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This paper presents an optimized rapidly exploring random tree A* (ORRT-A*) method to improve the perfor-
mance of RRT-A* method to compute safe and optimal path with low time complexity for mobile robots in par-
tially known complex environments. ORRT-A* method combines morphological dilation, goal-biased RRT, A* 
and cubic spline algorithms. Goal-biased RRT is modified by introducing additional step-size to speed up the 
generation of the tree towards the goal after which A* is applied to obtain the shortest path. Morphological di-
lation technique is used to provide safety for the robots while cubic spline interpolation is used to smoothen the 
path for easy navigation. Results indicate that ORRT-A* method demonstrates improved path quality compared 
to goal-biased RRT and RRT-A* methods. ORRT-A* is, therefore, a promising method in achieving autonomous 
ground vehicle navigation in partially known environments.
KEYWORDS: Rapidly exploring random tree (RRT); mobile robots; path planning; morphological dilation; au-
tonomous ground vehicles.

1. Introduction
In recent years, mobile robot path planning research 
has been an active research area gaining considerable 
attention [6, 26, 35]. Despite the immense research in 

the area, achieving complete autonomous navigation 
in complex environment remains a challenge [2, 17]. 
Roadmap path planning methods are gaining popular-
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ity in addressing mobile robot path planning problems 
[20]. Notable among these methods include probabi-
listic roadmap (PRM) [33], voronoi diagram (VD) [4, 
5] and rapidly exploring random tree (RRT) path plan-
ning methods [1, 7, 9, 13, 14, 24, 25, 34, 37, 39]. Consid-
eration is given to RRT path planning in this paper.
RRT is a single query incremental algorithm [22] that 
generates a tree in a free configuration space until the 
defined target is reached [7, 18]. RRT is described as a 
fast path planning method that performs well in com-
plex and high dimensional workspace [14, 39]. RRT is 
a good method for motion planning for mobile robots 
because of its strength in controlling inputs compu-
tation [13]. It seeks to find a path between an initial 
state and target in a free configuration space with-
out the representation of the entire environment. 
Recently, mobile robot path planning research using 
RRT and its variants has been widely considered. 
RRT trajectory planning method for car-like robots 
was proposed in [13], where uniform and goal-biased 
sampling technique was employed to generate the 
tree. Consideration was given to controlling input se-
lection for the trajectory planning in urban, office and 
landscape environments. Generally, the major chal-
lenge of the RRT method is the inability to control 
path quality [19, 21, 37]. However, no consideration 
was given by the authors to address the path quality 
problem. Although RRT is probabilistic complete, 
generated path is described to be far from optimal, 
because it tries to ensure computational efficiency at 
the expense of optimality [7, 37].
Intense study to improve the performance of RRT 
path planning method has been carried out over the 
years. RRT* algorithm, an extension of RRT was pro-
posed in [19] which tried to improve path quality by 
computing asymptotically sub-optimal path. The tree 
structure of RRT* is flexible making it easy to improve 
path quality. Even though the RRT* ensures asymp-
totic optimality [20] and performs better than RRT in 
terms of path optimality, it has high time complexity 
due to the continuous execution of the local planner 
during the generation of the tree [7]. It is reported to 
be difficult to perform dynamic path replanning us-
ing RRT* [39]. Islam et al. [16] took advantage of the 
asymptotic optimality provision by RRT* to present 
RRT*-smart approach to increase the convergence 
rate of RRT method to improve path quality with 
low time complexity. To address slow convergence 

rate and large sampling space requirement of RRT*, 
RRT*-adjustable bounds approach was presented in 
[27] for off-line path planning in cluttered environ-
ment. In [31], a triangular geometrized RRT* (TG-
RRT*) method was presented to address the high 
processing time and iterations requirement of RRT* 
to obtain optimal result. The geometrical center of 
the initial state, the target position and the sample 
for the RRT were considered in generating the tree. 
Compared to RRT*, results were described to be bet-
ter in terms of efficiency. The TG-RRT* method was 
meant for static environment, and the validation of 
the method was done in a less complex environment. 
Human-guided RRT* motion planning approach was 
proposed in [11] with the aim of reducing path length 
and the cost of planning the path of a quadrotor. The 
approach requires a user to guide the motion planning 
instead of it performing planning autonomously. Park 
and Kuipers [30] considered handling non-holonom-
ic constraints of mobile robot’s motion planning and 
presented a method that used a non-holonomic dis-
tance function to extend RRT* for unicycle-based ro-
bots. The purpose was to obtain feasible and smooth 
path. The method was validated using simulation in 
static environment with sparse obstacles. No compar-
ison was made to any existing method to determine 
its efficiency. In [36], parallel RRT* motion planning 
architecture design was proposed. Nodes for the tree 
were kept in distinct pipelines to prevent traversing 
of all nodes involved in the iteration to generate the 
tree. Implementation was done on field programma-
ble gate arrays (FPGA), and results were described to 
be better compared to software RRT*. Instead of ob-
taining a path between two defined positions, Correia 
et al. [9] presented RRT-Edge method aimed at ob-
taining a compact representation of the environment 
using dispersion of RRT nodes where only the goal 
position is defined. The main purpose of the RRT-
Edge method was to reduce memory requirement. To 
enhance the expanding speed of the tree generation, 
Li et al. [25] proposed Liveness-based RRT method 
for autonomous underwater vehicles (AUVs) motion 
planning. Although splined-based RRT* method pro-
posed in [37] could find a path according to the au-
thors, it requires the generation of the tree to cover 
the entire configuration space. This results in gener-
ation of large number of nodes; hence, increasing the 
time and space complexity of the method. Recent-
ly, Otte and Frazzoli [28] proposed RRTx algorithm 
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which performs continuous path update during the 
navigation of the robot. Despite research progress to 
minimize the probability of RRT path generation and 
to enhance path construction, difficulty of controlling 
path quality still exists [28, 37]. 
In recent years, RRT method has been combined with 
other path planning methods to help improve path 
quality. In [38], Gaussian process occupancy map was 
combined with RRT to plan secure path in cluttered 
environment. Tusi and Chung [34] combined RRT 
and artificial bee colony (ABC) methods. RRT algo-
rithm was used in this method to generate nodes in 
the free configuration space and the best nodes were 
considered by applying ABC method to move the bees. 
The method was described to have performed bet-
ter compared to particle swarm optimization (PSO) 
method. Any-angle search algorithm was combined 
with RRT to present theta*-RRT motion planning 
method for non-holonomic wheeled robots [29]. 
Theta*-RRT method was described to have generated 
shorter paths in shorter time compared to other RRT 
methods. To obtain near-optimal path of nonlinear 
dynamic mobile robots, Li et al. [23] combined neu-
ral network and RRT to present NoD-RRT method. 
The authors considered the nonlinear kinodynamic 
constraints of the vehicles and revised RRT to per-
form reconstruction to deal with the kinodynamic 
constraints problem. Results showed that NoD-RRT 
performed better compared to RRT and RRT*. An-
other recent hybrid method involving RRT is RRT-A* 
motion planning method presented in [24]. The 
method focused on optimizing RRT path generation 
for non-holonomic mobile robots in known environ-
ment. A* heuristic algorithm was used to decide the 
selection of the nearest node during the generation of 
the tree. The authors acknowledged the fact that the 
method suffered local minima problem. The authors 
indicated that the path length obtained using RRT-A* 
method was more optimal compared to goal-biased 
RRT method. This analysis, however, compared Man-
hattan based RRT-A* to Euclidean based goal-bi-
ased RRT which are of different metric functions 
as demonstrated in the paper. Comparing Euclide-
an-based RRT-A* to Euclidean-based goal-biased 
RRT from their results, the proposed method utilized 
849% of the time to achieve 6% path length improve-
ment in sparse environment. In dense environment, 
222% time was used to achieve 4.27% path length 
improvement over Euclidean-based goal biased RRT. 

But the rate of time used compared to achieved results 
indicates the method lacks some efficiency. The path 
quality problem of RRT and challenges identified in 
[24] motivated this research to optimize and extend 
RRT-A* method to produce better results.
Therefore, this paper presents an optimized RRT-A* 
path planning method based on morphological dila-
tion (MD), goal-biased RRT, A* heuristic algorithm 
and cubic spline interpolation to compute safe and 
optimal path for autonomous mobile robots in par-
tially known complex environment. A step size is 
usually used in goal-biased RRT for the generation of 
the RRT. In this paper, additional step-size is intro-
duced to speed up the generation of the tree towards 
the goal based on the random sample value. In [24], 
A* heuristic function was applied at every iteration to 
select the nearest node during the generation of the 
tree which had high time cost in path computation. 
In this paper, the A* heuristic algorithm is used to 
optimize and obtain the shortest path after the path 
is generated using the modified goal-biased RRT. To 
provide safe and smooth path for feasible navigation, 
MD technique is used to inflate the obstacles before 
generating the path, and cubic spline interpolation 
(CSI) is used to smoothen the path.  Path replanning 
is provided by generating new path from a current po-
sition of the robot when a random obstacle obstructs 
its navigation path. ORRT-A* approach addresses the 
local minima problem reported with RRT-A* [24] and 
generates safe and optimal path with low time cost in 
partially known environment.
The rest of this paper is organized as follows. Problem 
formulation is given in Section 2. Section 3 describes 
the proposed methods: obtaining and processing map, 
computing the roadmap, path query and optimization, 
path smoothening, and replanning. The simulation re-
sults and discussion are presented in Sections 4 and 5, 
respectively. Finally, Section 6 concludes the paper.

2. Problem Formulation
The configuration space CS  of the mobile robot is 
represented in Figure 1. The CS  is made up of re-
gions with obstacles, obsCS  and free configuration 
space freeCS . In this paper, environment of 2D where 

2CS ⊆    is considered. Hence, obsCS CS⊆  and each 
vertex of obsCS can be represented as ( )obs i obsv C∈ . 
The  freeCS  can be obtained using \free obsCS CS CS=  
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Figure 1
The configuration space of a robot with sample obstacles 
and RRT path from the initial position v0 to the target vt

applied at every iteration to select the nearest 
node during the generation of the tree which had 
high time cost in path computation. In this paper, 
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from the initial state to the target as 

0 1 2 3( , , , ,..., )i tV v v v v v , iV  represents positions in 
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This paper focuses on computing safe, shortest 
and smooth path in freeCS  from 0v  to tv  using 
less time in partially known environment. At the 
initial state, the environment of the vehicle is 
assumed known during path computation. As the 
vehicle navigates to its target based on the 
computed path, random obstacles can obstruct the 
path leading to collision. This paper provides a 
reactive path replanning to avoid obstacles that 
obstruct the path of the vehicle during navigation 
in real-time. 
 

3. Proposed Method 
The general algorithms of the method presented 
in this paper are demonstrated in a workflow 
diagram in Figure 2.  The path planning method 
presented in this paper has been divided into five 
steps: obtaining and processing map, computing 
the RRT roadmap, path query and optimization, 
path smoothening and path replanning. 
 

 

 

 

Figure 2
Workflow diagram of the proposed method 
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3.1 Step 1: Obtaining and Processing Map 

The map of the workspace could be obtained 
using camera or scanning laser range finder. The 
captured map of the environment is processed to 
give binary representations of the obsCS  and the  

freeCS  of the CS . To ensure safety of the mobile 

robots during navigation such that the generated 
path is not too close to obstacles in the workspace 
to cause collisions, obstacles in the map are 
inflated before constructing the RRT roadmap 
using MD technique given in [12]. The dimension 
of the vehicle and other safety requirements are 
considered in inflating the obstacles. The MD 
equation denoted by P Q  is given as: 
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 where P represents the map, Q represents the 

structure element for the dilation, r is the set of all 
nodes of the map and iQ  denotes the reflection of 
the set Q. The MD of a given binary map with the 
matrix, ( , )bmap x y  and a structuring element 
q( , )x y  can therefore, be calculated using Equation 
(2): 
 
( ) max{ ( ) ( ) | (R ),
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bmap q R bmap R x q x x

S S
    

       (2) 

   
where S and R denote the dimension of the map 
and the translated radius representing the robot’s 
safety space required, respectively. Equation (2) is 
used to inflate the obstacles on the map before 
generating the tree to ensure safe navigation. 
 
3.2 Step 2: Computing the RRT Roadmap 

Details of basic RRT algorithm are given in [1, 7, 
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iV  represents positions in the freeCS . 0v  is the initial 
position of the tree while tv   represents the target or 
the iteration limit of the tree generation.
This paper focuses on computing safe, shortest and 
smooth path in freeCS  from 0v  to tv  using less time in 
partially known environment. At the initial state, the en-
vironment of the vehicle is assumed known during path 
computation. As the vehicle navigates to its target based 
on the computed path, random obstacles can obstruct 
the path leading to collision. This paper provides a reac-
tive path replanning to avoid obstacles that obstruct the 
path of the vehicle during navigation in real-time.

3. Proposed Method
The general algorithms of the method presented in 
this paper are demonstrated in a workflow diagram in 
Figure 2. The path planning method presented in this 
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paper has been divided into five steps: obtaining and 
processing map, computing the RRT roadmap, path 
query and optimization, path smoothening and path 
replanning.

3.1. Step 1: Obtaining and Processing Map
The map of the workspace could be obtained using 
camera or scanning laser range finder. The captured 
map of the environment is processed to give binary 
representations of the obsCS  and the freeCS  of the 
CS. To ensure safety of the mobile robots during nav-
igation such that the generated path is not too close 
to obstacles in the workspace to cause collisions, ob-
stacles in the map are inflated before constructing the 
RRT roadmap using MD technique given in [12]. The 
dimension of the vehicle and other safety require-
ments are considered in inflating the obstacles. The 
MD equation denoted by P Q⊕  is given as:

Figure 2 

Workflow diagram of the proposed method  
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where P represents the map, Q represents the struc-
ture element for the dilation, r is the set of all nodes of 
the map and iQ  denotes the reflection of the set Q. The 
MD of a given binary map with the matrix, ( , )bmap x y  
and a structuring element q( , )x y  can therefore, be 
calculated using Equation (2):
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where S and R denote the dimension of the map and 
the translated radius representing the robot’s safety 
space required, respectively. Equation (2) is used to 
inflate the obstacles on the map before generating the 
tree to ensure safe navigation.

3.2. Step 2: Computing the RRT Roadmap
Details of basic RRT algorithm are given in [1, 7, 
13, 24, 25, 34, 37, 39]. This paper modifies and uses 
goal-biased RRT to generate the roadmap ensuring 
that the tree is rapidly generated towards the goal. 
The generation of the tree is biased towards the target 
when the random value rand to determine the compu-
tation of the sample is less than the random threshold 
rt. Two different step sizes, sz1 and sz2 are used with 
sz2 assigned higher value than sz1. sz2 is used for the 
growth of the tree when the growth is biased to the 
target. This is aimed at reducing the number of nodes 
to be generated before reaching the target, thereby 

reducing the time and space complexity of the algo-
rithm. The algorithm used in this paper to generate 
the roadmap is given in Algorithm 1.
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of the tree towards the target. The nearest node, 
( , )randNearest T u  is computed using k-nearest neigh-
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This is aimed at reducing the number of nodes to 
be generated before reaching the target, thereby 
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generate the roadmap is given in Algorithm 1. 
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generating the tree is computed as: 
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3.3. Step 3: Path Query and Optimization 
A path is generated from the initial position of the 
RRT roadmap to the target using the set of nearestu  
and the T nodes obtained during the generation of 
the tree. The algorithm used in generating the path is 
given in Algorithm 2. A sample path generated using 
Algorithm 2 is demonstrated in Figure 3a. A* algo-
rithm applied in [24] was used to optimize the path 
in Figure 3a to obtain the path in Figure 3b. In [24], 
the A* heuristic function was used at every iteration 
to select the nearest node during the generation of 
the tree. In this paper, the A* heuristic algorithm is 
used to optimize and obtain the shortest path after 
the roadmap is generated using the modified goal-bi-
ased RRT. A* heuristic function is good at finding a 
path on a graph with the least cost provided a path 

exists [32]. The A* heuristic cost function employed 
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3.4 Step 4: Path Smoothening 

The path obtained after applying A* algorithm 
(see Figure 3b) is not smooth enough to enable 
easy navigation of the autonomous vehicle. CSI is 
employed to enhance the smoothness of the 
optimized path. With cubic spline, the function of 
a curve is represented using different cubic 
functions for each of the data points intervals [3]. 
Considering m data points, the function of the 
spline ( )S x  can be defined as in Equation (9): 
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where Pi represents the cubic function. Generally, 
cubic spline is defined as: 
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Hence, given a set of data points on a path, cubic 
spline interpolation smoothens the path as 
demonstrated in Figure 4 by generating more data 
points between each interval.  
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3.5.  Step 5: Path Replanning
During the mobile robot navigation, a random obsta-
cle may obstruct the optimized generated path. The 
obstacle may be in motion or stationary. If in motion, 
its direction is required to determine the path replan-
ning action. In [7], the direction of the robot and the 
obstacles were computed using the angular positions 
of the robot and that of the obstacle. The difference 
of these angles is compared to an angle threshold to 
determine the direction of the obstacle followed by a 
replanning action. The direction vector of the obsta-
cle ,obsθ  and the velocity vector of the robot ,rθ  were 
obtained using Equations 12 and 13:

the angular positions of the robot and that of the 
obstacle. The difference of these angles is 
compared to an angle threshold to determine the 
direction of the obstacle followed by a replanning 
action. The direction vector of the obstacle ,obsθ  
and the velocity vector of the robot ,rθ  were 
obtained using Equations 12 and 13: 
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2( , ),r y xatan v vθ =              (13) 

 
where ( , )obs obsx y  is the position of the obstacle in 
the environment while ( , )r rx y  is the position of 
the robot. ( , )x yv v  are the coordinate components 

of the velocity vector of the robot. The angle 
difference is compared to an angle threshold 
using Equation (14): 
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where thresholdθ  represents the angle threshold to 
determine the replanning action. While it is easy 
to obtain the position of the robot for the 
computations, it is difficult to obtain the ( , )x y  
position of the obstacle in the real environment 
for the computations in Equations (12) and (13).  
 
In this paper, a simple sensor-based reactive 
technique is proposed to determine the direction 
of an obstacle that obstructs the path of the robot 
during navigation. Two main conditions of the 
obstacle are required to take a decision: (1) 
whether the obstacle in motion is crossing the 
path of the robot, crossP ; (2) whether the obstacle 
is stationary, in the same direction towards the 
robot or moving forward in the same direction of 
the robot, sameP . The expected replanning action 
of the robot, aR  is given as: 
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R wait P
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           (15) 

The robot waits for the obstacle to cross and 
continue with its navigation if the condition is 

crossP . If the condition is sameP  a path replanning is 
done. The technique is demonstrated in Figure 6. 
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respectively. The current position of the robot is 
used as the new source for the replanning. 
However, if the obstacle is detected by other 
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6.           Determine obstacle direction, Ra 
7.           if a crossR P== //Equation (15) 
8.               Stop and wait 
9.           end if 
10.           if a sameR P==  
11.              ( ,:);sourcenew spath j←  
12.              [ , ];source sourceold old source←  
13.              ( , , )source sourcespath Replan new old newmap=  
14.               Go to 3 
15.           end if  
16.       end if 
17.        if target reached; 
18.            return success and stop 
19.        end if 
20.    end for 
21. End 

 
Figure 5 
Path smoothening applied to the path in Figure 3b on 
the original map  

 
 

3.5 Step 5: Path Replanning 
During the mobile robot navigation, a random 
obstacle may obstruct the optimized generated 
path. The obstacle may be in motion or stationary. 
If in motion, its direction is required to determine 
the path replanning action. In [7], the direction of 
the robot and the obstacles were computed using 

is difficult to obtain the ( , )x y  position of the obsta-
cle in the real environment for the computations in 
Equations (12) and (13). 
In this paper, a simple sensor-based reactive tech-
nique is proposed to determine the direction of an 
obstacle that obstructs the path of the robot during 
navigation. Two main conditions of the obstacle are 
required to take a decision: (1) whether the obstacle 
in motion is crossing the path of the robot, crossP ; (2) 
whether the obstacle is stationary, in the same direc-
tion towards the robot or moving forward in the same 
direction of the robot, sameP . The expected replanning 
action of the robot, aR  is given as:

the angular positions of the robot and that of the 
obstacle. The difference of these angles is 
compared to an angle threshold to determine the 
direction of the obstacle followed by a replanning 
action. The direction vector of the obstacle ,obsθ  
and the velocity vector of the robot ,rθ  were 
obtained using Equations 12 and 13: 
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2( , ),r y xatan v vθ =              (13) 

 
where ( , )obs obsx y  is the position of the obstacle in 
the environment while ( , )r rx y  is the position of 
the robot. ( , )x yv v  are the coordinate components 

of the velocity vector of the robot. The angle 
difference is compared to an angle threshold 
using Equation (14): 
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where thresholdθ  represents the angle threshold to 
determine the replanning action. While it is easy 
to obtain the position of the robot for the 
computations, it is difficult to obtain the ( , )x y  
position of the obstacle in the real environment 
for the computations in Equations (12) and (13).  
 
In this paper, a simple sensor-based reactive 
technique is proposed to determine the direction 
of an obstacle that obstructs the path of the robot 
during navigation. Two main conditions of the 
obstacle are required to take a decision: (1) 
whether the obstacle in motion is crossing the 
path of the robot, crossP ; (2) whether the obstacle 
is stationary, in the same direction towards the 
robot or moving forward in the same direction of 
the robot, sameP . The expected replanning action 
of the robot, aR  is given as: 

.
same

a cross

replan P
R wait P

navigate otherwise
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The robot waits for the obstacle to cross and 
continue with its navigation if the condition is 

crossP . If the condition is sameP  a path replanning is 
done. The technique is demonstrated in Figure 6. 
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Determining the direction of an obstacle using 
sensors

 
 
From Figure 6, 1 2 3 4 5( , , , , )s s s s s  represent the 
sensors of the robot, 1 2 3 4 5( )s s s s sθ ,θ ,θ ,θ ,θ  are the 
angles of the sensors on the robot, 1 2 3( , , )p p p  
represent the different positions of an obstacle, d1 

and d2 are the defined sensor distance thresholds 
from the robot to the obstacle, and sd is the 
required safe distance from the robot to the 
obstacle. The sensors track obstacles during 
navigation. When the minimum of the sensors’ 
distances, dist, between the robot and an obstacle 
is less than d1, it suggests an obstacle has been 
detected by the robot at a distance that is of less 
collision threat to the robot. The sensors that 
detect the obstacle are recorded. To check the 
direction of the obstacle, sensor readings are 
recorded till 2dist d≤  and the sensors with the 
readings are noted. If the same sensors detect the 
obstacle at 2 ,dist d≤  the sameP  condition is 
satisfied, and a call is made to re-plan and 
compute a new feasible path for navigation. The 
path replanning task involves re-generating the 
roadmap, path computation and path 
smoothening as described in steps 2, 3 and 4, 
respectively. The current position of the robot is 
used as the new source for the replanning. 
However, if the obstacle is detected by other 
sensors (right or left of the first sensor) at 

2 , crossdist d P≤  condition is satisfied. The robot 
stops and wait till 1dist d>  (see Equation (15)). 
From Figure 6, an obstacle obs  at point 1p was 
detected by 2s  when 1dist d≤  At point 2 ,p  it was 
detected by 3s  also at 1dist d≤  At point 3p  it was 
detected by 4s  at 2dist d≤ . This condition of the 
obstacle suggests that it is in motion across the 

(15)

The robot waits for the obstacle to cross and contin-
ue with its navigation if the condition is crossP . If the 
condition is sameP  a path replanning is done. The tech-
nique is demonstrated in Figure 6.
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path replanning task involves re-generating the 
roadmap, path computation and path 
smoothening as described in steps 2, 3 and 4, 
respectively. The current position of the robot is 
used as the new source for the replanning. 
However, if the obstacle is detected by other 
sensors (right or left of the first sensor) at 
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the robot to the obstacle. The sensors track obstacles 
during navigation. When the minimum of the sensors’ 
distances, dist, between the robot and an obstacle is 
less than d1, it suggests an obstacle has been detected 
by the robot at a distance that is of less collision threat 
to the robot. The sensors that detect the obstacle are 
recorded. To check the direction of the obstacle, sen-
sor readings are recorded till 2dist d≤  and the sen-
sors with the readings are noted. If the same sensors 
detect the obstacle at 2 ,dist d≤  the sameP  condition is 
satisfied, and a call is made to re-plan and compute a 
new feasible path for navigation. The path replanning 
task involves re-generating the roadmap, path com-
putation and path smoothening as described in steps 
2, 3 and 4, respectively. The current position of the ro-
bot is used as the new source for the replanning. How-
ever, if the obstacle is detected by other sensors (right 
or left of the first sensor) at 2 , crossdist d P≤  condition 
is satisfied. The robot stops and wait till 1dist d>  (see 
Equation (15)). From Figure 6, an obstacle obs  at 
point 1p was detected by 2s  when 1dist d≤ . At point 

2 ,p  it was detected by 3s  also at 1dist d≤ . At point 
3p  it was detected by 4s  at 2dist d≤ . This condition 

of the obstacle suggests that it is in motion across the 
path of the robot. This satisfies the crossP  condition, 
hence the robot stops and waits for the obstacle to 
cross till 1dist d≤  without path re-replanning. The 
algorithm used to guide navigation indicating a call 
for replanning when a random obstacle is detected is 
given in Algorithm 3. 

4. Simulation Results
To evaluate the efficiency of the proposed method, 
simulation was carried out using MATLAB. Results 
obtained from experiment with complex and less 
complex environments, environment with local 
minimum possibilities, and narrow passages are 
given. 1 10sz =  and 2 15sz =  are the step sizes used in 
computing tree. Results for path replanning are also 
demonstrated. Additionally, results of experiment 
using maps in [10] are given. 

4.1. Experiment with Complex and Less 
Complex Environment
Figures 7 and 8 present simulation results in environ-
ment with less complex and complex environments for 

the modified goal-biased RRT and the ORRT-A* meth-
od proposed, respectively. The complexity of the envi-
ronment in this paper is based on the occupancy rate of 
obstacles in the environment, the number and shapes 
of obstacles. The occupancy rate is computed as:

path of the robot. This satisfies the crossP  
condition, hence the robot stops and waits for the 
obstacle to cross till 1dist d≤  without path re-
replanning. The algorithm used to guide 
navigation indicating a call for replanning when a 
random obstacle is detected is given in Algorithm 
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Complex Environment 

Figures 7 and 8 present simulation results in 
environment with less complex and complex 
environments for the modified goal-biased RRT 
and the ORRT-A* method proposed, respectively. 
The complexity of the environment in this paper 
is based on the occupancy rate of obstacles in the 
environment, the number and shapes of obstacles. 
The occupancy rate is computed as: 
 

_ *100,obspixelsoccupancy rate
mpixels

=                          (16) 

where mpixels represents the total number pixels 
of the map representing the environment and 
obspixels represents the number of pixels of the 
environment occupied by obstacles. 
 

Figure 7  

Path in less complex environment of occupancy rate of 
35.18% and 19 different shapes of obstacles represented 
on a 500 by 500 pixel map: (a) Modified goal-biased 
RRT with path length 573.63 on the map with inflated 
obstacles; (b) ORRT-A* with path length 513.48 on the 
original map. 

(a)                    (b) 

  
 
Figure 8 
Path in complex environment of occupancy rate of 
54.9% and 23 different shapes of obstacles represented 
on a 500 by 500 pixel map: (a) Modified goal-biased 
RRT with path length 668.23 on the map with inflated 
obstacles; (b) ORRT-A* with path length 572.34 on the 
original map. 

  (a)                (b) 

   
 
4.2 Experiment with Environment with 

Local Minimum Possibilities 

Experiment to compare the performance of the 
proposed method to RRT-A* in [24] was done 
using “T” shaped obstacle as presented in Figure 
8. Li et al. [24] acknowledged the failure of RRT-
A* to find path in an environment with T-shaped 
obstacle (Figure 9) after 5000 iterations. To 
evaluate the performance of the ORRT-A* 
algorithm in dealing with local minimum 
problem beyond T-shaped obstacle, a more 
complex local minimum environment was used 
for a simulation as shown in Figure 10.  
 

Figure 9 

(a) Modified goal-biased RRT in T-shaped obstacle 
environment of path length 955.69 with 792 iterations; 
(b) ORRT-A* in T-shaped obstacle environment with 
path length 703.93 on the original map. 

(a)                    (b) 

(16)

where mpixels represents the total number pixels of 
the map representing the environment and obspixels 
represents the number of pixels of the environment 
occupied by obstacles.

Figure 7 
Path in less complex environment of occupancy rate of 
35.18% and 19 different shapes of obstacles represented on 
a 500 by 500 pixel map: (a) Modified goal-biased RRT with 
path length 573.63 on the map with inflated obstacles; (b) 
ORRT-A* with path length 513.48 on the original map

Figure 8
Path in complex environment of occupancy rate of 54.9% 
and 23 different shapes of obstacles represented on a 
500 by 500 pixel map: (a) Modified goal-biased RRT with 
path length 668.23 on the map with inflated obstacles; (b) 
ORRT-A* with path length 572.34 on the original map

path of the robot. This satisfies the crossP  
condition, hence the robot stops and waits for the 
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replanning. The algorithm used to guide 
navigation indicating a call for replanning when a 
random obstacle is detected is given in Algorithm 
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4.2. Experiment with Environment with 
Local Minimum Possibilities
Experiment to compare the performance of the pro-
posed method to RRT-A* in [24] was done using “T” 
shaped obstacle as presented in Figure 8. Li et al. [24] 
acknowledged the failure of RRT-A* to find path in an 
environment with T-shaped obstacle (Figure 9) after 
5000 iterations. To evaluate the performance of the 
ORRT-A* algorithm in dealing with local minimum 
problem beyond T-shaped obstacle, a more complex 
local minimum environment was used for a simula-
tion as shown in Figure 10. 

Figure 9
(a) Modified goal-biased RRT in T-shaped obstacle 
environment of path length 955.69 with 792 iterations; (b) 
ORRT-A* in T-shaped obstacle environment with path 
length 703.93 on the original map

Figure 10
Path computation in complex local minimum environment: 
(a) Modified goal-biased RRT of path length 1469.8 with 
2008 iterations; (b) ORRT-A* path with path length 1008.2 
on the original map

Figure 11
Path computation in a narrow passage environment: (a) 
Modified goal-biased RRT of path length 885.7 with 644 
iterations; (b) ORRT-A* path with path length 775.86 on 
the original map

  

  

 

4.3. Experiment in Narrow Passage 
Environment
It is known that sampling-based path planning meth-
ods have difficulties in finding path in narrow pas-
sages. To evaluate the performance of the proposed 
method, experiment was conducted in an environ-
ment with narrow passage to determine its efficiency 
as presented in Figure 11. 

(a) (b)

(a) (b)

a b

4.4. Results for Path Replanning
To evaluate the ORRT-A* method for path replan-
ning, an obstacle was inserted randomly during the 
navigation of the robot ensuring that it obstructs the 
path of navigation. As the random obstacle is detect-
ed at a distance di, a call is made for replanning and 
the path is regenerated for navigation to continue. 
Not until a goal is reached, obstacles are inserted 
randomly to block the path of navigation. Obstacle 
detection sensors are, however, required for a real 
situation. 
Figure 12 demonstrates tasks performed to regener-
ate the path to avoid collision with three random ob-
stacles that obstruct the path during navigation and 
the final path taken by the robot to reach its target. 
Paths and roadmaps in Figures 12a to 12g are shown 
on the map with inflated obstacles while the path in 
Figure 12h shows the final path on the original map.
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(e) (f )

4.5. Experiment with Maps Used to Evaluate 
RRT-A*
To aid in comparing the efficiency of the proposed 
method to RRT-A*, experiments are performed us-
ing the maps used in [24]. 
Figure 13 demonstrates the results of goal-biased 
RRT and ORRT-A* in sparse environment while 
Figure 14 depicts the results of goal-biased RRT and 
ORRT-A* in dense environment.

Figure 12 
Path planning and replanning to avoid obstacles during 
navigation:

(a) Initial RRT Roadmap; (b) Initial Path from S to T.

   
(a)

(a)

(g)

(c)

(b)

(b)

(h)

(d)

(c) Roadmap for path replanning from S1 as the new 
starting point after encountering the random obstacle obs1; 
(d) New Path generated from S1 to the target T;

  
 

 (e) Roadmap for path replanning from S2 as the new 
starting point after encountering the random obstacle 
obs2; (f) New Path generated from S2 to the target T. 

                  (e)                  (f) 

   
 
(g) Roadmap for path replanning from S3 as the new 
starting point after encountering the random obstacle 
obs3 on the map with inflated obstacles; (h) Final Path 
to the target T on the original map. 

                  (g)               (h) 

   
 
4.5 Experiment with Maps Used to Evaluate 

RRT-A* 

To aid in comparing the efficiency of the proposed 
method to RRT-A*, experiments are performed 
using the maps used in [24]. Figure 13 
demonstrates the results of goal-biased RRT and 
ORRT-A* in sparse environment while Figure 14 
depicts the results of goal-biased RRT and ORRT-
A* in dense environment. 

 

Figure 13 

Performance of the proposed method in sparse 
environment of 50-by-50 with round obstacles used in 
[10]: (a) Roadmap and path for goal-biased RRT of path 
length 76.66 with 141 iterations; (b) ORRT-A* path of 
path length 66.81. 
                  (a)                                   (b) 

   
 
Figure 14 

Performance of the proposed method in dense 
environment of 50-by-50 with round obstacles used in 
[10]: (a) Roadmap and path for goal-biased RRT of path 
length 77.69 with 601 iterations; (b) ORRT-A* path of 
path length 65.4. 
                 (a)             (b) 

  
 

5. Discussion  
As indicated in Figure 7 and 8, the proposed 
method performed well in computing safe and 
shortest path from the initial position to the goal 
on maps representing less complex and more 
complex environments. The less complex 
environment is made up of 19 obstacles of 
different shapes with 35.18% occupancy rate 
while the more complex environment comprises 
of 23 obstacles of different shapes with 54.9% 
occupancy rate. In environments with T-shaped 
obstacle and other obstacles that could cause local 
minima problem (see Figure 9 and 10), the 
proposed method found path successfully as 

(e) Roadmap for path replanning from S2 as the new 
starting point after encountering the random obstacle obs2; 
(f ) New Path generated from S2 to the target T.

                             

(g) Roadmap for path replanning from S3 as the new 
starting point after encountering the random obstacle obs3 
on the map with inflated obstacles; (h) Final Path to the 
target T on the original map.

                  

  

Figure 13
Performance of the proposed method in sparse environment 
of 50-by-50 with round obstacles used in [10]: (a) Roadmap 
and path for goal-biased RRT of path length 76.66 with 141 
iterations; (b) ORRT-A* path of path length 66.81
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5. Discussion 
As indicated in Figure 7 and 8, the proposed method 
performed well in computing safe and shortest path 
from the initial position to the goal on maps repre-
senting less complex and more complex environ-
ments. The less complex environment is made up of 
19 obstacles of different shapes with 35.18% occupan-
cy rate while the more complex environment com-
prises of 23 obstacles of different shapes with 54.9% 
occupancy rate. In environments with T-shaped 
obstacle and other obstacles that could cause local 
minima problem (see Figure 9 and 10), the proposed 
method found path successfully as against the prob-
lem associated with RRT-A* in relation to local min-
ima. It is also known that sample-based methods 
including RRT have problems with narrow passages 
[8]. The results shown in Figure 11 indicate that the 
proposed method is effective in dealing with narrow 
passages. The results of the proposed method as pre-
sented in Figure 12 depict the strength of the method 
in performing reactive path replanning to deal with 
unforeseen obstacles that may obstruct the path of 
the robot during navigation.
Moreover, as indicated in Figures 13 and 14, the pro-
posed ORRT-A* method performed very well with 
sparse and dense environment maps used in [24]. Ta-
ble 1 presents the performance results of Euclidean 
based goal-biased RRT and Euclidean based RRT-A* 
methods as presented in [24]. Table 2 presents the 

Figure 14
Performance of the proposed method in dense environment 
of 50-by-50 with round obstacles used in [10]: (a) Roadmap 
and path for goal-biased RRT of path length 77.69 with 601 
iterations; (b) ORRT-A* path of path length 65.4

  
 

performance results of Euclidean based goal-biased 
RRT, A* and Euclidean based ORRT-A* methods in-
dicating the average path length and time for each 
method after 50 runs for each map of sparse and dense 
environment. Results of RRT-A* method in [24], as 
presented in Table 1, were compared with goal-biased 
RRT. In Table 2, the proposed ORRT-A* method is 
compared to goal-biased RRT and A* methods. Table 
3 compares RRT-A*, A* and ORRT-A* using goal bi-
ased RRT as the base method to compute the optimal-
ity and time-used rates. Information in Tables 1 and 
2 is used for the comparison in Table 3. Table 3 indi-
cates the percentage optimality gained and percent-
age time used by RRT-A*, A* and ORRT-A* methods 
as against goal-biased RRT using the same Euclidean 

(a) (b)

Table 1
Results of Euclidean based goal-biased RRT and Euclidean 
based RRT-A* methods presented in [24]

Environment Algorithm Average 
Length

Average 
Time

Sparse

Euclidean based 
goal-biased RRT 73.40 2.86

Euclidean based 
RRT-A* 68.96 27.14

Dense

Euclidean based 
goal-biased RRT 73.367 6.745

Euclidean based 
RRT-A* 70.36 21.73

Table 2
Results of Euclidean based goal-biased RRT, A* and Euclidean 
based ORRT-A* methods

Environment Algorithm Average 
Length

Average 
Time

Sparse 

Euclidean based  
goal-biased RRT 70.72 5.82

Euclidean based A* 63.13 484.70

Euclidean based 
ORRT-A* 63.49 7.15

Dense 

Euclidean based  
goal-biased RRT 72.63 4.27

Euclidean based A* 63.98 239.01

Euclidean based 
ORRT-A* 64.43 5.71
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metric. The average number of nodes, n, used to com-
pute the final path for each method is also indicated. 
The optimality rate is obtained using *100,Gp Mp

Gp
−

where Gp represents path length for the base method 
(Euclidean goal-based RRT) and Mp represents path 
length for RRT-A*, A* or ORRT-A*. The Time-used 
rate was computed using *100,Mt Gt

Gt
−  where Mt is 

the time used to obtain Mp for the base method (Eu-
clidean goal-based RRT) and Gt represents the time 
used to obtain Gp. High optimality rate with low time-
used rate indicates good performance. Comparing the 
results, the proposed method achieved 10.22% path 
optimality using 22.8% time as against 6% optimality 
with 849% time used by RRT-A* method in less com-
plex environments. In dense environment, the pro-
posed method achieved 11.29% path optimality using 
33.87% time as against 4.2% optimality with 222% 
time used by RRT-A* method. Regarding path length, 
A* performs better than both RRT-A* and ORRT-A* 
methods. However, the average time used (8,228.18% 
and 5,497.42% for sparse and dense environments, re-
spectively) to attain such optimality is very high and 
comparatively inefficient for a reactive path planning 
for obstacle avoidance for robots in motion.
The time and space complexity of RRT* and RRT*-
smart is indicated in [16] as ( log )O n n  and ( ),O n  re-
spectively. With the same requirements to compute 
the sample, nearest node, tree extensions and addi-
tion of node to the tree as in RRT*-smart, goal-biased 
RRT uses the same time and space complexities. But 
with the requirement to bias the tree growth towards 
the goal, the n value in goal-biased RRT is reduced. 

The proposed method adopted and modified goal-bi-
ased RRT for the generation of the roadmap. With the 
introduction of additional step-size to speed up the 
growth of the tree to the goal in the proposed meth-
od, the n value is reduced significantly though the 
time and space complexities remain ( log )O n n  and 

( ),O n  respectively. RRT-A* algorithm, on the other 
hand applied A* during the generation of the tree at 
the learning phase. The time and space complexities 
of A* are 2( )O n  and ( ),O n  respectively. The use of the 
A* at the learning phase increases the time complexi-
ty of generating the tree to 2( )O n . At the query phase 
of the proposed method, a simple binary search of 
running time of ( log )O n n  is used to obtain the initial 
path where n is the number of nodes on the roadmap. 
A* algorithm with 2( )O n  running time, where n rep-
resents the number of nodes of the path generated us-
ing the binary search is then used to obtain the short-
est path from the start position of the robot to the goal 
position. Hence, the n  value used in the ORRT-A* 
method has reduced drastically compared to the n 
value used in RRT-A* though both methods applied A* 
algorithm with running time of 2( )O n . This analysis 
indicates a better performance of ORRT-A* as against 
RRT-A* with respect to time as demonstrated in the 
results in Table 3.

6. Conclusion
In this paper, ORRT-A* path planning method for mo-
bile robots in partially known complex environment 
is presented based on MD technique, goal-biased 

Table 3
Compared results of RRT-A*, A* and ORRT-A* with goal-biased RRT using Euclidean metric 

Environment Algorithm % Optimality % Time used Average Nodes (n)

Sparse 

Euclidean based RRT-A* 6.00     849.00 838

Euclidean based A* 10.59 8,228.18 2051

Euclidean based ORRT-A* 10.22       22.85     56

Dense 

Euclidean based RRT-A* 4.27     222.00 781

Euclidean based A* 11.91   5497.42 1715

Euclidean based ORRT-A* 11.29       33.72      42      
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RRT, A* and cubic spline interpolation algorithms. 
The ORRT-A* algorithm considered the safety of the 
mobile robots during navigation by introducing MD 
technique to inflate the obstacles before computing 
the path. Given initial and target positions, the algo-
rithm generates a roadmap using modified goal-bi-
ased RRT on the map with inflated obstacles. Unlike 
the original goal-biased RRT algorithm, two step-size 
constraints, where one step-size is assigned higher 
value than the others are used to facilitate the growth 
of the tree from the initial position to the target with 
low time complexity. A* heuristic algorithm was used 
as the local planner to obtain the shortest path while 
cubic spline interpolation was used to smoothen the 
path generated. While RRT-A* method used A* heu-
ristic algorithm at every iteration to select the near-
est node during the generation of the roadmap at the 
learning phase, it is used in ORRT-A* as a local plan-
ner at the query phase after generating the roadmap 
with the modified goal-biased RRT. 
Results indicate that ORRT-A* method provides en-
hanced path quality compared to goal-biased RRT 
and RRT-A* methods.  Compared to RRT-A* meth-

od, ORRT-A* method is more efficient in terms of 
path quality and length, and time complexity using 
the same distance metric. The algorithm presented 
performed efficiently in both complex and narrow 
passages environments. The local minimum problem 
associated with RRT-A* method has been addressed. 
Again, ORRT-A* method can avoid random obstacles 
that obstruct the path of the robot during navigation 
by replanning its path till the target is reached. These 
strengths make the method viable to perform effi-
ciently in real partially known complex environment. 
ORRT-A* is therefore a promising method to achieve 
autonomous vehicle navigation in partially known 
and complex environment.
Future work would consider real implementation of 
ORRT-A* path planning method to evaluate its perfor-
mance in the real environment. Implementation of the 
method in 3D environment is under consideration.
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