T, target from Algorithm 1
Output: apath
1. Begin
2. p target←
3. for 1 ()nearestj to size u←
4. ()nearestprevious u j←
5. while 0j >
6. (();)p T previous p←
7. end while
8. end for
9. ()apath f p← // Equation (7)
10 ()spath P apath← // Equation (11)
11. End

Figure 3
Generated path on a map with inflated obstacles:(a) A
generated path using modified goal-biased RRT; (b) An
optimized path using A* algorithm
 (a) (b)

3.4 Step 4: Path Smoothening

The path obtained after applying A* algorithm
(see Figure 3b) is not smooth enough to enable
easy navigation of the autonomous vehicle. CSI is
employed to enhance the smoothness of the
optimized path. With cubic spline, the function of
a curve is represented using different cubic
functions for each of the data points intervals [3].
Considering m data points, the function of the
spline ()S x can be defined as in Equation (9):

0 11
1
1

()
() () ,

()
i i i
m m m

x x xP x
S x P x x x x

P x x x x
−
−

≤ ≤= ≤ ≤
≤ ≤

 (9)

where Pi represents the cubic function. Generally,
cubic spline is defined as:

3.3 Step 3: Path Query and Optimization

A path is generated from the initial position of the
RRT roadmap to the target using the set of nearestu
and the T nodes obtained during the generation of
the tree. The algorithm used in generating the
path is given in Algorithm 2. A sample path
generated using Algorithm 2 is demonstrated in
Figure 3a. A* algorithm applied in [24] was used
to optimize the path in Figure 3a to obtain the
path in Figure 3b. In [24], the A* heuristic function
was used at every iteration to select the nearest
node during the generation of the tree. In this
paper, the A* heuristic algorithm is used to
optimize and obtain the shortest path after the
roadmap is generated using the modified goal-
biased RRT. A* heuristic function is good at
finding a path on a graph with the least cost
provided a path exists [32]. The A* heuristic cost
function employed is represented as:

() () (),f p g p h p= + (7)

where () (,)g p c s p= is the path cost c from the
initial position s to node p, h(p) is the heuristic
component of the cost function which estimates
the cheapest cost from node p to the target. h(p) is
computed using Euclidean distance metric as:

2 2() () ()p target p targeth p x x y y= − + − , (8)

where 0 1 2(, , ,...,)np p p p p= represents points on
the path.

A* is considered because it is both complete and
optimal. It is complete as once a path exists in the

freeCS , A* can find the path. A* is admissible and

consistent. Admissibility and consistency are
properties of optimality. With g(p) being the
actual cost to get to point p, f(p) would therefore
not overestimate the cost to reach the target. This
makes A* admissible. Considering c(p, p') as the
cost from point p to p’, consistency is achieved
since () (, ') (')h p c p p h p≤ + and admissibility is
achieved since for all arcs of the path,

(, ') 0c p p ε≥ > .

Algorithm 2
 Path query and optimization algorithm

Input: nearestu , T, target from Algorithm 1
Output: apath
1. Begin
2. p target←
3. for 1 ()nearestj to size u←
4. ()nearestprevious u j←
5. while 0j >
6. (();)p T previous p←
7. end while
8. end for
9. ()apath f p← // Equation (7)
10 ()spath P apath← // Equation (11)
11. End

Figure 3
Generated path on a map with inflated obstacles:(a) A
generated path using modified goal-biased RRT; (b) An
optimized path using A* algorithm
 (a) (b)

3.4 Step 4: Path Smoothening

The path obtained after applying A* algorithm
(see Figure 3b) is not smooth enough to enable
easy navigation of the autonomous vehicle. CSI is
employed to enhance the smoothness of the
optimized path. With cubic spline, the function of
a curve is represented using different cubic
functions for each of the data points intervals [3].
Considering m data points, the function of the
spline ()S x can be defined as in Equation (9):

0 11
1
1

()
() () ,

()
i i i
m m m

x x xP x
S x P x x x x

P x x x x
−
−

≤ ≤= ≤ ≤
≤ ≤

 (9)

where Pi represents the cubic function. Generally,
cubic spline is defined as:

(a) (b)

185Information Technology and Control 2019/2/48

A* is considered because it is both complete and opti-
mal. It is complete as once a path exists in the freeCS ,
A* can find the path. A* is admissible and consistent.
Admissibility and consistency are properties of opti-
mality. With g(p) being the actual cost to get to point p,
f(p) would therefore not overestimate the cost to reach
the target. This makes A* admissible. Considering c(p,
p’) as the cost from point p to p’, consistency is achieved
since () (, ') (')h p c p p h p≤ + and admissibility is
achieved since for all arcs of the path, (, ') 0c p p ε≥ > .

3.4. Step 4: Path Smoothening
The path obtained after applying A* algorithm (see
Figure 3b) is not smooth enough to enable easy navi-
gation of the autonomous vehicle. CSI is employed to
enhance the smoothness of the optimized path. With
cubic spline, the function of a curve is represented
using different cubic functions for each of the data
points intervals [3]. Considering m data points, the
function of the spline ()S x can be defined as in Equa-
tion (9):

3.3 Step 3: Path Query and Optimization

A path is generated from the initial position of the
RRT roadmap to the target using the set of nearestu
and the T nodes obtained during the generation of
the tree. The algorithm used in generating the
path is given in Algorithm 2. A sample path
generated using Algorithm 2 is demonstrated in
Figure 3a. A* algorithm applied in [24] was used
to optimize the path in Figure 3a to obtain the
path in Figure 3b. In [24], the A* heuristic function
was used at every iteration to select the nearest
node during the generation of the tree. In this
paper, the A* heuristic algorithm is used to
optimize and obtain the shortest path after the
roadmap is generated using the modified goal-
biased RRT. A* heuristic function is good at
finding a path on a graph with the least cost
provided a path exists [32]. The A* heuristic cost
function employed is represented as:

() () (),f p g p h p= + (7)

where () (,)g p c s p= is the path cost c from the
initial position s to node p, h(p) is the heuristic
component of the cost function which estimates
the cheapest cost from node p to the target. h(p) is
computed using Euclidean distance metric as:

2 2() () ()p target p targeth p x x y y= − + − , (8)

where 0 1 2(, , ,...,)np p p p p= represents points on
the path.

A* is considered because it is both complete and
optimal. It is complete as once a path exists in the

freeCS , A* can find the path. A* is admissible and

consistent. Admissibility and consistency are
properties of optimality. With g(p) being the
actual cost to get to point p, f(p) would therefore
not overestimate the cost to reach the target. This
makes A* admissible. Considering c(p, p') as the
cost from point p to p’, consistency is achieved
since () (, ') (')h p c p p h p≤ + and admissibility is
achieved since for all arcs of the path,

(, ') 0c p p ε≥ > .

Algorithm 2
 Path query and optimization algorithm

Input: nearestu , T, target from Algorithm 1
Output: apath
1. Begin
2. p target←
3. for 1 ()nearestj to size u←
4. ()nearestprevious u j←
5. while 0j >
6. (();)p T previous p←
7. end while
8. end for
9. ()apath f p← // Equation (7)
10 ()spath P apath← // Equation (11)
11. End

Figure 3
Generated path on a map with inflated obstacles:(a) A
generated path using modified goal-biased RRT; (b) An
optimized path using A* algorithm
 (a) (b)

3.4 Step 4: Path Smoothening

The path obtained after applying A* algorithm
(see Figure 3b) is not smooth enough to enable
easy navigation of the autonomous vehicle. CSI is
employed to enhance the smoothness of the
optimized path. With cubic spline, the function of
a curve is represented using different cubic
functions for each of the data points intervals [3].
Considering m data points, the function of the
spline ()S x can be defined as in Equation (9):

0 11
1
1

()
() () ,

()
i i i
m m m

x x xP x
S x P x x x x

P x x x x
−
−

≤ ≤= ≤ ≤
≤ ≤

 (9)

where Pi represents the cubic function. Generally,
cubic spline is defined as:

(9)

where Pi represents the cubic function. Generally, cu-
bic spline is defined as:

2 3() ,i i i i iP x a b x c x d x= + + + (10)
where , ,i i ia b c and id are the coefficients to be
determined for each i. Hence, with m node
intervals, we require 4m coefficients to be
computed. If 0 1 2(, , ,...,)nx x x x x= represents a set
of points on a computed path using A* algorithm,
then 0 0()a f x= , 1 1(),...,a f x= ()n na f x= . The
cubic spline () ()iP x is computed as:

2 3

1

() () () ()
.

i i i i i i i i
i i

P x a b x x c x x d x x
for x x x +

= + − + − + −
≤ ≤ (11)

Hence, given a set of data points on a path, cubic
spline interpolation smoothens the path as
demonstrated in Figure 4 by generating more data
points between each interval.

Figure 4
 Curve smoothening using cubic spline

Contrary to the claim that CSI poses the challenge
of causing collisions [15], the introduction of MD
technique to inflate obstacles on the map before
computing the roadmap and the path in this
paper helps to address the possibility of collision
occurrence. Figure 5 presents the result of
applying cubic spline to smoothen the generated
path in Figure 3b.

Algorithm 3
Robot Navigation algorithm

Input: spath, source, target, distance thresholds d1, d2

Output: pathnavigate

1. Begin
2. ;sourceold source←
3. for 1 ();j to size spath←
4. [(,1), (, 2)];pathnavigate spath j spath j←

5. if idist d≤
6. Determine obstacle direction, Ra
7. if a crossR P== //Equation (15)
8. Stop and wait
9. end if
10. if a sameR P==
11. (,:);sourcenew spath j←
12. [,];source sourceold old source←
13. (, ,)source sourcespath Replan new old newmap=
14. Go to 3
15. end if
16. end if
17. if target reached;
18. return success and stop
19. end if
20. end for
21. End

Figure 5
Path smoothening applied to the path in Figure 3b on
the original map

3.5 Step 5: Path Replanning
During the mobile robot navigation, a random
obstacle may obstruct the optimized generated
path. The obstacle may be in motion or stationary.
If in motion, its direction is required to determine
the path replanning action. In [7], the direction of
the robot and the obstacles were computed using

(10)

where , ,i i ia b c and id are the coefficients to be
determined for each i. Hence, with m node inter-
vals, we require 4m coefficients to be computed. If

0 1 2(, , ,...,)nx x x x x= represents a set of points on a
computed path using A* algorithm, then 0 0()a f x= ,

1 1(),...,a f x= ()n na f x= . The cubic spline () ()iP x is
computed as:

2 3

1

() () () ()
.

i i i i i i i i
i i

P x a b x x c x x d x x
for x x x +

= + − + − + −
≤ ≤ (11)

Hence, given a set of data points on a path, cubic spline
interpolation smoothens the path as demonstrated in
Figure 4 by generating more data points between each
interval.
Contrary to the claim that CSI poses the challenge of
causing collisions [15], the introduction of MD tech-
nique to inflate obstacles on the map before comput-
ing the roadmap and the path in this paper helps to

address the possibility of collision occurrence. Fig-
ure 5 presents the result of applying cubic spline to
smoothen the generated path in Figure 3b.

Figure 4
Curve smoothening using cubic spline

2 3() ,i i i i iP x a b x c x d x= + + + (10)
where , ,i i ia b c and id are the coefficients to be
determined for each i. Hence, with m node
intervals, we require 4m coefficients to be
computed. If 0 1 2(, , ,...,)nx x x x x= represents a set
of points on a computed path using A* algorithm,
then 0 0()a f x= , 1 1(),...,a f x= ()n na f x= . The
cubic spline () ()iP x is computed as:

2 3

1

() () () ()
.

i i i i i i i i
i i

P x a b x x c x x d x x
for x x x +

= + − + − + −
≤ ≤ (11)

Hence, given a set of data points on a path, cubic
spline interpolation smoothens the path as
demonstrated in Figure 4 by generating more data
points between each interval.

Figure 4
 Curve smoothening using cubic spline

Contrary to the claim that CSI poses the challenge
of causing collisions [15], the introduction of MD
technique to inflate obstacles on the map before
computing the roadmap and the path in this
paper helps to address the possibility of collision
occurrence. Figure 5 presents the result of
applying cubic spline to smoothen the generated
path in Figure 3b.

Algorithm 3
Robot Navigation algorithm

Input: spath, source, target, distance thresholds d1, d2

Output: pathnavigate

1. Begin
2. ;sourceold source←
3. for 1 ();j to size spath←
4. [(,1), (, 2)];pathnavigate spath j spath j←

5. if idist d≤
6. Determine obstacle direction, Ra
7. if a crossR P== //Equation (15)
8. Stop and wait
9. end if
10. if a sameR P==
11. (,:);sourcenew spath j←
12. [,];source sourceold old source←
13. (, ,)source sourcespath Replan new old newmap=
14. Go to 3
15. end if
16. end if
17. if target reached;
18. return success and stop
19. end if
20. end for
21. End

Figure 5
Path smoothening applied to the path in Figure 3b on
the original map

3.5 Step 5: Path Replanning
During the mobile robot navigation, a random
obstacle may obstruct the optimized generated
path. The obstacle may be in motion or stationary.
If in motion, its direction is required to determine
the path replanning action. In [7], the direction of
the robot and the obstacles were computed using

Algorithm 3
Robot Navigation algorithm

Input: spath, source, target, distance thresholds d1, d2
Output: pathnavigate

1. Begin
2. ;sourceold source
3. for 1 ();j to size spath
4. [(,1), (, 2)];pathnavigate spath j spath j

5. if idist d
6. Determine obstacle direction, Ra
7. if a crossR P //Equation (15)
8. Stop and wait
9. end if
10. if a sameR P
11. (,:);sourcenew spath j
12. [,];source sourceold old source
13. (, ,)source sourcespath Replan new old newmap
14. Go to 3
15. end if
16. end if
17. if target reached;
18. return success and stop
19. end if
20. end for
21. End

Figure 5

Information Technology and Control 2019/2/48186

3.5. Step 5: Path Replanning
During the mobile robot navigation, a random obsta-
cle may obstruct the optimized generated path. The
obstacle may be in motion or stationary. If in motion,
its direction is required to determine the path replan-
ning action. In [7], the direction of the robot and the
obstacles were computed using the angular positions
of the robot and that of the obstacle. The difference
of these angles is compared to an angle threshold to
determine the direction of the obstacle followed by a
replanning action. The direction vector of the obsta-
cle ,obsθ and the velocity vector of the robot ,rθ were
obtained using Equations 12 and 13:

the angular positions of the robot and that of the
obstacle. The difference of these angles is
compared to an angle threshold to determine the
direction of the obstacle followed by a replanning
action. The direction vector of the obstacle ,obsθ
and the velocity vector of the robot ,rθ were
obtained using Equations 12 and 13:

2((), ())obs obs r obs ratan y y x xθ = − − (12)

2(,),r y xatan v vθ = (13)

where (,)obs obsx y is the position of the obstacle in
the environment while (,)r rx y is the position of
the robot. (,)x yv v are the coordinate components

of the velocity vector of the robot. The angle
difference is compared to an angle threshold
using Equation (14):

,obs r thresholdθ θ θ− < (14)
where thresholdθ represents the angle threshold to
determine the replanning action. While it is easy
to obtain the position of the robot for the
computations, it is difficult to obtain the (,)x y
position of the obstacle in the real environment
for the computations in Equations (12) and (13).

In this paper, a simple sensor-based reactive
technique is proposed to determine the direction
of an obstacle that obstructs the path of the robot
during navigation. Two main conditions of the
obstacle are required to take a decision: (1)
whether the obstacle in motion is crossing the
path of the robot, crossP ; (2) whether the obstacle
is stationary, in the same direction towards the
robot or moving forward in the same direction of
the robot, sameP . The expected replanning action
of the robot, aR is given as:

.
same

a cross

replan P
R wait P

navigate otherwise

=

 (15)

The robot waits for the obstacle to cross and
continue with its navigation if the condition is

crossP . If the condition is sameP a path replanning is
done. The technique is demonstrated in Figure 6.

Figure 6

Determining the direction of an obstacle using
sensors

From Figure 6, 1 2 3 4 5(, , , ,)s s s s s represent the
sensors of the robot, 1 2 3 4 5()s s s s sθ ,θ ,θ ,θ ,θ are the
angles of the sensors on the robot, 1 2 3(, ,)p p p
represent the different positions of an obstacle, d1

and d2 are the defined sensor distance thresholds
from the robot to the obstacle, and sd is the
required safe distance from the robot to the
obstacle. The sensors track obstacles during
navigation. When the minimum of the sensors’
distances, dist, between the robot and an obstacle
is less than d1, it suggests an obstacle has been
detected by the robot at a distance that is of less
collision threat to the robot. The sensors that
detect the obstacle are recorded. To check the
direction of the obstacle, sensor readings are
recorded till 2dist d≤ and the sensors with the
readings are noted. If the same sensors detect the
obstacle at 2 ,dist d≤ the sameP condition is
satisfied, and a call is made to re-plan and
compute a new feasible path for navigation. The
path replanning task involves re-generating the
roadmap, path computation and path
smoothening as described in steps 2, 3 and 4,
respectively. The current position of the robot is
used as the new source for the replanning.
However, if the obstacle is detected by other
sensors (right or left of the first sensor) at

2 , crossdist d P≤ condition is satisfied. The robot
stops and wait till 1dist d> (see Equation (15)).
From Figure 6, an obstacle obs at point 1p was
detected by 2s when 1dist d≤ At point 2 ,p it was
detected by 3s also at 1dist d≤ At point 3p it was
detected by 4s at 2dist d≤ . This condition of the
obstacle suggests that it is in motion across the

(12)

the angular positions of the robot and that of the
obstacle. The difference of these angles is
compared to an angle threshold to determine the
direction of the obstacle followed by a replanning
action. The direction vector of the obstacle ,obsθ
and the velocity vector of the robot ,rθ were
obtained using Equations 12 and 13:

2((), ())obs obs r obs ratan y y x xθ = − − (12)

2(,),r y xatan v vθ = (13)

where (,)obs obsx y is the position of the obstacle in
the environment while (,)r rx y is the position of
the robot. (,)x yv v are the coordinate components

of the velocity vector of the robot. The angle
difference is compared to an angle threshold
using Equation (14):

,obs r thresholdθ θ θ− < (14)
where thresholdθ represents the angle threshold to
determine the replanning action. While it is easy
to obtain the position of the robot for the
computations, it is difficult to obtain the (,)x y
position of the obstacle in the real environment
for the computations in Equations (12) and (13).

In this paper, a simple sensor-based reactive
technique is proposed to determine the direction
of an obstacle that obstructs the path of the robot
during navigation. Two main conditions of the
obstacle are required to take a decision: (1)
whether the obstacle in motion is crossing the
path of the robot, crossP ; (2) whether the obstacle
is stationary, in the same direction towards the
robot or moving forward in the same direction of
the robot, sameP . The expected replanning action
of the robot, aR is given as:

.
same

a cross

replan P
R wait P

navigate otherwise

=

 (15)

The robot waits for the obstacle to cross and
continue with its navigation if the condition is

crossP . If the condition is sameP a path replanning is
done. The technique is demonstrated in Figure 6.

Figure 6

Determining the direction of an obstacle using
sensors

From Figure 6, 1 2 3 4 5(, , , ,)s s s s s represent the
sensors of the robot, 1 2 3 4 5()s s s s sθ ,θ ,θ ,θ ,θ are the
angles of the sensors on the robot, 1 2 3(, ,)p p p
represent the different positions of an obstacle, d1

and d2 are the defined sensor distance thresholds
from the robot to the obstacle, and sd is the
required safe distance from the robot to the
obstacle. The sensors track obstacles during
navigation. When the minimum of the sensors’
distances, dist, between the robot and an obstacle
is less than d1, it suggests an obstacle has been
detected by the robot at a distance that is of less
collision threat to the robot. The sensors that
detect the obstacle are recorded. To check the
direction of the obstacle, sensor readings are
recorded till 2dist d≤ and the sensors with the
readings are noted. If the same sensors detect the
obstacle at 2 ,dist d≤ the sameP condition is
satisfied, and a call is made to re-plan and
compute a new feasible path for navigation. The
path replanning task involves re-generating the
roadmap, path computation and path
smoothening as described in steps 2, 3 and 4,
respectively. The current position of the robot is
used as the new source for the replanning.
However, if the obstacle is detected by other
sensors (right or left of the first sensor) at

2 , crossdist d P≤ condition is satisfied. The robot
stops and wait till 1dist d> (see Equation (15)).
From Figure 6, an obstacle obs at point 1p was
detected by 2s when 1dist d≤ At point 2 ,p it was
detected by 3s also at 1dist d≤ At point 3p it was
detected by 4s at 2dist d≤ . This condition of the
obstacle suggests that it is in motion across the

(13)

where (,)obs obsx y is the position of the obstacle in
the environment while (,)r rx y is the position of the
robot. (,)x yv v are the coordinate components of the
velocity vector of the robot. The angle difference is
compared to an angle threshold using Equation (14):

the angular positions of the robot and that of the
obstacle. The difference of these angles is
compared to an angle threshold to determine the
direction of the obstacle followed by a replanning
action. The direction vector of the obstacle ,obsθ
and the velocity vector of the robot ,rθ were
obtained using Equations 12 and 13:

2((), ())obs obs r obs ratan y y x xθ = − − (12)

2(,),r y xatan v vθ = (13)

where (,)obs obsx y is the position of the obstacle in
the environment while (,)r rx y is the position of
the robot. (,)x yv v are the coordinate components

of the velocity vector of the robot. The angle
difference is compared to an angle threshold
using Equation (14):

,obs r thresholdθ θ θ− < (14)
where thresholdθ represents the angle threshold to
determine the replanning action. While it is easy
to obtain the position of the robot for the
computations, it is difficult to obtain the (,)x y
position of the obstacle in the real environment
for the computations in Equations (12) and (13).

In this paper, a simple sensor-based reactive
technique is proposed to determine the direction
of an obstacle that obstructs the path of the robot
during navigation. Two main conditions of the
obstacle are required to take a decision: (1)
whether the obstacle in motion is crossing the
path of the robot, crossP ; (2) whether the obstacle
is stationary, in the same direction towards the
robot or moving forward in the same direction of
the robot, sameP . The expected replanning action
of the robot, aR is given as:

.
same

a cross

replan P
R wait P

navigate otherwise

=

 (15)

The robot waits for the obstacle to cross and
continue with its navigation if the condition is

crossP . If the condition is sameP a path replanning is
done. The technique is demonstrated in Figure 6.

Figure 6

Determining the direction of an obstacle using
sensors

From Figure 6, 1 2 3 4 5(, , , ,)s s s s s represent the
sensors of the robot, 1 2 3 4 5()s s s s sθ ,θ ,θ ,θ ,θ are the
angles of the sensors on the robot, 1 2 3(, ,)p p p
represent the different positions of an obstacle, d1

and d2 are the defined sensor distance thresholds
from the robot to the obstacle, and sd is the
required safe distance from the robot to the
obstacle. The sensors track obstacles during
navigation. When the minimum of the sensors’
distances, dist, between the robot and an obstacle
is less than d1, it suggests an obstacle has been
detected by the robot at a distance that is of less
collision threat to the robot. The sensors that
detect the obstacle are recorded. To check the
direction of the obstacle, sensor readings are
recorded till 2dist d≤ and the sensors with the
readings are noted. If the same sensors detect the
obstacle at 2 ,dist d≤ the sameP condition is
satisfied, and a call is made to re-plan and
compute a new feasible path for navigation. The
path replanning task involves re-generating the
roadmap, path computation and path
smoothening as described in steps 2, 3 and 4,
respectively. The current position of the robot is
used as the new source for the replanning.
However, if the obstacle is detected by other
sensors (right or left of the first sensor) at

2 , crossdist d P≤ condition is satisfied. The robot
stops and wait till 1dist d> (see Equation (15)).
From Figure 6, an obstacle obs at point 1p was
detected by 2s when 1dist d≤ At point 2 ,p it was
detected by 3s also at 1dist d≤ At point 3p it was
detected by 4s at 2dist d≤ . This condition of the
obstacle suggests that it is in motion across the

(14)

where thresholdθ represents the angle threshold to de-
termine the replanning action. While it is easy to ob-
tain the position of the robot for the computations, it

Figure 5
Path smoothening applied to the path in Figure 3b on the
original map

2 3() ,i i i i iP x a b x c x d x= + + + (10)
where , ,i i ia b c and id are the coefficients to be
determined for each i. Hence, with m node
intervals, we require 4m coefficients to be
computed. If 0 1 2(, , ,...,)nx x x x x= represents a set
of points on a computed path using A* algorithm,
then 0 0()a f x= , 1 1(),...,a f x= ()n na f x= . The
cubic spline () ()iP x is computed as:

2 3

1

() () () ()
.

i i i i i i i i
i i

P x a b x x c x x d x x
for x x x +

= + − + − + −
≤ ≤ (11)

Hence, given a set of data points on a path, cubic
spline interpolation smoothens the path as
demonstrated in Figure 4 by generating more data
points between each interval.

Figure 4
 Curve smoothening using cubic spline

Contrary to the claim that CSI poses the challenge
of causing collisions [15], the introduction of MD
technique to inflate obstacles on the map before
computing the roadmap and the path in this
paper helps to address the possibility of collision
occurrence. Figure 5 presents the result of
applying cubic spline to smoothen the generated
path in Figure 3b.

Algorithm 3
Robot Navigation algorithm

Input: spath, source, target, distance thresholds d1, d2

Output: pathnavigate

1. Begin
2. ;sourceold source←
3. for 1 ();j to size spath←
4. [(,1), (, 2)];pathnavigate spath j spath j←

5. if idist d≤
6. Determine obstacle direction, Ra
7. if a crossR P== //Equation (15)
8. Stop and wait
9. end if
10. if a sameR P==
11. (,:);sourcenew spath j←
12. [,];source sourceold old source←
13. (, ,)source sourcespath Replan new old newmap=
14. Go to 3
15. end if
16. end if
17. if target reached;
18. return success and stop
19. end if
20. end for
21. End

Figure 5
Path smoothening applied to the path in Figure 3b on
the original map

3.5 Step 5: Path Replanning
During the mobile robot navigation, a random
obstacle may obstruct the optimized generated
path. The obstacle may be in motion or stationary.
If in motion, its direction is required to determine
the path replanning action. In [7], the direction of
the robot and the obstacles were computed using

is difficult to obtain the (,)x y position of the obsta-
cle in the real environment for the computations in
Equations (12) and (13).
In this paper, a simple sensor-based reactive tech-
nique is proposed to determine the direction of an
obstacle that obstructs the path of the robot during
navigation. Two main conditions of the obstacle are
required to take a decision: (1) whether the obstacle
in motion is crossing the path of the robot, crossP ; (2)
whether the obstacle is stationary, in the same direc-
tion towards the robot or moving forward in the same
direction of the robot, sameP . The expected replanning
action of the robot, aR is given as:

the angular positions of the robot and that of the
obstacle. The difference of these angles is
compared to an angle threshold to determine the
direction of the obstacle followed by a replanning
action. The direction vector of the obstacle ,obsθ
and the velocity vector of the robot ,rθ were
obtained using Equations 12 and 13:

2((), ())obs obs r obs ratan y y x xθ = − − (12)

2(,),r y xatan v vθ = (13)

where (,)obs obsx y is the position of the obstacle in
the environment while (,)r rx y is the position of
the robot. (,)x yv v are the coordinate components

of the velocity vector of the robot. The angle
difference is compared to an angle threshold
using Equation (14):

,obs r thresholdθ θ θ− < (14)
where thresholdθ represents the angle threshold to
determine the replanning action. While it is easy
to obtain the position of the robot for the
computations, it is difficult to obtain the (,)x y
position of the obstacle in the real environment
for the computations in Equations (12) and (13).

In this paper, a simple sensor-based reactive
technique is proposed to determine the direction
of an obstacle that obstructs the path of the robot
during navigation. Two main conditions of the
obstacle are required to take a decision: (1)
whether the obstacle in motion is crossing the
path of the robot, crossP ; (2) whether the obstacle
is stationary, in the same direction towards the
robot or moving forward in the same direction of
the robot, sameP . The expected replanning action
of the robot, aR is given as:

.
same

a cross

replan P
R wait P

navigate otherwise

=

 (15)

The robot waits for the obstacle to cross and
continue with its navigation if the condition is

crossP . If the condition is sameP a path replanning is
done. The technique is demonstrated in Figure 6.

Figure 6

Determining the direction of an obstacle using
sensors

From Figure 6, 1 2 3 4 5(, , , ,)s s s s s represent the
sensors of the robot, 1 2 3 4 5()s s s s sθ ,θ ,θ ,θ ,θ are the
angles of the sensors on the robot, 1 2 3(, ,)p p p
represent the different positions of an obstacle, d1

and d2 are the defined sensor distance thresholds
from the robot to the obstacle, and sd is the
required safe distance from the robot to the
obstacle. The sensors track obstacles during
navigation. When the minimum of the sensors’
distances, dist, between the robot and an obstacle
is less than d1, it suggests an obstacle has been
detected by the robot at a distance that is of less
collision threat to the robot. The sensors that
detect the obstacle are recorded. To check the
direction of the obstacle, sensor readings are
recorded till 2dist d≤ and the sensors with the
readings are noted. If the same sensors detect the
obstacle at 2 ,dist d≤ the sameP condition is
satisfied, and a call is made to re-plan and
compute a new feasible path for navigation. The
path replanning task involves re-generating the
roadmap, path computation and path
smoothening as described in steps 2, 3 and 4,
respectively. The current position of the robot is
used as the new source for the replanning.
However, if the obstacle is detected by other
sensors (right or left of the first sensor) at

2 , crossdist d P≤ condition is satisfied. The robot
stops and wait till 1dist d> (see Equation (15)).
From Figure 6, an obstacle obs at point 1p was
detected by 2s when 1dist d≤ At point 2 ,p it was
detected by 3s also at 1dist d≤ At point 3p it was
detected by 4s at 2dist d≤ . This condition of the
obstacle suggests that it is in motion across the

(15)

The robot waits for the obstacle to cross and contin-
ue with its navigation if the condition is crossP . If the
condition is sameP a path replanning is done. The tech-
nique is demonstrated in Figure 6.

Figure 6
Determining the direction of an obstacle using sensorsthe angular positions of the robot and that of the

obstacle. The difference of these angles is
compared to an angle threshold to determine the
direction of the obstacle followed by a replanning
action. The direction vector of the obstacle ,obsθ
and the velocity vector of the robot ,rθ were
obtained using Equations 12 and 13:

2((), ())obs obs r obs ratan y y x xθ = − − (12)

2(,),r y xatan v vθ = (13)

where (,)obs obsx y is the position of the obstacle in
the environment while (,)r rx y is the position of
the robot. (,)x yv v are the coordinate components

of the velocity vector of the robot. The angle
difference is compared to an angle threshold
using Equation (14):

,obs r thresholdθ θ θ− < (14)
where thresholdθ represents the angle threshold to
determine the replanning action. While it is easy
to obtain the position of the robot for the
computations, it is difficult to obtain the (,)x y
position of the obstacle in the real environment
for the computations in Equations (12) and (13).

In this paper, a simple sensor-based reactive
technique is proposed to determine the direction
of an obstacle that obstructs the path of the robot
during navigation. Two main conditions of the
obstacle are required to take a decision: (1)
whether the obstacle in motion is crossing the
path of the robot, crossP ; (2) whether the obstacle
is stationary, in the same direction towards the
robot or moving forward in the same direction of
the robot, sameP . The expected replanning action
of the robot, aR is given as:

.
same

a cross

replan P
R wait P

navigate otherwise

=

 (15)

The robot waits for the obstacle to cross and
continue with its navigation if the condition is

crossP . If the condition is sameP a path replanning is
done. The technique is demonstrated in Figure 6.

Figure 6

Determining the direction of an obstacle using
sensors

From Figure 6, 1 2 3 4 5(, , , ,)s s s s s represent the
sensors of the robot, 1 2 3 4 5()s s s s sθ ,θ ,θ ,θ ,θ are the
angles of the sensors on the robot, 1 2 3(, ,)p p p
represent the different positions of an obstacle, d1

and d2 are the defined sensor distance thresholds
from the robot to the obstacle, and sd is the
required safe distance from the robot to the
obstacle. The sensors track obstacles during
navigation. When the minimum of the sensors’
distances, dist, between the robot and an obstacle
is less than d1, it suggests an obstacle has been
detected by the robot at a distance that is of less
collision threat to the robot. The sensors that
detect the obstacle are recorded. To check the
direction of the obstacle, sensor readings are
recorded till 2dist d≤ and the sensors with the
readings are noted. If the same sensors detect the
obstacle at 2 ,dist d≤ the sameP condition is
satisfied, and a call is made to re-plan and
compute a new feasible path for navigation. The
path replanning task involves re-generating the
roadmap, path computation and path
smoothening as described in steps 2, 3 and 4,
respectively. The current position of the robot is
used as the new source for the replanning.
However, if the obstacle is detected by other
sensors (right or left of the first sensor) at

2 , crossdist d P≤ condition is satisfied. The robot
stops and wait till 1dist d> (see Equation (15)).
From Figure 6, an obstacle obs at point 1p was
detected by 2s when 1dist d≤ At point 2 ,p it was
detected by 3s also at 1dist d≤ At point 3p it was
detected by 4s at 2dist d≤ . This condition of the
obstacle suggests that it is in motion across the

From Figure 6, 1 2 3 4 5(, , , ,)s s s s s represent the sensors
of the robot, 1 2 3 4 5()s s s s sθ ,θ ,θ ,θ ,θ are the angles of
the sensors on the robot, 1 2 3(, ,)p p p represent the
different positions of an obstacle, d1 and d2 are the
defined sensor distance thresholds from the robot to
the obstacle, and sd is the required safe distance from

187Information Technology and Control 2019/2/48

the robot to the obstacle. The sensors track obstacles
during navigation. When the minimum of the sensors’
distances, dist, between the robot and an obstacle is
less than d1, it suggests an obstacle has been detected
by the robot at a distance that is of less collision threat
to the robot. The sensors that detect the obstacle are
recorded. To check the direction of the obstacle, sen-
sor readings are recorded till 2dist d≤ and the sen-
sors with the readings are noted. If the same sensors
detect the obstacle at 2 ,dist d≤ the sameP condition is
satisfied, and a call is made to re-plan and compute a
new feasible path for navigation. The path replanning
task involves re-generating the roadmap, path com-
putation and path smoothening as described in steps
2, 3 and 4, respectively. The current position of the ro-
bot is used as the new source for the replanning. How-
ever, if the obstacle is detected by other sensors (right
or left of the first sensor) at 2 , crossdist d P≤ condition
is satisfied. The robot stops and wait till 1dist d> (see
Equation (15)). From Figure 6, an obstacle obs at
point 1p was detected by 2s when 1dist d≤ . At point

2 ,p it was detected by 3s also at 1dist d≤ . At point
3p it was detected by 4s at 2dist d≤ . This condition

of the obstacle suggests that it is in motion across the
path of the robot. This satisfies the crossP condition,
hence the robot stops and waits for the obstacle to
cross till 1dist d≤ without path re-replanning. The
algorithm used to guide navigation indicating a call
for replanning when a random obstacle is detected is
given in Algorithm 3.

4. Simulation Results
To evaluate the efficiency of the proposed method,
simulation was carried out using MATLAB. Results
obtained from experiment with complex and less
complex environments, environment with local
minimum possibilities, and narrow passages are
given. 1 10sz = and 2 15sz = are the step sizes used in
computing tree. Results for path replanning are also
demonstrated. Additionally, results of experiment
using maps in [10] are given.

4.1. Experiment with Complex and Less
Complex Environment
Figures 7 and 8 present simulation results in environ-
ment with less complex and complex environments for

the modified goal-biased RRT and the ORRT-A* meth-
od proposed, respectively. The complexity of the envi-
ronment in this paper is based on the occupancy rate of
obstacles in the environment, the number and shapes
of obstacles. The occupancy rate is computed as:

path of the robot. This satisfies the crossP
condition, hence the robot stops and waits for the
obstacle to cross till 1dist d≤ without path re-
replanning. The algorithm used to guide
navigation indicating a call for replanning when a
random obstacle is detected is given in Algorithm
3.

4. Simulation Results
To evaluate the efficiency of the proposed
method, simulation was carried out using
MATLAB. Results obtained from experiment with
complex and less complex environments,
environment with local minimum possibilities,
and narrow passages are given. 1 10sz = and

2 15sz = are the step sizes used in computing tree.
Results for path replanning are also
demonstrated. Additionally, results of experiment
using maps in [10] are given.

4.1 Experiment with Complex and Less

Complex Environment

Figures 7 and 8 present simulation results in
environment with less complex and complex
environments for the modified goal-biased RRT
and the ORRT-A* method proposed, respectively.
The complexity of the environment in this paper
is based on the occupancy rate of obstacles in the
environment, the number and shapes of obstacles.
The occupancy rate is computed as:

_ *100,obspixelsoccupancy rate
mpixels

= (16)

where mpixels represents the total number pixels
of the map representing the environment and
obspixels represents the number of pixels of the
environment occupied by obstacles.

Figure 7

Path in less complex environment of occupancy rate of
35.18% and 19 different shapes of obstacles represented
on a 500 by 500 pixel map: (a) Modified goal-biased
RRT with path length 573.63 on the map with inflated
obstacles; (b) ORRT-A* with path length 513.48 on the
original map.

(a) (b)

Figure 8
Path in complex environment of occupancy rate of
54.9% and 23 different shapes of obstacles represented
on a 500 by 500 pixel map: (a) Modified goal-biased
RRT with path length 668.23 on the map with inflated
obstacles; (b) ORRT-A* with path length 572.34 on the
original map.

 (a) (b)

4.2 Experiment with Environment with

Local Minimum Possibilities

Experiment to compare the performance of the
proposed method to RRT-A* in [24] was done
using “T” shaped obstacle as presented in Figure
8. Li et al. [24] acknowledged the failure of RRT-
A* to find path in an environment with T-shaped
obstacle (Figure 9) after 5000 iterations. To
evaluate the performance of the ORRT-A*
algorithm in dealing with local minimum
problem beyond T-shaped obstacle, a more
complex local minimum environment was used
for a simulation as shown in Figure 10.

Figure 9

(a) Modified goal-biased RRT in T-shaped obstacle
environment of path length 955.69 with 792 iterations;
(b) ORRT-A* in T-shaped obstacle environment with
path length 703.93 on the original map.

(a) (b)

(16)

where mpixels represents the total number pixels of
the map representing the environment and obspixels
represents the number of pixels of the environment
occupied by obstacles.

Figure 7
Path in less complex environment of occupancy rate of
35.18% and 19 different shapes of obstacles represented on
a 500 by 500 pixel map: (a) Modified goal-biased RRT with
path length 573.63 on the map with inflated obstacles; (b)
ORRT-A* with path length 513.48 on the original map

Figure 8
Path in complex environment of occupancy rate of 54.9%
and 23 different shapes of obstacles represented on a
500 by 500 pixel map: (a) Modified goal-biased RRT with
path length 668.23 on the map with inflated obstacles; (b)
ORRT-A* with path length 572.34 on the original map

path of the robot. This satisfies the crossP
condition, hence the robot stops and waits for the
obstacle to cross till 1dist d≤ without path re-
replanning. The algorithm used to guide
navigation indicating a call for replanning when a
random obstacle is detected is given in Algorithm
3.

4. Simulation Results
To evaluate the efficiency of the proposed
method, simulation was carried out using
MATLAB. Results obtained from experiment with
complex and less complex environments,
environment with local minimum possibilities,
and narrow passages are given. 1 10sz = and

2 15sz = are the step sizes used in computing tree.
Results for path replanning are also
demonstrated. Additionally, results of experiment
using maps in [10] are given.

4.1 Experiment with Complex and Less

Complex Environment

Figures 7 and 8 present simulation results in
environment with less complex and complex
environments for the modified goal-biased RRT
and the ORRT-A* method proposed, respectively.
The complexity of the environment in this paper
is based on the occupancy rate of obstacles in the
environment, the number and shapes of obstacles.
The occupancy rate is computed as:

_ *100,obspixelsoccupancy rate
mpixels

= (16)

where mpixels represents the total number pixels
of the map representing the environment and
obspixels represents the number of pixels of the
environment occupied by obstacles.

Figure 7

Path in less complex environment of occupancy rate of
35.18% and 19 different shapes of obstacles represented
on a 500 by 500 pixel map: (a) Modified goal-biased
RRT with path length 573.63 on the map with inflated
obstacles; (b) ORRT-A* with path length 513.48 on the
original map.

(a) (b)

Figure 8
Path in complex environment of occupancy rate of
54.9% and 23 different shapes of obstacles represented
on a 500 by 500 pixel map: (a) Modified goal-biased
RRT with path length 668.23 on the map with inflated
obstacles; (b) ORRT-A* with path length 572.34 on the
original map.

 (a) (b)

4.2 Experiment with Environment with

Local Minimum Possibilities

Experiment to compare the performance of the
proposed method to RRT-A* in [24] was done
using “T” shaped obstacle as presented in Figure
8. Li et al. [24] acknowledged the failure of RRT-
A* to find path in an environment with T-shaped
obstacle (Figure 9) after 5000 iterations. To
evaluate the performance of the ORRT-A*
algorithm in dealing with local minimum
problem beyond T-shaped obstacle, a more
complex local minimum environment was used
for a simulation as shown in Figure 10.

Figure 9

(a) Modified goal-biased RRT in T-shaped obstacle
environment of path length 955.69 with 792 iterations;
(b) ORRT-A* in T-shaped obstacle environment with
path length 703.93 on the original map.

(a) (b)

(a) (b)

(a) (b)

Information Technology and Control 2019/2/48188

4.2. Experiment with Environment with
Local Minimum Possibilities
Experiment to compare the performance of the pro-
posed method to RRT-A* in [24] was done using “T”
shaped obstacle as presented in Figure 8. Li et al. [24]
acknowledged the failure of RRT-A* to find path in an
environment with T-shaped obstacle (Figure 9) after
5000 iterations. To evaluate the performance of the
ORRT-A* algorithm in dealing with local minimum
problem beyond T-shaped obstacle, a more complex
local minimum environment was used for a simula-
tion as shown in Figure 10.

Figure 9
(a) Modified goal-biased RRT in T-shaped obstacle
environment of path length 955.69 with 792 iterations; (b)
ORRT-A* in T-shaped obstacle environment with path
length 703.93 on the original map

Figure 10
Path computation in complex local minimum environment:
(a) Modified goal-biased RRT of path length 1469.8 with
2008 iterations; (b) ORRT-A* path with path length 1008.2
on the original map

Figure 11
Path computation in a narrow passage environment: (a)
Modified goal-biased RRT of path length 885.7 with 644
iterations; (b) ORRT-A* path with path length 775.86 on
the original map

4.3. Experiment in Narrow Passage
Environment
It is known that sampling-based path planning meth-
ods have difficulties in finding path in narrow pas-
sages. To evaluate the performance of the proposed
method, experiment was conducted in an environ-
ment with narrow passage to determine its efficiency
as presented in Figure 11.

(a) (b)

(a) (b)

a b

4.4. Results for Path Replanning
To evaluate the ORRT-A* method for path replan-
ning, an obstacle was inserted randomly during the
navigation of the robot ensuring that it obstructs the
path of navigation. As the random obstacle is detect-
ed at a distance di, a call is made for replanning and
the path is regenerated for navigation to continue.
Not until a goal is reached, obstacles are inserted
randomly to block the path of navigation. Obstacle
detection sensors are, however, required for a real
situation.
Figure 12 demonstrates tasks performed to regener-
ate the path to avoid collision with three random ob-
stacles that obstruct the path during navigation and
the final path taken by the robot to reach its target.
Paths and roadmaps in Figures 12a to 12g are shown
on the map with inflated obstacles while the path in
Figure 12h shows the final path on the original map.

189Information Technology and Control 2019/2/48

(e) (f)

4.5. Experiment with Maps Used to Evaluate
RRT-A*
To aid in comparing the efficiency of the proposed
method to RRT-A*, experiments are performed us-
ing the maps used in [24].
Figure 13 demonstrates the results of goal-biased
RRT and ORRT-A* in sparse environment while
Figure 14 depicts the results of goal-biased RRT and
ORRT-A* in dense environment.

Figure 12
Path planning and replanning to avoid obstacles during
navigation:

(a) Initial RRT Roadmap; (b) Initial Path from S to T.

(a)

(a)

(g)

(c)

(b)

(b)

(h)

(d)

(c) Roadmap for path replanning from S1 as the new
starting point after encountering the random obstacle obs1;
(d) New Path generated from S1 to the target T;

 (e) Roadmap for path replanning from S2 as the new
starting point after encountering the random obstacle
obs2; (f) New Path generated from S2 to the target T.

 (e) (f)

(g) Roadmap for path replanning from S3 as the new
starting point after encountering the random obstacle
obs3 on the map with inflated obstacles; (h) Final Path
to the target T on the original map.

 (g) (h)

4.5 Experiment with Maps Used to Evaluate

RRT-A*

To aid in comparing the efficiency of the proposed
method to RRT-A*, experiments are performed
using the maps used in [24]. Figure 13
demonstrates the results of goal-biased RRT and
ORRT-A* in sparse environment while Figure 14
depicts the results of goal-biased RRT and ORRT-
A* in dense environment.

Figure 13

Performance of the proposed method in sparse
environment of 50-by-50 with round obstacles used in
[10]: (a) Roadmap and path for goal-biased RRT of path
length 76.66 with 141 iterations; (b) ORRT-A* path of
path length 66.81.
 (a) (b)

Figure 14

Performance of the proposed method in dense
environment of 50-by-50 with round obstacles used in
[10]: (a) Roadmap and path for goal-biased RRT of path
length 77.69 with 601 iterations; (b) ORRT-A* path of
path length 65.4.
 (a) (b)

5. Discussion
As indicated in Figure 7 and 8, the proposed
method performed well in computing safe and
shortest path from the initial position to the goal
on maps representing less complex and more
complex environments. The less complex
environment is made up of 19 obstacles of
different shapes with 35.18% occupancy rate
while the more complex environment comprises
of 23 obstacles of different shapes with 54.9%
occupancy rate. In environments with T-shaped
obstacle and other obstacles that could cause local
minima problem (see Figure 9 and 10), the
proposed method found path successfully as

(e) Roadmap for path replanning from S2 as the new
starting point after encountering the random obstacle obs2;
(f) New Path generated from S2 to the target T.

(g) Roadmap for path replanning from S3 as the new
starting point after encountering the random obstacle obs3
on the map with inflated obstacles; (h) Final Path to the
target T on the original map.

Figure 13
Performance of the proposed method in sparse environment
of 50-by-50 with round obstacles used in [10]: (a) Roadmap
and path for goal-biased RRT of path length 76.66 with 141
iterations; (b) ORRT-A* path of path length 66.81

Information Technology and Control 2019/2/48190

5. Discussion
As indicated in Figure 7 and 8, the proposed method
performed well in computing safe and shortest path
from the initial position to the goal on maps repre-
senting less complex and more complex environ-
ments. The less complex environment is made up of
19 obstacles of different shapes with 35.18% occupan-
cy rate while the more complex environment com-
prises of 23 obstacles of different shapes with 54.9%
occupancy rate. In environments with T-shaped
obstacle and other obstacles that could cause local
minima problem (see Figure 9 and 10), the proposed
method found path successfully as against the prob-
lem associated with RRT-A* in relation to local min-
ima. It is also known that sample-based methods
including RRT have problems with narrow passages
[8]. The results shown in Figure 11 indicate that the
proposed method is effective in dealing with narrow
passages. The results of the proposed method as pre-
sented in Figure 12 depict the strength of the method
in performing reactive path replanning to deal with
unforeseen obstacles that may obstruct the path of
the robot during navigation.
Moreover, as indicated in Figures 13 and 14, the pro-
posed ORRT-A* method performed very well with
sparse and dense environment maps used in [24]. Ta-
ble 1 presents the performance results of Euclidean
based goal-biased RRT and Euclidean based RRT-A*
methods as presented in [24]. Table 2 presents the

Figure 14
Performance of the proposed method in dense environment
of 50-by-50 with round obstacles used in [10]: (a) Roadmap
and path for goal-biased RRT of path length 77.69 with 601
iterations; (b) ORRT-A* path of path length 65.4

performance results of Euclidean based goal-biased
RRT, A* and Euclidean based ORRT-A* methods in-
dicating the average path length and time for each
method after 50 runs for each map of sparse and dense
environment. Results of RRT-A* method in [24], as
presented in Table 1, were compared with goal-biased
RRT. In Table 2, the proposed ORRT-A* method is
compared to goal-biased RRT and A* methods. Table
3 compares RRT-A*, A* and ORRT-A* using goal bi-
ased RRT as the base method to compute the optimal-
ity and time-used rates. Information in Tables 1 and
2 is used for the comparison in Table 3. Table 3 indi-
cates the percentage optimality gained and percent-
age time used by RRT-A*, A* and ORRT-A* methods
as against goal-biased RRT using the same Euclidean

(a) (b)

Table 1
Results of Euclidean based goal-biased RRT and Euclidean
based RRT-A* methods presented in [24]

Environment Algorithm Average
Length

Average
Time

Sparse

Euclidean based
goal-biased RRT 73.40 2.86

Euclidean based
RRT-A* 68.96 27.14

Dense

Euclidean based
goal-biased RRT 73.367 6.745

Euclidean based
RRT-A* 70.36 21.73

Table 2
Results of Euclidean based goal-biased RRT, A* and Euclidean
based ORRT-A* methods

Environment Algorithm Average
Length

Average
Time

Sparse

Euclidean based
goal-biased RRT 70.72 5.82

Euclidean based A* 63.13 484.70

Euclidean based
ORRT-A* 63.49 7.15

Dense

Euclidean based
goal-biased RRT 72.63 4.27

Euclidean based A* 63.98 239.01

Euclidean based
ORRT-A* 64.43 5.71

191Information Technology and Control 2019/2/48

metric. The average number of nodes, n, used to com-
pute the final path for each method is also indicated.
The optimality rate is obtained using *100,Gp Mp

Gp
−

where Gp represents path length for the base method
(Euclidean goal-based RRT) and Mp represents path
length for RRT-A*, A* or ORRT-A*. The Time-used
rate was computed using *100,Mt Gt

Gt
− where Mt is

the time used to obtain Mp for the base method (Eu-
clidean goal-based RRT) and Gt represents the time
used to obtain Gp. High optimality rate with low time-
used rate indicates good performance. Comparing the
results, the proposed method achieved 10.22% path
optimality using 22.8% time as against 6% optimality
with 849% time used by RRT-A* method in less com-
plex environments. In dense environment, the pro-
posed method achieved 11.29% path optimality using
33.87% time as against 4.2% optimality with 222%
time used by RRT-A* method. Regarding path length,
A* performs better than both RRT-A* and ORRT-A*
methods. However, the average time used (8,228.18%
and 5,497.42% for sparse and dense environments, re-
spectively) to attain such optimality is very high and
comparatively inefficient for a reactive path planning
for obstacle avoidance for robots in motion.
The time and space complexity of RRT* and RRT*-
smart is indicated in [16] as (log)O n n and (),O n re-
spectively. With the same requirements to compute
the sample, nearest node, tree extensions and addi-
tion of node to the tree as in RRT*-smart, goal-biased
RRT uses the same time and space complexities. But
with the requirement to bias the tree growth towards
the goal, the n value in goal-biased RRT is reduced.

The proposed method adopted and modified goal-bi-
ased RRT for the generation of the roadmap. With the
introduction of additional step-size to speed up the
growth of the tree to the goal in the proposed meth-
od, the n value is reduced significantly though the
time and space complexities remain (log)O n n and

(),O n respectively. RRT-A* algorithm, on the other
hand applied A* during the generation of the tree at
the learning phase. The time and space complexities
of A* are 2()O n and (),O n respectively. The use of the
A* at the learning phase increases the time complexi-
ty of generating the tree to 2()O n . At the query phase
of the proposed method, a simple binary search of
running time of (log)O n n is used to obtain the initial
path where n is the number of nodes on the roadmap.
A* algorithm with 2()O n running time, where n rep-
resents the number of nodes of the path generated us-
ing the binary search is then used to obtain the short-
est path from the start position of the robot to the goal
position. Hence, the n value used in the ORRT-A*
method has reduced drastically compared to the n
value used in RRT-A* though both methods applied A*
algorithm with running time of 2()O n . This analysis
indicates a better performance of ORRT-A* as against
RRT-A* with respect to time as demonstrated in the
results in Table 3.

6. Conclusion
In this paper, ORRT-A* path planning method for mo-
bile robots in partially known complex environment
is presented based on MD technique, goal-biased

Table 3
Compared results of RRT-A*, A* and ORRT-A* with goal-biased RRT using Euclidean metric

Environment Algorithm % Optimality % Time used Average Nodes (n)

Sparse

Euclidean based RRT-A* 6.00 849.00 838

Euclidean based A* 10.59 8,228.18 2051

Euclidean based ORRT-A* 10.22 22.85 56

Dense

Euclidean based RRT-A* 4.27 222.00 781

Euclidean based A* 11.91 5497.42 1715

Euclidean based ORRT-A* 11.29 33.72 42

Information Technology and Control 2019/2/48192

RRT, A* and cubic spline interpolation algorithms.
The ORRT-A* algorithm considered the safety of the
mobile robots during navigation by introducing MD
technique to inflate the obstacles before computing
the path. Given initial and target positions, the algo-
rithm generates a roadmap using modified goal-bi-
ased RRT on the map with inflated obstacles. Unlike
the original goal-biased RRT algorithm, two step-size
constraints, where one step-size is assigned higher
value than the others are used to facilitate the growth
of the tree from the initial position to the target with
low time complexity. A* heuristic algorithm was used
as the local planner to obtain the shortest path while
cubic spline interpolation was used to smoothen the
path generated. While RRT-A* method used A* heu-
ristic algorithm at every iteration to select the near-
est node during the generation of the roadmap at the
learning phase, it is used in ORRT-A* as a local plan-
ner at the query phase after generating the roadmap
with the modified goal-biased RRT.
Results indicate that ORRT-A* method provides en-
hanced path quality compared to goal-biased RRT
and RRT-A* methods. Compared to RRT-A* meth-

od, ORRT-A* method is more efficient in terms of
path quality and length, and time complexity using
the same distance metric. The algorithm presented
performed efficiently in both complex and narrow
passages environments. The local minimum problem
associated with RRT-A* method has been addressed.
Again, ORRT-A* method can avoid random obstacles
that obstruct the path of the robot during navigation
by replanning its path till the target is reached. These
strengths make the method viable to perform effi-
ciently in real partially known complex environment.
ORRT-A* is therefore a promising method to achieve
autonomous vehicle navigation in partially known
and complex environment.
Future work would consider real implementation of
ORRT-A* path planning method to evaluate its perfor-
mance in the real environment. Implementation of the
method in 3D environment is under consideration.

Acknowledgements
This work was supported by the Beijing Advanced In-
novation Center for Intelligent Robots and Systems
under Grand No. 2018IRS20.

References
1. Aguilar, W. G., Morales, S. G. 3D Environment Mapping

Using the Kinect V2 and Path Planning Based on RRT
Algorithms. Electronics, 5(4), 70, 2016. https://doi.
org/10.3390/electronics5040070

2. Ayawli, B. B. K., Chellali, R., Appiah A. Y., Kyeremeh F.
An Overview of Nature-Inspired, Conventional, and
Hybrid Methods of Autonomous Vehicle Path Planning.
Journal of Advanced Transportation, 2018 (2018), 1-27.
https://doi.org/10.1155/2018/8269698

3. Burden R. L., Faires J. D. Numerical Analysis, Ninth
edition. Boston, USA: Brooks/Cole, Cengage Learning,
2011.

4. Candeloro, M., Lekkas, A. M., Hegde, J., Sørensen, A
J. A 3D Dynamic Voronoi Diagram-Based Path-Plan-
ning System for UUVs. OCEANS 2016 MTS/IEEE,
Monterey, CA, 2016, 1-8. https://doi.org/10.1109/OCE-
ANS.2016.7761427

5. Candeloro, M., Lekkas, A. M., Sørensen, A. J. A Voro-
noi-Diagram-Based Dynamic Path-Planning System
for Underactuated Marine Vessels. Control Enginee-

ring Practice, 2017, 61, 41-54. https://doi.org/10.1016/j.
conengprac.2017.01.007

6. Chen, Y., Sun, J. Distributed Optimal Control for Mul-
ti-Agent Systems with Obstacle Avoidance. Neuro-
computing, 2016, 173(3), 2014-2021. https://doi.or-
g/10.1016/j.neucom.2015.08.085

7. Connell, D., La, H. M. Dynamic Path Plan-
ning and Replanning for Mobile Robots Using
RRT*, arXiv, preprint arXiv: 1704.04585, 2017.
https://doi.org/10.1109/SMC.2017.8122814

8. Daee, P., Taheri, K., Moradi, H. A Sampling Algorithm
for Reducing the Number of Collision Checking in Pro-
babilistic Roadmaps. 22nd Iranian Conference on Elec-
trical Engineering (ICEE), Tehran, 2014, 1313-1316.
https://doi.org/10.1109/IranianCEE.2014.6999737

9. de Santana Correia, A., Kamarry, S., Molina, L., Carval-
ho, E. Á. N., Freire, E. O. RRT-Edge: A Compact Appro-
ach for Path Planning of Mobile Robots. Latin American
Robotics Symposium (LARS) and 2017 Brazilian Sym-
posium on Robotics (SBR), Curitiba, 2017, 1-6. https://
doi.org/10.1109/SBR-LARS-R.2017.8215282

https://doi.org/10.3390/electronics5040070
https://doi.org/10.3390/electronics5040070
https://doi.org/10.1155/2018/8269698
https://doi.org/10.1109/OCEANS.2016.7761427
https://doi.org/10.1109/OCEANS.2016.7761427
https://doi.org/10.1016/j.conengprac.2017.01.007
https://doi.org/10.1016/j.conengprac.2017.01.007
https://doi.org/10.1016/j.neucom.2015.08.085
https://doi.org/10.1016/j.neucom.2015.08.085
https://doi.org/10.1109/SMC.2017.8122814
https://doi.org/10.1109/IranianCEE.2014.6999737
https://doi.org/10.1109/SBR-LARS-R.2017.8215282
https://doi.org/10.1109/SBR-LARS-R.2017.8215282

193Information Technology and Control 2019/2/48

10. Ferguson, D., Stentz, A. Anytime RRTs, IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, Beijing, 2006, 5369-5375. https://doi.org/10.1109/
IROS.2006.282100

11. García, N., Suárez, R., Rosell, J. HG-RRT*: Human-Gui-
ded Optimal Random Trees for Motion Planning.
Conference on Emerging Technologies & Factory Au-
tomation (ETFA), Luxembourg, 2015, 1-7. https://doi.
org/10.1109/ETFA.2015.7301536

12. Gonzalez, R. C., Wood, R. E. Digital Image Processing,
2nd edn. Englewood Cliffs: Prentice Hall, 2002.

13. Heß, R., Kempf, F., Schilling, K. Trajectory Planning
for Car-Like Robots Using Rapidly Exploring Random
Trees. IFAC Proceedings, Seoul, Korea, 2013, 44-49.
https://doi.org/10.3182/20131111-3-KR-2043.00018

14. Heβ, R., Lindeholz, T., Eck, D., Schilling, K. RRTCAP* -
RRT* Controller and Planner - Simultaneous Motion
and Planning. IFAC-PapersOnline, 2015, 48(10), 52-57.
https://doi.org/10.1016/j.ifacol.2015.08.107

15. Ho, Y. J., Liu, J. S. Collision-free Curvature-Bounded
Smooth Path Planning Using Composite Bezier Curve
Based on Voronoi Diagram. IEEE Intl Symp on CIRA,
Daejeon, 2009, 463-468. https://doi.org/10.1109/
CIRA.2009.5423161

16. Islam, F., Nasir, J., Malik, U., Ayaz, Y., Hasan, O. RR-
T*-Smart: Rapid Convergence Implementation of
RRT* Towards Optimal Solution. IEEE Internatio-
nal Conference on Mechatronics and Automation,
Chengdu, 2012, 1651-1656. https://doi.org/10.1109/
ICMA.2012.6284384

17. Kakillioglu, B., Ozcan, K., Velipasalar, S. Doorway De-
tection for Autonomous Indoor Navigation of Unman-
ned Vehicles. IEEE International Conference on Image
Processing, Phoenix, AZ, 2016, 3837-3841. https://doi.
org/10.1109/ICIP.2016.7533078

18. Karaman, S., Frazzoli, E. Incremental Sam-
pling-Based Algorithms for Optimal Motion Plan-
ning. arXiv preprint arXiv: 1005.0416, 2010.
https://doi.org/10.15607/RSS.2010.VI.034

19. Karaman, S., Frazzoli, E. Optimal Kinodynamic Motion
Planning Using Incremental Sampling-Based Methods.
49th IEEE Conference on Decision and Control (CDC),
Atlanta, GA, 2010, 7681-7687. https://doi.org/10.1109/
CDC.2010.5717430

20. Karaman, S., Frazzoli, E. Sampling-Based Algorithms
for Optimal Motion Planning. The International Jour-
nal of Robotics Research, 2011, 30(7), 846-894. https://
doi.org/10.1177/0278364911406761

21. Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., Teller,
S. Anytime Motion Planning Using the RRT*. IEEE In-
ternational Conference on Robotics and Automation,
Shanghai, 2011, 1478-1483. https://doi.org/10.1109/
ICRA.2011.5980479

22. Lavalle, S. M. Rapidly-Exploring Random Trees: a New
Tool for Path Planning. Tech. Rep. 98-11, Computer Sci-
ence Dept, Iowa State University, Iowa, USA, 1998. =20

23. Li Y., Cui R., Li Z., and Xu D. Neural Network Approxi-
mation-Based Near-Optimal Motion Planning with
Kinodynamic Constraints Using RRT. IEEE Transac-
tions on Industrial Electronics, 2018 65(11) 8718-8729.
https://doi.org/10.1109/TIE.2018.2816000

24. Li, J, Liu, S., Zhang, B., Zhao X. RRT-A* Motion Planning
Algorithm for Non-Holonomic Mobile Robot. Procee-
dings of the SICE Annual Conference, Sapporo, 2014,
1833-1838. https://doi.org/10.1109/SICE.2014.6935304

25. Li, Y., Zhang, F., Xu, D., Dai, J. Liveness-Based RRT Al-
gorithm for Autonomous Underwater Vehicles Motion
Planning. Journal of Advanced Transportation, 2017,
(2017) 1-10. https://doi.org/10.1155/2017/7816263

26. Matveev, A. S., Savkin, A. V., Hoy, M., Wang, C. Safe Ro-
bot Navigation Among Moving and Steady Obstacles:
Biologically Inspired Algorithm for Safe Navigation of
a Wheeled Robot Among Moving Obstacles. Butterwor-
th-Heinemann, 2016, 161-184. https://doi.org/10.1016/
B978-0-12-803730-0.00008-1

27. Noreen, I., Khan, A., Ryu, H., Doh, N. L., Habib, Z. Opti-
mal Path Planning in Cluttered Environment Using RR-
T*-AB. Intelligent Service Robotics, 2018, 11(1), 41-52.
https://doi.org/10.1007/s11370-017-0236-7

28. Otte, M., Frazzoli, E. RRTX: Asymptotically Optimal
Single-Query Sampling-Based Motion Planning with
Quick Replanning. The International Journal of Ro-
botics Research, 2016, 35(7), 797 - 822. https://doi.
org/10.1177/0278364915594679

29. Palmieri, L., Koenig, S., Arras, K. O. RRT-Based Non-
holonomic Motion Planning Using Any-Angle Path
Biasing. International Conference on Robotics and Au-
tomation (ICRA), Stockholm, 2016, 2775-2781. https://
doi.org/10.1109/ICRA.2016.7487439

30. Park, J. J., Kuipers, B. Feedback Motion Planning via
Non-Holonomic RRT* for Mobile Robots. IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), Hamburg, 2015, 4035-4040. https://
doi.org/10.1109/IROS.2015.7353946

31. Qureshi, A. H. et al. Triangular Geometry Based Op-
timal Motion Planning Using RRT*-Motion Planner.

https://doi.org/10.1109/IROS.2006.282100
https://doi.org/10.1109/IROS.2006.282100
https://doi.org/10.1109/ETFA.2015.7301536
https://doi.org/10.1109/ETFA.2015.7301536
https://doi.org/10.3182/20131111-3-KR-2043.00018
https://doi.org/10.1016/j.ifacol.2015.08.107
https://doi.org/10.1109/CIRA.2009.5423161
https://doi.org/10.1109/CIRA.2009.5423161
https://doi.org/10.1109/ICMA.2012.6284384
https://doi.org/10.1109/ICMA.2012.6284384
https://doi.org/10.1109/ICIP.2016.7533078
https://doi.org/10.1109/ICIP.2016.7533078
https://doi.org/10.15607/RSS.2010.VI.034
https://doi.org/10.1109/CDC.2010.5717430
https://doi.org/10.1109/CDC.2010.5717430
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/ICRA.2011.5980479
https://doi.org/10.1109/ICRA.2011.5980479
https://doi.org/10.1109/TIE.2018.2816000
https://doi.org/10.1109/SICE.2014.6935304
https://doi.org/10.1155/2017/7816263
https://doi.org/10.1016/B978-0-12-803730-0.00008-1
https://doi.org/10.1016/B978-0-12-803730-0.00008-1
https://doi.org/10.1007/s11370-017-0236-7
https://doi.org/10.1177/0278364915594679
https://doi.org/10.1177/0278364915594679
https://doi.org/10.1109/ICRA.2016.7487439
https://doi.org/10.1109/ICRA.2016.7487439
https://doi.org/10.1109/IROS.2015.7353946
https://doi.org/10.1109/IROS.2015.7353946

Information Technology and Control 2019/2/48194

International Workshop on Advanced Motion Con-
trol (AMC), Yokohama, 2014,380-385. https://doi.
org/10.1109/AMC.2014.6823312

32. Russell, S., Norvig, P. Artificial Intelligence: A Modern
Approach 3rd ed. Upper Saddle River, New Jersey:
Prentice Hall Series, Pearson Education Inc, 2010.

33. Santiago, R. M. C., De Ocampo, A. L., Ubando, A. T., Ban-
dala, A. A., Dadios, E. P. Path planning for Mobile Robots
Using Genetic Algorithm and Probabilistic Roadmap.
IEEE 9th International Conference on Humanoid,
Nanotechnology, Information Technology, Commu-
nication and Control, Environment and Management
(HNICEM), Manila, 2017, 1-5. https://doi.org/10.1109/
HNICEM.2017.8269498

34. Tusi, Y., Chung, H. Y. Using ABC and RRT Algorithms to
Improve Mobile Robot Path Planning with Danger De-
gree. 5th International Conference on Future Generati-
on Communication Technologies (FGCT), Luton, 2016,
21-26. https://doi.org/10.1109/FGCT.2016.7605068

35. Wang, M., Luo, J., Walter, U. A Non-Linear Model Pre-
dictive Controller with Obstacle Avoidance for a Space

Robot. Advances in Space Research, 2016, 57(8) 1737-
1746. https://doi.org/10.1016/j.asr.2015.06.012

36. Xiao, S., Bergmann, N., Postula, A. Parallel RRT* Archi-
tecture Design for Motion Planning. International Con-
ference on Field Programmable Logic and Applicati-
ons (FPL), Ghent, 2017, 1-4. https://doi.org/10.23919/
FPL.2017.8056773

37. Yang, K., Gan, S. K., Huh, J., Joo, S. Optimal Spline-Ba-
sed RRT Path Planning Using Probabilistic Map. 14th
International Conference on Control, Automation and
Systems (ICCAS), Seoul, 2014, 643-646. https://doi.
org/10.1109/ICCAS.2014.6987859

38. Yang, K., Gan, S. K., Sukkarieh, S. A Gaussian pro-
cess-based RRT Planner for the Exploration of an Un-
known and Cluttered Environment with a UAV. Advan-
ced Robotics, 2013, 27(6), 431-443. https://doi.org/10.1
080/01691864.2013.756386

39. Yang, L., Wei-guo, Z., Jing-ping, S., Guang-wen, L. A
Path Planning Method Based on Improved RRT. Proce-
edings of 2014 IEEE Chinese Guidance, Navigation and
Control Conference, Yantai, 2014, 564-567. https://doi.
org/10.1109/CGNCC.2014.7007284

https://doi.org/10.1109/AMC.2014.6823312
https://doi.org/10.1109/AMC.2014.6823312
https://doi.org/10.1109/HNICEM.2017.8269498
https://doi.org/10.1109/HNICEM.2017.8269498
https://doi.org/10.1109/FGCT.2016.7605068
https://doi.org/10.1016/j.asr.2015.06.012
https://doi.org/10.23919/FPL.2017.8056773
https://doi.org/10.23919/FPL.2017.8056773
https://doi.org/10.1109/ICCAS.2014.6987859
https://doi.org/10.1109/ICCAS.2014.6987859
https://doi.org/10.1080/01691864.2013.756386
https://doi.org/10.1080/01691864.2013.756386
https://doi.org/10.1109/CGNCC.2014.7007284
https://doi.org/10.1109/CGNCC.2014.7007284

